



|              |                                                                             |
|--------------|-----------------------------------------------------------------------------|
| Title        | Z/kZ-finiteness for certain $S^1$ -spaces                                   |
| Author(s)    | Sumi, Toshio                                                                |
| Citation     | Osaka Journal of Mathematics. 1992, 29(3), p. 607-615                       |
| Version Type | VoR                                                                         |
| URL          | <a href="https://doi.org/10.18910/10890">https://doi.org/10.18910/10890</a> |
| rights       |                                                                             |
| Note         |                                                                             |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Sumi, T.  
 Osaka J. Math.  
**29** (1992), 607–615

## **Z/kZ-FINITENESS FOR CERTAIN S<sup>1</sup>-SPACES**

TOSHIO SUMI

(Received July 25, 1991)  
 (Revised September 6, 1991)

### **Introduction**

Let  $G\text{-}\mathcal{FD}\mathcal{C}\mathcal{W}$  denote the category of  $G$ -spaces having the  $G$ -homotopy type of a finitely dominated  $G$ -CW complex for a compact Lie group  $G$ . Lück [8] has introduced a functor  $Wa^G$  from  $G\text{-}\mathcal{FD}\mathcal{C}\mathcal{W}$  into the category of abelian groups and has realized the equivariant finiteness obstruction as the element  $w^G(X)$  in  $Wa^G(X)$ . That is, a finitely dominated  $G$ -CW complex  $X$  is  $G$ -homotopy equivalent to a finite  $G$ -CW complex if and only if  $w^G(X)=0$ . When  $G$  is the trivial group, there is an isomorphism from  $Wa^G(X)$  to the reduced projective group  $\tilde{K}_0(\mathbf{Z}[\pi_1(X)])$  which sends the element  $w^G(X)$  to the Wall's finiteness obstruction ([14]).

Anderson [1] and Ehrlich [4] have studied a sufficient condition for  $w^{(1)}(E)=0$  for some fibration  $E \rightarrow B$  with fiber  $S^1$ . Munkholm, Pedersen [11], Lück [6, 7, 9] and others have studied the transfer map  $\tilde{K}_0(\mathbf{Z}[\pi_1(B)]) \rightarrow \tilde{K}_0(\mathbf{Z}[\pi_1(E)])$ . The purpose of this paper is to get a sufficient condition for  $w^L(X)=0$  for a  $S^1$ -space  $X$  and a finite cyclic group  $L$ .

We call  $G$ -maps  $f_0: Y_0 \rightarrow X$  and  $f_0: Y_4 \rightarrow X$  equivalent if there exists a commutative diagram

$$\begin{array}{ccccccc}
 & & Y_0 & \hookrightarrow & Y_1 & \xrightarrow{\tilde{G}} & Y_2 & \xrightarrow{\tilde{G}} & Y_3 & \leftarrow & Y_4 \\
 & & \searrow f_0 & & \searrow f_1 & & \searrow f_2 & & \searrow f_3 & & \swarrow f_4 \\
 & & & & X & & & & & & & 
 \end{array}$$

such that  $(Y_1, Y_0)$  and  $(Y_3, Y_4)$  are relatively finite  $G$ -CW complexes, and  $Y_1 \rightarrow Y_2$  and  $Y_3 \rightarrow Y_4$  are  $G$ -homotopy equivalences. The group  $Wa^G(X)$  consists of equivalence classes  $[f: Y \rightarrow X]$  of the set of  $G$ -maps  $f: Y \rightarrow X$  with  $Y$  finitely dominated and  $w^G(X)$  is the equivalence class containing the identity  $1_X$  of  $X$ . The additive structure on  $Wa^G(X)$  is given by a disjoint sum:

$$[f: Y \rightarrow X] + [g: Z \rightarrow X] = [f \amalg g: Y \amalg Z \rightarrow X]$$

