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Introduction. Let G be a connected semisimple Lie group with finite
center. Let I" be a discrete subgroup of G such that I'\G is compact. Assume
that T" has no elements with finite order other than the identity. Fix a Haar
measure dg on G. Then dg induces the G-invariant measure on T\G and we
can construct the right regular representation 7 of G on LAT'\G). It is well-
known that z, decomposes into the direct sum of irreducible unitary repre-
sentations with finite multiplicity, up to unitarily equivalence. Let G be the
set of all equivalence classes of irreducible unitary representations of G. For
U G, denote by N(U) the multiplicity of U in zp.

Let édcé be the discrete series of G. Assume that G, is not empty. In
this paper, we shall consider the multiplicity Nn(U) of every class U in G,.
Langlands [8] showed that, if U €G, is integrable, we have the generic formula

N(U) = d(U)vol(T\G)

where d(U) is the formal degree of U and vol(I'\G) is the volume of IT'\G. On
the other hand, it has been known that there are examples of non-integrable
classes in G, for which the above Langlands’ formula breaks down. Also
Hotta-Parthasarathy [6] obtained a sufficient condition for U to satisfy Langlands’
formula.

Now, in [3], DeGeorge-Wallach proved a certain formula about Ny(U)
(UeG,) which seems to explain the reason why Langlands’ formula breaks
down for non-generic classes (c.f. Theorem 3.1.1). In fact, the formula of
DeGeorge-Wallach shows that, in the case of non-generic classes, there can
appear the terms of “trash” representations in the sense of Wallach [15].

The purpose of this paper is to apply the formula of DeGeorge-Wallach to
the special cases of G=Spin(1, 2m) (m=2) and G=SU(1, n) (n=2) and provide
the concrete formulas about N(U) (U Eéd). The most part of our work is
devoted to finding all classes in G with given infinitesimal character. In [1],
Borel and Wallach make the same arguments for the special infinitesimal charac-
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ter. Their method depends on Langlands’ classification of admissible represen-
tations of reductive groups. In this paper, we depend on detailed results by
Thieleker (c.f. [12], [13], [14]) and Kraljevic (c.f. [7]).

Main results are Theorem 7.6.1 and Theorem 8.7.1. It will be interesting
which classes in G appear as “trash”’ representations. Wallach [15] and Ragozin-
Warner [11] have obtained the similar formulas in the low dimensional cases.

1. The discrete series

In this section, we shall recall some known results about the discrete series
of semisimple Lie groups.

1.1. Let G be a connected noncompact semisimple Lie group with finite
center. Throughout this paper, we assume that G is a real form of a simply
connected complex semisimple Lie group. We fix a Haar measure dg on G, once
and for all.

Let G be the set of all equivalence classes of irreducible unitary represen-
tations of G. We call UEG a discrete class if a representation in the class U
is equivalent to a subrepresentation of the regular representation of G on L¥G).
Let us denote by G, the set of all discrete classes in G. We call G, the discrete
series of G.

Let K be a maximal compact subgroup of G. It is known that G has a
discrete class if and only if there exists a Cartan subgroup H of G which is con-
tained in K (c.f. [17], II, p. 401). Hereafter we always assume that G has
such a subgroup H.

1.2. Let g, £, and ¥, be the Lie algebras of G, K and H, respectively.
Let p, be the orthogonal complement of f, in g, with respect to the Killing
form of g,. For any subalgebra 1, of g,, we shall denote by u the complexifica-
tion of u,.

Now J is a Cartan subalgebra of g which is contained in . Let b% be the
dual space of hr=+/"—15, and let h* be the dual space of ). Let A be the root
system of (g, §). For aEA, denote by g, the corresponding root space. A root
a is called to be compact (resp. noncompact) if g, is contained in f (resp. p).
Denote by A, (resp. A,) the set of all compact (resp. noncompact) roots. The
Killing form of g, induces the inner product < , > on h% Denote by & the
set of all integral linear forms on Hp; i.e.

24N, a
R ez (aEA)}

T = {xef);';

and define
F= LEFIN, ad>*0 (asA)}.

An element AE, is called a regular integral form on Yp.
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Let W be the Weyl group of (g, §). Let W, be the Weyl group of (G, H);
i.e. the quotient group of the normalizer of H in G modulo H. The group W
and W, act on §} and we can identify W, with the subgroup of W generated
by reflections with respect to compact roots.

When we choose an ordering in b, put

= {a€Ala>0}, A;:A*nA,,, A} = A+nA,,,

_1 1
P=1 PIR-H = Eﬂa, = MEZA a,
3" = eI ad=0 (aeAM},
%g: %on%+-

If an integral form A belongs to §*, we say that A is dominant with respect
to A*. Also define the subset W* of W by

W= {s&W|sA*DA}}.

Then the mapping WX W= (s, 5,)—>s,5,E W is a bijection.

Harish-Chandra showed that there is a distinguished surjection D;} 0—>G’d
(c.f. [17], I1, p. 407). For AE,, denote by D, the image of A by D. Then,
for A, A’ €%, we have D, =D, if and only if there exists an element s& W, such
that A’=sA (c.f. [17], II, p. 407). Hence, if we choose a positive root system
At of A, G, corresponds bijectively to the subsetSEL‘Lls%a‘ of B,.

1.3. Denote by K the set of all equivalence classes of irreducible K-
modules. Let 7z be a continuous representation of G on a Hilbert space E.
For convenience’ sake, we shall often denote by the pair (#, E) the representa-
tion 7 on E. We say that = is K-finite if it satisfies the following two condi-
tions;

(1). The restriction z|¢ of z to K is a unitary representation of K.

(2). Each &K occurs with finite multiplicity in 7t| &

Let (7, E) be a K-finite representation of G. Let reK. Denote by m(z; )
the multiplicity with which 7 occurs in 7z |,. Let ®(z) be the set of all reK
with m(z; 7) =0, which is repeated as many times as its multiplicity m(z; 7).
We call ®(z) the K-spectrum of .

When we choose a positive root system Af of A, each reK is charac-
terized by its highest weight. Put

it = {xebﬁ

EM@ez and 20 (@sa).
la, a

For yeF NS, denote by 7y the irreducible K-module with highest weight
and also denote by 7y the equivalence class of 7y. Similarly, for YEF}, we
denote by 7y the irreducible f-module with highest weight 7.
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1.4. Now every irreducible unitary representation = of G is K-finite
(c.f. [17], I, p. 318). In particular, if = belongs to a discrete class, the K-
spectrum of 7 is known under the assumption that G is a linear group. We
shall review it precisely.

Let AE®, and 7z, be a representation of G in the class D,. Choose a
positive root system A* with respect to which A is dominant. For a&bf,
let @A) be the number of distinct ways in which A can be written as a sum
of positive noncompact roots. Then we have the following theorem.

Theorem 1.4.1 (Hecht-Schmid, [5]). Assume that G has a faithful finite
dimensional representation. Let vEFNBi. Then we have

m(”A; T'V) ZSEEWGG(S)Q(S(V_*_PI@)_A_F)") )
where E(s) is the sign of s€E W,.

1.5. Finally, we refer to formal degrees of the discrete series. Let (, E)
be an irreducible unitary representation of G. If 7= belongs to a discrete class,
there is a positive real number d(z) such that

[, (), ©) "dg = diw)(w, w)w,0)  (w vEE)

where (, ) is the inner product in E (c.f. [17], I, p. 351). We call d(z) the
formal degree of .

For AE%,, denote by d(D,) the formal degree of a representation in the
class D,eG,. If we choose a positive root system A* as in 1.4., we have

(L.1) D) =cl_TI, <A, a>)|
where ¢ is the positive constant depending on the measure dyg (c.f. [17], II, p. 407).

2. Infinitesimal characters

In this section, we shall review certain infinitesimal properties of K-finite
representations of G. Let G be asin § 1.

2.1. Let (=, E) be a K-finite representation of G. An element u€E is
called K-finite if #(K)u is contained in a finite dimensional subspace of E.
Denote by E, the set of all K-finite elements of E. For u€E, and X €g,, we
can define

7o (X)(u) = 1{13}1 ﬂ&tf()’t:y

and 7z (X)(u) belongs to E, (c.f. [17], I, p. 326). In this way, we can induce
the representation 7z, of g, on E;. Denote by U(g) the universal enveloping
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algebra of g. The representation 7, of g, is canonically extended to the
representation of U(g). This representation of U(g) is also denoted by 7, and
is called the infinitesimal representation of .

Let #' and #* be K-finite representations of G. If z} is equivalent to 7%
as representations of U(@), we say that z' is infinitesimally equivalent to =2
In particular, let z' and #? be irreducible unitary representations. Then
z' is unitarily equivalent to z* if and only if #' is infinitesimally equivalent to
7* (c.f. [17], I, p. 329).

Let (=, E) be a K-finite representation of G. We say that = is infinitesi-
mally unitary if E; has an inner product with respect to which 7 (/ —1X) is
a symmetric operator for each X g,. If = is unitary, = is clearly infinitesi-
mally unitary. Conversely, if G is simply connected, an irreducible infinitesi-
mally unitary representation of G is infinitesimally equivalent to a unique ir-
reducible unitary representation of G, up to unitarily equivalence (c.f. [17],
I, p. 331).

