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Introduction

In the classical theory of linear Fredholm operators a fundamental role
is played by compact operators. In fact, a condition for an operator to be
Fredholm is given in terms of compact operators, and it is known that the class
of Fredholm operators is invariant under compact perturbations. The object
of this paper is to generalize these results introducing a new class of operators
containing the class of compact operators.

The organization of the paper is as follows: in the section 1 we introduce
some basic definitions, propositions and examples; in the section 2 we establish
the aimed results and in the section 3 we present an application of Theorem 2.2.

1. Let X and Y be Banach spaces.

DerINITION 1.1.  An operator T: D(T)C X — X is said to be demicompact
if for every bounded sequence {x,} in D(T) such that x,—Tx,—>x, for some
%, in X, as n—> oo, then there is a convergent subsequence of {x,}.

Here D(T) denotes the domain of T

Examples of demicompact operators.
a) Compact operators T': D(T)cC X — X are demicompact.
If X is a Hilbert space,
b) Operators T: D(T)c X — X which satisfy either the condition

Re(Tx—Ty, x—y)<allx—yl|? a<1 1)
or the condition
Re(Tx—Ty, x—y)<al|Tx—Ty||% a<1 (2)

are demicompact.
c) Operators T: D(T)c X— X for which (I—T)™" exists and is continuous
on its range R(/—T) (and, in particular, demicontinuous operators T for which
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(1) is valid with a<<1 or for which the inequality
|(Tx—Ty, x—y)| <bllx—ylP*, 0<b<1
is valid for all ¥ and y in X) are demicompact.

DrerFintTiON 1.2 ([1]). Let D be a bounded subset of X. We define ¥(D),
the Kuratowski measure of noncompactness of D, to be inf {d>0|D can be
covered by a finite number of sets of diameter minor than or equal to d}.

Properties of ¥(D). If D, O and D, are bounded sets in X we have:
a) v(D)=0 iff D is compact, where D is the closure of D.
b) ¥(D)=v(D); Y(AD)= | |¥(D); DCQ=v(D)<¥(Q), where A is a real or
complex value.
¢) If D,=D, D,,,cD, and lim v(D;)=0, then Dwzn D;%¢ and ¥(D.)=0.

d) v(DUQ)=max{v(D), 'Y(Q)}
e) Y(D+Q)<v(D)+v(Q), where, D+Q={x+y; xED, yEQ}

Let 2>0 be a given real number, T: D(T)C X— Y a continuous operator
and 7, and 7, respectively Kuratowski measures of noncompactness in X and Y.

DrFinrTION 1.3. ([2]). T is said to be k-set-contractive if, for any bounded
subset B of D(T), T(B) is a bounded subset of Y and v,(T(B))<k7v.(B).

Examples of k-set-contractive operators
a) T is continuous and compact iff T is O-set-contractive.
b) If T is L-lipschitzian, then T is L-set-contractive.
c) If T is semicontractive type operator with constant 2<1, then T is k-set-
contractive.

We recall that T is of semicontractive type with constant £<1 if there exists
a continuous operator V: D(T)X D(T)— X such that Tx==V(x, x) for all x in
D(T) and

and the operator x—V/(+, x) is compact from D(T) into the space of operators
from D(T) into X with uniform metric.

DerINITION 1.4 ([4]). T is said to be condensing if for any bounded subset
B of D(T), T(B) is a bounded subset in Y and v, (T(B))<7,(B), whenever
7(B)>0.

ReEMARK. Clearly, every k-set-contractive operator with k<<1 is a condens-
ing one. The converse is not true; however, every condensing operator is
1-set-contractive. If X=1Y then T condensing implies T demicompact.
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DeriniTION 1.5 ([11]). Let W be a linear subspace of X. We say that
a linear operator 7: W—Y is invertible modulo compact operator if there is
a linear operator L: Y —X such that I—TL and I —LT are compact, where I
is the identity operator. We call L an inverse of T modulo compact operator.

RemaRrk. Clearly, if 7} and T, are the inverses of 7' modulo compact
operator, then there exists a compact operator K such that T\=T,+K. (See

[11]).