Let  $K$  be a closed subgroup of  $G$ . For a  $K$ -space  $X$ , we define  $\text{ind}_K^G X$  as the orbit space  $G \times_K X$  of the product space  $G \times X$  with respect to the  $K$ -action  $k \cdot (g, x) = (gk^{-1}, kx)$ . For a  $K$ -map  $f: X \rightarrow Y$ , we have an induced map  $1 \times_{Kf}: G \times_K X \rightarrow G \times_K Y$ , denoted by  $\text{ind}_K^G f$ . The induction functor  $\text{ind}_K^G$  induces a transformation  $\text{Ind}_K^G: (Wa^K, w^K) \rightarrow (Wa^G, w^G)$ . To consider  $G$ -maps as  $K$ -maps implies a transformation  $\text{Res}_K^G: (Wa^G, w^G) \rightarrow (Wa^K, w^K)$ .

Throughout this paper we denote by  $\nu$  the restriction of the  $G$ -action of  $X$  to  $G \times \{x_0\}$ . If  $G = S^1$  and  $X$  is connected, the order of the image of  $H_1(\nu; \mathbf{Z})$  is independent of taking a point  $x_0$  of  $X$ .

Our main results are as follows:

**Theorem A.** *Let  $X$  be a connected  $S^1$ -CW complex which has finitely many orbit types. Suppose that the  $S^1$ -map  $\nu: S^1 \rightarrow X$  defined as above induces a monomorphism  $H_1(\nu; \mathbf{Z})$  between 1-dimensional homology groups. Then there exist a proper subgroup  $K$  of  $S^1$  and a  $K$ -CW complex  $Y$  such that  $S^1 \times_K Y$  is  $S^1$ -homotopy equivalent to  $X$ .*

**Theorem B.** *Let  $G = S^1$  and let  $X$  be a connected  $G$ -space. If the above defined  $G$ -map  $\nu: G \rightarrow X$  induces an injective homomorphism  $H_1(\nu; \mathbf{Z})$ , then the restriction homomorphism  $\text{Res}_H^G(X): Wa^G(X) \rightarrow Wa^H(X)$  is trivial for any proper subgroup  $H$  of  $G$ .*

This paper is organized as follows. Let  $F \rightarrow E \xrightarrow{p} B$  be a  $G$ -fibration with fibre  $F$  ([15]). In [13], we have constructed a transfer  $p^!: Wa^G(B) \rightarrow Wa^G(E)$ . But this homomorphism does not always send  $w^G(B)$  to  $w^G(E)$ . It is originated from that  $(Wa^G, w^G)$  is not a functorial additive invariant for  $G\text{-}\mathcal{FD}\mathcal{CW}$ . In section 1 we study a  $K$ -CW structure on  $p^{-1}(1K)$  for a  $G$ -CW complex  $E$  which has a  $G$ -map  $E \rightarrow G/K$ . In section 2 we show that if  $G \times_K X$  has the  $G$ -homotopy type of a finite  $G$ -CW complex then  $X$  has the  $K$ -homotopy type of a finite  $K$ -CW complex. In section 3, we prove Theorem A in the case where  $X$  is free. We use the fact that  $\pi_1(X/K)$  has the subgroup  $\pi_1(S^1/K)$  as a direct summand for some closed subgroup  $K$  of  $G$ . The last section consists of the proof of the main theorems. The proof of Theorem A is obtained from applying the free case.

## 1. $K$ -CW structure on $X$ of a $G$ -CW complex $G \times_K X$

Let  $G$  be a compact Lie group. We study a space  $p^{-1}(\{pt\})$  for a  $G$ -map  $p$  from a  $G$ -space onto an orbit space  $G/K$  of  $G$ . We note that it has a canonical  $K$ -action.

**Proposition 1.1.** (cf.[12]) *A  $G$ -map  $p: E \rightarrow B$  is a  $G$ -fibration if and only if  $p^K: E^K \rightarrow B^K$  is a fibration for any closed subgroup  $K$  of  $G$ .*

Proof. This follows essentially from Theorem 4.1 in [2].

