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Introduction. Let G be a connected semisimple Lie group with finite
center. Let Γ be a discrete subgroup of G such that Γ\G is compact. Assume
that Γ has no elements with finite order other than the identity. Fix a Haar
measure dg on G. Then dg induces the G-invariant measure on T\G and we
can construct the right regular representation zrΓ of G on L2(Γ\G). If is well-
known that πΓ decomposes into the direct sum of irreducible unitary repre-
sentations with finite multiplicity, up to unitarily equivalence. Let G be the
set of all equivalence classes of irreducible unitary representations of G. For
U^:Oy denote by Nr(U) the multiplicity of U in πΓ.

Let Gddό be the discrete series of G. Assume that Gd is not empty. In
this paper, we shall consider the multiplicity NT(U) of every class U in Gd.
Langlands [8] showed that, if U ^Gd is integrable, we have the generic formula

NΓ(U) = d(U)vol(Γ\G)

where d(U) is the formal degree of U and vol(Γ\G) is the volume of Γ\G. On
the other hand, it has been known that there are examples of non-integrable
classes in όd for which the above Langlands' formula breaks down. Also
Hotta-Parthasarathy [6] obtained a sufficient condition for U to satisfy Langlands'
formula.

Now, in [3], DeGeorge-Wallach proved a certain formula about NT(U)
(U^Gd) which seems to explain the reason why Langlands' formula breaks
down for non-generic classes (c.f. Theorem 3.1.1). In fact, the formula of
DeGeorge-Wallach shows that, in the case of non-generic classes, there can
appear the terms of "trash" representations in the sense of Wallach [15].

The purpose of this paper is to apply the formula of DeGeorge-Wallach to
the special cases of G=Spin(l, 2m) (m^2) and G=SU(l, n) (n^2) and provide
the concrete formulas about NΓ(U) (U^Gd). The most part of our work is
devoted to finding all classes in G with given infinitesimal character. In [1],
Borel and Wallach make the same arguments for the special infinitesimal charac-
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ter. Their method depends on Langlands* classification of admissible represen-
tations of reductive groups. In this paper, we depend on detailed results by
Thieleker (c.f. [12], [13], [14]) and Kraljevic (c.f. [7]).

Main results are Theorem 7.6.1 and Theorem 8.7.1. It will be interesting
which classes in G appear as "trash" representations. Wallach [15] and Ragozin-
Warner [11] have obtained the similar formulas in the low dimensional cases.

1. The discrete series

In this section, we shall recall some known results about the discrete series
of semisimple Lie groups.

1.1. Let G be a connected ήoncompact semisimple Lie group with finite
center. Throughout this paper, we assume that G is a real form of a simply
connected complex semisimple Lie group. We fix a Haar measure dg on G, once
and for all.

Let G be the set of all equivalence classes of irreducible unitary represen-
tations of G. We call U^G a discrete class if a representation in the class U
is equivalent to a subrepresentation of the regular representation of G on L\G).
Let us denote by Gd the set of all discrete classes in ό. We call 6d the discrete
series of G.

Let K be a maximal compact subgroup of G. It is known that G has a
discrete class if and only if there exists a Cartan subgroup H of G which is con-
tained in K (c.f. [17], II, p. 401). Hereafter we always assume that G has
such a subgroup H.

1.2. Let 9o, ! 0 and ϊ)0 be the Lie algebras of G, K and H, respectively.
Let p0 be the orthogonal complement of f0 in g0 with respect to the Killing
form of g0. For any subalgebra u0 of g0, we shall denote by u the complexifica-
tion of Uo.

Now § is a Cartan subalgebra of Q which is contained in ϊ. Let §% be the
dual space of fyR=\/ — lί)0 and let £)* be the dual space of ίj. Let Δ be the root
system of (g, fy. For α ^ Δ , denote by g<* the corresponding root space. A root
a is called to be compact (resp. noncompact) if Qa is contained in I (resp. p).
Denote by Ak (resp. Δw) the set of all compact (resp. noncompact) roots. The
Killing form of g0 induces the inner product < , > on ί)J. Denote by § the
set of all integral linear forms on §#; i.e.

I

and define

An element λ e § 0 ^s called a regular integral form on
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Let W be the Weyl group of (g, §). Let WG be the Weyl group of (G, H);
i.e. the quotient group of the normalizer of H in G modulo H. The group W
and WG act on fy% and we can identify WG with the subgroup of W generated

by reflections with respect to compact roots.
When we choose an ordering in ϊjj, put

Δ + = { α e Δ | α > 0 } , Δ*+ = Δ + Π Δ 4 ) Δί = Δ

If an integral form λ belongs to %+> we say that λ is dominant with respect
to Δ+. Also define the subset W1 of W by

Then the mapping WGX W1^(su s2)->s1s2^W is a bijection.
Harish-Chandra showed that there is a distinguished surjection D\ %0->όd

(c.f. [17], II, p. 407). For Λ*Ξg0, denote by DA the image of Λ by D. Then,
for Λ, Λ ' ^ S Q , we have Z)Λ—Z)Λ/ if and only if there exists an element s G W^ such
that Λ' = ίΛ (c.f. [17], II, p. 407). Hence, if we choose a positive root system
Δ + of Δ, όd corresponds bijectively to the subset (J ίξjo" of § 0 .

1.3. Denote by K the set of all equivalence classes of irreducible K-
modules. Let π be a continuous representation of G on a Hubert space E.
For convenience' sake, we shall often denote by the pair (TΓ, E) the representa-
tion π on £". We say that π is K-finite if it satisfies the following two condi-
tions;

(1). The restriction π\κ of π to K is a unitary representation of JR\
(2). Each τ e / f occurs with finite multiplicity in π\κ.

Let (π, E) be a iC-finite representation of G. Let TGA". Denote by m(7r; T)
the multiplicity with which r occurs in n \κ. Let Φ(π) be the set of all τ^K
with m(π; τ)φθ, which is repeated as many times as its multiplicity m{π\ T).
We call Φ(τr) the K-spectrum of π.

When we choose a positive root system Δί of Aky each τ^K is charac-
terized by its highest weight. Put

*> and

For 7 ^ δ Π δ ί > denote by τ γ the irreducible i^-module with highest weight 7
and also denote by τ v the equivalence class of τ γ. Similarly, for 7 ^ S ί , we
denote by τ γ the irreducible ϊ-module with highest weight γ.
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1.4. Now every irreducible unitary representation π of G is .SΓ-finite
(c.f. [17], I, p. 318). In particular, if π belongs to a discrete class, the K-
spectrum of π is known under the assumption that G is a linear group. We
shall review it precisely.

Let Λ e § 0 and πA be a representation of G in the class Z)Λ. Choose a
positive root system Δ + with respect to which Λ is dominant. For λe l j j ,
let Q(\) be the number of distinct ways in which λ can be written as a sum
of positive noncompact roots. Then we have the following theorem.

Theorem 1.4.1 (Hecht-Schmid, [5]). Assume that G has a faithful finite
dimensional representation. Let 7 ^ S Π i 5 ί Then we have

m{πκ\ Ty) = Σ S(s)Q(s(y+pk)-A-pn),
SΪEWQ

where £(s) is the sign of s^WG.

1.5. Finally, we refer to formal degrees of the discrete series. Let (TΓ, E)
be an irreducible unitary representation of G. If π belongs to a discrete class,
there is a positive real number d(π) such that

where ( , ) is the inner product in E (c.f. [17], I, p. 351). We call d(π) the
formal degree of π.

For Λe§0> denote by d(DA) the formal degree of a representation in the
class DA^Gd. If we choose a positive root system Δ + as in 1.4., we have

(l l) a +

where c is the positive constant depending on the measure dg (c.f. [17], II, p. 407).

2. Infinitesimal characters

In this section, we shall review certain infinitesimal properties of if-finite
representations of G. Let G be as in § 1.

2.1. Let (zr, £ ) be a if-finite representation of G. An element M G £ is
called K-finite if π(K)u is contained in a finite dimensional subspace of E.
Denote by Ef the set of all if-finite elements of E. For u^Ef and Z e g 0 , we
can define

and πf(X)(u) belongs to Ef (c.f. [17], I, p. 326). In this way, we can induce
the representation πf of g0 on Ef. Denote by C/(g) the universal enveloping
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algebra of g. The representation πf of g0 is canonically extended to the
representation of C/(g). This representation of t/(g) is also denoted by πf and
is called the infinitesimal representation of π.