DeriniTION 1.6 ([10]). Let W be a linear subspace of X. A linear operator
T: W—Y is said to be Fredholm if:
a) T is densely defined in X, i.e., W=X.
b) Tis a closed operator.
c) a(T)<<oo, where a(T) is the dimension of kernel of T.
d) R(T)is closed in Y.
e) B(T)< oo, where B(T) is the codimension of R(T).
The index of a Fredholm operator T is defined by

i(T) = a(T)—B(T) -

We denote by ¢(X, Y) the set of all Fredholm operators T from D(T)C X into
Y.

If Tep(X, V), we have X=kerTPX,, where X, is a closed subspace
of X. Since KerTcD(T), this gives D(T)=kerTP[X,ND(T)]. Also we
have kerT'=R(T)’, where T" is the adjoint of T'; hence Y=R(T)@Y,, where
Y, is a subspace of Y of dimension B(T). The restriction of T to X,ND(T)
has a closed inverse defined everywhere on R(T) (which is a Banach space)
and hence, the inverse is bounded. This gives ||x||<C||Tx||, x&X,ND(T).
Here kerT denotes the kernel of T'; R(T)° denotes the set of all annihilators
of R(T).

Thus, we have

Proposition 1.1 ([10]). If T€@(X, Y), then there exist an operator Ty
B(Y, X) such that

a) kerT=Y,.

b) R(To)=Y,nD(T),

c) T,T=Ion X,ND(T),

d) TTy=Ion R(T)
and operators F\€ B(X), F,&€ B(Y) such that

e) T, T=I—F,on D(T),

f) TTy=I-F,onY,

g) R(F)=kerT, kerF,=X,,

h) R(F,)=Y,, kerF,=R(T).
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Here B(Y, X) denotes the set of all bounded linear operators T from D(T)CY
to X; if Y=X we simply write B(X).

REMARK. Since a(T)<<co and B(T)< oo, F, and F, are operators of finite
rank; therefore, F; and F, are compact operators and 7T, is an inverse of T
modulo compact operator.

Proposition 1.2 ([10]). Suppose that X=N P X,, where X, is a closed linear
subspace and N is a finite dimensional subspace. If X, is a linear subspace of X
containing X, then X, is closed.

DrrFINITION 1.7. Let W be a normed space. W is said to be continu-
ously embedded in X if there is a one-to-one bounded linear operator P: W—X.

Proposition 1.3 ([10]). Let W be a normed space continuously embedded
in X. If TEW(X,Y) and D(T)=W, then T@(W, Y) with kerT and R(T)
remaining the same, where D(T) means the closure of D(T) in W.

Proposition 1.4 ([10])). If A=}(X,Y) and BE)(Y, Z), then BA€§(X, Z)
and i(BA)=1(B)+i(A), where Z is another Banach space.

2. Let X and Y be Banach spaces. Using the results of Petryshyn [8]
(Theorem 10’) and Proposition 1.2 we first generalize in Theorem 2.1 the clas-
sical result on a sufficient condition for an operator to be Fredholm with demi-
compact 1-set-contractive, hence in particular condensing, operators in place
of compact operators, and then apply this result to obtain a new result con-
cerning perturbation theory for Fredholm operators in Theorem 2.2.

Theorem 2.1. Let T: D(T)CX—Y be a densely defined closed linear
operator. Suppose that there are linear bounded operators T,: Y—X; T,: Y—X;
A;: X—X and A2 Y—Y with A, demicompact and A, demicompact 1-set-con-
tractive such that

a) I\'I'=1—A4,0nD(T),
b) TT,=I—A4,0nY.

Then, T is a Fredholm operator.

Proof. By hypothesis T is a densely defined and closed linear operator in
X. So we have only to prove conditions (c), (d) and (e) of Definition 1.6.

Proof of (c): Since kerT CkerT\T, we have a(T)<a(T\T)=a(I—A4,).
But, a(I—A4,)<oo. In fact, we shall consider S={xcker(I—4,); ||x||=1}
and prove that S is a compact set in ker(/—4,). Let {x,} be any sequence in
S; then, {x,}Cker(I—A4,) and x,—A;x,=0 for each n. Since A4, is demi-
compact, there is a subsequence {x,;} of {x,} such that x,—x,EX as n;—co.
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Clearly, ||x,||=1, i.e., x,&S. This proves that S is a compact set in ker(/—A4,)
and, consequently a(I—A4,)<<co. Thus a(T)<<oo.