Since  $Y \rightarrow G \times_K Y \rightarrow G/K$  is a  $G$ -fibration ([15, 13]), we have that  $Y^L \rightarrow (G \times_K Y)^L \rightarrow (G/K)^L$  is a fibration for any closed subgroup  $L$  of  $G$ .

We symbolize 1 as the identity element of  $G$ . For any  $G$ -map  $p: X \rightarrow G/K$  it is a  $G$ -fibration with fibre  $p^{-1}(1K)$ . The following lemma is a key to show the main theorems. It implies that a  $G$ -map  $p: X \rightarrow G/K$  with  $X$  a  $G$ -CW complex is  $G$ -homotopy equivalent to a  $G$ -fibration whose fibre is a  $K$ -CW complex.

**Lemma 1.2.** *Let  $X$  be a  $G$ -CW complex which has a  $G$ -map  $p: X \rightarrow G/K$ . A  $K$ -CW complex can be constructed from the  $G$ -CW structure of  $X$  such that the  $K$ -space  $V = p^{-1}(1K)$  is homotopy equivalent to it. In particular it is a finite  $K$ -CW complex if  $X$  is a finite  $G$ -CW complex.*

Proof. Clearly we have  $G \times_K V$  and  $X$  are  $G$ -homeomorphic. Then we construct a  $K$ -CW complex  $W$  and a  $K$ -homotopy equivalence  $W \rightarrow V$  by induction on the dimension of cells of  $X$ . By the existence of the  $G$ -map  $p$ , we obtain that  $L$  is subconjugate to  $K$  for any isotropy subgroup  $L$  of  $G$  in  $X$ . We can regard a 0-cell  $G/L \times e^0$  of  $X$  as  $G \times_K K/aLa^{-1} \times e^0$  for  $a \in G$  with  $aLa^{-1} \leq K$ . Suppose that  $X = G \times_K Y \cup_{\phi} G/L \times e^n$  for some  $K$ -CW complex  $Y$ . Let  $C$  be a connected component of  $(G/K)^L$  which contains  $p^L \circ \phi(1L \times e^n)$ . Take  $aK \in C$  and let  $\psi: G/aLa^{-1} \rightarrow G/L$  be the canonical  $G$ -map. Then the pushout of

$$\begin{array}{ccc} G/aLa^{-1} \times e^n & \hookrightarrow & G/aLa^{-1} \times e^n \\ & \downarrow \phi \circ (\psi \times 1) & \\ G \times_K Y & & \end{array}$$

is  $G$ -homotopy equivalent to  $X$ . Then we can assume that  $L \leq K$  and  $p^L \circ \phi(1L \times e^n)$  is contained in the connected component of  $1K$ .

$$\begin{array}{ccc} 1L \times e^n & \hookrightarrow & 1L \times e^n \\ & \downarrow \phi|_{1L \times e^n} & \\ Y^L & \rightarrow & (G \times_K Y)^L \xrightarrow{p^L} (G/K)^L \end{array}$$

Since the map  $p^L \circ \phi|_{1L \times e^n}$  is homotopic to a constant map, there is a map  $\sigma: 1L \times e^n \rightarrow (G/K)^L$  such that  $\sigma$  coincides with  $p^L \circ \phi$  over  $1L \times e^n$  and  $\sigma(0) = 1K$ . We define a map  $\tau: 1L \times e^n \times I \rightarrow (G/K)^L$  as  $\tau(s, t) = \sigma((1-t)s)$ . Since  $(G \times_K Y)^L \rightarrow (G/K)^L$  is a fibration with fibre  $Y^L$ , there exists a homotopy  $F: 1L \times e^n \times I \rightarrow (G \times_K Y)^L$  such that  $F_0 = \phi|_{1L \times e^n}$  and  $F_1(1L \times e^n) \subseteq Y^L$ . This map can be canonically extended to a  $G$ -map  $\Phi$  from  $G/L \times e^n \times I$  to  $G \times_K Y$ . Let  $W$  be a  $K$ -CW complex obtained from the following pushout.

