<table>
<thead>
<tr>
<th>Title</th>
<th>Some relations among various numerical invariants for links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shibuya, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1974, 11(2), p. 313-322</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10907</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
SOME RELATIONS AMONG VARIOUS NUMERICAL INVARIANTS FOR LINKS

TETSUO SHIBUYA

(Received September 20, 1973)

Introduction. Throughout this paper, "a link l of $\mu(l)$ components" means disjoint union of $\mu(l)$ oriented 1-spheres in R^3.

In §1, we study some 3-dimensional numerical invariants of links, that is, $g(l)$ (genus of l), $u(l)$ (see Definition 1) and $c(l)$ (see Definition 3) will be defined and we will have some relations among them as follows.

Theorem 1. For any link l, $g(l) \leq c(l)$ and $u(l) \leq c(l)$.

In §2, the 4-dimensional numerical invariants $g^*(l)$, $g^*_x(l)$ (see Definition 4), $u^*(l)$, $u^*_x(l)$ (see Definition 5), $c^*(l)$ and $c^*_x(l)$ (see Definition 6) will be defined and the main theorem will be proved.

Theorem 2. For any link l, we obtain

$$g^*(l) \leq g^*_x(l) \leq g(l)$$

$$c^*(l) \leq c^*_x(l) \leq c(l)$$

$$u^*(l) \leq u^*_x(l) \leq u(l)$$

As is usual, two links l and l' are said to be of the same type or isotopic, denoted by $l \approx l'$, if there exists an orientation preserving homeomorphism f of R^3 onto itself such that $f(l) = l'$.

∂X, $Int X$ and $cl X$ represents the boundary, the interior and the closure of X respectively.

The author wishes to thank to the members of Kobe Topology Seminar for their kind and helpful suggestions.

1. 3-dimensional numerical invariants

Let l be a link of $\mu(l)$ components in R^3. It is known in [9], [11] that l always bounds an orientable connected surface F in R. The minimum genus of these surfaces is called the genus of the link l and is denoted by $g(l)$. Note that $g(F)$ denotes the usual genus of a surface F.
Let L be a diagram of l, i.e., $L = p(l)$, where p is a regular projection of R^3 to R^2 ([2]). L has in general at least one double point if l is not a trivial link (unknotted and unlinked). A link can be deformed into a trivial link by employing a finite number of unlinking operation (Γ) defined as follows.

(Γ) Change an underpass into an overpass at a double point.

Definition 1. The minimum number of unlinking operations required to deform a given link l into a trivial link is called the **unlinking number** of l (in the 3-dimensional sense) and is denoted by $u(l)$.

Definition 2. Let F_0 be a surface which may not be connected and f be an immersion of F_0 into R^3. Put $F = f(F_0)$. Suppose that F has a finite number of simple double lines and these double lines do not intersect each other. Each double line J is one of the following three types (see [4])

1. a closed curve whose antecedents are closed curve J' and J'' that lie in $\text{Int } F_0$,
2. an arc whose antecedents are an arc J' that spans ∂F_0 and an arc J'' that lies entirely in $\text{Int } F_0$,
3. an arc whose antecedents are arcs J' and J'' each of which has an end point on ∂F_0 and the other one lies in $\text{Int } F_0$.

We call J a singularity of F. The singularities satisfying the condition (1), (2), (3) will be called (simple) loop, ribbon and clasp singularities respectively. [4]

We call F a non-singular surface if f is an embedding.

Then, to define the **clasp number** $c(l)$ of a link l we need to prove the following lemma.

Lemma 1. Any link l spans $\mu(l)$ singular disks whose singularities are only clasps and the number of these clasps is finite.