2.2. Let Z(g) be the center of U(g). A K-finite representation (z, E)
is said to be gquasisimple if there exists a homomorphism X of Z(g) into C
such that z(2)u=X(z)u for all 2€Z(g) and u€E,. Here X is called the
infinitesimal character of m. As it is well-known, an irreducible unitary re-
presentation of G is quasisimple (c.f. [17], I, p. 318). For U €G, denote by
Xy the infinitesimal character of a representation in the class U.

We shall state some preliminary facts about infinitesimal characters. Let
h be a Cartan subalgebra of g in § 1 and U(}) the universal enveloping algebra
of §. Since U(h) is the symmetric tensor algebra of Y), U(H) is naturally
identified with the algebra of complex-valued polynomial functions on b*.
Choose a positive root system A* of A and put n*= wexug.,. Then Z(g) is con-

tained in the direct sum U(§)P.U(gn*. Let @ be the projection of Z(g)
into U(h). For a€h*, define the homomorphism X,; Z(g)— C by

X\=) = p(R)A—p)  (*€Z(9)).

Then it turns out that X, does not depend on the choice of A* (c.f. [4], p. 231).
By a well-known result of Harish-Chandra, every homomorphism X; Z(g)—C
is of the form X, for some AE§*. Moreover, for A;, A,EH*, we have X\, =Xy,
if and only if A,=s\; for some s€ W (c.f. [4], p. 232). In particular, if AEH*
is a dominant regular integral form with respect to A*, X, is the central character
of the irreducible g-module with highest weight A—p (c.f. [4], p. 230).

2.3. Now let §’ be another Cartan subalgebra of g. For A'&(h’)*, let
X4; Z(g)—C be the homomorphism constructed from A’ in the same way as in
2.2. We shall study the relation between X, and XJ.. Let 6 be an automor-
phism of g such that 8(§’)=0 and let 6*; h* —(§’)* be the linear isomorphism
induced by 6; §’ — ).
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Lemma 2.3.1. If x&b* is a regular integral form, then we have X,=X}s,
as homomorphisms of Z(g) into C.

Proof. We take a positive root system A* with respect to which A is
dominant. Let V,_, be the irreducible g-module with highest weight A—p.
Then X, is the central character of V,_,. On the other hand, if we take 6*%(A")
as a positive root system of (g, §’), the highest weight of V,_, relative to §*(A*)
is 0* W—p)=0*N—0*p=(b’)*. Hence X{x is also the central character of
Vi-o. Thus the assertion follows.

3. Basic multiplicity formulas

In this section, we shall review multiplicity formulas obtained by DeGeorge
and Wallach. It plays a basic role in this paper.

3.1. Let G beasin §1. Let T be a discrete subgroup of G such that
T'\G is compact. In this paper, we always assume that T" has no elements with
finite order other than the identity. We fix the G-invariant measure d¢ on
T'\G induced by dg. For U&G, we denote by N(U) the multiplicity with
which U occurs in the right regular representation of G on L¥T'\G).

Now we take the Cartan subalgebra ) as in § 1. Consider a special linear
form A€, and the discrete class DAEG',,. Let X, be the homomorphism
of Z(g) into C constructed from A as in 2.2. Denote by G, the set of all
U G such that its infinitesimal character is X,; i.e.

Gr={UsG|Xy=X,} .

Clearly we have G,=G,, for all s&€W. Also it is known that D,&G, and
the number of elements in G, is finite (c.f. [3], p. 141).

In [3], DeGeorge and Wallach obtained a formula describing the relation
among numbers in {Nn(U)|U eG,}. We shall precisely review it. Choose
and fix a positive root system A* with respect to which A is dominant. Since
rank g,=rank £, we can construct the half-spin representations of ¥, as in [6],
p. 144. Denote by L* the half-spin representation of f, with highest weight
p, and denote by L~ the other one. Note that L* depends on the choice of A*.
Let 74_,, be the irreducible f-module with highest weight A—p,. Then the
tensor product 7,_, ®L* integrates to the representation of K which is also
denoted by 7,_, QL* (c.f. [3], p. 139). For K-modules 7, and 7,, denote by
dim Homg(7;, 7,) the intertwining number of 7, and 7,. Let U eG and let
7y be a representation in the class U. Then define

dim Homg (7,_p,QL*, U) = dim Homg (7,_,,QL*, 7y | &) .

Theorem 3.1.1 (DeGeorge-Wallach, [3]). Let A€$,. Then we have
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(1) dDs)vol(T\G) = Ne(Da)+ 3} Nx(U){dim Homp (7, ®L, U)

vedr-4,

—dim Homg (75_,,®L", U)}
where d(D,) is the formal degree of D, and vol(T'\G) is the volume of T'\G.

Our purpose in this paper is to obtain concrete formulas about Ny(D,) by
using Theorem 3.1.1. We divide our study into two steps as follows;

Step 1; To find out all elements in G,—G,.

Step 2; To examine dim Homg(7,_,,QL*, U)for every U in Gr—G,.

4. The nonunitary principal series

In order to find out irreducible unitary representations of G with given
infinitesimal character, we need the family of representations of G which is called
the nonunitary principal series. In this section, we shall make preparations
about this family. Let G be asin § 1.

4.1. First we shall state some notations. Let G=KAN be an Iwasawa
decomposition of G. Let a, and 1, be the Lie algebras of 4 and N. We write
g=k(g) exp (H(g)) n(g) for g €G, where k(g)EK, H(g)Ea, and n(g)EN.

Let 3 be the restricted root system of g, with respect to a,, Choose a
positive root system =* of 2 which is associated with the .subalgebra n, (c.f.
[16], p. 164). Define p,= 3 §+a

Let M be the centralizer of 4 in K and let m, be the Lie algebra of M.
Let t, be a maximal abelian subalgebra of m, and let t} be the dual space of
tg=+/—11,. Denote by A, the root system of (m. t). Choose a positive root
system A, of A, and put pm:% > a. Also define

aca}

Bm {MEf*

2 ez and 20 (aEA;‘,)}
e, >

Let M Le the set of all equivalence classes of irreducible M-modules. For
g€ M, denote by w(£) the highest weight of £. Then u(£) belongs to F;,.

If we set Hi=1,Pa,, b’ is a Cartan subalgebra of g. In this section, we
use this Cartan subalgebra §’. Let (§%)* be the dual space of Hr=+/—11,Daq,.
Canonically, t* and a* can be considered as subsets of the dual space (§")* of §’.
Denote by A’ the root system of (g, §’). Then there exists a positive root
system A’ of A’ such that A;CA'* and {a€A’| al,E2}CA’™ (c.f. [16],
p. 169). This ordering of (§%)* is called a compatible ordering with respect to
S*. Throughout this section, we fix this ordering in (hg)*. Set p'=—- 2

2 acar+

Then we have p'=p,,+p,.
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4.2. Let £cM and let £ also be a representation of M on the vector
space V¢ which belongs to the class £. Let C; be the set of all continuous map-
pings f; K—V; such that f(km)=E&(m)™'f(k) for all k€K and meM. For
fi» [,ECt, define

(U £ = | (0, F)a

where dk is the normalized Haar measure on K such that S dk=1. Denote by
K

E; the completion of C; with respect to this inner product ( , ).
Let vea*. We define the representation z¢ , of G on the Hilbert space E;
as follows;

(e ,(Q)f)(R) = €™ CPai 00 f(R(g™1k))

for g€G, kK and f€C;. Then 7z, is not necessarily unitary, but it is K-
finite (c.f. [16], p. 232) and quasisimple (c.f. [9], p. 29). The family of repre-
sentations {7[5.\,|EEM, vea*} is called the nonunitary principal series.

4.3. We shall review how the infinitesimal character of each representation
in the nonunitary principal series is given. Let ¢, (EEM vea*) be a
representation in the nonunitary principal series. For A'e(h')*, denote by X},
the homomorphism of Z(g) into C constructed from A’ as in 2.2.. Then we
have the following lemma.

Lemma 4.3.1 (Lepowsky [9]). The infinitesimal character Xz, of me . is
equal to X[.(5)1p,+v, where w(&), p, and v are regarded as elements in (H)*.

Proof. In [9], Xz, was given explicitly. We shall translate the result
in [9] into our desirable form. In Proposition 8.9 of [9], take —A;={—a|
acA;} as a positive root system of A,. Note that u(£) is the lowest weight
of £ with respect to —A,. Denote by A{* the positive root system of A’ de-
termined by =* and —A,. Let n{* (resp. n{”) be the sum of positive (resp.
negative) root spaces. Then we have

Z(@)cU®)+ni*U(9),
Z(g)cU(®)+U(gmi™ .

In the above two direct sums, the projection mappings of Z(g) into U(}’)
are the same (c.f. [4], p. 230). Denote by ¢’ this projection mapping. Then
Proposition 8.9 of [9] implies that

Xuo(2) = @'(2) ((E)+v+pJ)

for z€Z(g). On the other hand, use a positive root system —A{* of A’ in
the construction of X, (A'€(§)*). Then we have
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xt’b(i)w,,,w(z) = ?’l(z)((l‘(f)+Pm+")_(Pm_Pa))
— ') uE)+7+ps)

Hence we have Xzs (R)=Xker+p,,+(2)-

44 Flnally we shall prepare some facts about the K-spectrum of .
Let €M and r€K. Denote by m(7; &) the multiplicity with which & occurs
in the restriction of 7 to M. If m(7; £)=£0, 7 is called to be E-admissible.
Denote by K(E) the set of all £-admissible elements in K.