$$\begin{array}{ccc}
 K/L \times e^* & \hookrightarrow & K/L \times e^* \\
 \downarrow \Phi_1 & & \\
 Y & & 
 \end{array}$$

By the property of pushout, we get a  $K$ -map  $k: W \rightarrow V$ .

$$\begin{array}{ccc}
 W \hookrightarrow G \times_K W & \longrightarrow & G/K \\
 \downarrow k & \downarrow \text{ind}_K^G k & \parallel \\
 V \hookrightarrow X = G \times_K V & \xrightarrow{p} & G/K
 \end{array}$$

Since the  $G$ -map  $\text{ind}_K^G k$  is a  $G$ -homotopy equivalence, we have the  $K$ -map  $k$  is a  $K$ -homotopy equivalence.

**Theorem 1.3.** *Let  $f: Y \rightarrow X$  be a  $K$ -map between  $K$ -CW complexes and  $(V, G \times_K Y)$  be a  $G$ -CW pair. If there is a  $G$ -map  $g: V \rightarrow G \times_K X$  which is an extension of the  $G$ -map  $1 \times_K f$ , then there exists a  $K$ -map  $k: W \rightarrow X$  unique up to  $K$ -homotopy equivalence which fulfills the following conditions.*

- (1)  *$(W, Y)$  is a  $K$ -CW pair.*
- (2) *There is a  $G$ -homotopy equivalence  $h: (G \times_K W, G \times_K Y) \rightarrow (V, G \times_K Y)$  such that  $\text{ind}_K^G k$  and  $g \circ h$  are  $G$ -homotopic.*
- (3) *The number of the relative cells of  $(W, Y)$  equals that of  $(V, G \times_K Y)$ .*

## 2. Induction homomorphism

Let  $D^G(X)$  be the set of equivalence classes of the set of  $G$ -maps  $f: Y \rightarrow X$  where  $Y$  has the  $G$ -homotopy type of a  $G$ -CW complex. Here the equivalence relation is defined as in introduction. For a  $G$ -map  $f: Y \rightarrow X$ , we denote by  $[f: Y \rightarrow X]$  its represented element of  $D^G(X)$ . The additive structure on  $D^G(X)$  is given as the one of  $Wa^G(X)$ . A  $G$ -map from a finite  $G$ -CW complex to  $X$  represents the zero element of  $D^G(X)$ . Then  $D^G(X)$  is a semigroup and we obtain a map  $Wa^G(X) \rightarrow D^G(X)$  which preserves the abelian structures.

**Lemma 2.1.** *The element of  $D^G(X)$  represented by the identity map of  $X$  is invertible if and only if  $X$  is finitely dominated.*

**Proof.** The “if” part is trivial and then we show the “only if” part. There is the commutative diagram

$$\begin{array}{ccccc}
 & & i & & h \\
 & X \amalg Y_1 & \xrightarrow{\quad} & Y_2 & \xleftarrow{\quad} Y_3 \\
 & \searrow & & \downarrow & \swarrow \\
 & & & X & 
 \end{array}$$

such that  $(Y_2, X \coprod Y_1)$  is a relatively finite  $G$ -CW complex,  $Y_3$  is a finite  $G$ -CW complex, and  $h$  is a  $G$ -homotopy equivalence. Let  $h^{-1}: Y_2 \rightarrow Y_3$  be the  $G$ -homotopy inverse of  $h$ . Then  $r$  is a domination with section  $h^{-1} \circ i$ .