Let π1 and π2 be ^-finite representations of G. If π} is equivalent to π2

f

as representations of £/(g), we say that πι is infinitesimally equivalent to π2.
In particular, let π1 and π2 be irreducible unitary representations. Then
πι is unitarily equivalent to τ2 if and only if π1 is infinitesimally equivalent to
π2 (c.f. [17], I, p. 329).

Let (π> E) be a infinite representation of G. We say that π is infinitesi-
mally unitary if Ef has an inner product with respect to which πf(χ/^ΪX) is
a symmetric operator for each X eg 0 . If π: is unitary, TΓ is clearly infinitesi-
mally unitary. Conversely, if G is simply connected, an irreducible infinitesi-
mally unitary representation of G is infinitesimally equivalent to a unique ir-
reducible unitary representation of G, up to unitarily equivalence (c.f. [17],
I, p. 331).

2.2. Let Z(g) be the center of C/(g). A infinite representation (TΓ, E)
is said to be quasisimple if there exists a homomorphism X of Z(g) into C
such that πf(z)u=X(z)u for all ^ Z ( g ) and u<=Ef. Here % is called the
infinitesimal character of 7Γ. As it is well-known, an irreducible unitary re-
presentation of G is quasisimple (c.f. [17], I, p. 318). For C/eG, denote by
XΌ the infinitesimal character of a representation in the class U.

We shall state some preliminary facts about infinitesimal characters. Let
f) be a Cartan subalgebra of g in § 1 and £/(r)) the universal enveloping algebra
of ΐ). Since U(fy is the symmetric tensor algebra of ϊ), U(fy is naturally
identified with the algebra of complex-valued polynomial functions on §*.
Choose a positive root system Δ + of Δ and put n + = 2 9*. Then Z(g) is con-

tained in the direct sum £/(§) θ-f/(g)π+. Let 9? be the projection of Z(g)
into U(fy. For λG^*, define the homomorphism %λ; Z(g)->C by

Then it turns out that %λ does not depend on the choice of Δ + (c.f. [4], p. 231).
By a well-known result of Harish-Chandra, every homomorphism X\ Z(g)->C
is of the form Xλ for some λE§*. Moreover, for λ1? λ2^ί)*> we have Xλi=Xλz

if and only if \2=^i for some s^W (c.f. [4], p. 232). In particular, if λ G f
is a dominant regular integral form with respect to Δ+, Xλ is the central character
of the irreducible g-module with highest weight λ—p (c.f. [4], p. 230).

2.3. Now let §' be another Cartan subalgebra of g. For λ 'e(§')*, let
X'λry Z(g)-^C be the homomorphism constructed from λ7 in the same way as in
2.2. We shall study the relation between %λ and %(/. Let θ be an automor-
phism of g such that θ(fy)=fy and let θ*; §*-^(ί)')* be the linear isomorphism
induced by θ\ §'-+§.
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Lemma 2.3.1. If λGξ* is a regular integral form, then we have Xλ=X'θ*λ

as homomorphisms of Z(g) into C.

Proof. We take a positive root system Δ + with respect to which λ is
dominant. Let F λ_p be the irreducible g-module with highest weight λ—p.
Then Xλ is the central character of F"λ_p. On the other hand, if we take 0*(Δ+)
as a positive root system of (g, §'), the highest weight of F λ_p relative to #*(Δ+)
is 0* (λ—ρ)=θ*X—0*p<Ξ(ϊ)')*. Hence X'θ*λ is also the central character of
F λ_p. Thus the assertion follows.

3. Basic multiplicity formulas

In this section, we shall review multiplicity formulas obtained by DeGeorge
and Wallach, It plays a basic role in this paper.

3.1. Let G be as in § 1. Let Γ be a discrete subgroup of G such that
T\G is compact. In this paper, we always assume that Γ has no elements with
finite order other than the identity. We fix the G-invariant measure dg on
T\G induced by dg. For UeG, we denote by NΓ(U) the multiplicity with
which U occurs in the right regular representation of G on L2(Γ\G).

Now we take the Cartan subalgebra ϊj as in § 1. Consider a special linear
form Λ e § 0 and the discrete class DA^6d. Let XA be the homomorphism
of Z(Q) into C constructed from Λ as in 2.2. Denote by 6A the set of all

such that its infinitesimal character is %Δ; i.e.

Clearly we have GA—GsA for all s&W. Also it is known that DA^GA and
the number of elements in 0A is finite (c.f. [3], p. 141).

In [3], DeGeorge and Wallach obtained a formula describing the relation
among numbers in {NΓ(U)\ U^όA}. We shall precisely review it. Choose
and fix a positive root system Δ + with respect to which Λ is dominant. Since
rank go=rank ϊ0, we can construct the half-spin representations of ϊ0 as in [6],
p. 144. Denote by L+ the half-spin representation of ϊ0 with highest weight
ρn and denote by L~ the other one. Note that L* depends on the choice of Δ+.
Let τA_P/( be the irreducible ϊ-module with highest weight A—pk. Then the
tensor product τΛ_P;fe<g)L± integrates to the representation of K which is also
denoted by τA_Pk^L± (c.f. [3], p. 139). For i^-modules τλ and τ2, denote by
dimHom^(τ1, τ2) the intertwining number of τλ and τ2. Let U^ό and let
πυ be a representation in the class U. Then define

dim H o r n * { τ ^ ^ ® ^ , U) = dim H o m ^ T ^ ^ ® ! , * , nO\K).

Theorem 3.1.1 (DeGeorge-Wallach, [3]). Let Λ<Ξg0. Then we have
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(3.1) d(DA)vol(T\G) = NΓ(DA)+ Σ NΓ(U){dimHomκ(τA_Pk®L+, U)

—dimKomK(TA_Pk®L~~, U)}

where d(DA) is the formal degree of DA and vol(Γ\G) is the volume of T\G.

Our purpose in this paper is to obtain concrete formulas about NΓ(DA) by
using Theorem 3.1.1. We divide our study into two steps as follows;

Step 1; To find out all elements in όA—Gd.
Step 2; To examine dim Hoinκ(τA_Pk0L±, £/)for every U in όA—Gd.

4. The nonunίtary principal series

In order to find out irreducible unitary representations of G with given
infinitesimal character, we need the family of representations of G which is called
the nonunitary principal series. In this section, we shall make preparations
about this family. Let G be as in § 1.

4.1. First we shall state some notations. Let G=KAN be an Iwasawa
decomposition of G. Let α0 and tt0 be the Lie algebras of A and N. We write
g=k(g) exp (H(g)) n(g) for g GΞG, where k(g)<EΞKy H(g)(Ξa0 and n(g)EΞN.

Let Σ be the restricted root system of g0 with respect to α0. Choose a
positive root system Σ + of Σ which is associated with the subalgebra π0 (c.f.

[16], p. 164). Define Pa=\ Σ + α .

Let M be the centralizer of A in K and let τπ0 be the Lie algebra of M.
Let t0 be a maximal abelian subalgebra of m0 and let t% be the dual space of
tR=\/ — lt0. Denote by Am the root system of (m, t). Choose a positive root

system Am of Δw and put pm=— 2 a. Also define

and

Let M Le the set of all equivalence classes of irreducible Λf-modules. For
ξ^M, denote by μ(ξ) the highest weight of ξ. Then μ(ξ) belongs to g«.

If we set §6=to0αo, §' is a Cartan subalgebra of g. In this section, we
use this Cartan subalgebra ψ. Let (%)* be the dual space of % = \ / — l t o 0α o .
Canonically, t* and α* can be considered as subsets of the dual space (§')* of ψ.
Denote by Δ' the root system of (g, ̂ ') . Then there exists a positive root
system Δ / + of Δ' such that Δ ^ c Δ / + and { α £ Δ ' | α | α o ^ Σ f } c Δ / + (c.f. [16],
p. 169). This ordering of (%)* is called a compatible ordering with respect to

Σ + . Throughout this section, we fix this ordering in (%)*. Set ρf=— Σ <*-

Then we have p ' =
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4.2. Let fGil ί and let ξ also be a representation of M on the vector
space Vξ which belongs to the class ξ. Let Cg be the set of all continuous map-
pings /; K-*V% such that f(km)=ξ(m)'1f(k) for all k^K and m^M. For

t, define

where dk is the normalized Haar measure on K such that \ dk=l. Denote by
JK

E$ the completion of Cξ with respect to this inner product ( , ).
Let z>eα*. We define the representation 7Γ̂ V of G on the Hubert space E%

as follows;

for g^G, k^K and / ^ C $ . Then τr^v is not necessarily unitary, but it is .SΓ-
finite (c.f. [16], p. 232) and quasisimple (c.f. [9], p. 29). The family of repre-
sentations {πξV\ζ^My i/Gα*} is called the nonunitary principal series.