Let v€a*. From the definition of z¢,, the restriction of z;, ot K
is the representation induced from the representation & of M. Hénce, by
Frobenius’ reciprocity theorem, we have m(z; ,; 7)=m(7: £) for reK. Thus
the K-spectrum of 7 , is the set of all TEK'(E) repeated as many times as m(7; £).

For r€K, let Eyt)CE; be the subspace of all vectors transformed by
7 | x according to 7. When & is a subset of K(E), define E¢(®)= GB Eg(7),

where @ means the orthogonal direct sum. Note that E¢(P) is a K—lnvarlant
subspace of Eg.

5. The subquotient theorem

In this section, for the sake of Step 1, we shall review the subquotient
theorem of Harish-Chandra. It will give a method to find out the representa-
tions in question.

5.1. Let (=, E) be a continuous representation of G. Let E have a finite
sequence of closed invariant subspaces

E=EDED---DE, ,DE, = {0}

such that, on each quotient space E;_,/E;, = induces an irreducible representa-
tion of G. Then x is said to have a finite composition series and each quotient
representation (w, E;_,/E;) is called an drreducible subquotient of .

It is known that every member of the nonunitary principal series has a
finite composition series (c.f. [9], p. 33). The following theorem gives a method
of realizing our exploring representations,

Theorem 5.1.1 (Harish-Chandra; c.f. [9], p. 29). Every irreducible uni-
tary representation of G is infinitesimally equivalent to an irreducible subquotient
of some member of the nonunitary principal series.

5.2. Now, let h be the Cartan subalgebra in § 1. We consider a special
linear form A€, Let A* be the positive root system with respect to which
A is dominant. On the other hand, let %’ and A’* be as in 4.1. There is
an automorphism @ of g such that (§")=H and 6*(A*)=A"*. Identify h* with
(§)* by this isomorphism. From Lemma 2.3.1, if A€h* is a regular integral
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form, we have X,=X/. Hence, for EEMand vea*, we have Xlp, v =Xx
if and only if there exists an element s& W such that u(§)+p,+v=s(A). Let
R(A) be the set of all pair (£, ») (F€M, vEa*) such that u(E)+p,-+» and A
are in the same W-orbit. From Lemma 4.4.1 and Theorem 5.1.1, we obtain
the following proposition.

Proposition 5.2.2. Let A=, and = be an irreducible unitary representation
of G such that X,=X,. Then = is infinitesimally equivalent to an irreducible sub-
quotient of my , for some (€, v) in R(A).

6. The decomposition of I-modules

In this section, we shall describe the direct sum decomposition of a tensor
product of two -modules. Also we shall review a known result about the
t-module L*. These facts will be used in studying Step 2.

6.1. Let ¥, and Y, be as in §1. Let ¢, be the center of ¥, and let £} be
the semisimple part [§, f,] of £, Then we have

= ¢, D

ho = ¢,®Bhs
where B} is the maximal abelian subalgebra of ;. We always regard (§")* and
¢* as subsets of §h*.

First we shall examine the decomposition as f-modules. As the positive
root system of (£, §'), we take Af in §1. For vyEF{ N(H")*, denote by T3
the irreducible '-module with highest weight v. The following lemma is due
to [2] (c.f. [2], Chapter VIII, § 9, Proposition 2).

Lemma 6.1.1. Let B, v and 8 be in Fi N(O")*. Then the multiplicity of
T4 in the tensor product QT is given by

2 EOM(B+pe—s(v+pw)
[
where M(\) (N (9Y)*) is the multiplicity of a weight \ in 3.

Once we know the decomposition as f'-modules, we can easily obtain the
decomposition as f-modules.

Proposition 6.1.2. Let T be a t-module. Let B and v be in Fi and let
Tg and Ty be the irreducible t-modules with highest weight 3 and <y respectively.
Then the multiplicity of Tg in TyQT is given by

sEEW&E(S)ZV-’T(K? +pe—s(Y+pw)

where M. (\) (N€9*) is the multiplicity of a weight ) in 7.
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Proof. It is sufficient to prove the statement in the case that 7 is an
irreducible f-module 75 (§=3#). Let 8 bein Fi. If 74 occurs in T,® 7, with
nonzero multiplicity, the restriction of 8] to ¢ is equal to (v+38)|.. We put

Bi(r, 8) = {BEBi| Ble= (v+38)I} .

Assume that B} (v, 8). Then 75 occurs in 7y@T; with multiplicity m if
and only if 7g|, occurs in Ty|a®7s|p with multiplicity m. Hence, by
Lemma 6.1.1, the multiplicity of 75 in 7y®; is given by

31 &) Mep(B+pi—s(r+ 1))

where @', v' and &' are the restrictions of B, ¥ and § to B, respectively.
Since, for A €9* and s€W;, we have s(\)|a=s(\yp) and sA)[e=2], it
follows that

{B+pe—s(v+pi)} 'z,l = B+ pp—5(V'+ps)
{B+pe—s(v+p)}lc = (B—")c
=3d]..

Hence, B+ p,—s(v+ps) is a weight of 75 if and only if B'+p,—s(7'+-ps) is a
weight of 751 . Therefore we have

Mz (B+ps—s(V+pr) =Mey(B'+ps—s(V'+p4)) »

and the statement is proved for 75 with B (v, 9).

Next, assume that B&Fi(v, 8). Clearly the multiplicity of 75 in T,@7s
is equal to 0. On the other hand, since we have {8+ p;—s(7+px)} |cF8lc, we
obtain that

Mey(B+pe—s(v+p)) =0  (s€W).
The proposition is proved.

6.2. Finally we shall state how the set of weights of L* is given. Choose
an ordering in 9% and appoint L* with respect to this ordering. Let @ be a
subset of A;}. Denote by <@> the sum of all elements in @ and denote by
|Q| the number of elements in Q. The following lemma is known (c.f. [6],
p. 144).

Lemma 6.2.1. The set of all weights of the t-module L* (resp. L") is given by
{p,—<Q>1QCA}, (—1)'® = 41 (resp. —1)}

and the multiplicity of each weight is the number of ways in which it can be expressed
in the above form.
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7. The case of G=Spin(1, 2m)

In this section, we shall study Step 1 and Step 2 in the case of G=
Spin(1, 2m) and we shall obtain concrete multiplicity formulas. In [12], [13]and
[14], Thieleker classified all irreducible unitary representations of Spin(1, 2m).
We shall often use his results.

7.1. Let m be an integer such that m=2. Let G be the group Spin(1, 2m);
i.e. the universal covering group of the identity component of SO(1, 2m). The
subgroup K is isomorphic to the universal covering group Spin(2m) of SO(2m).
As usual, we realize g,, ¥, and P, as Lie algebras of matrices;

0| u uE R™
g = <
|\ X || xes002m, R)
0] 0
h=1KX)=|, yx ||X=5@m R)
0| u
Po=1PW)=1|, | o ||#= 0w w,)ER"
Take Y, as follows;
0 0
_hl 0
0
b= {HR)=| , 0 —h,||h= (b, by, hy)ER"
B 0
0
0 &,

For 1=7i=<m, define a linear form e¢; on Y by
ei(H(hh °ty hm)) == \/——'_lhl .

Then % is spanned by {e,, -, e,,} over R and the inner product in b} is given by

1 (1<i, j<m).

<e;, 3j> = Z—(Zm—;T) 8:’;‘ =

Choose and fix a lexicographic ordering in b} with respect to the basis {e;, -+, ¢,}.
Under these situations, the following facts are easily seen;

A= {de (1Sism), t(ete) (1Si<j=m)}
A* = {o; (1Si<m), ete, (ISi<j<m)}
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Ai = {eite; (1=i<j=m)}
Ay = {e; (1=i=m)}

- i z’"} (2m—2i+1)e;
Pr— Z (m—l)e,

II

N}»— l

== Z‘. Niei | vi— A EZ (1=i<m—1), 21,2}
i=1

To= AET Ny =, A0, N E=N; (F))}
T = LEFINM>N>- -->x >0}
Ti = e Imzn= - 2n, o= ).

Note that, if A= 2 A& €F, {Ay, o, A} are either all integers or all half odd

integers.
Let &,, be the symmetric group of degree m and let c€,. Leté={¢;}
be a set of m signs; i.e. =1 or §=—1 for 1<i<m. Define the orthogonal

transformation s, , of h% by
85,4(€;) = Eilati) (1=ism).
The Weyl groups W and W are given as follows;
W= {s;¢lc€6,, & =10 —1 (1=i=<m)}
Wo={504]0€S,, & =10r —1 (1<i<m), ﬁ g =1}
Define sy, W by sy(e;)=e; for 1=<i<m—1 and sye,)=—e,. Then we have
W'={l, s;}, where 1 denotes the identity element of W. Hence the mapping

D; Fi Us Tt — Gy is bijective.
Take a maximal abelian subalgebra a, of p, defined by

a,= {P(a, 0, --+,0)|a= R} .
Then M is isomorphic to Spin(2m—1) and we have

0| 0

m, = {K(X)| X = YE80(2m—1, R)

0] Y

Also take a maximal abelian subalgebra t, of m, defined by

ty= {H(O, hy, -+ Jh,)ILER  (2=i=m)} .
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Two Cartan subalgebras §’=t@a and 9 can be identified by the following iso-
morphism 6;

G(P(a’()’ ) 0)+H(0: h?: ) hm)) = H(tl, hz, *tt hm) .

