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1. Introduction

A characterization of knot groups of S” in S”** was given by M. A. Kervaire
[6] in the case of n=3, and several approaches” were established in that of n=1.
In the case of n=2, S. Kinoshita [7] gave a sufficient condition for the existence
of a 2-sphere in S* whose knot group has a given Alexander polynomial, and
Kervaire also gave a sufficient condition for existence of a 2-sphere in a homotopy
4-sphere (Theorem 2, [6]).

Though some necessary conditions were given by Kervaire, it still seems
to be difficult to characterize the knot group of S? in S*. In this note we shall
concern a special type of knotted 2-spheres in R‘, and prove the following
theorem:

Theorem. In order that a given group G is isomorphic to the knot group
of some ribbon 2-knot in R‘, it is necessary and sufficient that G has a Wirtinger
presentation® such that

(1) GG, G]=2Z,

(2) the deficiency of G equals to 1.

Ribbon 2-knots are a special kind of locally flat 2-spheres defined in [12] as
simply knotted spheres, and Z is the additive group of integers.

Since we restrict presentations of G within Wirtinger presentations, the
condition (1) assures that the weight of Gis 1. On the other hand, E.S. Rapaport
[9] proved that the condition (2) implies H,(G)=0, therefore the necessary
conditions of Kervaire follow from our conditions. Moreover, in the Theorem
2 of Kervaire, if we restrict presentations of G within the Wirtinger fashion,
then homotopy 4-sphere can be substituted by 4-sphere.

1) [8], Chapter 9.

2) A group presentation G=(xy,*, &,: 71, ,7,,) is called in this note a Wirtinger pre-
sentation, if each relator is described in a form x;=w;, jx;w;,; !, where w;,; is a word of the
free group F[x], x=(xy,-+,x,). c.f. [1], p. 86.
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In the last section we shall discuss, as an appendix, some property of knot
groups of spheres in general.

2. Ribbon knots

A ribbon D is a singular 2-disk immersed in R°®, whose singularities
oy *++, 0, are all of ribbon type®. To define more precisely, let A be a 2-disk
and f be a immersion of A into R®. If f satisfies the conditions:

(i) f]9A is a homeomorphism,

(it) each component of singularities of D=f(A) is a simple arc
a; (=1, -, n),

(iii)) f7*(o,) consists of two simple arcs s;, and s, , such that 9s; , COA and
5; ,CInt A,
then D is a ribbon and 2=3D is called a ribbon knot.

Let 31=0¢,U-+Uo,. Then D—(kU>}) consists of n+1 domains D,,
D,, -+ ,D,. Let »(D,) be the number of components of 8D;N>). We call
D a terminal band if »(D;)=1, an ordinary band if »(D,)=2, and a branched
band if »(D;)=3.

(2.1) A ribbon knot k can be deformed into the following situation:

(1) D has only one branched band,

(2) o; (=1, .-+, n) is contained in the interior of some terminal band,

(3) every band does not twist in the projection of k.

Proof. By sliding bands along %, we can easily prove (1). If there exist
a singularity o, such that it is contained in the interior of an ordinary band or
that of a branched band as shown in Fig. 1, (a), then deform % into (b). By
repeating such a deformation of k£ we can prove (2).

\\

@) (b)
Fig. 1

If a band has twists, even number of them can be cancelled by the operation
in Fig. 2, and the last one, if exists, can be cancelled by a rotation of its
terminal band. Thus we have completed the proof.

Now we shall explain another construction of ribbon knots for a con-
venience in the next section. Let 4,-C,,---, Cy be unlinking trivial circles in R®.

3) [5]p.172.
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> %

Fig. 2

Take disjoint small arcs a,, -+, o, on A, and a small arc ; on C; (=1, -+, 7).
For every 7, connect «; with v; by a non-twisting narrow band B; which may
run through C, (j=1,:-, 1), or may get tangled with itself or with other bands.
Then we have a ribbon knot

k=(AUCU--UG)UOB, U UdB)—(a; U Uar Uy, U+ U7a).

Conversely, in virtue of (2.1), we have the following proposition:

(2.2) Every ribbon knot can be constructed as the above fashion.

Let R? be the hyperplane parpendicular to the x,-axis of R* at x,=¢, and
let £ be a ribbon knot in Rj. We can attach® a 2-disk D, in the halfspace
H%{={R}|0<t} to the knot %k such that 9D,=k and it does not contain any
minimal point. The attaching of the disk D, to the knot & is completed by the
saddle point transformations® on the band B; (i=1, ---,A). Let D_ be the
disk in H*={R?|t<0} which is the mirror image of D, with respect to R}.
The sphere S=D, UD_ was called in [12] a simply knotted sphere.