4.3. We shall review how the infinitesimal character of each representation
in the nonunitary principal series is given. Let π$v (ξ^M, iΈα*) be a
representation in the nonunitary principal series. For λ ' e (§')*, denote by Xy
the homomorphism of Z(Q) into C constructed from λ' as in 2.2.. Then we
have the following lemma.

L e m m a 4.3.1 (Lepowsky [9]). The infinitesimal character XπξtV of TT$ v is

equal to %^ (ξ)+ P m + v, where μ(ξ), pm and v are regarded as elements in (ί)')*.

Proof. In [9], Xπ^ was given explicitly. We shall translate the result
in [9] into our desirable form. In Proposition 8.9 of [9], take — ΔJ={—a\
αGΔJ,} as a positive root system of Am. Note Λ hat μ(ξ) is the lowest weight
of ξ with respect to —Δ^. Denote by Δί+ the positive root system of Δ' de-
termined by Σ + and — Δί. Let n{+ (resp. πί~) be the sum of positive (resp.
negative) root spaces. Then we have

Z(g)ct/(fy)+£/(S)nr.

In the above two direct sums, the projection mappings of Z(g) into
are the same (c.f. [4], p. 230). Denote by φ' this projection mapping. Then
Proposition 8.9 of [9] implies that

for £GZ(g). On the other hand, use a positive root system — Δί+ of Δ' in
the construction of X'λ, (λ/e(ξ)/)*). Then we have
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= φ'(z)(μ(ξ)+V+pΛ) .

Hence we have Xπ^(z)=

4.4 Finally we shall prepare some facts about the i£-spectrιim of π% v.
Let f G M and τ^K. Denote by m(τ; ξ) the multiplicity with which ξ occurs
in the restriction of r to M. If m(τ £) φθ, r is called to be ξ-admissible.
Denote by ίt(ξ) the set of all ξ-admissible elements in K.

Let ^GQ*. From the definition of π%>v, the restriction of TΓ̂  v ot K
is the representation induced from the representation ξ of M. Hence, by
Frobenius' reciprocity theorem, we have m(π^ v ; τ)==m(τ: ξ) for r^ίt. Thus
the i^-spectrum of π% v is the set of all τ £ Λ(f) repeated as many times as m(τ; ξ).

For T G Λ , let Eξ(τ)dEξ be the subspace of all vectors transformed by
π^v\κ according to T. When Φ is a subset of K(ξ)> define

T £ φ

where 0 means the orthogonal direct sum. Note that ^ ( Φ ) is a if-invariant
subspace of Eξ.

5. The subquotient theorem

In this section, for the sake of Step 1, we shall review the subquotient
theorem of Harish-Chandra. It will give a method to find out the representa-
tions in question.

5.1. Let (TΓ, E) be a continuous representation of G. Let E have a finite
sequence of closed invariant subspaces

E = E0Z)E1Z).~Z)Er_1^Er= {0}

such that, on each quotient space E^JEi, π induces an irreducible representa-
tion of G. Then π is said to have a finite composition series and each quotient
representation (TΓ, Ei^jEi) is called an irreducible subquotient of π.

It is known that every member of the nonunitary principal series has a
finite composition series (c.f. [9], p. 33). The following theorem gives a method
of realizing our exploring representations.

Theorem 5.1.1 (Harish-Chandra; c.f. [9], p. 29). Every irreducible uni-
tary representation of G is infinittsimally equivalent to an irreducible subquotient
of some member of the nonunitary principal series.

5.2. Now, let § be the Cartan subalgebra in § 1. We consider a special
linear form ΛG|$0. Let Δ + be the positive root system with respect to which
Λ is dominant. On the other hand, let §' and Δ / + be as in 4.1. There is
an automorphism θ of g such that θ(ψ)=ί) and 0*(Δ+)=Δ / +. Identify ίj* with
(I)')* by this isomorphism. From Lemma 2.3.1, if λ E ^ * is a regular integral
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form, we have Xλ=Xϋ. Hence, for f e M and i GQ*, we have WI

if and only if there exists an element s^W such that μ(ξ)-\-pm-{-v = s(A). Let

R(A) be the set of all pair (ξ, v) (£(ΞiMΓ, I Έ Q * ) such that μ(ξ)+ρm+v and Λ

are in the same PF-orbit. From Lemma 4.4.1 and Theorem 5.1.1, we obtain

the following proposition.

Proposition 5.2.2. Let Λ e § 0 and π be an irreducible unitary representation

of G such that % Λ = X Δ Then π is infinitesimally equivalent to an irreducible sub-

quotient of π^^ for some (ξ> v) in R(A).

6. The decomposition of I-modules

In this section, we shall describe the direct sum decomposition of a tensor

product of two I-modules. Also we shall review a known result about the

ί-module L±. These facts will be used in studying Step 2.

6.1. Let ϊ0 and fy, be as in § 1. Let CQ be the center of f0 and let ϊj be

the semisimple part [ϊ0, ϊ0] of ϊ0. Then we have

where fy0 is the maximal abelian subalgebra of IJ. We always regard (φ1)* and

c* as subsets of t)*.

First we shall examine the decomposition as ^-modules. As the positive

root system of (I1, ή1), we take Δ* in § 1 . For T ^ S ί Π ^ 1 ) * , denote by τy

the irreducible ^-module with highest weight γ . The following lemma is due

to [2] (c.f. [2], Chapter VIII, § 9, Proposition 2).

Lemma 6.1.1. Let β, 7 and 8 be in %t n(f/)*. Then the multiplicity of

Tβ in the tensor product Ty®τ\ is given by

Σ e(s)Mτl(β+pk-s(y+pk))

where Mri(X) ( λ E ^ 1 ) * ) is the multiplicity of a weight λ in τ\.

Once we know the decomposition as I-modules, we can easily obtain the

decomposition as I-modules.

Proposition 6.1.2. Let r be a l-module. Let β and 7 be in ξ$ί and let

Tβ and τ γ be the irreducible l-modules with highest weight β and γ respectively.

Then the multiplicity of τβ in τy®τ is given by

Σ ε(s)Mr(β+pk-s(Ύ+pk))

where Mr(\) (λeί j*) is the multiplicity of a weight λ in T.
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Proof. It is sufficient to prove the statement in the case that T is an
irreducible ϊ-module τδ ( δ e g ί ) . Let β be in %i. If τβ occurs in τy(g)τθ with
nonzero multiplicity, the restriction of β\c to c is equal to (7+δ) | c . We put

Sί( r , δ ) = {iβeSίi >sic = (Ύ+δ)| c>.

Assume that β^%t(Ύ, δ). Then τ β occurs in τ7<g)τδ with multiplicity m if
and only if rβ\χx occurs in τy\^^τ8\^ with multiplicity m. Hence, by
Lemma 6.1.1, the multiplicity of τβ in τy®rs is given by

ε(s)Mτi1{β1+Pk-s(Ύ1+Pk))

where β1, yι and δ1 are the restrictions of β, y and δ to φ, respectively.
Since, for λ e ξ ) * and s&WG> we have s(X) | ^ = s(\\^) and ί ( λ ) | ! = λ | o it
follows that

{β+Pk-s(y+Pk)} |^ =

{β+pk-s(y+Pk)}\c =(β-y)\e

= δ | c .

Hence, β+pk—s(y+pk) is a weight of τδ if and only if βι+Pk—s(tY1+P*)ιs a

weight of τji . Therefore we have

Mτ8(β+pk-s(y+Pk)) =Mτi{βι+Pk-*{yι+pk)),

and the statement is proved for τ β with /3eS?(T, δ).
Next, assume that /3$g£(γ, δ). Clearly the multiplicity of rβ in τ 7 ®τ δ

is equal to 0. On the other hand, since we have {β+Pk~Kv+Pk)} Ic+δ |c, we
obtain that

Mτ8(β+pk-s(y+pk)) = 0 (SΪΞWG).

The proposition is proved.

6.2. Finally we shall state how the set of weights of Lr is given. Choose
an ordering in ξ)ϊ and appoint Lr with respect to this ordering. Let Q be a
subset of Δί. Denote by <(Q> the sum of all elements in Q and denote by
I ©I the number of elements in Q. The following lemma is known (c.f. [6],
p. 144).