Moreover, by this identification, the above ordering in H% corresponds to a
compatible ordering of (hz)*. In this way, we always identify (§%)* with bE,
together with their orderings.

As for (m, t), t}§ is spanned by {e, ‘-, e,} and, in t}, the lexicographic
ordering with respect to this basis is given. Hence A}, p,, and §; are given as
follows;

An={e (2=i=m), e+e; (2=i<j=m)}

& 2m—2i+1
Pm - - 2 t
. _ _ m N I_Li——p,,-_HEZ and =0 (2§z§m—1)}
" {" By 7 and 20

Since M is simply connected and semisimple, the mapping u; Meg— wEEFn
is bijective. Also we have a*=Ce,Ch*. We shall identify ve,ca™ with the
complex number v&C.

7.2. Now we shall set about Step 1. Consider and fix a special linear form

Azi} Aie;€%s. Then the numbers {A,, -+, A,} are either all integers or
i=1

all half odd integers and satisfy the inequalities
(7.1) AS>A>>A,>0.

. Depending on Proposition 5.2.2, we shall first determine the set R(A)C
Mxa*. For A&h*, denote by Ay and A, the restrictions of A to t and to a,
respectively. If (£, v)ER(A), we have u(&)=s(A)|;—pn and v=s(A)|, for some
s&€W. Hence it is necessary to find out all s& W such that s(A)|,—p, belongs
to ¥ Let j be an integer such that 1<j<m. Define ¢;,€&, and & by

oi=(1,2)(23)G—-1))
}t — {1’ e, :/lle' .y 1}
J

and put s}‘zsaj s EW.
€5

Lemma 7.2.1. Let s€W. Then we have s(A)|,—p,ETn if and only if
s s either s§ or sj for some 1< j=m.

Proof. Let €, and £={&;}. We have

2m—2i41 )e,—.

So,o(A) |{—pm = Z..:(Erlm A1) — 5
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Hence s, ((A)|;— pn &8 if and only if

Ee- 1A e-1) 2 Eo-1(i1 A o140 +1 2=i=m—1)
(7.2)

1
'l(m)A ) = = 7

Clearly, o; and &F satisfy (7.2). Conversely assume that s, ((A)|,—pnETn-
Then the left hand sides of (7.2) are positive. Since A,-1;) is positive for all 7,
Es-15 must be 1 for 2<i<m. Moreover, from (7.2), we have A,-15>Ags-1(+1)
for 2<i<m—1. Hence, from (7.1), we obtain o¢7(2)<o7'(3)< - <o 7(m).
If we put ¢ '(1)=j, we have necessarily o=(1, 2)(2, 3)+:-(j—1,7). Thelemma
is proved.

Denote by £; the element of M with highest weight s7(A)|;—pn; i.e. the
highest weight u(£)) of &; is given by

ue) = 33 (A= 2,

we) =3 (A =220 S (22D g jsme)

=2 2 =7 2
w(En)= g <Ai—1'—2—”l“‘_‘_2-2ij—_l)ei
Also note that s7(A)|,=4-A;. After all, we obtain that
R(A) = { (&) Ay), (§jy —A)) | 1<j<m}.

Now consider the representations 7¢; »; and z¢, _5; (1=j=<m). From
Proposition 5.2.2, an irreducible unitary representation z such that X,=X, is
infinitesimally equivalent to an irreducible subquotient of z¢; 5, or 7, _,; for
some 1=<j<m.

m
For convenience’ sake, we put A—p=>1A.¢;; i.e
i=1

A= A,._Z"’“—ZZH"I (1Zi<m).
Hence we have
(7.3) A=R= - 2A,20,
and we can write
#(51) = ‘Ez Ase;
i m o .
74 pE) =2 Bt Dot 2 Ko, (2=j<m—1)

pEn) = 2} Rt e
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7.3. Next we shall find out all irreducible subquotients of 7¢; +5; (1= j=m),
up to infinitesimally equivalence. In [13], Thieleker determined all irreducible
subquotients of every representation in the nonunitary principal series. Let
us rely on his results.

Let £ be in M and 7 in K. The highest weight u(£) of £ and the highest
weight ¥(7) of 7 can be written as follows;

u®) = 2wl
7(r) = 31 v(7)er.
By Lemma 4 in §5 of [12], 7 is £-admissible if and only if () satisfies the

following conditions;

wE)i—v(7).EZ  (2<i<m)
YW= p(E),=Y(7)e= p(E)s= - Z p(E)m= | V()|

Moreover, for every &-admissible 7, we have m(7; £)=1. Hence, by the
statement in 4.4, we have
D(me ) = KI(E)
= {r€K]|v() satisfies (7.5)} .

(7.5)

Also, note that every K-invariant subspace of E¢, and hence every G-invariant
subspace of Ey, is of the form E¢(®P) for a certain subset @ of I%(E)
Following Thieleker, we shall define some K-invariant subspaces of Eg;
(I1=j=m). In the case that 1=<j<m—1, we have
v.—MNEZ  (1=i<m)
(7.6)  K)={neK|v2h+127= 27,2 K,+1,
2’7;21—&,412 b zﬁmg '(}’m I
where 'yzi 7.6,€FNTE. Let ®; and ®; be subsets of I%(E,-) defined as
follows; '~
(7.7) ®; = {meK(E)|7;2A,+1}
(7.8) @; = {T-yEK(gj) l 'Y,<Zi!+1} )

and put Ef=E¢(®]) and Ej=E;(®7). In the case that j=m, we have

kit — {T,ek y—KeZ (1<i<m) }

NZAHIZV= 2V 2N, 12 [ ]

Let @}, @, and P be subsets of IA{(E,,,) defined as follows;
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®;, = {ryEK(EW) | Ym=K,+1}

@7 = {1yERKE) | Vu=—(Bn+1)}

@f = {yER(ER) | — (Bt 1) <¥w<K,+1},
and put E;,=E; (®3), En=E; (®;) and E5=E; (®E).

ReMark 7.3.1. In [14], our representation (=:,, Ef) is denoted by
(mv, LY(K)). Hence E} (1=<j<m) corresponds to D¥(A;, £;) in [14] and Ej,
corresponds ot Dy,(A,, &,).

Under these notations, apply Theorem 2 and Theorem 3 in [14] to our
representations g, 4+ (1<j<m). For 1=j=m—1, Ej (resp. E7) is an ir-
reducible G-invariant subspace of E¢, under the action ¢, 5; (resp. 7, _4 ;).
Also E; and E; are irreducible G-invariant subspaces of E;  under the action
me, a, and E7, is an irreducible G-invariant subspace of E¢ under the action
m¢, _a, Lhere are no more irreducible G-invariant subspaces of E¢, (1= j=<m)
than the above.

Among these subrepresentations and quotient representations by them, there
are following infinitesimal equivalences;

(g;n50 EF) M7ty 1 -0y EG1) (I=j=m—2)

(%t pmy, smmyy Em—t)~(7g,, -n,» E)

(mt;.0p BB ~(w,-ap E7)  (1SjSm—1)

(7t),-np Ee;/E7)~(me;,0,0 ET) (I=j=m-1)

(Tt s Bt JEmt En)~(ms,, a0 En)

(7t -5 Bt Em)~(7t,,, 0,0 EnDE7)
where the symbol ~ denotes the infinitesimal equivalence. Moreover, there is
no more infinitesimal equivalences than the above. For the simplification,
denote by 77(A) (1=j=m—1) the representation (¢, .5, E7) and denote by

7w(/) the representation (z¢_ , , E7). After all, we have the following proposi-
tion.

Proposition 7.3.2.  Up to infinitesimal equivalence, all irreducible subquotients
of the nonunitary principal series whose infinitessmal characters are equal to X, are
given by

{1 (A), i (A), 23 (A), -+, maa(A), ma(A), Za(A)} .
Moreover these representations are not infinitesimally equivalent to one another.

7.4. We shall examine which subquotients in Proposition 7.3.2 are infini-
tesimally unitary. Using Theorem 4 in [14], we have the following proposition.
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Proposition 7.4.1.

(1). The representation w7 (A) is infinitesimally unitary if and onld if A=p.
Moreover, ny(p) is the trivial representation 1; of G.

(2). For 1=j=m—1, n}(A) is infinitesimally unitary if and only if A=
Kj+z=-"=fx,,,=0.

(3).  The representation myx(N) is always infinitesimally unitary.