Proof of (d) and (e): First note that R(T)DR(TT,)=R(I—A4;). Now,
(I—4,) is Fredholm (see [8]-theorem 10’). Hence by Proposition 1.2, R(T)
is closed and of finite codimension. Q.E.D.

Theorem 2.2. Let T: D(T)CcX—Y be a Fredholm operator. Suppose
that F: X—Y is any bounded linear operator such that
—GF and —FG are demicompact 1-set-contractive for some operator G
. A4)
which is an inverse of T modulo compact operator.

Then T+ F is a Fredholm operator with i(T+F)=i(T).

Proof. First note that, by remark of Definition 1.5, assumption (A) im-
plies that — T\ F and —FT, are demicompact 1-set-contractive for all 7T, which
is an inverse of T modulo compact operator.

Since T is a Fredholm operator, by Proposition 1.1, there is a bounded
linear operator T,;: Y— X such that

T,T = I—F, on D(T)
and
TT,=I—F,onY,

where F, and F, are compact operators. This implies that T, is an inverse of
T modulo compact operator.
Now,
T(T+F)=I—F+T,F = I—L, on D(T+F)
and
(T+F)Ty=1—F,+FT,=I1—L,onY
where

Ll = FI_TOF and L2= Fz'—FTo.

Since —T,F and —FT, are demicompact 1-set-contractive and F; and F,
are compact, we have that L, and L, are demicompact 1-set-contractive opera-
tors. Clearly, D(T+F) is dense in X. Therefore, by Theorem 2.1, T+F is
a Fredholm operator.

It remains to prove that {(7T+F)=¢(T). Since T is closed, one can make
D(T) into a Banach space W by equipping it with the graph norm

(1w = [l#l[+1I Tl .

Moreover, W is continuously embedded in X and D(T)=W. Hence,
Te@(W, Y) by Proposition 1.3. So, there is a bounded linear operator U:
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Y — W such that
UT = I—K, on D(T)
and

TU=1I1-K,onY
where K, and K, are compact with R(K,)=kerT (see Proposition 1.1).
In addition, U€@(Y, W). Thus, applying Proposition 1.4 we have that
i[UT+F)] =i{U)+{T+F).

Let T, be the operator K;,— UF. If we consider T as an operator from X
into X, T, is demicompact and 1-set-contractive. Then, by [8]-Theorem 10’
we conclude that I— T, @(X, X) with {(/—T;)=0.

Now,

i[U(T+F)] =il—-T)). 1)
Assuming this for the moment, we see that
{(T+F) = — (U).

Proposition 1.4 still yields
(UT) = 4 U)+«(T).

Since
(UT)=4#I—K,)=0,
we have
i(T) = —i(U).
Then

i{(T+F) = i(T).

Therefore, it remains only to prove (1).
Since R(K,)=ker T D(T) and UF is an operator from X into D(T), we
have that

R(T)cD(T). ()

It is clear that ker[U(T+F)]Cker(I—T,). Conversely, if x&ker(I—T;), then
x=TyxeD(T) by (2), and hence,

ket[U(T+F)] = ker(I—T,). 3)

Since I—T,€0(X, X) and W is dense in X, there is a finite dimensional sub-
space X, of X such that
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X = RI-T)®X,, X,cD(T). (4)
Hence
W = [RU-T)NW]DX,. 6))

It is clear that RIU(THF)]CR(I—T))NW.
Conversely, if zeR(I—T,)NW, then z=x—TxsW, for some x=X.
In view of (2), x&€D(T). Hence 2= U(T+F)x.

Thus,
RI—-T)NW = RIU(T+F)].
Combining this with (5),
W = R[U(T+F)]DX,. (6)
It follows from (4) and (6) that
B[U(T+F)] = dim X, = BUI—T). (7)
(3) and (7) imply (1). Q.E.D.

Remark. It is important to observe that, Theorem 2.2 is valid when
GF and FG are condensing operators because condensing operators are demi-
compact and 1-set-contractive (see remark of Definition 1.4).

When F is compact, Theorem 2.2 js also valid (this is the classic result of
perturbation theory of Fredholm operators).

When T is the identity operator, we need —F to be demicompact 1-set-
contractive in order to guarantee the validity of Theorem 2.2.