Lemma 6.2.1. The set of all weights of the t-module L+ (resp. L") is given by

, ( - 1 Γ == +1 (resp. -1)}

and the multiplicity of each weight is the number of ways in which it can be expressed

in the above form.
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7. The case of G=Spin(ly 2m)

In this section, we shall study Step 1 and Step 2 in the case of G=
Spin(ί9 2m) and we shall obtain concrete multiplicity formulas. In [12], [13] and
[14], Thieleker classified all irreducible unitary representations of Spin(\> 2m).
We shall often use his results.

7.1. Let m be an integer such that m ̂  2. Let G be the group Spin(1, 2m)
i.e. the universal covering group of the identity component of SO(\, 2m). The
subgroup K is isomorphic to the universal covering group Spin (2m) of S0(2m).
As usual, we realize g0, ϊ0 and p0 as Lie algebras of matrices;

(701 u

X X(Ξ$o(2m} R)

01 0

X

01 u

u = (ulyu2j
>2m

Take ϊj0 as follows;

H{h) =

/o

u

\

K
0

0

0

K

0
—

0

h, 0

-h

0

\

m

1
For l^i^m, define a linear form e{ on ΐ) by

Then ί)% is spanned by {eu •••, em} over R and the inner product in ΐ)% is given by

O. , es> = 1 δ,7
2{2m-\)

Choose and fix a lexicographic ordering in ί)% with respect to the basis {e1} •••, em}.
Under these situations, the following facts are easily seen;

Δ = {±e, (l£i£m),

Δ + - {et (l^i^»), e,±ej (\^ί<j^
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= Σ (m—

2 > =

,λ«Φ0, λ, Φλ,

{ λ e S | λ 1 > λ 2 > > λ w > 0 }

m

Note that, if λ = Σ λ , ί, GiJ, {X̂  •• ,λJII} are either all integers or all half odd
t = l

integers.
Let @w be the symmetric group of degree m and let σ^Θ^. Let £={£,-}

be a set of m signs; i.e. £, = 1 or £,.= —1 for l^i^m. Define the orthogonal
transformation sσ β of fjJ by

The Weyl groups W ând PF"G are given as follows;

W= { ^ J σ e S . , £t = 1 or - 1

= l or -
ί l

Define sQ^W by sQ{et)=ei for 1^/^ni—1 and so(em)=—em. Then we have
^ = { 1 , 50}, where 1 denotes the identity element of W. Hence the mapping
D go U ίoSo -> όd is bijective.

Take a maximal abelian subalgebra α0 of p0 defined by

Then M is isomorphic to Spin(2m—ί) and we have

0

X:
0

0

- 1 , i?)

Also take a maximal abelian subalgebra t0 of tn0 defined by

t0 = {H(0, K -' ,hm)\
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Two Cartan subalgebras § '—t0α and § can be identified by the following iso-
morphism θ;

θ(P(aft, -.., 0)+H(0, h» -,hm)) = H(a, h2, -, A.).

Moreover, by this identification, the above ordering in ί)% corresponds to a
compatible ordering of (%)*. In this way, we always identify (%)* with JjJ,
together with their orderings.

As for (m, t), t% is spanned by {e2i ~ ,em} and, in t% the lexicographic
ordering with respect to this basis is given. Hence Δί, pm and %i are given as
follows;

J 2 *
μi—μi+1<=Z and ^ 0 (l^i^m— 1)

'}2μm<=Z and ^ 0

Since Mis simply connected and semisimple, the mapping μ\
is bijective. Also we have α*=Cfe1cIj*. We shall identify ^ e α * with the
complex number z>eC.

7.2. Now we shall set about Step 1. Consider and fix a special linear form

Λ = 2 A ^ efξo. Then the numbers {Aly « ,Λm} are either all integers or

all half odd integers and satisfy the inequalities

(7.1) Λ 1 >Λ 2 >.. > Λ w > 0 .

Depending on Proposition 5.2.2, we shall first determine the set R(A)d
il2Γχα*. For λG^*, denote by λ | t and λ | α the restrictions of λ to t and to α,
respectively. If (ξ, v)<=R(A)y we have μ(ξ)=s(A) \t—pm and P=S(A) \a for some
S^LW. Hence it is necessary to find out all s^W such that s{A)\i—ρm belongs
to %„. Let ; be an integer such that ί^j^m. Define σ, e@* and £j by

and put sf=sσje±€ΞW.

Lemma 7.2.1. Let s(=W. Then we have s(A)\t—pm^%m if and only if

s is either sj or sj for some ί^j^m.

Proof. Let σ e @w and S= {6,}. We have

/AM srifc Λ 2m—2i+l
sσ§t(A)\t—pM = Σ ^ ^ Λ I G )
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Hence

( 7 2 )

ί if and only if

1
—

Clearly, <r, and £j satisfy (7.2). Conversely assume that sσε(Λ)| t—pwef5m
Then the left hand sides of (7.2) are positive. Since Λσ-i(,) is positive for all i,
£σ-i(t ) must be 1 for 2^i^m. Moreover, from (7.2), we have Λ<r-i(ί )>Λσ-i(ί+1)
for 2^i^m—l. Hence, from (7.1), we obtain σ"1(2)<σ"1(3)< — <σ"1(m).
If we put σ-\l)=j\ we have necessarily σ = ( l , 2)(2, 3) ••• (/— 1, j). The lemma
is proved.

Denote by ξj the element of ΛdΓ with highest weight sj(A)\t— pm; i.e. the

highest weight μ(ξj) of ξj is given by

Also note that ^y:(Λ)|α==|=Λi. After all, we obtain that

R(A) = { (ξj9 Λ,), (ξjy -Aj) I

Now consider the representations π^. Aj and πξ._Aj (l^j^m). From
Proposition 5.2.2, an irreducible unitary representation π such that % < = % Λ is
infinitesimally equivalent to an irreducible subquotient of 7TξjAj or τr|y>-Λy f°r

some l^j^tn.
m

For convenience' sake, we put Λ — p = Σ Atet; i.e.

Hence we have

(7.3)

and we can write

(7.4)
μ(ξi) =
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7.3. Next we shall find out all irreducible subquotients of 7tξj±Aj (1 ^j^m),
up to infinitesimally equivalence. In [13], Thieleker determined all irreducible
subquotients of every representation in the nonunitary principal series. Let
us rely on his results.

Let ξ be in M and T in K. The highest weight μ(ξ) of ξ and the highest
weight γ(τ) of τ can be written as follows;

γ(τ) =

By Lemma 4 in § 5 of [12], T is ^-admissible if and only if γ(τ) satisfies the
following conditions;

Moreover, for every ^-admissible T, we have m{r; ξ) = 1. Hence, by the
statement in 4.4, we have

= {τei" |7(τ) satisfies (7.5)} .

Also, note that every ίC-invariant subspace of E%, and hence every G-invarίant
subspace of E%, is of the form E%(Φ) for a certain subset Φ of K(ξ).

Following Thieleker, we shall define some ./^-invariant subspaces of E^.
(ί^j^tn). In the case that ί^j^m—1, we have

Λ

k' Let Φy and Φ7 be subsets of K(ξj) defined as

(7.6)

where 7 = Σ Ί&i
follows;

(7.7)

(7.8) Φj = {τ γe£(?, ) 17, <Λ, +1} ,

and put E)=E$fΦ)) and Ej=Ei.{Φ'j). In the case that/=τκ, we have

Ύt- Λ, ί

Let Φ«, Φm and Φ^ be subsets of K(ξm) defined as follows;
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ΦF

m =

and put E +=EιJΦϊ)9 E~=E^~) and Eζ=Eξm(Φζ).

REMARK 7.3.1. In [14], our representation (π$>v> E$) is denoted by
(τrv, L\(K)). Hence Ej (l^j^m) corresponds to D±(Kh ξj) in [14] and Eζ
corresponds ot Dζ(Am, ξm).

Under these notations, apply Theorem 2 and Theorem 3 in [14] to our
representations π%. ±Aj(ί^j^m). For l^j^m—l, E) (resp. Ej) is an ir-
reducible G-invariant subspace of E%. under the action 7Γgy Λ y (resp. π%.,-Λy)-
Also Em and Em are irreducible G-invariant subspaces of E%m under the action
7Γ£w Λw> and Eζ is an irreducible G-invariant subspace of E$m under the action
π£m,-Λm- There are no more irreducible G-invariant subspaces of Eξ. (l^j^m)
than the above.