Proof. By (3) of Theorem 4 in [14], z7(A) is infinitesimally unitary if

2m—1 2m—1

and only if A,=0 and AIZ—T. If A= , we have A;=0 and

hence, by (7.3), A,;=A,=---=A,=0. This implies A=p. Also, by the
definition of ET, #7(p) is clearly the one-dimensional trivial representation of
G. Hence the assertion (1) follows.

The assertion (2) follows immediately by (3) of Theorem 4 in [1].

In the case of j=m, =5(A) s infinitesimally unitary if and only if &,,_,+1>0.
This inequality is always satisfied. Thus the assertion (3) is proved. The
proof is completed.

Now, if 7 is an irreducible infinitesimally unitary representation of G, =
is infinitesimally equivalent to a unique irreducible unitary representation of
G, up to unitarily equivalence. Hence 7 determines a class in G. When A
satisfies the condition that A;,,=---=A,,=0, denote by Uj(A)Eé the class
which is determined by z}(A). Also denote by Ux(A) the class which is
determined by z5(A).

By Theorem 5 in [14], Uz(A) is a discrete class. Note that, by Theorem 6
in [14], U;(A) (1=j<m—1) is not a discrete class. In effect, we have the
following corollary and complete Step 1 for AE%s.

Corollary 7.4.2. Let AEF;. The subset Gy—G, of G is given as follows;

(1). If &, +0, we have Gy,—G,=¢.
) (2). If Ajyy=+=A,=0 and K; +0 for some 1<j=m—1, we have
Gr—G={U(A), Ujss(A), =+, Upi(A)}.

(3). If Ky=R,=++=A,=0 ie. A=p, we have Gy—Gy= {1, Uy(A),
UyA), -+, U,_(A)}, where 1 is the class of the trivial representation of G.

REMARK 7,4.3. In fact, we have U5(A)=D,EG, and Un(A)=D, ,€G,.
This is shown by comparing K-spectra of these representations.

7.5. We shall go forward Step 2. As before, let A be in Fi. Our
purpose is to compute dim Homg(7y_,, ® L*, U(A)) (1=j<m—1) and
dim Homg (7, QL*, 1;).

Let j be an integer such that 1<j<m—1. When A satisfies that A;,,=
Ajip=--=A,=0, a representation in the class U,(A) has the same K-spectrum
as zj(A). Hence we shall examine dim Homg(7,_,,®L*, =j(A)|g) and
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dim Homg(, ®L*, 1¢|x). Recall that the K-spectrum of 7}(A) is given by
(7.9) @z (A)) = @]

Yi—ANEZ (1=i=m)

= TYEK N2AMH127,27+1=2 -2y i=A+1

AjnZVinZ A2 2V 1 Z R0 Z |Vl
Also the K-spectrum of 1; is given by ®(1;)= {14}, where 14 is the trivial
representation of K. Thus it is sufficient to compute the multiplicities of
TE®(77(A)) in 75_,QL* and the multiplicity of 1 in 7, QL*.

In order to use Proposition 6.1.2, we shall prepare the following lemma.

Put L=L*®L".

Lemma 7.5.1. Let B and v be in Fi.

(1). Let s&eWs. If B-+py—s(Y+ps) is a weight of L, s is the identity.

(2). The multiplicity of Tg in ™yQL is equal to M, (B—7), where M(\)
(nEb3) is the multiplicity of the weight N in L.

Proof. Note that, by Lemma 6.2.1, the set of weights of L* (resp. L~) is
given by

& =1or —1 (1=i=m)

1 m
(7.10) {—2 éie: ﬁ & = +1 (resp. —1)

and the multiplicity of each weight is equal to 1. If B+p,—s(v+p,) is a
weight of L, we have

:3+Pk—$(’)’+Pk) = % g Ee;

where ;=1 or —1 for 1<i<m. Assume that s is not the identity. Then there
is an element « of Aj such that s™'(a)e—Aj. Since B8+p, and y+p, are
dominant regular integral forms with respect to Aj, we have

2<:8+Pk—'3('7+Pk)) o) _ 2<18+Pk> o 2<’Y+P/¢r —s" (a)>>2
{a, o La, o la, a»

On the other hand, if we set a=e;+-¢; for some 1=i<j<m, we have

2<—Z Ee;, a> _& :}:8
La, ap
This is the contradiction. Thus the assertion (1) is proved. The assertion (2)
follows immediately from Proposition 6.1.2 and the assertion (1). The lemma
is proved.

J<1
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The following proposition completes Step 2 for AEF;.

Proposition 7.5.2.

(1). Let j be an integer such that 1<j<m—1. Then we have
if m—j is even ,
if m—j is odd ,
if m—j is even ,
if m—j is odd .

1
dlm HomK(TA—-pk®L+s ”;(A) iK) = { O

0
dlm HomK('TA—pk@L-; ”;(A)IK) = { 1
(2). We have

. N 1 if m is even ,
dim Homy(r,, L7, 1s]x) = 0 if mis odd

. ) 0 if m is even ,
dim Homg(7, ®L", 1¢|x) = 1 if m is odd

Proof. Let K. Assume that & ®(7;(A)) and the multiplicity of 7y
in 7,_,, QL is not equal to 0. By (2) of Lemma 7.5.1, we have M (v—A+-p,)

#0. Hence, by (7.10), we have ')/—A—I—p,,:%é&e; for some {&, :*-, &,}

such that §=1or —1 (1=/<m); i.e.
-3
Vi=N—m—+1 —f—?
- x4 (1<i<m).
On the other hand, {v,, :**, 7,,} satisfy the inequalities (7.9). Therefore we have
necessarily
§=6&==¢&=1 and &, =& ,==¢§,=—1,
and hence we have
i "o
(7.11) Y= ‘?“1 (Ai+1)e;+ ~=,Z“ Ase;.
Conversely, if & is given by (7.11), then we have clearly that 7y&®(z}(A))
and 'Y—A—}—pk:%(el—{—---—l—ej—ejﬂ—---—e,,,). Then, by (2) of Lemma 7.5.1,

the multiplicity of 7y in 74,,,QL is equal to 1. Whether 7y occurs in 7,_, QL*
or T5_p,®L" is determined by the sign of (—1)"7. Since each 7y& ®(z}(A))
occurs with multiplicity 1 in z(A)|, the assertion (1) is proved.

Next, the highest weight of 14 is 0. Since —p, is a weight of L, by (2) of
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Lemma 7.5.1, the multiplicity of 15 in 7, @L is equal to 1. Whether 1, occurs
in 7, QL* or 7, QL™ depends on the sign of (—1)". The assertion (2) im-
mediately follows. The proof is completed.

7.6. Now, we have completed Step 1 and Step 2. From the basic for-
mula in Theorem 3.1.1, we shall obtain the main theorem in the case of G=
Spin(1, 2m) (m=2).

Let T" be a torsion free discrete subgroup of G such that I'\G is compact.
Then we have the following theorem.

Theorem 7.6.1. Let A be in Fi and set A—-p=ﬁ Ae;. Then we have
the following formulas about the multiplicities N(Dy) and Ni(D; 4);

(I)- NI‘(DA):NI‘(DsoA)-

Irn. @). IfA,=+0,

N(D,) = d(D,) vol(T\G) .
(2). If Aj,=++=A,=0and A; =0 for some 1< j<m—1,

N(Dy) = d(Dy) vol(T\G)+Np(U,,((A))—Np(U,y_o( A)) -+
e H(— 1P INUA)
3). If A;=A,=--=AK,=0,1e A=p,
Ne(Dy) = d(Dy) vol(T\G)+ Ne(U-(0)—~ N Un_s )+ -
(= 1)"Nr(Uy(p)+(—1)"*.
Proof. The assertion (II) follows directly from Theorem 3.1.1, Corollary
7.4.2 and Proposition 7.5.2.
We shall prove the assertion (I). To begin with, note that the positive
root system of A with respect to which s,A is dominant is given by s,A* and
we have s,ATNA,=Aj. Compare the multiplicity formula (3.1) for D, with

that for D, ,. From the formula (1.1), we have d(D,)=d(D;,). Since Gr=
GAS0 », it is sufficient to prove that

dim Homg(7,-,,QL*, U) = dim Homg(7s-,,QL*, U)

for UeG,—G,, where L* in the right hand side is appointed with respect to
the positive root system s,A*.

Since s,A"NA,=s,Ax, the set of weights of L* associated with s,A* is
given by

(K@ —spal QC AL, (1719 = L1} .

Let v be in §f. Then 5,7 is also in §i. For se Wyand QCA;, v+p,—sA=
{Q>—p, if and only if 57+ pr— (56555 )(SoA)=5,KQ>—$op,. Also the mapping;
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WeEs—ssso' €W is a bijection of W, onto W and we have &(s)=&(s,5s5).
Hence, from Proposition 6.1.2, the multiplicity of 7y in 7,_, ® L* is equal to the
multiplicity of 7,y in 7, 5_,,®L*. On the other hand, from (7.6), 7y belongs
to the K-spectrum of z(A) (1=;j=m—1) if and only if 7,y belongs to it.
Also we have clearly that Ty=14 if and only if 7,y=14. After all, we obtain
the following equalities;

dim Homy(7,_,, ®L*, 77 (A)) = dim Homg(7sa-,,QL*, 7j(A)) (1Sj=m—1),
dim Homg(7,-,,®@L*, 15) = dim Homg(, s, QL*, 1¢) .