Proof. Let n be the unlinking number of l and p be a regular projection of l such that there exist n double points p_1, \ldots, p_n in $p(l)$ and l becomes a trivial link by (Γ)-operation along these points. We may make oriented small unknotted circles c_i, $i = 1, \ldots, 2n$, near to p_i, linking with l as shown Fig. 1 such that $L(l, c_i) = -L(l, c_{n+i}) = 1$ or -1 according as the orientation of l, where p_i is a point of $p^{-1}(p_i) \cap l$ and $L(l, c)$ denotes the linking number of l and c. Then there exist mutually disjoint bands B_i, $i = 1, \ldots, 2n$, with $B_i \cap l = \partial B_i \cap l$ an arc and

$$l + \partial \left(\bigcup_{i=1}^{n} B_i \right) + \left(\bigcup_{i=1}^{n} c_i \right) \approx O^\mu$$

$$l + \partial \left(\bigcup_{i=1}^{2n} B_i \right) + \left(\bigcup_{i=1}^{2n} c_i \right) \approx l$$

where O^μ is a trivial link of $\mu = \mu(l)$ components and $+$ means addition in the homology sense. Let $E = \bigcup_{i=1}^{\mu} E_i$ be a union of mutually disjoint spanning disks
of O^a and $B = \bigcup_{i=0}^{2a} B_i$. By a slight modification of E, B and $D = \bigcup_{i=0}^{2a} D_i$, where D is oriented mutually disjoint disks with $\partial D_i = e_i$, we have $B \cap D = \partial B \cap \partial D$, $B \cap E = (\partial B \cap \partial E) \cup$ (ribbon singularities), $D \cap E = \text{(clasp singularities)}$ and $\partial (B \cup D \cup E) \approx l$. For each ribbon singularity J we draw a simple area, on E to connect a point of dE and that of $\text{Int } J$ and put $E = \text{cl}(E - \bigcup_{i=1}^{r} N_i)$, where r is the number of ribbon types on E and N_i is a regular neighborhood of α_i in E. Then clearly $\partial(B \cup D \cup E) \approx l$ and the singularities of μ singular disks $B \cup D \cup E$ are only clasps and of course the clasp number of $B \cup D \cup E$ is finite. So the proof is complete.

Definition 3. For any link l, there is a singular disk with only clasps which spans l by Lemma 1. The minimum number of the clasps is called the **clasp number** of l, denoted by $c(l)$.

Then we have,

Theorem 1. For any link l, $c(l) \geq u(l)$, $c(l) \geq g(l)$.

Proof. $c(l) \geq u(l)$ is obvious from the definitions of these numbers. So we have to prove $c(l) \geq g(l)$. Let D be singular disks such that $c(D) = c(l)$ and $\partial D = l$, where $c(D)$ is the number of clasps of D. Making use of orientation preserving cuts ([4], [8]) along all clasps, we get an orientable surface F of genus $c(l)$ such that $\partial F = \partial D = l$. So $c(l) \geq g(l)$, which completes the proof.

Remark. These inequalities can not be replaced by equalities. For example for the knot 6_2, 6_2 is alternating, so $g(6_2) = 2$ ([1]) and $c(6_2) = 2$ by using Theorem 1 but $u(6_2) = 1$, and for the link \otimes, $c(\otimes) = u(\otimes) = 1$ but $g(\otimes) = 0$.

Fig. 1

VARIous NUMERICAL INVARIANTS FOR LINKS

315
2. 4-dimensional numerical invariants

Let l be a link in $\mathbb{R}^4[0]$, where $\mathbb{R}^4[a]=\{(x, y, z, t)\in\mathbb{R}^4| t=a\}$. Since l bounds an orientable connected surface F in $\mathbb{R}^4[0]$, l always bounds an orientable locally flat connected surface in $\mathbb{R}^4[0, t_0]=\{(x, y, z, t)\in\mathbb{R}^4| 0\leq t< t_0\}$. The minimum genus of these surfaces is an invariant of the link type ([3], [7]). It is denoted by $g^*(l)$ (in the 4-dimensional sense).

Definition 4. Especially for any link l we may span an orientable locally flat surface F in $\mathbb{R}^3[0, t_0)$ which has no minimum points with $dF=l$ in $\mathbb{R}^3[0, t_0)$, the minimum genus of these surfaces is called the ribbon type genus of l and is denoted by $g^*(l)$. It is clearly that $g^*(l)$ is an invariant of the link type of l.

Lemma 2. For any link l, $g^*(l)\leq g^*(l)\leq g(l)$.