Among these subrepresentations and quotient representations by them, there
are following infinitesimal equivalences;

EJ+1)

^ E>)

Ej) (1 £jίkm-1)

Efi

m,_Am, Eζ)

where the symbol <—> denotes the infinitesimal equivalence. Moreover, there is
no more infinitesimal equivalences than the above. For the simplification,
denote by πj(A) (l^j^m—ί) the representation (πξj±Aj, Ej) and denote by
7rS(Λ) the representation (^W,ΛΛ> ^ S ) . After all, we have the following proposi-
tion.

Proposition 7.3.2. Up to infinitesimal equivalence, all irreducible subquotients

of the nonunitary principal series whose infinitesimal characters are equal to XA are

given by

{τrΓ(Λ), πΐ(A)y τr2

+(Λ), - , τr Li(Λ), τrί(Λ), ^

Moreover these representations are not infinίtesimally equivalent to one another.

7.4. We shall examine which subquotients in Proposition 7.3.2 are infini-
tesimally unitary. Using Theorem 4 in [14], we have the following proposition.
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Proposition 7.4.1.
(1). The representation πγ{A) is infinitesimally unitary if and σnld if A=p.

Moreover, πΐ{p) is the trivial representation lG of G.
(2). For l^j^m — 1, ττy(Λ) is infinitesimally unitary if and only if Άj+1=

j

(3). The representation π^(A) is always infinitesimally unitary.

Proof. By (3) of Theorem 4 in [14], πϊ(A) is infinitesimally unitary if

and only if Λ 2=0 and A^-™^. If Aι=
2m~l, we have Λ ^ O and

hence, by (7.3), Λ 1 =Λ 2 = = Λ w = 0 . This implies Λ=p. Also, by the
definition of Eϊ, π7(p) is clearly the one-dimensional trivial representation of
G. Hence the assertion (1) follows.

The assertion (2) follows immediately by (3) of Theorem 4 in [1],
In the case of j=m, π^(A) is infinitesimally unitary if and only if Λw_i+1 > 0

This inequality is always satisfied. Thus the assertion (3) is proved. The
proof is completed.

Now, if π is an irreducible infinitesimally unitary representation of G, π
is infinitesimally equivalent to a unique irreducible unitary representation of
G, up to unitarily equivalence. Hence π determines a class in G. When Λ
satisfies the condition that Aj+1=-~=Am=0y denote by Uj(A)^0 the class
which is determined by πj(A). Also denote by Um(A) the class which is
determined by τrS(Λ).

By Theorem 5 in [14], U%(A) is a discrete class. Note that, by Theorem 6
in [14], Uj(A) (l^j^m—1) is not a discrete class. In effect, we have the
following corollary and complete Step 1 for Λ e § J .

Corollary 7.4.2. Let Λ e g ί . The subset όA—Gd of G is given as follows;
(1). IfΆm Φθ, we have 6A—6d=φ.
(2). If Aj+1=--.=Am = 0 and Λ; 4=0 for some l^j^m—l, we have

GA-Od={Uj(A), t/y+1(Λ), "., Um^(A)}.
(3). // A1 = A 2 = = Ail = 0 i.e. Λ = p, we have 0A-Od= {1G, ^(Λ),

ί/2(Λ), •••, f/^.^Λ)}, where 1G is the class of the trivial representation of G.

REMARK 7,4.3. In fact, we have Ut(A)=DAtΞOd and ZJ-(A)=DSoA<=ΞOd.
This is shown by comparing X"-spectra of these representations.

7.5. We shall go forward Step 2. As before, let Λ be in SJ. Our
purpose is to compute dim Hom#(τΛ_Pjfe 0 1 ^ , f//(Λ)) (l^j^m — 1) and
dim Homκ(τp^L*, 1G).

Let/ be an integer such that l^j^m—ί. When Λ satisfies that Λ ; + i=
Λy+2= = Λ w = 0 , a representation in the class f/; (Λ) has the same if-spectrum
as ττy(Λ). Hence we shall examine dim H o m ^ ^ . p ^ ® ^ , rf(A)\K) and
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dimHomκ(τP n®L±

y lG\κ) Recall that the i£-sρectrum of πj(A) is given by

(7.9) Φ « ( A ) ) = Φ;

Also the jK-sρectrum of 1G is given by Φ(lG)={l i Γ}, where lκ is the trivial
representation of K. Thus it is sufficient to compute the multiplicities of
τGΦ(^}(Λ)) in τA_Pk®L± and the multiplicity of \κ in τ?n®L±.

In order to use Proposition 6.1.2, we shall prepare the following lemma.
Put L=L+®L~.

Lemma 7.5.1. Let β and γ be in %t.

(1). Let s<=WG. If β+ρk—s(Ύ+pk) is a weight of L, s is the identity.
(2). The multiplicity of τβ in τy®L is equal to ML{β—7), where ML(X)

( λ G ^ ) is the multiplicity of the weight λ in L.

Proof. Note that, by Lemma 6.2.1, the set of weights of L+ (resp. L~) is
given by

(7.10)
= l or

Π f , = + 1 (resp.-1)

and the multiplicity of each weight is equal to 1. If β+pk~s(Ύ+pk) is a
weight of L, we have

^flSiei

where£t = l or —1 for l^i^m. Assume that s is not the identity. Then there
is an element a of Δί such that s~\a)^— At. Since β+pk and y+ρk are
dominant regular integral forms with respect to Δί", we have

2<β+pk-<Ύ+Pk), a> = 2<β+Pk> a> + 2<7+Pky —Γ1(α)>^2 ^

On the other hand, if we set α = ^ z b ^ for some l^i<j^m, we have

This is the contradiction. Thus the assertion (1) is proved. The assertion (2)

follows immediately from Proposition 6.1.2 and the assertion (1). The lemma

is proved.
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The following proposition completes Step 2 for

Proposition 7.5.2.

(1). Lei j be an integer such that l^j^m—l. Then we have

(

1 ifm—j is even,

0 ifm—juodd,

( 0 if m—j is even,
dim H o r n * ( τ Δ _ p ® I Γ , πj(A) \κ)=] Λ v . . „

( 1 z/ w—j zί odd.

(2). W

( 1 if m is even .
dim Homκ(τPn®L+, 1GI *) = L ., . '

( 0 if m is odd,

( 0 if m is even ,

I if mis odd.

Proof. Let τy^K. Assume that τyeΦ(zry(Λ)) and the multiplicity of τ γ

in τA_Pk®L is not equal to 0. By (2) of Lemma 7.5.1, we have ML(y—A-\-pk)

1 m

Φθ. Hence, by (7.10), we have Ύ—A+pk=—-^Siei for some {£ly -• ,Sm}
2 ί-i

such that 6i=l or —1 (l^i^wi); i.e.

2

On the other hand, {yly •••, ym} satisfy the inequalities (7.9). Therefore we have

necessarily

Ci —— &2 # * * — C j — *• a n C l Cy_|_j —— Cy_j_2 — * * * ^tn — ~~~ t

and hence we have

(7.11) 7 = έ(Λ,+l>, +ΣΛA.

Conversely, if y is given by (7.11), then we have clearly that τyGΦ(τr/(Λ))

and y—A+pk=—(^H \-ej—ej+1 em). Then, by (2) of Lemma 7.5.1,

the multiplicity of τ γ in τA+Pk®L is equal to 1. Whether τ γ occurs in rA_Pk®L+

or τA_Pk®L~ is determined by the sign of {—\)m~K Since each τveΦ(;ry(Λ))

occurs with multiplicity 1 in πj(A)\Ky the assertion (1) is proved.

Next, the highest weight of \κ is 0. Since —ρn is a weight of L, by (2) of
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Lemma 7.5.1, the multiplicity of \κ in τPw(g)L is equal to 1. Whether lκ occurs
in τ P | | ®L + or τPn®L~ depends on the sign of (— l)w . The assertion (2) im-
mediately follows. The proof is completed.

7.6. Now, we have completed Step 1 and Step 2, From the basic for-
mula in Theorem 3.1.1, we shall obtain the main theorem in the case of G =
Spin(l, 2m) (m^2).

Let Γ be a torsion free discrete subgroup of G such that T\G is compact.
Then we have the following theorem.

m

Theorem 7.6.1. Let Λ be in %t and set Λ - p = 2 Λ , β, . Then we have
i = l

the following formulas about the multiplicities NΓ(DA) and NΓ(DSQA)

(I). iVΓ(Z)Δ)=iVΓ(Z)SoΔ).
(II). (1). J/A.Φ0,

NΓ(DA) = d(DA)vol(Γ\G).