Hence the assertion (I) follows. Thus the theorem is proved.

REMARK 7.7.2.

(1). In the above theorem, the condition on A in (1) of (II) agree with
the condition (i) of Theorem in the introduction of [6] (c.f. [6], p. 176).

(2). Inthe case that m=2, the above theorem gives the formula in Theorem
4.5 of [11] (c.f. [11], p. 306).

(3). The set of classes {15, Ui(p), Ux(p), ***, Un-1(p), Dy, D,} corresponds
with TING)={Jo J1 ***s Jm-1» Dy, D3} in [1], Chapter VI, § 4, 4.5. To be more
precise, Uj(p) (1=j=m—1) corresponds with J; and 1; with J,. Also, these
classes contribute to Mutsushima’s formula about Betti numbers of the manifold
T'\G/K (c.f. [15], p. 174).

8. The case of G=SU(1, n)

In this section, we shall pursue the same argument as in § 7 in the case of
G=SU(1, n) (n=2). It is more complicated than that in § 7, but the methods
are the same. We will depend largely on the classification of all irreducible
unitary representations of SU(1, #) obtained by Kraljevic (c.f. [7]).

8.1. Letn be an integer such that z=2. Let G be the group SU(1, n) and
K the group U(n) imbedded in SU(1, n) as follows;

b 0

K= )XEU(n), b=detX|.

0 [ x
Then the Lie algebras ¥, and p, are given by

bl 0
t,— 0’ 5 ||Xsum, b= —uxt,
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0]

b= 1Pu) =| ., usC”

0

Take a Cartan subalgebra Y, as follows;

hy 0
b= {H(ho: e, b)) = ( )
0 &,

The semisimple part §,=[t, f] of { is isomorphic to 8l(n, C). If we set

‘n 0
C,,= C( _1.. CEC ’

hev—IR, 31h =0},

o -1
¢, is the center of ¥ and we have
E=c®l, h=cdh
where 9, is the Cartan subalgebra of ¥, which is given by
6, = {H(h, -, h,) 5| hy=0} .
Define a linear form e; (0=¢=<n) on §) by
e(H(hy, b)) =h; .

Then % is the hyperplane of the (z4-1)-dimensional real vector space ¥ spanned
by {e ***, €,} which is given by

bz = {g WAPFISY (A gxi =0} .

Also H* and ¥ are given as follows;
h* = {Z_OMeilMEC: 2107\:' = 0}
b¥ = {go Nie; €% [N = 0} .

The inner product in b is given by

1,
2(n+1)

Take a lexicographic ordering in V relative to the basis {e, -, ¢,}. This
ordering in V¥ induces an ordering in h%. Fix this ordering in §%. Then the
following facts are easily seen;

<€,- ) ej> =

(0<i,j<n).
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A= {;—e;|0=4, j<n, i}
At = {e,—e;|0=<i<j=n}

Ay = {ei—e;|1=i<j=<n}

Ay = {e—e|1=i<n}

p = %‘:o (n—24)e;
o= L3V (n—2i 4 1)e;
k 2 T i
o= L o310

2 =

F= = Dnechiin-—EZ (0=, j<n)

Bo= EFIN—N; 0 (0=4, j<m, i=j)}
BE = AET NS> >N >N}
i = ehiIvi—NEZ (1=i,j=n), MZN2 20} .

Note that, if A= \e; €S, we have
=0

(m+1)NEZ;5 L. X;E—I—Z 0=i=n).
n+1

Now we need the Weyl group Wand W,. Let&,,, be the group of permu-
tations of the set {0, 1,2, :--,n}. For ¢=@&,,,, define an orthogonal trans-
formation s, of H} by

So(€:) = s 0=i=n).
Then W and W are given as follows;

W= {S,lO'E@,,.l.l}
WG = {S,IO’E@,,_H N 0(0) = 0} .

In the following, we shall always identify s, with . Then we have

W= {l =gy, o1, =+, 04},
where o, (0=</=n) is the permutation (0,1, ---,/). Therefore, there is the
bijection between G, and I[Z_Joa-,%a‘ .

Next, we take a maximal abelian subalgebra a, of p, as follows;
a, = {P(, ---,0, a)|a= R} .
Then M and m, are given by
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b 0 |0
M=i0| Y |0]||YeUn-1), beC, detY =0
0 0 [b
b 0 |0
m=140| Y |0]| Yeurn—1,C), bevV—IR, 2b=—trY
0] 0 |5

= 8u(n—1, C)OR.

The semisimple part m;=[m, m] of m is isomorphic to 8l(n—1, C). If we put

1 n—1
- H(” , —1, e, —1,2—2
o = {” 2 2 )

¢, is the center of m and we have m=c,+m,. Take a maximal abelian
abelian subalgebra 1, of m, as follows;

ty= {H(, by, -+, by, )by bEV—1R, S hi+2b =0} .

CEC},

Then we have t=c,,+1,, where 1, is a Cartan subalgebra of m, defined by
ty = {H(O, by, -+, by, 0)|iEC, S by =0} .

Two Cartan subalgebras § and §)’=a+-t are identified by the following
isomorphism 6;

e(P(O) °tty Oy a)+H(b: hl; °y hn—l’ b)) = H(b+a) hl; "')hn—~1) b—a) .
Also, by 6, our ordering in h} corresponds to a compatible ordering of (§z)*
and induces an ordering in t§. In this way, we always identify (§')* and §*.
Regarding t*, t¥ and a* as subsets of h*, we have
= {p =2 pie: €5 [y = .}
tf = {pEt*|po = p, = 0}

a* = { e"z vEC}

We shall identify »- 2 % ca* with the complex number » and hence identify
a* with C.
As for the Lie algebra m, we have
A, = {e,—e;| 150, j<n—1, i+j}
Ay = {e;i—e;| 15i<j=<n—1}
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pu =1 S (120,

=l Wi— B EZ (0§i,j§n)}
ﬂ12ﬂ22 = Pyt )

(8.1) B = { = E i€ Ef)n

8.2. Following Kraljevic [7], we shall introduce some notations. Let r
be a positive integer. We define the subset R% of R" by

pi—piEZ (1=, ]<r)}
Plgl’z >Pr

R. = {P = (Pl’ ""Pr)ER'

For P=(Pl» "')Pr)ER; and q:(ql’ ) qr+l)€R'>+1’ we write p<q lfp and q
satisfy that
—pEZ 1=i=<
8.2) {q P (I=i=r)
QPGP 24,2 P, 2G4 -

Also, for p, g€ R%, we write (py, **-, p,) <(°°, g1, ***, ;) (resp.(py, **+, p,) <
(QU 4y _°°)) if (Pl) . ':Pr)<(?1’ Qs **°y qr) (resp‘. (Pl) ) Pr)<(ql» s Gy Pr))

Let 'Y=2 v:e;€0%. Then v belongs to FNF¥ if and only if {y,, -+, v,}
i=0
satisfy the conditions

1

'y,ETI—Z (1=i=n)
vi—V,EZ (1=4,j<n)
NV = 2V

If we put

. L <1<
P'En—i-lz (1=z=n)},

(n_}ﬁz > - {peR;
1

the mapping; FNFisv— (71 +, ’Y,,)E(—_'_I >> is a bijection. Thus we
n
shall always identify an element v of U F7 with an element y=(v,, +--, ¥,) of

—li ) . Similarly, p:i} ne; EFNBn can be identified with an element
n > i=0

p=(t1, ***, tay) Of (HI?Z):—I. Hence K is isomorphic to the set (’ﬁZ):
A n—1
and M is isomorphic to the set (1 ) (.£. [7], p. 35).
n+1 />

8.3. Now, we shall start off with Step 1. Once and for all, take a special
element A=i}' Ae; €8¢ and fix. Then we have
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rnet z o (0siza)
83) n+1
ASA > >A,.
Lemma 8.3.1. Let h and k be integers such that 0<h<k<n. Define
ik €S, by
. 0,1, -, h—1, b, h+1, -+, k—1, k, k+1, -, n
ik = (1’ 2, -, h, 0,h+1,- k—1,n &, ...’n——l)
] 0,1, e, b1, b, ht-1, oo, k=1, &, k-1, oo, m
Ok = (1’ 2,y b, m B+l B—1,0, E, -, n—l)

Then, an element o €W satisfies that oA |,— p,, E&x if and only if o is either oil s
or ai.x for some 0=h<k=n.

Proof. For c€8,,,, we have

.

O-A It—pm = 2 (Au"l(i) —nEZZ)ei—I_b(eo—l_en)

where bR is given by 2b—|—z”le,,—1(,-)=O. Assume that oA |;—p, belongs to
Tn. From (8.1), we have

Ac‘l(i)—n—ZZigAa‘l(iﬂ)_t—Zg——i—D (1§i§n—2) ’

and hence we have
Apip—As-15p21 (1Sisn—2).
Since A satisfies (8.3), it follows that
o (<o (2)< <7 (n—1).
Therefore, if we put A=the minimum of {¢7}(0), o™'(n)} and k=the maximum

of {a7%(0), o 7!(n)}, o is necessarily either o s or i s. The lemma is proved.