A link l will be called split into two components l_1 and l_2 if there is a 3-ball B^3 such that $l_1\cap B^3, l_2\subset \mathbb{R}^3-\text{Int } B^3$. Then l is denoted by $l=l_1\cdot l_2$. Then

Lemma 3. For any link l, there is a number μ such that $g^*(l)=g^*(l\cdot O^\mu)$ for some trivial link O^μ of μ components.

Proof. Let F be a locally flat orientable surface in $\mathbb{R}^4[0, 1)$ with $\partial F=l$ in $\mathbb{R}^4[0]$ and $g(F)=g^*(l)$. Let p_1, \ldots, p_μ be the minimum points of F. We may take μ distinct points q_1, \ldots, q_μ in $\mathbb{R}^3[-1]$ and disjoint simple arcs $\alpha_1, \ldots, \alpha_\mu$ and α_i connects p_i with q_i and $\alpha_i\cap \mathbb{R}^4[t]$ is at most one point for each $i, 1\leq i\leq \mu$ and $t, 0\leq t<1$. Then we can deform F to a surface F' by an isotopy along α_i. The minimum points of F' are q_i and $F'\cap \mathbb{R}^3[0, 1)$ has no minimum points. Of course, $F'\cap \mathbb{R}^4[0, 1)\approx l\cdot O^\mu$, so $g^*(l\cdot O^\mu)\leq g^*(l)$ ([5], [10]).

Conversely, let F_0 be a locally flat surface in $\mathbb{R}^4[0, 1)$ with $F_0\cap \mathbb{R}^3[0]=l\cdot O^\mu$ which has no minimum points and $g^*(l\cdot O^\mu)=g(F_0)$. In $\mathbb{R}^3[-1, 0]$ we make $l\times [-1, 0]$. As O^μ is splitted from l, O^μ bounds mutually disjoint disks $D_i, i=1, \ldots, \mu$, in $\mathbb{R}^3[-1, 0]$ which do not intersect with $l\times [-1, 0]$. So $F=F_0\cup l\times [-1, 0] \cup (\cup D_i)$ is a locally flat orientable surface with boundary l and $g(F)=g(F_0)=g^*(l\cdot O^\mu)$. Therefore $g^*(l)\leq g(l\cdot O^\mu)$, which completes the proof.

Lemma 4 is essential to prove the main theorem.

Lemma 4. Let F be a locally flat orientable surface which has no minimum and maximum points and $F\cap \mathbb{R}^4[0]=l, F\cap \mathbb{R}^3[1]=l'$. Then there is a locally flat orientable surface F' properly embedded in $\mathbb{R}^4[0, 1]$ and isotopic to F in $\mathbb{R}^4[0, 1]$ ($F'\cap \mathbb{R}^4[0]\approx l$ in $\mathbb{R}^4[0], F'\cap \mathbb{R}^3[1]\approx l'$ in $\mathbb{R}^3[1]$ respectively). Furthermore there exist some disjoint 3-balls $B^3_i, i=1, \ldots, n$, in $\mathbb{R}^4[0]$. Such that
\[
\text{cl}(F' - \bigcup_{i=1}^{n} B_i^3 \times [0, 1]) = \text{cl}(F' \cap R^3[0] - \bigcup_{i=1}^{n} B_i^3) \times [0, 1].
\]

Proof. It may be assumed that \(F\) has \(n\) critical points and \(R^3[t_i]\) contains only one critical point for \(t_i, 0 < t_i < \cdots < t_n < 1\). A critical point \(p_i\) may be changed by a critical band \(B_i^3\) for each \(i\) (see [6]). We may deform \(F\) by an isotopy of \(R^3[0, 1]\) carrying \(B_i^3\) into \(R^3[1/2]\) so that maximum and minimum points do not appear in the resulting surface. We will write the resulting surface and the band \(F\) and \(B_i^3\) again. Since \(F \cap R^3[1/2, 1]\) is a locally flat orientable surface which has no maximum, minimum points and critical bands,

\[
\left(F \cap R^3\left[\frac{1}{2}, 1\right] - \partial\left(\bigcup_{i=1}^{n} B_i^3\right)\right) \cup \left(\bigcup_{i=1}^{n} \alpha_i \cup \alpha_i\right) \approx \left(F \cap R^3[1]\right) \times \left[\frac{1}{2}, 1\right]
\]