(2). // A, + 1 = . = Λ w = 0 and Λ, φO for some l^j^m—ί,

NΓ(DA) =

(3). 7/Λ 1 =Λ 2 =. = A M = 0 , i.e. A=p,

NΓ(D9) = d(Dίl)vo\(Γ\G)+NΓ(Um-1(p))-NΓ(Um_2(p))+

Proof. The assertion (II) follows directly from Theorem 3.1.1, Corollary
7.4.2 and Proposition 7.5.2.

We shall prove the assertion (I). To begin with, note that the positive
root system of Δ with respect to which s0A is dominant is given by sQA+ and
we have s0Δ

+ΓiΔA=Δ*. Compare the multiplicity formula (3.1) for DA with
that for DS o Λ. From the formula (1.1), we have d(DA)=d(DsoA). Since 0A=
0SoA, it is sufficient to prove that

dim Hom^Tfc.p^L^ U) = dim H o m ^ T ^ . ^ ® ! , ^ U)

for U^GA—Gd, where Lr in the right hand side is appointed with respect to
the positive root system s0A

+.
Since sQΔ+ Π An=s0ΔΪ, the set of weights of Lr associated with sQA+ is

given by

Let γ be in gjf. Then $oγ is also in %i. For 5E WG and Q c Δ ί , y+pk—sA=
—pn if and only if sQ

rγ+pk—(sQssόι)(sQA)=sQiQy—sQpn. Also the mapping;
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is a bijection of WG onto WG and we have £(s)=S(sosso

1).
Hence, from Proposition 6.1.2, the multiplicity of τ v in τA_Pk^L± is equal to the
multiplicity of τSQy in τsoA_Pk^L±. On the other hand, from (7.6), τ v belongs
to the i£-spectrum of τry(Λ) (l^j^m—ί) if and only if τSQy belongs to it.
Also we have clearly that τy=lκ if and only if τSoy—lκ. After all, we obtain
the following equalities;

dim Homjrί-iA.p,®/,*, */(Λ)) = dim HomiΓ(τsoΛ_Pife®L+, πj(A)) (l^j^m-1),

dim Homif(τΛ_Pjfe®L±

J> 1G) = dim H o m ^ . p ^ L 1 , 1G).

Hence the assertion (I) follows. Thus the theorem is proved.

REMARK 7.7.2.

(1). In the above theorem, the condition on Λ in (1) of (II) agree with

the condition (i) of Theorem in the introduction of [6] (c.f. [6], p. 176).

(2). In the case that m=2, the above theorem gives the formula in Theorem

4.5 of [11] (c.f. [11], p. 306).

(3). The set of classes {1G, Ufa), U2(p), - , U^p), Dpy DSJ corresponds

with ΠP(G)= {/o, Ju - , / , - i , A , A} in [1], Chapter VI, § 4, 4.5. To be more

precise, Uj(ρ) (l^j^tn—ί) corresponds with Jj and 1G with /0. Also, these

classes contribute to Mutsushima's formula about Betti numbers of the manifold

Γ\G/ίC(c.f.[15],p.l74).

8. The case ofG=SU(l, n)

In this section, we shall pursue the same argument as in § 7 in the case of

G=SU(ly n) (n^2). It is more complicated than that in § 7, but the methods

are the same. We will depend largely on the classification of all irreducible

unitary representations of SU(1> n) obtained by Kraljevic (c.f. [7]).

8.1. Let n be an integer such that n^2. Let G be the group 5ί7(l, n) and

K the group U(n) imbedded in SU(l, ή) as follows;

K =

0

X
X<=U(n), b =

Then the Lie algebras ϊ0 and p0 are given by

0

X
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«εC

Take a Cartan subalgebra ή0 as follows;

( IK o
\=\H{K-,h) = \ •••

[ \o K
The semisimple part ϊi=[ϊ, ί] of ϊ is isomorphic to §l(n, C). If we set

{
- 1

0\

- υ
is the center of ϊ and we have

where ίji is the Cartan subalgebra of ϊj which is given by

$!={#(*,,...,*„)€=$ 1*0=0}.

Define a linear form ^ (O^i^n) on ^ by

Then fj% is the hyperplane of the (w+l)-dimensional real vector space V spanned
by {̂ 0, •••, en} which is given by

Also ή* and ^f are given as follows;

{Σ
i=0

Σ
i=0

The inner product in f)% is given by

/ X 1 δ o

Take a lexicographic ordering in F relative to the basis {̂ 0, •• ,ί'n}. This
ordering in V induces an ordering in ί)%. Fix this ordering in f)%. Then the
following facts are easily seen;
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Δ = {βi—βj I Ogί, j ^n, i Φ;

Δ + = {*,-«,

P =

1 Λ

P» = V (^o-Σ et)

8 = {λ = ίj λ^eSί |λ,-λ,e=Z

go+= {λeδ|λo>λ1> >λB_1>λB}

gί = {λe$S|λ,-λ,eZ (l^f,y

Note that, if λ = Σ λ^eS, we have

( n + l ) λ , e Z ; i.e. λ, <Ξ—!— Z
fl~\~ 1

Now we need the Weyl group W and WG. Let @n+1 be the group of permu-
tations of the set {0, 1, 2, ••-,#}. For σ-e@Λ+1, define an orthogonal trans-
formation sσ of ξ$ by

Then H^and WG are given as follows;

1 > σ(0) = 0}.

In the following, we shall always identify sσ with σ. Then we have

W1 = {1 = σ0, σx, —, σn} ,

where σ / ( 0 ^ / ^ n ) is the permutation (0,1, •••,/). Therefore, there is the

bijection between Gd and U^/Sί.

/=o

Next, we take a maximal abelian subalgebra α0 of p0 as follows;

ao= {P(0, ...,0,α)|ίi

Then M and tn0 are given by
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M =
b

0

0

b

o

0

F
ϋ
0

0 \b

0 JO

F 0

l \ o | o \bt

Y(ΞU(n-l),

= - t r F

The semisimple part mj=[m, m] of tn is isomorphic to Sl(n— 1, C). If we put

cw is the center of tn and we have t n ^
abelian subalgebra t0 of m0 as follows;

i Take a maximal abelian

Then we have t=cm-\-tu where tx is a Cartan subalgebra of m1 defined by

^ = 0} .
Λ-l

i = l

Two Cartan subalgebras ί) and f)'=a-\~t are identified by the following
isomorphism θ

0(P(O, - , 0, α)+JΪ(4, ^ , - , hn.u b)) = H(b+a, K .-, ^ . x , i- f l ) .

Also, by θy our ordering in ί)% corresponds to a compatible ordering of (%)*
and induces an ordering in t^. In this way, we always identify (§')* and §*.
Regarding t*, tf and α* as subsets of §*, we have

t*= {pet* 1^ = ^ =

α* =

We shall identify P*—— * with the complex number v and hence identify

α* with C.
As for the Lie algebra m, we have

Δί= fe—^ | l ^ ί < ; ^
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(8.1)
f

8.2. Following Kraljevic [7], we shall introduce some notations. Let r
be a positive integer. We define the subset Λ> of Rr by

p,-Pj<=Z

Γ

For p = (pu •• ,/>r)ei2> and q=(qly •••, # r + 1)el2>+ 1, we write p<q if p and
satisfy that

(8.2)

r ?i» —» ίr) (resp.(/>1? —,A)Also, for p,q<=Rr

>9 we write

(ίl, - . i n -°°)) i f (Λ> ->Pr)

Let 7 = 2 % ^ - ^ ^ . Then 7 belongs to S f l S ί if and only if {γ2, •••, γ j
1 = 0

satisfy the conditions

n+ί

If we put

n+ί
/I V

the mapping; δ n δ ί ^ 7 - ^ ( Ύ i , ••",7«)e( - Z ) is a bijection. Thus we

shall always identify an element 7 of S u S ί with an element 7 = (7^ ••*, 7») of
/ 1 \n n

( Z ) , Similarly, i t = 2 AtiA ̂ δ π S i can be identified with an element
\w4-l /> ί = 0

/" I \n-l Λ ί \ \n

μ=(μl9 ..., /zn_i) of ( Z\ . Hence A"is isomorphic to the set ( Z\

and M is isomorphic to the set ( Z) (c.f. [7], p. 35).

8.3. Now, we shall start off with Step 1. Once and for all, take a special
n

element Λ = Σ Λ, έ?f Gf5o and fix. Then we have
1=0
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(Λ, ί( Λ , e Z
(8.3) n+1

( Λ O > Λ 1 > > Λ , .