**Proposition 2.2.** *Let  $K$  be a closed subgroup of  $G$ . A  $K$ -space  $X$  is a finitely dominated  $K$ -space if and only if  $G \times_K X$  is a finitely dominated  $G$ -space.*

Proof. Suppose  $G \times_K X$  is dominated by a finite  $G$ -CW complex  $Y_3$ . There is a commutative diagram such that  $f_3$  is a domination with section  $h^{-1}ij$ .

$$\begin{array}{ccccc} G \times_K X & \xhookrightarrow{j} & (G \times_K X) \coprod Y_1 & \xhookrightarrow{i} & Y_2 \xleftarrow{h} Y_3 \\ & & id \coprod f_1 \searrow & \downarrow f_2 & \swarrow f_3 \\ & & & G \times_K X & \end{array}$$

We let  $Z_1 = (pf_1)^{-1}(1K)$ ,  $Z_2 = (pf_2)^{-1}(1K)$ , and  $Z_3 = (pf_3)^{-1}(1K)$  for short, where  $p: G \times_K X \rightarrow X$  is the canonical projection. We have  $G$ -homeomorphisms  $h_l$  ( $l=1, \dots, 3$ ) such that the following diagram is commutative.

$$\begin{array}{ccccc} X \coprod Z_1 & \xhookrightarrow{i} & Z_2 & \xleftarrow{\bar{h}} & Z_3 \\ \downarrow & & \downarrow & & \downarrow \\ (G \times_K X) \coprod (G \times_K Z_1) & \hookrightarrow & G \times_K Z_2 & \leftarrow & G \times_K Z_3 \\ \downarrow h_1 & & \downarrow h_2 & & \downarrow h_3 \\ (G \times_K X) \coprod Y_1 & \xhookrightarrow{i} & Y_2 & \xleftarrow{h} & Y_3 \end{array}$$

By taking the  $Z_l$ 's, the  $G$ -maps  $f_l$  induce  $K$ -maps  $\bar{f}_l: Z_l \rightarrow X$  ( $l=1, \dots, 3$ ). Since  $\bar{h}$  is a  $K$ -homotopy equivalence and the diagram

$$\begin{array}{ccccc} X \coprod Z_1 & \xhookrightarrow{i} & Z_2 & \xleftarrow{\bar{h}} & Z_3 \\ id \coprod \bar{f}_1 \searrow & & \downarrow \bar{f}_2 & \swarrow \bar{f}_3 & \\ & & X & & \end{array}$$

commutes,  $Z_3$  dominates  $X$ . By Lemma 1.2,  $Z_3$  has the  $K$ -homotopy type of a finite  $K$ -CW complex. This completes the proof.

Let  $\Phi: D^G(G \times_K X) \rightarrow D^K(X)$  be a homomorphism induced by a mapping assigning  $k: W \rightarrow X$ , described as in Theorem 1.3, to any  $G$ -map  $g: V \rightarrow G \times_K X$ . It is an inverse isomorphism of a homomorphism  $D^K(X) \rightarrow D^G(G \times_K X)$  induced by  $\text{ind}_K^G$ . Since  $G \times_K W \xrightarrow{g} V$ , it follows from Proposition 2.2 that  $\Phi(Wa^G(G \times_K X)) \subset Wa^K(X)$ . Then we have:

**Theorem 2.3.** *Let  $K$  be any closed subgroup of  $G$  and let  $X$  be a  $K$ -space. The induction homomorphism  $\text{Ind}_K^G(X): Wa^K(X) \rightarrow Wa^G(G \times_K X)$  is an isomorphism. In particular  $G \times_K X$  has the  $G$ -homotopy type of a finite  $G$ -CW complex if and only if  $X$  has the  $K$ -homotopy type of a finite  $K$ -CW complex.*

### 3. Free $S^1$ -spaces

In this section we study Theorem A for free  $S^1$ -spaces. We denote a group  $S^1$  by  $G$  and let  $X$  be a connected free  $G$ -CW complex such that  $H_1(v; \mathbf{Z})$  is injective. If the projection  $X \rightarrow X/G$  is a principal  $G$ -bundle and the fundamental group of  $X$  is abelian, Anderson [1] has shown that the universal cover of  $X$  is  $\pi_1(X/G)$ -homeomorphic to the product of the universal cover of  $X/G$  and the real space  $\mathbf{R}$  with some  $\pi_1(X/G)$ -action on  $\mathbf{R}$ . We show that for some  $K \leq G$  and some CW complex  $V$ , the  $G$ -space  $X/K$  is  $G$ -homotopy equivalent to  $G/K \times_{(1_K)} V = G/K \times V$ .