Let & and & be integers such that 0<h<k=<n. We denote by &, the
element of M with highest weight oisAl,—p, and put vi,=aislly; ie.
the highest weight of &, , is given by

—2 _4 —2h
(84) I“"(Eh,k) = (AO " 2 ) A~1'_n 2 ) **%y Ah—l_n 2 ’
_ —2(k—1
WS COpWNE ()

_ 2
Ak+l_n 22k’"'1An'_ 2+ )'
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and we have

Vik = F(A—Ay).

In the above formulas, if =0, (8.4) means

w(op) = (Al—n—;—z, AT L, k=)

2 2
Ak+1_n_22k) '"’A"__ﬁ;_z) ’
and if k=n, (8.4) means
plen) = (A2 A a1
Ah+1—n;2(2£+—1), e, A”_l___”;‘z) .

Throughout this section, the case of A=0 or k=n should be suitably appreciated,

even if it is not specially offered. Moreover, for convenience’ sake, define
KO) ) Kn by
A—‘p = 2 K,'eg .
im0

Then we have

and we can write

(8‘5) ”‘(Ell,k) = (Ko‘i‘l, *t%y I\h—l+l) Kh—i-l) °* Kk—b I\k+l_1) R Kﬂ)

Now consider the representations 7, = (0=h<k=n) in the nonunitary
principal series. From Proposition 5.2.2, an irreducible unitary representation
7 such that X,=X, is infinitesimally equivalent to an irreducible subquotient
of me &, Or e, i, fOX SOME 0=h<k=n.

8.4. Using results of [7], we shall determine all irreducible subquotients
of me, .z, (0=h<k=mn), up to infinitesimally equivalence.

Let % and % be integers such that 0<A<k=<n. By Proposition 6.1 in [7]
and (8.5), the K-spectrum of 7, = is given by

B, 1) = R(Ens)
= {TVEKI (‘Yb "ty ')’")>(.[_X0+1, °t%y Kh—1+1’
Kh+l) %y Kk—l’ KIe+1_17 *tty Zin'—l)}
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where we use the notation > in the sence of (8.2).
We shall apply Theorem 7.5 and Theorem 8.7 in [7] to our representation

e, mviy Following Kraljevic, put

5§(8) = 20 An—2+ 5w (1Sj=n—1)

for £ M, where w(E)=((E)y *+*, 1(E)1) EBnNT is the highest weight of &
(c.f. [7], p. 48). In the case of £=E,,, we have
M, —A—hA,  (1=j<h)
$;(Enp) = {2A,—Ay—A, (r+1=j<k—-1)
2Aj+1_Ah_Ak (kéjén—‘l) .

Since vy =4 (A,—A,), it follows that

S;Enp)—vinE2Z (I=j=n—-1)

sh(&h,k)>1’;.k >5h+1(‘§h,k)

Spo1(En ) >vier = —via>su(Ens) -
Hence, if h+1=Fk (resp. h+1<k), &, €M and vi,€C satisfy the condition
of the case (c) (resp. (d)) in Theorem 7.5 in [7]. By Theorem 7.5 and Theorem

8.7 in [7], K-spectra of all irreducible subquotients of z, , = are given as

follows;
(1). If h+1=k, there can occur only the following three K-spectra;

(V1 %5 Vi) <(o°, Bot1, +or, Ay+1) }
(Thezs =0 V) <(Bpiz—1, =+, A, —1, —0)
(V1 + Y)<(o0, Ag+-1, -+, Ayy+1)
Dy(Enpir) = TVEK (Vas1) <Ay Assr)

(Vhes -+ V) <(Bpyo—1, o+, A,—1, —00)
(71 =0 Y)<(o0, Bgt-1, +o, Ay +1) }
(Vhs s V) <(Bpsa—1, +++, A,—1, —0)

D (&) = {TVEK

D_(p 1) = {TVEK

(2). If h+1<k, there can occur only the following four K-spectra;

(V1 % Vi) <(o°, Agt1, ooy Ry4-1)

D (Ei) = {1EK | (Vase 5 T <Ep, =, Ka)

(Vitn = Vo) <(Bpra—1, =, Ay—1, —o0)
J (')’1’ ) 'Yh+1)<(°°: Ko’{‘l, R Kh+1)

D, _(Enp) = TvEK Virz o> Vi-1) <(Bpany *=5 Kgy)

(Vs =+ T <(B4—1, >+, A,—1, — )
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(')’1) ey fyh)<(oo, Ko_]_.l’ ey Kh—1+1)
q’—+(fh,k) = Tvek (Yasrs === YR)<(Bpy ==, Ap)

(Vi1 0 V) <(Bpy—1, =, A,— 1, —o0)
(V15 =05 Vi)<(o0, By 1, ooy Ayy+1)
D__(E14) = \T1ER | (Vassy ) Vo) <Ry -+, Kyoy)

(Vo 5 V) <(B—1, -, A,—1, —o0)

On the other hand, by Theorem 9.2 in [7], two irreducible subquotients of
representations {”E;.,k,ﬁ,k|0§h<k§"} are infinitesimally equivalent to each
other if and only if they have the same K-spectrum. By (1) and (2Z) above,
among K-spectra of all irreducible subquotients of {= Eanvis [0<h<k=n}, there

are (ﬁil)z(n—-i-Z) kinds of K-spectra which are different from one another.

They are given as follows;

(8.6) @A) = {Tyef{) (V1s =+, Y)<(o0, Rg+1, ++, A;y+1) }

(Vi1 5 V) <(BApa—1, =, A, —1, — )
('71, ) 'yp)<(°°a Ko+1: ) Kp-l—{_l)

87) @, (A) = EK|(Vpur - V) <Ry, -+, Ky)

('Vq+1’ ey ryn)<(Kq+1_ly ey A1, _°°)

where /runs over {0, 1, -+, n} and (p, ¢) runs over the set {(p, q)|0=p<g=n}.

Denote by 7(A) the irreducible subquotient with K-spectrum ®,(A) and
denote by =, ,(A) the one with K-spectrum @, (A). After all we have the
following proposition.

Proposition 8.4.1. Up to infinitesimal equivalence, all irreducible sub-
quotients of the nonunitary principal series whose infinitesimal characters are equal
to X, are given as follows;

{m(h) (0=ISn), m(8) (0<p<q<n)}.
Moreover these representations are mot infinitesimally equivalent to one another.

8.5. We shall examine which subquotients in Proposition 8.4.1 are in-
finitesimally unitary. Using Proposition 11.4 in [7], we have the following
proposition.

Proposition 8.5.1.

(1). For 0=<I=m, =,(A) is always infinitesimally unitary.

(2). For 0=p<q=mn, =, (A) is infinitesimally unitary if and only if A;—
Ap=1forall p<i=<q—1.
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Proof. By easy computations, we can prove that ®,(A) satisfies the
inequalities (6) in (ii) of Proposition 11.4 in [7]. As for =, ,(A), the condition
in (iii) of Proposition 11.4 in [7] is clearly equivalent to our condition.

Now, let G be the universal covering group of G. Canonically, we can
regard =, (A) as a representation of G. Since 7, (A) is infinitesimally unitary,
there exists an irreducible unitary representation 7, (A) of G which is infini-
tesimally equivalent to z,(A). Then z,(A)V turns out to be a representation of
G (c.f. Remark 8.5.2). Denote by U(A)EG the class which contains z,(A).
Similarly, when 7, ,(A) is infinitesimally unitary, denote by UM(A)EG the class
which is determined by =, ,(A) in the same way.

RemARk 8.5.2. Let 4r; G— G be the covering epimorphism and put K=
v (K). Let (2!, E') and (2% E?) be K-finite representations of G. Assume
that z' is infinitesimally equivalent to z®. Then #' is a representation of G
if and only if #* is so. In fact, z'|% is equivalent to #?|% as representations
of K on the spaces E} and EZ, respectively. Also the kernel of 4~ is contained
in K. Hence, for an element % of the kernel of ), z'(k) is the identity operator
of E' if and only if #%(k) is the identity operator of E?

Proposition 8.5.3. For 0=I=mn, U,(A) is a discrete class. More precisely,
we have U(A)=D, EG,.

Proof. It is sufficient to prove that the K-spectrum ®,(A) of U,(A) is
the same as the K-spectrum of D, . To begin with, we shall show that the
K-spectrum of D, 4 contains @(A).

In order to apply Theorem 1.4.1 to D,,4, take an’ ordering in h% with respect
to which oA is dominant; i.e. take o/(A*) as the positive root system of A.
Then the set of noncompact positive roots is given by

(8.8) {o—e (ISISD), e (H1=j<n)}
and we have

n—21
2

Let 7\=o§j_] ne; be in HE. In our case, @(\) in Theorem 1.4.1 is equal to
either 1 01: 0 and @(\)=1 if and only if

nEZ  (0=5i<n)

A0 if1<iand <!

=0 ifl4+1<iandi=n.

P = eo‘l‘—;‘(erf“‘“‘l‘et_elﬂ—“"‘en) .