Lemma 8.3.1. Let h and k be integers such that 0^h<k^n. Define

0, l. . , ft-1, h, Λ + l , - , Λ—1, A,, - , Λ—1, A, Λ+l, - ,n \

,—,A—1, », ft, -..,n-ljl, 2, -.., h, 0.A+1

σ- = ^ 0 » 1 . - ' * - 1 ' * * A + 1

'*•* U , 2 , - , A, n,A+l, ,ft-l,0, A,

w, an element σ^Wsatisfies that σA|t— p M eS» »/««^ o«(y 2/ σ « eί'

or σh.hfor some 0^h<k^n.

Proof. For σE6, + 1 ) we have

σ Λ | t - p . =
2

where b^R is given by 2 H Σ Λ ( r - i ( , )=0, Assume that σΛ| t—pw belongs to

%m From (8.1), we have

2 — 2

and hence we have

Since Λ satisfies (8.3), it follows that

Therefore, if we put A=the minimum of {σ'^O), σ"1^)} and ^=the maximum
of {σ'^O), σ-1(n)}, σ is necessarily either σt,k or crjΓ.*. The lemma is proved.

Let h and k be integers such that Q^h<k^n. We denote by ξhfk the

element of i#" with highest weight στ,*Λ|t—pm and put ^M = σί t*Λ|α; i.e.

the highest weight of ξhk is given by

Λ Λ(8.4) μ(ξh>k) =
2 , " i 2 , , - . - , 2 >

n-2(ft+l) ... Λ n-2(k-l)

Λ n-2ft ... Λ _
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and we have

vΐ.k = ± ( Λ 4 - A 4 ) .

In the above formulas, if A=0, (8.4) means

v (\ n-2 A »-4 . n-2(k-ί)
•' V ' 2 2 2

n-2k ... Λ ~n+2\
--KTi 9 9 /

and if A = «, (8.4) means

n-1 A Λ - 4

Throughout this section, the case of h=Q or k=n should be suitably appreciated,

even if it is not specially offered. Moreover, for convenience* sake, define

Λo, - ,ΛΛby

A—p =
= 0

Then we have

and we can write

(8.5) μ(ξh,k) = (Λ 0 +l, •••, AA_!+1, SA + 1, •••, Άk_ly Άk+1—1, •••, An)

Now consider the representations τtξhkfU^k (0^h<k^ή) in the nonunitary

principal series. From Proposition 5.2.2, an irreducible unitary representation

7Γ such that % i r=XA is infinitesimally equivalent to an irreducible subquotient
o f *ζujnvU o r ^ v ύ f o r s o m e 0^h<k^n.

8.4. Using results of [7], we shall determine all irreducible subquotients

of πξ v±k (Otίh<k^ή)j up to infinitesimally equivalence.

Let h and k be integers such that 0^h<k^n. By Proposition 6.1 in [7]

and (8.5), the J^-spectrum of π^ kV± is given by

— 1, •••, ΛB—1)}
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where we use the notation > in the sence of (8.2).
We shall apply Theorem 7.5 and Theorem 8.7 in [7] to our representation

πξhkiUfk Following Kraljevic, put

for IreildT, where μ(ξ)=(μ(ξ)lf •••, M?)»-i) e S«Πδ is the highest weight of ξ
(c.f. [7], p. 48). In the case of ξ=ξhj,, we have

ί,(?M) = j 2Λ ;-ΛA-ΛA

Since vf ,*=±(Λ Λ —A k ) , it follows that

Hence, if A + l = ^ (resp. h+l<k)> fMeil2Γand v^k^C satisfy the condition
of the case (c) (resp. (d)) in Theorem 7.5 in [7]. By Theorem 7.5 and Theorem
8.7 in [7], ίΓ-spectra of all irreducible subquotients of ̂ ζhkV

±

hk

 a r e given as
follows;

(1). If A+l=&, there can occur only the following three 2£-sρectra;

, Λ 0 +l,

2 - 1 , - , Λ Λ - 1 , - O O )

Cy*+2, -

(OΊ, "

(OΊ, - ,

(2). If h+l<k, there can occur only the following four iC-spectra;

(Ύi, •",

(r*+2, - , '
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» Λ 0 + l , ••, A^χ

1 — 1 , - , Λ n - l ,

> Λ O + 1 , - , AA-i

-1, - , Λ M - 1 , - o o )

On the other hand, by Theorem 9.2 in [7], two irreducible subquotients of
representations {πp ± \0<h<k<n\ are infinitesimally equivalent to each
other if and only if they have the same K-spectrum. By (1) and (2) above,
amongi^-spectra of all irreducible subquotients of {π^ u± \0^h<k^n}f there

are ~ ^ '- kinds of i£-spectra which are different from one another.

They are given as follows;

(8.6) Φ,(A) = τ γ

(Ύu -

(Ύι+»

Λ0+l, "., Δ M + 1 )

/ + i - l , - , Λ n - l ,

, A 0 +l, - , Λ

«-l,—)

(8.7) Φ M ( A ) =

where /runs over {0, 1, •••, n) and (/>, ̂ ) runs over the set {(p, q)\0^p<q^n}.
Denote by τr7(Λ) the irreducible subquotient with ^-spectrum Φ/(Λ) and

denote by πpq(K) the one with i£-spectrum Φpq{K). After all we have the
following proposition.

Proposition 8.4.1. Up to infinitesimal equivalence, all irreducible sub-

quotients of the nonunίtary principal series whose infinitesimal characters are equal

to %Λ are given as follows

{TT7(A) ( 0 ^ / ^ n ) , πPt9(A) (0^

Moreover these representations are not infinitesimally equivalent to one another.

8.5. We shall examine which subquotients in Proposition 8.4.1 are in-
finitesimally unitary. Using Proposition 11.4 in [7], we have the following
proposition.

Proposition 8.5.1.
(1). For Q^l<^n, τr7(Λ) is always infinitesimally unitary.
(2). For 0^p<q^n, πpq(A) is infinitesimally unitary if and only if Λt—

Ai+ι=l for allp^i^q-l.
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Proof. By easy computations, we can prove that Φ/(Λ) satisfies the

inequalities (6) in (ii) of Proposition 11.4 in [7]. As for πpq(A), the condition

in (iii) of Proposition 11.4 in [7] is clearly equivalent to our condition.

Now, let G be the universal covering group of G. Canonically, we can

regard π^A) as a representation of G. Since π^A) is infinitesimally unitary,

there exists an irreducible unitary representation π^A)17 of G which is infini-

tesimally equivalent to 7Γ,(Λ). Then π^Kf turns out to be a representation of

G (c.f. Remark 8.5.2). Denote by Uι(A)^G the class which contains π^A)11.

Similarly, when πpq(A) is infinitesimally unitary, denote by Upq(A) ^ G the class

which is determined by πpa(A) in the same way.

REMARK 8.5.2. Let ψ; G->G be the covering epimorphism and put K=

ΛJr~\K). Let (π1, E1) and (τr2, E2) be it-finite representations of G. Assume

that π1 is infinitesimally equivalent to π2. Then π1 is a representation of G

if and only if π2 is so. In fact, πι\κ is equivalent to π2\κ as representations

of K on the spaces E) and E}y respectively. Also the kernel of ψ is contained

in K. Hence, for an element k of the kernel of ψ, πι(k) is the identity operator

of E1 if and only if π2(k) is the identity operator of E2.

Proposition 8.5.3, For 0^1 ̂ n, C//(Λ) is a discrete class. More precisely,

we have Uι(A)=D(ΓιA^Gd.

Proof. It is sufficient to prove that the i£-spectrum Φ/(Λ) of £//(Λ) is

the same as the i£-spectrum of DσιA. To begin with, we shall show that the

i^-spectrum of DσιA contains Φ/(Λ).

In order to apply Theorem 1.4.1 to DσjAf take an" ordering in ί)% with respect

to which σtA is dominant; i.e. take σ/(Δ+) as the positive root system of Δ.