The definition of ribbons is extended to n-ribbons as follows: Let A” be a
n-dimensional ball and f be a immersion of A” into R**'. We call D*=f(A")
a m-ribbon, if f satisfies the following conditions:

(i) f|0A™ is a homeomorphism,

(if) each component of singularities of D* is a (n—1)-ball o,

(iii) f~'(o;) consists of two (n—1)-balls s}3! and s73' such that 9s77'CoA™
and s73'c Int A"

It is easily seen, for instance by the projection method in [11], that for every
simply knotted sphere S? there exists a 3—ribbon D® such that 0D*=.S?. There-
fore we may use the name ribbon 2-knots® proposed by F. Hosokawa instead
of simply knotted spheres.

3. Proof of the theorem

We shall begin with the proof of that the conditions (1), (2) are necessary.
Suppose that there are n overpasses on a band B. Let ¢, -, ¢, be generators
of the knot group each of which corresponds to one of the overpasses and let

4) [4], p. 133 or [12], (3.1).
5) [4], p. 133.
6) c.f. [13].
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@, -+, a, and b, .-+, b, be generators corresponding to the successive positive
and the negative sides of the band B respectively (Fig. 3, &=+1).

bo IL bl bz n—1 "
- e — | —
a0 a1 az a n
G
cix C;z cr
Fig. 3

Then we have for these crossings 2z relations

ri=atcia;cti=1,

i=1,.,n
§; =ciibitetib,_ =1, ( pa )
As a whole these relations are equivalent to
ri=1, s;'=b; a7t clia; b7 c;fi =1, (=1, -+, n).

Therefore if we adjoin a new relation a,=b, to them, then we have a,=b;
(i=1, -+ , n).
(3.1) In the situation of Fig. 3, 2n+1 relations

ao:b01 r:':ls si=1s (izla"'7n)
are equivalent to

ao:bo» r,-=1, ai:bi’ (i=1,---,n).

Now let k£ be an oriented ribbon knot in a situation of (2.2), and let G,
be the knot group of k. Suppose that a band B; runs under trivial circles
C{, -+« C¥ in this order. Then the band B; is divided into p;+1 parts.
We shall call each part of B; a section of B;. Suppose that the j-th section,
namely the part between C§” and C§?,, runs under bands B§?}, -+, B{). »-
Let x; ; p and y; ; » (=0, .-+, p;; k=0, ---, 2u(7, j)) be generators of G, which
correspond to the positive sides and the negative sides of the band B, respec-
tively, and let 2;,, 2;,, **+, 2; .., be generators corresponding to the successive

¢ ¢
(i) (i) '
/ Bo,y B0y i,
.- 2n_fo
’ Yi.0,0 Yi0.2 ¥i1.0 \\
- b= - -
C; !
- - — -
<x. 10,0 xx 02 1.0 Tip0  Xigov(im) /
\ e(- o 1) g(x 0.1) Gl pGm) 20 l"’ 22
TidaGoy bt

Fig. 4
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arcs of C; as illustrated in Fig. 4, where £, ,,,_, and £ ,,, are generators of
the boundaries of B, (r=1, -+, »(4, j)), and where £, ; corresponds to the arc
of C (=1, =+, ).

On the above situation we have 2 2 2(2v(z, j)+1) generators concerning
to the bands and 2 (27;+1) generators concerning to the trivial circles. On
the other hand the defining relations are classified as follows:

R;: Z 2 4y (i, j) relations each of which corresponds to a crossing point

i=1 j=0

of a band B; and some band B,,

A
R,: 327, relations each of which corresponds to a crossing point of

i=1

a circle C; and a band B, (j=1, ---, \), where C; is the underpass.

A
R,: X2y, relations each of which corresponds to a crossing point of a

i=1
band B; and a circle C;, where B, is the under crossing band,
R,: \ relations each of which corresponds to the identification of a boun-
dary of a band B; and that of the neighbouring band.
: 2 relations each of which corresponds to the identification of a band
B; and C;.
As a whole, the number of defining relations equals the number of generators.
To get a presentation of the knot group Gy of the ribbon 2-knot from G,
it is sufficient to adjoin the new relations

(3.2) Xi0,0 = Yij0,0 (=1, .- ,2—1)
to the defining relations of G,. Since every band B; does not run through the
circle A, (3.2) and R, induce the relation x, , ; =y, o,

In virtue of (3.1) we have:

(3.3) The Wirtinger presentation of G, and (3.2) implies ¥; ; x=Y; ;&
for every 1, j, k.