Let 7y be in ®,(A). From (8.6), '7=i])%e,~ satisfies the following
inequalities; ”
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Aie—1zy A" 2zA,  if1siandis],

(8.9)

A—1 g«y,.+”'2‘2"gA,.+l if I+-1<iand i<n

where A_; should be considered o and A,,, should be considered —co. Let
o be an element of W;. Since ¢(0)=0, we have

(810) o(r-+p)—oih—p, = ( ve=A—"=H)e

(o, 1y 1 2076 s m=27E) 1),
+§(7°' N Ai—1>3i‘|‘i§.a:1<%- Wt A,+1)e,.

If there is an integer 7 such that 1<7, i</ and i<<o7'(¢), we have A;_,=A,-1;)_,
and hence, from (8.9), we have

1y
'Ya-‘(i)+’1_—zgh(l)-/\i—1§/\a“(i)—z“I_Ai—1<0 .

Also, if there is an integer ¢ such that [+1=17, i<z and {>¢7'(¢), we have A;=<
As-1)4; and hence, from (8.9), we have

1y
'Y«r‘l(i)‘l"n—_hzg&—l\i—i“l =As-1y—N+1>0.

Therefore, in these two cases, we have

O(c(v+p)—aih—p) = 0.

If otherwise, o satisfies the condition that

c')=i ifl<iandi=l!,
o i(1)=1 ifl+1=<iand i<n.

Hence o must be the identity. If we put o ({)=¢ (1=/=n) in (8.10), we
have clearly

O((v+pe)—aiA—p,) = 1.

After all, by Theorem 1.4.1, the multiplicity of 7y in a representation in the
class D, 4 is equal to 1. Therefore ®,(A) is contained in the K-spectrum of
D, .

I Now, by Proposition 5.2.2, the K-spectrum of D, , is one of {®,(A)
(0=I'=n), @, (A) (0=p<g=n)}. Each @, (A) does not contain ®,(A) and,
if I'=l, ®y(A) does not also contain ®,(A). Hence, ®,(A) is necessarily the
K-spectrum of D, ». The proposition is proved.
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From Proposition 8.4.1, 8.5.1 and 8.5.3, we obtain the following corollary
and complete Step 1 for A=F;.

Corollary 8.5.4. For A=, the set Gy—G, is given as follows;
1), If Ai—Ai =2 for all 0<i<n—1, we have éA—éd=¢.
(2). If Ai—Ai=1 for some 0<i<n—1, put

Pa = the mimimum of {{|0=<i<n—1, A\,—A;;, = 1}
qa = the maximum of {i|1=i<nmn, A;_,—A; =1}.

The we have G,—G,= {U, (M) pa=p<q=q,}.
(3). In particular, if A=p, we have Gr—Gy= {U, ((p) 0= p<q=n} where
U, «(p) is the class 1.

8.6. Let us go forward Step 2. Once and for all, we fix AP and an
integer / such that 0</<n. We shall study Step 2 for o;,AEF,. Our purpose
is to compute

dim Homg(7,,7_,, &L, 7, (A)| )

forall 0= p<q=n.
Take an ordering in b as in the proof of Proposition 8.5.3 and fix. From
(8.8) and Lemma 6.2.1, the set of weights of L* (1esp. L™) is given by

&=1or —1 (1=i=n)

[
(8.11) ?Z_.:&(é’o~ei) <,=ﬁl &) (—1) = +1 (resp. —1)

and the multiplicity of each weight is equal to 1.
The following lemma is proved by the same arguments as in Lemma 7.5.1.

Lemma 8.6.1. Let B and v be in Fi.

(1). Let cEWs. If B+ pr—o(Y-+ps) is a weight of L, o is the identity.

(2). The multiplicity of 7 in TyQL is equal to M (B—7), where M (\)
(n€b%) is the multiplicity of the weight N in L.

Using this lemma, we can obtain the following proposition and complete
Step 2 for oA (0=1=n).

Proposition 8.6.2. Let , p and q be integers such that 0=<1<n abd 0= p<
qg=mn.
(1. Ifp=I=q, we have

1 if p+q is even ,
. + A_ =
dim HomK(Ta-[A_pk®L ’ ”p,q( )lK) {0 ,fp+q is odd ,
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) _ 0 if p+qis even,
dim Homy(7o,n-n®L”, m,(A) ) = { 1 if p+q is odd

(2). Ifl<p or g<l, we have
dim HomK(Ta,A-pk®Li: np,q(A.) | K) - O .

Proof. Let my&K. Assume that TyED, (A) and the multiplicity of 7y
in 7,,5-,,QL is not equal to 0. By (2) of Lemma 8.6.1, we have M (v—o A+
pi) £0. Hence, by (8.11), we have

Y—olApp = % E 8:‘(30'“3:‘)

for some {&, -+, §,} such that &=1or —1 (1=i<n); i.e.

1—¢
2
—1—¢

v = A+ if 1<iand <!,

(8.12)

v = A+ ifl+1<iand i<n.

On the other hand, {7, -+, v,} satisfy the condition (8.7). Hence we have
Ai+1=zv,=R;_,+1 ifl<iandi<p

(8.13) A =7, =4, if p+1=<iand i<q
A—1=zv,=2A;,,—1 ifg+l1<iand i=n.

If p>1, there is an integer 7, such that [4+-1=7¢,<p. Then, by (8.12) and
(8.13), we have

_ —1—g,

Ryt 22Kt

and hence we have A; <A;_,+1. This is inconsistent with the fact that
A;,=A;-,. Therefore we have p<I. Similarly, if g</, we have a contradic-
tion. Hence we have also ¢g=I. Thus the assertion (2) is proved.

Now, assume that p</=<gq. By (8.12) and (8.13), we have the following

inqualities;

K,._2+1gx,-_1+1‘2525.._1+1 if1<iand i<p,

A,._lgz,._,#:zigz,. if p1<iand i</,
4 x,_,;AiJr‘lZ—‘ngz,. if I+1<iandi<q,

A—12K+=1=6>8, 1 ifg+i1<iandi<n.
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These inequalities imply that

&=—1 ifl<iandi<p,

(8.14) =1 if p+1=<iandi=<l,
& =—1 if l+1<i/andi<q,
&=1 ifg+1<iandi<n.

After all, by (8.12), we have
(815) Y= (Ko‘i“ly Kl‘l‘ly H) Kp—l"l"l’ R Kp; °tty Z_\1—1» KHD b
AP [\qs Kq-l-l—l’ °*% Kn_l)
8.16)  II&=(—1y*t,
i=1

Conversely, if 7 is given by (8.15), it is clear that Ty&®, ,(A) and we have
Y—olA+pr= ‘;* g Ei(e—e:)
where {§, -+, &,} are given by (8.14). Then, by (2) of Lemma 8.6.1, the
multiplicity of 7y in 7,,5_,,@L is equal to 1. Whether 7y occurs in Ton-p QLT
or T,,5-p,@L" is determined by the sign of (f[ Ei)-(—l)’. By (8.16) we have
n i=1
(H 8,-)~(—1)’=(—1)1’+". Since 7y occurs in 7, (A) with multiplicity 1, the
i=1
assertion (2) follows. The proposition is proved.

8.7. Now, we have completed Step 1 and Step 2. From the basic formula
in Theorem 3.1.1, we shall obtain the main theorem in the case of G=SU(1, n)
(n=2).

Let T be a torsion free discrete subgroup of G such that I'\G is compact.
Then we have the following theorem.

Theorem 8.7.1. Let A be in F¢ and set A-:i0 Ae;. Let | be an integer

such that 0=<1=<n. Then we have the following formulas for the multiplicity
Ni(Dq,s)-
1). If A—Ap=2 and Ay, — N =2, we have

N(Dy,s) = d(Dy,s)-vol (T\G).
(2). If el‘ther Al—A1+1=1 or A[_I_Alzl, Put
Pa = the minimum of {i |0=<i<n—1, A;(—A;y, = 1}
qa = the maximum of {i |1<i<n, A;.,—A; =1},

and define
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Jia=A(p, VEZXZ|pr=p=I, 1=q=q,, p*q} .

Then we have
Ne(Dyp) = d(Dy ) vol (MG)+ 3T (—11"Ne(U ().
’ LA
(3). In particular, if A;— A, =1 for all 0=Zi<n—1, that is, A=p, we have

Nl(Dy) = d(Ds ) vl (\G)+ 3} (=1 *N(U,,.(p))
LA

where Ny(Us (p))=Ni(1)=1.

Proof. All assertions immediately follow from Theorem 3.1,1, Corollary
8.5.4 and Proposition 8.6.2.

ReEMARK 8.7.2.

(1). In the above theorem, the condition on A in (1) agree with the con-
dition (i) of Theorem in the introduction of [6] (c.f. [6], p. 176).

(2). In the case that =2, our theorem gives some formulas in [15] (c.f.
[15], p. 192).

(3). In the same way as the case of G=Spin(1, 2m), the set of classes
{U, (p) (0= p<q=n), D,,» (0=I=m)} corresponds with II"(G)={J;;|%, j=0,
i+j=n—1} U {D,, Dy, ---, D,} in :[1], Chapter VI, §4, 4.8; that is, U, ,(p)
corresponds with J,, , and D,, with D,. Also, these classes contribute to
Matsushima’s formula about Betti numbers of the manifold T\G/K (c.f. [15],
p. 175, p. 191).
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