Then the set of noncompact positive roots is given by

(8.8) {*,—e0 (l^i^l), eo-ej

and we have

Pn = t^γ-eo+-j(ei-\ \-et—eι+1 en).

n

Let λ = Σ λ ^ » be in f)%. In our case, Q(X) in Theorem 1.4.1 is equal to
o=»

either 1 or 0 and Q(λ)=l if and only if

λ, <ΞZ

n

Let τ γ be in Φ/(Λ). From (8.6), 7 = *ΣίΎA satisfies the following

inequalities;
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1 if l ^ i and ί^ /,

(8-9) 2

Λ, - 1 ^ 7 , + * — ± ί

where Λ_j should be considered oo and Λn+1 should be considered — oo. Let
σ be an element of WG. Since σ(0)=0, we have

(8.10)

-Λ<_1>,+ Σ
2

If there is an integer i such that l^i, i^l and i<σ~\i), we have
and hence, from (8.9), we have

Also, if there is an integer / such that l+lί^i, i^n and ί>σ~ι(i), we have Λ, ^
Λff-i(, )+i and hence, from (8.9), we have

Therefore, in these two cases, we have

If otherwise, σ satisfies the condition that

if I n l a n d i ,

if /+1 ^i and z^n .

Hence σ must be the identity. If we put σ~\ΐ)=i (l^i^n) in (8.10), we
have clearly

Q((Ύ+Pk)-σA~Pn) = 1

After all, by Theorem 1.4.1, the multiplicity of τ γ in a representation in the
class DσιA is equal to 1. Therefore Φ/(Λ) is contained in the i£-spectrum of
DσίA.

Now, by Proposition 5.2.2, the iί-spectrum of DσιA is one of {Φ/'(Λ)
(O^/'^rc), ΦM(Λ) (0^p<q^n)}. Each Φίpβ(Λ) does not contain Φ;(Λ) and,
if / 'φ/, Φ//(Λ) does not also contain Φ/(Λ). Hence, Φ/(Λ) is necessarily the
jK-spectrum of Z)σ/Λ. The proposition is proved.



MULTIPLICITY FORMULAS ΪOR DISCRETE SERIES 615

From Proposition 8.4.1, 8.5.1 and 8.5.3, we obtain the following corollary
and complete Step 1 for g

Corollary 8.5.4. For Λ e g ί , the set GA—Gd is given as follows
(1). If Λ ι -Λ I + 1 ^ 2 for all O ^ ί ^ n - 1 , we have GA-Gd=φ.
(2). If Ai-Ai+1=l for some O^i^n-l, put

pA = the minimum of {i\0^i^n— 1, Λf —Λ, + 1 = 1}

qA = the maximum of {i\ Xf^itίn, Ai_x—Λf = 1} .

The we have GA-Gd= {tfM(Λ) \ pA^p<qfqA}.
(3). In particular, if Λ=p, we have GA—Gd={Upq(ρ)\0^p<q^n} where

UOn(ρ) is the class 1G.

8.6. Let us go forward Step 2. Once and for all, we fix Λ e § ί and an
integer / such that 0^/^w. We shall study Step 2 for cΓ/Λe^o Our purpose
is to compute

dim
±, πpq(A) \ κ)

for all
Take an ordering in ί)J as in the proof of Proposition 8.5.3 and fix. From

(8.8) and Lemma 6.2.1, the set of weights of L+ (lesp. L~) is given by

£,.= 1 or - 1

(8.11)

and the multiplicity of each weight is equal to 1.
The following lemma is proved by the same arguments as in Lemma 7.5.1.

Lemma 8.6.1. Let β and γ be in %t>
(1). Let σ^WG. If β+pk—<r(Ύ+pk) is a weight of L, σ is the identity,
(2). The multiplicity of rβ in τv(g)L is equal to ML(β—y), where ML(\)

( λ G © is the multiplicity of the weight λ in L.

Using this lemma, we can obtain the following proposition and complete

Step 2 for σ;Λ (0^/^n).

Proposition 8.6.2. Let I, p and q be integers such that 0^1 ^n abd Otί
n

(1). Ifp^l^qy we have

1 ifp+q is even >
dim

κ) =
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{ 0 tfp+q w even y

1 ifp+qisodd,

(2). If l<p or q<l, we have

dim Hom if(τ(r/Λ_pΛ®L±

ί πpq(A) \ κ) = 0 .

Proof. Let τy^K. Assume that τ y GΦ ί ? (A) and the multiplicity of τ γ

i n τσικ-pk®L is not equal to 0. By (2) of Lemma 8.6.1, we have ML(y—σ/Λ+
pk)+0. Hence, by (8.11), we have

7—σ /Λ+p* = — Σ £| (*o—*i)

for some fo, •••, £w} such that £,=1 or —1 (ltίίtίn)] i.e.

(8.12)

7, = A. .j if 1 ̂ ί and i^/,

if /+l^/

On the other hand, {yu •••, yn} satisfy the condition (8.7). Hence we have

, 2 + ^ 7 i ^ , ! + i f l ^ ί and z

(8.13) Λi-i^Ύί^Λf if ρ+l^i snd i

i— l ^ γ t ^Λ ί+1— 1

If p>l, there is an integer ι"0 such that / + l ^ / 0 = ί Then, by (8.12) and
(8.13), we have

and hence we have A ^ ^ X ^ + l . This is inconsistent with the fact that
Λ^^Λ^.i. Therefore we have/)^/. Similarly, if q<ly we have a contradic-
tion. Hence we have also q^l. Thus the assertion (2) is proved.

Now, assume that p^I^q. By (8.12) and (8.13), we have the following
inqualities;

if

if /+1^^ and

if ^ and
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These inequalities imply that

Si= - 1 if l^i and i^p,

( 8 1 4 ) .£i===1 if p+l^i and i^l,

] Si= - 1 if l+l^i and i^q,

, £,= 1 if q+l^i and i<^n.

After all, by (8.12), we have

(8.15) y = (Λ 0 +l, Ai+1, - , Λ ^ + l , ••, Λ,,.-, R,_l9 Λ/+1, -

—, Aff, Λff+1—1, —yΆtt—l)

(8.16) Π ^ = ( - l ) ί + ί - z .
ι = l

Conversely, if j is given by (8.15), it is clear that τy^Φp q(A) and we have

where {fj, •• ,θΛ} are given by (8.14). Then, by (2) of Lemma 8.6.1, the
multiplicity of τ γ in τσιA_Pk®L is equal to 1. Whether τ γ occurs in τσ/A_Pft(g)L+

or τσjA_Pkξζ>L~ is determined by the sign of (Π £,]•(—1)'. By (8.16) we have
/ n \ =1

( Π ^ ) (—1) / = (—l) ί + 9 Since τ y occurs in πpq(A) with multiplicity 1, the
assertion (2) follows. The proposition is proved.

8.7. Now, we have completed Step 1 and Step 2. From the basic formula
in Theorem 3.1.1, we shall obtain the main theorem in the case of G=SU(l> ή)

Let Γ be a torsion free discrete subgroup of G such that T\G is compact.
Then we have the following theorem.

n

Theorem 8.7.1. Let Λ be in %% and set Λ = Σ Λ ^ , Let I be an integer
ί = 0

such that 0 ^ / ^ n . Then we have the following formulas for the multiplicity

(1). / / Λ / - Λ / + 1 ^ 2 Λ « J Λ / _ ] - Λ / ^ 2 , we have

(2). If either Λ,—Λ l + 1=l or A/.j—Λ,= l, put

pA == the minimum of {i \0^i^n— 1, Λ,—Λί+1 = 1}

^Λ = the maximum of{i | l^i^n, Λ,.!—-A,- = 1} ,
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Then we have

Nτ{DσιA) = d(DσιA) vol (Γ\G)+

(3). In particular, if Ai—Ai+1=l for all O^i^n—1, that is, A=p, we have

Nτ(Dσι9) = d(D.lf)vol(Γ\G)+

where NΓ(U0,n(P))=NΓ(lG)=l.

Proof. All assertions immediately follow from Theorem 3.1,1, Corollary

8.5.4 and Proposition 8.6.2.

REMARK 8.7.2.

(1). In the above theorem, the condition on Λ in (1) agree with the con-

dition (i) of Theorem in the introduction of [6] (c.f. [6], p. 176).

(2). In the case that n=2, our theorem gives some formulas in [IS] (c.f.

[15], P 192).

(3). In the same way as the case of G=Spin(l, 2m), the set of classes

{Up,q(p)(0£p<q£n),DVi(p) (0^/^n)} corresponds with Πp(G)={Jij\iyj^0,

i+j^n-l}\J{D0,Du-,Du} in <:[1], Chapter VI, §4, 4.8; that is, £ / , »

corresponds with JPtH-q and Όσι? with Dh Also, these classes contribute to

Matsushima's formula about Betti numbers of the manifold T\G/K (c.f. [15],

p. 175, p. 191).
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