If we apply (3.3) to the presentation of Gg, it can be reduced more simply
as follows: Suppose that the generators concerning a crossing of a band B; and
a band B; are illustrated as in Fig. 5.

b1 I bg 1 ba
a as as
¢ d
Fig. 5

Then the relations of G concerning this crossing are
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1

atlcac* =1, a7'd'ad=1,

a=5b, a,=b,, a,=0b,, c=d.

If we eliminate a, and b, from these relations by Tietze transformation, then
we get relations

a=b=a,=b,, c=d.

As a consequence of the above fact, if we use a new generator x; ; (=x; ;,
=X; ; ;=" =Y; ;o=Yi ;=) corresponding to each j-section of the band B;,
then all relations of R, are cancelled and the number of relations in R, becomes
A

Z]l s+

" A similar consideration as the above enables us to eliminate all relations of
R,, and generators ;. 2;,,+ become a single generator z;. Moreover, in
virtue of R, one of generators z; and «; ,_ is cancelled for each . Similarly we
can put X, ;=x, ,=+:-=x, , by R,.

Consequently, the number of generators is :S (/Li—l—l)—(k—l):i wit1

and the number of defining relations is i e

(3.4) Gg has a presentation such that each generator corresponds to some
section of a band, where O—sections belong together a single section, and each relation
is the same one as G, which corresponds to the crossing point of the positive side
of some band B; and a overpass C;. 'Therefore the number of generators exceeds
the number of defining relations by one.

Since we restrict the presentation of Gg within wirtinger presentations, the
condition (1) assures that the deficiency of Gy is not greater than 1.

(3.5) If a group G is isomorphic to the knot group of some ribbon 2—knot,
then G has a Wirtinger presentation of deficiency 1.

(3.6) The first elementary ideal’ of the knot group of a ribbon 2-knot is
principal.

This follows immediately from (3.5) by [9].

RemArRk. R.H. Fox and ]J.W. Milnor [3] proved that the Alexander
polynomial of any slice knot, and of corse any ribbon knot, has a form A(¢)=
f()f(t™"). H. Terasaka also proved the same for ribbon knots in a part of [10].
I have proved previously in [12] that the Alexander polynomial A4(¢) of the ribbon
2-knot S constructed from a ribbon knot % equals f(t), where A,(8)=F£(2)f(t7").
But my proof does not hold true for all ribbon 2-knots, because Terasaka’s
proof was for a special type of ribbon knots. Recently K. Yonebayashi [14]
gave a perfect proof of Fox-Milnor’s theorem and also my theorem according

7) [4], p. 127.
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to Terasaka’sidea. However the existence of a sphere which differs from ribbon
2-knots (Theorem 3, [12]) is a immediate consequence of (3.6).

Now we shall prove that the condition of the theorem is sufficient. Let
G be an arbitrary group which has a Wirtinger presentation

G= (xn Sty Xy DT,y v )rm)’
. At —e
Tyt Xy = Xy X X500
. B —e. . .
(3.7) 7,1 x;, = X, %772, (&;==41, i=1, ... ,m)
Tyt X

— 4t —&m
me ,m_-xj:x,,mx,m s

and satisfies the condition (1) of the theorem.

To show the system of defining relations schematically, it is convenient to
use a diagram constructed as follows: Take n vertices X, ---, X, corres-
ponding to generators x,, -+, x,, in this order. For each relation r,, [=1,---, m,
connect X, and X;, by an arrow labelled such that

X3, x5!
Xy —> X, or X, «— X;,.
Then we have the diagram of presentation of (3.7).

Since G satisfies the condition (1), the diagram of the presentation of (3.7)
is connected. If G satisfies the condition (2), then the diagram does not contain
any closed circuit. Therefore the diagram forms a tree. Then it is easy to
construct a ribbon 2-knot, whose knot group has the presentation (3.7), by the
projection method mentioned in [12] (Fig. 6). But we shall explain how to
construct a ribbon knot in the situation of (2.2) from the presentation (3.7).

Suppose that (x,---, x,) be the aggregate of distinct generators each of
which is contained in (x,, -+, x; ), and that x, is not contained in (x;, -, x;, ).
Since for each element X,(i=1, ---, n—1), there exists uniquely determined path

2801 x%in2 KBl

»1 i,2 h
X, > Xy —> . 5 X,

of the diagram, we have induced relations of (3.7)
(3.8) St X = WX, Wi, Wy = Al e xR,
(=1, .-+ ,m, m=n—1)

where w; is a word on (x,, ---, x,). It is easy to see that (3.8) is equivalent to
(3.7), and that s,,,, +--, s,, can be eliminated. Therefore we have a equivalent
presentation

(3'9) G= (xv ety Xyy Xyl Spy s)\) .