**Lemma 3.1.** *Let  $X$  be a connected free  $G$ -space such that the  $G$ -map  $v: G \rightarrow X$  induces a monomorphism  $H_1(v; \mathbf{Z})$ . There is a finite subgroup  $K$  of  $G$  such that  $\pi_1(X/K)$  is isomorphic to  $\pi_1(G/K) \oplus \pi_1(X/G)$ .*

**Proof.** For any  $K \leq G$ , we have a short exact sequence:

$$1 \rightarrow \pi_1(G/K) \rightarrow \pi_1(X/K) \rightarrow \pi_1(X/G) \rightarrow 1$$

We construct a splitting  $\pi_1(X/K) \rightarrow \pi_1(G/K)$  for some  $K < G$ . By the assumption, there is an epimorphism  $\mu: \pi_1(X) \rightarrow \mathbf{Z}$  such that the following diagram commutes:

$$\begin{array}{ccc} \pi_1(G) & \xrightarrow{\nu} & \pi_1(X) \\ n \searrow & & \downarrow \mu \\ & & \mathbf{Z} \end{array}$$

Here  $n$  is multiplication by  $n \geq 0$ . Let  $K$  be a subgroup of  $G$  with order  $n$ .

$$\begin{array}{ccccc} \pi_1(G) & \xrightarrow{\nu} & \pi_1(X) & \xrightarrow{\mu} & \mathbf{Z} \\ \downarrow n & & \downarrow p & & \dashrightarrow \bar{\mu} \\ \pi_1(G/K) & \xrightarrow{\bar{\nu}} & \pi_1(X/K) & & \\ \downarrow \partial & & \downarrow \partial & & \\ K & \xlongequal{\quad} & K & & \end{array}$$

By a chasing method, the equation  $\bar{\nu}(m)p(y) = \bar{\nu}(m')p(y')$  implies that there is

$z \in \pi_1(G)$  satisfying  $m = m' + nz$  and  $y = \nu(z^{-1})y'$ . Then we have

$$m + \mu(y) = m' + nz + \mu(\nu(z^{-1})) + \mu(y') = m' + \mu(y').$$

For any  $x = \bar{\nu}(m)p(y) \in \pi_1(X/K)$  we define as  $\bar{\mu}(x) = m + \mu(y)$ . Then the map  $\bar{\mu}: \pi_1(X/K) \rightarrow \mathbf{Z}$  is a homomorphism with  $\bar{\mu} \circ p = \mu$ , since the image of  $\bar{\nu}$  is a subgroup of the center of  $\pi_1(X/K)$ . Since both  $\mu \circ \nu$  and  $n$  are multiplication by  $n$ , we have  $\bar{\mu} \circ \bar{\nu} = 1$  and  $\bar{\mu}$  is the required splitting.

**Proposition 3.2.** *Let  $X$  be as in Theorem A. If  $X$  is free, then there are a proper subgroup  $K$  of  $G$  and a CW complex  $V$  such that  $G/K \times V$  and  $X/K$  are  $G$ -homotopy equivalent.*

Proof. Let  $K$  be a subgroup of  $G$  such that  $\pi_1(X/K) \cong \pi_1(G/K) \oplus \pi_1(X/G)$ . We denote by  $p: V \rightarrow X/K$  the covering space corresponding to  $\pi_1(X/G) \leq \pi_1(X/K)$ . The  $G$ -map  $G/K \times V \rightarrow X/K$ , sending  $(gK, v)$  to  $g \cdot p(v)$ , induces an isomorphism of homotopy groups. By a Whitehead theorem of the equivariant version [10], it is a  $G$ -homotopy equivalence.