As a consequence of Theorem 2.2 we deduce the following classic result
whose perturbator operator is not necessarily compact.

Corollary 2.2:.1. For T€((X, Y) there is an >0 such that for every
linear operator A: X — Y satisfying ||A||<y one has (T+A)sp(X, Y) and
(T+A4)={(T).

Proof. Since Te@(X, Y) there is a bounded linear operator T,: Y— X
that T, is an inverse of T modulo compact operator. We take np=||T,||~*.
then

I ToAlI<IITol 11411 <1

and similarly,
AT || <1.

Since a bounded linear operator L is ||L||-set-contractive, T34 and AT,
are k-set-contractive with 2<1 and, consequentely, 7,4 and AT, are condens-
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ing. Then, by the above remark, 4 satisfies the hypothesis of Theorem 2.2.
Q.E.D.

3. An application of Theorem 2.2

Let C, and C] be, respectively, the space of continuous e-periodic func-
tions x: R—R" and the space of continuously differentiable w-periodic func-
tions x: R—R". C, equipped with the maximum norm [|+|l. and C/ with
the norm ||+||% given by ||+||%=max{||u|«, ||[#’[|~} for u& C] are Banach spaces.

Let us consider the following differential equation:

x'(t) = a(t)x"(t—h)+b(t)x(t—h,)+A(2) .
Here, a and b are continuous e-periodic (%X n)-matrix function such that ||a(?)||
<k, (—oo<t<-o0), where k<L if @>2 or k<% if 0<2;feC, is a given
()]

function and x& C/, is an unknown function.
This equation can be rewritten in the operator from

Dx—Ax=f,
where D: C,—C, is given by the formula

(Dx) (2) = «'(2) ,
and the operator 4: C,— C, by the formula

(Ax) () = a(t)x’(t—hy)+b(E)x(t—hs) .

Clearly, D and A are bounded linear operators with ||[D||=1 and therefore,
D is 1-set-contractive.

The kernel of the operator D is n-dimensional and it consists of constant
functions. The range of D is readily seen to be the set of x&C, that satisfy
the condition

S:x(t)dt —0.

This set is obviously closed and its codimension is . Thus, D is a Fredholm
operator with #(D)=0.

Let 7v and 7, be respectively the Kuratowski measure of noncompacteness
in C, and C/.

We represent A4 as the sum A=4,+ A4,, where

(A4yx) (2) = a(t)x'(t—hy), (Ax) (£) = b(t)x(t—h,) .

The operator A,, which acts from C/ to C,, is obviously compact.
Let D,: C,—~C, be an inverse of D modulo compact operator, that is,
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K,=I—-DD, and K,=I—D,D are compact operators respectively in C, and
C!, where I is the identity operator. Then we have

and

ADo = (A1+A2)Do = A1D0+A2Do

DyA = Dy(A,+4,) = DoA,+Dy4,

with A4,D,, DA, compact. Therefore, for any bounded subset X of C,,

V[ADO(X )] S'y[f‘-lll)o()( )]+7[AZDO(X)] = 7[A1D0(X )] .

Note that 4,=A4;S, D, where the operators S, and 4; acting in C,, are given
by the formula

(S,,lx) (t) = x(t—hy), (Asx) (t) = a(t)x(2) .

Obviously S, is 1-set-contractive and A; is k-set-contractive. Therefore,

Y[AD(X)] = 7[435, DDy(X)] = Y[4:S4,(I—K,) (X)]

<V[AsS3,(X)]H7[4sS3, Ki(X)] = V[AsS3, (X)]<AY[S, (X)]<k(X) .

Since k<1, we have that 4D, is condensing.

We can take D, as the function defined by

(Do3) () = | )4 | y)ds(— o0 <t< -t e0)

and it is obvious that ||Dy||<w if o>2 or ||Dy||<2 if ©<2. Hence, D, is
w-set-contractive if »>2 or 2-set-contractive if »<2. With the same argu-
ment used in the case 4D, also we prove that D 4 is condensing. Then, by
Theorem 2.2. D-A4 is a Fredholm operator with #(D—A4)=0.

The author is grateful to Professor Hiroki Tanabe (Osaka University)

for his useful remarks and suggestions for this work.
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