Now we shall define a ribbon knot & such that the knot group G is isomorphic



442 T. Yajima

to G, where the sphere S is constructed from k. Suppose that 4, C,, .-+, C,;
Oy ** 5 O\ Yy *** » Ya be the same as mentioned in the section 2, and that they
are all oriented anti-clockwise. After having 4 correspond to x, and C;
to x; (1=1,--+,2), let C;,,--, C;,, be the sequence of C, (j=1,::-, 1), where
C; x (k=1,-+, u;) corresponds to «x; , in (3.8). Connect o; with «; by a non-
twisting band B; such that B; runs successively under C y Ci u, as shown

i Xy

A\_: - \\; Cik A\_ T ‘-~\\| C:
FEQe )
LEix=1 / / Eip=—1
4
Fig. 6

in Fig. 6. From the ribbon, thus constructed, we have a ribbon knot %k in
the situation of (2.2). However k is not uniquely determined from (3.9).

It can be easily seen from (3.4), that the ribbon 2-knot constructed from
k has the knot group isomorphic to G.

(3.10) If a group G satisfies the condition (1), (2) of the theorem, then there
exists a ribbon 2—knot S such that the knot group G is isomorphic to G.

As an application of the theorem, we shall give an alternating proof of
Kinoshita’s theorem [7]. The idea of the proof is due to Terasaka [10].

(3.11) For each polynomial f(t) with f(1)=-+1, there exists a ribbon 2—-knot
S whose Alexander polynomial A4(t) is equal to f(t).

Proof. If a group presentation G = (x,, x,: x,—wx,w™'), w is a word on
(x,, %,), can be constructed such that the Alexander polynomial of G equals
f(?), then (3.11) follows from the theorem.

Suppose that f(1)=1, and split f(¢) into the form

ft) = (1-0gO)+1, @) = atat+--+a,t"

For every integer 7, define a word u,, such that

(2, x51) < (20,257) if n>0,
N————
_ n
=01 if n=0,
(2, 271) e (20,2 7Y) if n<0,
z 2
—n

and put

m
w =k]'[ X3Ug, X7 "
=0
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Then we have, by the free differential calculus®, (Z—E)W:g(t) and w'*=1. If
x

1
we put r=wx,w 'x3", then it follows that

<6r )‘W _ <6w)‘“’+ whe L (wxla_w_—_l>w

ox, ox, ox,
= a;w)‘“’ b _ ~1)¥e aw)‘W
= (axl +w® —(wx,w™*) <6—x1

= a—(22)" 1= 110).

1

Thus (3.11) is proved.

4. Peripheral subgroups

Let k be a knot in R?, and U, be a regular neighbourhood of k. Let G, be
a knot group of &, where the base point is chosen on the torus 7,=8U,. Then
the inclusion mapping

f: (Ue—k) — (R°—k)
induces a homomorphism
f*: 2 (Up—k) — G, .

The subgroup H *=f*(z,(U,—k)) of G, is known® as the peripheral subgroup
of G,.

If & is not a trivial knot then f* is a monomorphism'. Since T, is a de-
formation retract of U,—k, Hy*=#(T}) and it is a free abelian group of rank
2. We can choose a meridian m and a longitude [ as generators of H,* such that
i is null-homotopic in U and [ is null-homologous in R*— U,

Suppose that a regular projection of a knot % is given. Then we have a
Wirtinger presentation

Gk = (xv e, X, LTy, e ,rn) ,

. — e -
T X = XXX,
. — %2 —82
4.1) Tyt Xy = XDHX

.....................

. R —2
Tyt X, = X", X",

where each one of relations is an induced relation of the others. Concerning
this presentation, there exist one-to-one correspondences between the generators

8) [4], p. 124.
9) [2].
10) [8], p. 67.
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and the overpasses of k, and also between the relations and the crossing points
of k. We may call such a presentation of G a faithful presentation with respect
to the knot projection.

Suppose that (4.1) is a faithful presentation of a projection of &, and that
x, is chosen as the representative of m. Then we have that :

— 4Bl 4B, (B At )
[ = x(1eeeaime xTCrF oty

is the above mentioned longitude. It is known that / is contained in G¢{¥ and
I=£1 if k is not trivial.