By Lemma 1.2 there is a  $K$ -CW complex  $Y$  such that  $G \times_K Y$  and  $X$  is  $G$ -homotopy equivalent.

REMARK. Let  $Y$  be a  $K$ -space obtained from the  $G$ -homotopy pullback of the  $G$ -map  $p$  through the covering map  $V \rightarrow X/K$ . Then the  $G$ -map  $G \times_K Y \rightarrow X$  induced by the given  $K$ -map  $Y \rightarrow X$  is a  $G$ -homotopy equivalence.

#### 4. Proof of Theorems A and B

In this section, we also denote  $S^1$  by  $G$ .

**Proposition 4.1.** *Let  $X$  be as in Theorem A and let  $H$  be a finite subgroup of  $G$ . Then  $H_1(p \circ \nu; \mathbf{Z})$  is monic for the projection  $p: X \rightarrow X/H$ .*

Proof. As the  $H$ -action on  $X$  comes from a  $G$ -action by restriction,  $H$  acts trivially on  $H_1(X; \mathbf{Z})$ . Applying Theorem 2.4 [3, p. 120], we obtain that the projection induces an isomorphism  $H_1(p; \mathbf{Q}): H_1(X; \mathbf{Q}) \rightarrow H_1(X/H; \mathbf{Q})$ . Then  $H_1(p; \mathbf{Z})$  is injective on any free abelian subgroup of rank one in  $H_1(X; \mathbf{Z})$ .

We note that  $\pi_1(\nu)$  is monic does not imply that  $\pi_1(p \circ \nu)$  is injective.

Proof of Theorem A. Let  $H$  be a cyclic subgroup of which order is a common multiple of order of all isotropy subgroups in  $X$ . Clearly  $X/H$  is a connected free  $G/H$ -CW complex. By the argument in the previous section, there are a free  $K/H$ -CW complex  $V$  and a  $G/H$ -homotopy equivalence  $h: G/H \times_{K/H} V \rightarrow X/H$ . We see canonically  $V$  as a  $K$ -CW complex. Then  $h$  induces a  $G$ -homotopy equivalence  $h': G \times_K V \rightarrow X/H$ . The  $G$ -space  $W$  obtained from a

$G$ -homotopy pullback of  $h'$  through the projection  $X \rightarrow X/H$  is  $G$ -homotopy equivalent to  $X$ .

$$\begin{array}{ccc} W & \longrightarrow & X \\ \downarrow & & \downarrow \\ G \times_K V & \xrightarrow{\cong} & X/H \end{array}$$

On the other hand, by Lemma 1.2, there is a  $K$ -CW complex  $Y$  such that  $G \times_K Y$  and  $W$  are  $G$ -homotopy equivalent. This completes the proof.

To prove Theorem B we may show the following:

**Proposition 4.3.** *Let  $X$  be a connected finitely dominated  $G$ -space which fulfills that  $H_1(\nu; \mathbf{Z})$  is injective. Then the  $K$ -space  $X$  has the  $K$ -homotopy type of a finite  $K$ -CW complex for any finite subgroup  $K$  of  $G$ .*

**Proof.**  $X$  has the  $G$ -homotopy type of a  $G$ -CW complex with finitely many orbit types [5, Theorem 1.4]. By Theorem A and Proposition 2.2, there is a finitely dominated  $L$ -space  $Y$  such that  $X \xrightarrow{G} G \times_L Y$ . Since  $G \times_L Y \rightarrow G/L$  is a  $K$ -fibration, we have the result. (See Theorem 3.6 [13].)