Similarly, we can define the peripheral subgroup of a knot group
Gs=n,(R'—S), where S is a locally flat 2—sphere in R*. In this case, since
Us=D*x S? we have z(Us—S)=Z. Therefore any null-homologous loop in
Us—S must shrink to a point.

Let G be a group such that G/[G, G]=<Z and that it has a Wirtinger presen-
tation (3.7) with m>n—1. Then the diagram of the presentation must contain
several closed circuits. Let

X5 2% X5k
42 L X,— X, — - — X, , &=+1, h=1,---,k

be one of these circuits. We call the element
= 2 e

of G the l-element corresponding to L.

If (3.7) is a faithful presentation of G, then a small letter x; , (=1, .-, k)
in (4.2) corresponds to the oversurface' of the surface X; , ,UX;,. Therefore
every l-element is equivalent to a null-homologous loop in U,—S.

(4.3) If (3.7)1is a faithful presentation of G, then every l-element derived
from the diagram must be equal to 1.

In virtue of [11], Theorem (4.4), we have a faithful presentation of Gg for
every projection of S. On the other hand, in order that a group G is isomorphic
to the knot group of some sphere in R*, it seems necessary that every /-element
derived from the diagram is equal to 1. But it is still an open question. For
example, if G=(x, y,u, v: x=yvy™, v=x""yx, y=x""ux, u=yxy~'), which is a
presentation of the knot group of the Fox’s sphere’, then we can easily verify
that /=y°x¢"?*=1. Notice that if the Wirtinger presentation contains some
induced relations then the above conjecture does not hold.

Between the Kervaire’s condition and I-elements of G5 we have the
following connection:

(44) Let G be a group such that G|[G, G|=Z and that it has a Wirtinger
presentation. If all I-elements of the diagram are equal to 1, then H,(G)=0.

11) cf. [11], §4.
12) [4], p. 136, Example 12.
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Proof. Suppose that (3.7) is the Wirtinger presentation of G. By the
condition of G we have that m>=n—1. If m=n—1, then the proposition is
obvious by [9]. Suppose that m>n—1, and take a maximal tree I in the diagram.
Assume that r,=(r,, .-+ ,7,_,) is the aggrgate of relations each of which cor-
responds to a oriented segment of & and that r,=(7,, -, 7,,) is that of remaining
relations.

Fix a vertex of I, say X, as a base. Then for every vertex X; (=1, .-,
n—1) there exists a uniquely determined path

i,1 &ik;
X1 Xkt

P;: X, X; ei,h=i1 (h=1, o k;),

in 4. Corresponding to these pathes, we get induced relations of r,

$; X = oz;ix".vl—l , U= xi‘;fx eee xBi1 (i:l’ ey n_l)'

i1

It is easy to check that r, is equivalent to s,=(s,, -**, $,_,)-

Since ¢ is maximal, we can choose closed circuits L,,---, L,, in the diagram
such that L (j=n,---, m) consists of the segment corresponding to 7; and a path
in . Let [; be one of /-element for L,. Then (r,, ;) induces a relation

$;1 K = l].x,-jl;1 , (j=n, - ,m)

for some x, . It is also easily checked that (r,, 7,) is equivalent to (r,, s;) for
every j=mn, «-+ , m.
Consequently we have a Wirtinger presentation

G == (xl’ see ’ x”: sl’ s y sm) )
_ -1 =1
sl - ‘len‘vl xl b
(4.5) Spoy = Uy X, Uk, X2
— -1 ,.,—-1
S, = L; 170 %7}

J— —1 ,,—1
Spe = Lpx; 13X

tm

where v; (i=1, .-+, n— 1) is some word of the free group F=F[x], x=(x,, -*-, x,,)
and /; (j=n, .- ,m) is a l-element of (3.7).

Let R be the kernel of the mapping @: F—G. It is sufficient to prove
[F, FIN RC[F, R] for that H,(G)=0. Suppose that a word ¢ is contained
in [F, FINR. Then we have

c=ijs§;jw;‘, w,eF, £;=+1.
J

Since I;ER, s; is contained in [F, R] for j=n, ... ,m. Therefore there exist
integers p,, -+ , p,_, such that
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c=1IIsy mod [F, R]

=515, Pa mod [F, R].

The assumption ¢ [F, F] implies that s?1..-s,_?s-1&[F, F]. Therefore the
exponent sum of each generator must equal 0, that is p,=..-=p,  =0.
Hence c=1 mod [F, R]. Thus we have completed the proof.
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