**Theorem 4.4.** *Let  $G$  be any compact Lie group and let  $K$  be a subgroup of  $G$ . Let  $X$  be a finitely dominated  $G$ -space with  $X/G$  connected. If the rank of the image of  $H_1(W_G K \rightarrow X/K; \mathbf{Z})$  is not zero, then  $\text{Res}_K^G(X): Wa^G(X) \rightarrow Wa^K(X)$  is a zero map.*

**Proof.** Let  $T$  be a maximal torus of  $W_G K$ . Since  $H_1(T \rightarrow W_G K; \mathbf{Z})$  is epic, there is a proper subgroup  $\bar{C}$  of  $W_G K$  such that  $\bar{C}$  is isomorphic to  $S^1$  and  $H_1(\bar{C} \rightarrow X/K; \mathbf{Z})$  is injective. Then there is a  $\bar{C}$ -map  $f: X/K \rightarrow \bar{C}/L$  for some finite subgroup  $L$  of  $\bar{C}$ . Let  $C$  (resp.  $L$ ) be the preimage of  $\bar{C}$  (resp.  $L$ ) under the projection  $N_G K \rightarrow W_G K$ . Clearly  $h: \bar{C}/L \cong C/L$ . Since  $K$  is a normal subgroup of  $C$ , the projection  $p: X \rightarrow X/K$  is a  $C$ -map. Then  $h \circ f \circ p: X \rightarrow C/L$  is an equivariant  $C$ -fibration. The  $K$ -space  $C/L$  has a trivial  $K$ -action and its Euler characteristic is zero. If we apply Theorem 2.6 [13] to the equivariant  $K$ -fibration  $h \circ f \circ p$ , we conclude the proof.

---

## References

- [1] D.R. Anderson: *The Wall invariant of certain  $S^1$ -bundles*, Proc. Amer. Math. Soc. **31** (1972), 529–535.
- [2] G.E. Bredon: Equivariant cohomology theories, Lecture Notes in Math. 34, Springer-Verlag, Berlin and New York, 1967,
- [3] G.E. Bredon: Introduction to compact transformation groups, Academic Press,

New York, 1972.

- [4] K. Ehrlich: *Fibrations and a transfer map in algebraic K-theory*, J. Pure Appl. Algebra **14**(1979), 131–136.
- [5] K. Iizuka: *Finiteness condition for G-CW complexes*, Jap. J. Math. **10**(1984), 55–69.
- [6] W. Lück: *The transfer maps induced in the algebraic  $K_0$ -and  $K_1$ -groups by a fibration I*, Math. Scand. **59**(1986), 93–121.
- [7] W. Lück: *The transfer maps induced in the algebraic  $K_0$ -and  $K_1$ -groups by a fibration II*, J. Pure Appl. Algebra **45**(1987), 143–169.
- [8] W. Lück: *The geometric finiteness obstruction*, Proc. London Math. Soc. **54**(1987), 367–384.
- [9] W. Lück: Transformation groups and algebraic K-theory, Lecture Notes in Math. 1408, Springer-Verlag, 1989.
- [10] T. Matumoto: *On G-CW complexes and a theorem of J.H.C. Whitehead*, J. Fac. Univ. Tokyo Sect. I A Math. **18**(1971), 363–374.
- [11] H.J. Munkholm and E.K. Pedersen: *On the Wall finiteness obstruction for the total space of certain fibrations*, Trans. Amer. Math. Soc. **261**(1980), 529–545.
- [12] R.L. Rubinsztein: *On the equivariant parallelizable manifolds*, Math. Scand. **62**(1988), 217–245.
- [13] T. Sumi: *Finiteness obstructions of equivariant fibrations*, Publ. Res. Inst. Math. Sci, **27** (1991), 627–637
- [14] C.T.C. Wall: *Finiteness conditions for CW complexes*, Ann. of Math. **81**(1965), 56–69.
- [15] S. Waner: *Equivariant fibrations and transfer*, Trans. Amer. Math. Soc. **258** (1980), 369–384.

Department of Mathematics  
 Kyushu University 33  
 Fukuoka 812, Japan  
 E-mail: d75190a@kyu-cc.cc.  
 kyushu-u.ac.jp,  
 sumi@math sci. kyushu-u.  
 ac.jp