in \(R^3[1/2, 1]\) (for \(\alpha_i\) and \(\bar{\alpha}_i\), see Fig. 2) Then using the same argument as in [10] we may assume that the critical bands do not intersect with each other. Put \(F_1 = F \cap R^3[1/2, 1]\). Because \(F \cap R^3[0, 1/2]\) has no minimum, maximum points and critical bands, we see

\[
\left(F \cap R^3\left[0, \frac{1}{2}\right] - \partial\left(\bigcup_{i=1}^{n} B_i^3\right)\right) \cup \left(\bigcup_{i=1}^{n} \beta_i \cup \beta_i\right) \\
\approx \left(F \cap R^3\left[\frac{1}{2}, 1\right] - \partial\left(\bigcup_{i=1}^{n} B_i^3\right)\right) \cup \left(\bigcup_{i=1}^{n} \beta_i \cup \beta_i\right) \times \left[0, \frac{1}{2}\right] \text{ in } R^3[0, 1/2]
\]

\[\text{Fig. 2}\]
Then we project mutually disjoint bands $\bigcup_{i=1}^{n} B^3_i$ in $R^3[0,1]_2$ to $R^3[0]$ by a natural projection p, i.e., for any points $(x, y, z, t) \in R^4$, $p(x, y, z, t) = (x, y, z) \in R^3[0]$. Then we can take mutually disjoint 3-balls B^3_i each of which contains only one band properly, i.e., $Int B^3_i \supset p(B^3_i)$ and $\partial B^3_i \supset \partial(p(B^3_i))$. So we may easily determine the surface F' to be a required one. This completes the proof.

Let l be a link in R^3 (or $R^3[0]$). l is called a weak ribbon link if l bounds a singular surface F in R^3 of genus 0 with $\partial F = l$ and mutually disjoint ribbon singularities. And l is called a weak slice link if l bounds a non-singular locally flat orientable surface F of genus 0 in $R^3[0, \infty)$, with $\partial F = l$. ([3], [4]).

Then if l is a weak ribbon link, l is also a weak slice link (see Lemma 5).

Lemma 5. l is a weak ribbon link if and only if l bounds a non-singular locally flat orientable surface F in $R^3[0, 1]$ of genus 0 with $\partial F = l$ which has no minimum points.

Proof. If l is a weak ribbon link, there is a singular surface F_o in $R^3[0]$ of genus 0 with $\partial F_o = l$ and just ribbon singularities. Now we take small disks D_i, $i=1, \ldots, n$, on F_o along the singularities such that $cl(F_o - \bigcup_{i=1}^{n} D_i)$ is a non-singular surface and $l \cap \bigcup_{i=1}^{n} D_i = \emptyset$. As $\partial(\bigcup_{i=1}^{n} D_i)$ is a trivial link, we may construct mutually disjoint cones $p_i^* \partial D_i$ in $R^3[0, 1]_2$, where p_1, \ldots, p_n are different points in $R^3[0, 1]_2$. Then $(F_o - \bigcup_{i=1}^{n} D_i) \cup (\bigcup_{i=1}^{n} p_i^* \partial D_i)$ is a required surface F.

Conversely, let F be a locally flat orientable surface of genus 0 with $\partial F = l$ which has no minimum points and is embedded in $R^3[0, 1)$. We can bring the maximum points of F to $R^3[2]$ by the same technique we used to prove Lemma 3 without making new maximum and minimum points and with ∂F fixed. Put the deformed surface F'. Clearly $F' \cap R^3[1] \approx O^n$ and $F' \cap R^3[0, 1]$ has no minimum and maximum points. So by Lemma 4, we may construct a proper surface F'' in $R^3[0, 1]$ which is isotopic to $F' \cap R^3[0, 1]$ and there exist mutually disjoint 3-balls B^3_i, $i=1, \ldots, n$, in $R^3[0]$ such that

$$cl(F'' - \bigcup_{i=1}^{n} B^3_i \times [0, 1]) \approx cl(F'' \cap R^3[0] - \bigcup_{i=1}^{n} B^3_i) \times [0, 1]$$

and the mutually disjoint bands B^3_i are properly embedded in $B^3_i \times [0, 1]$. Let D_i, $i=1, \ldots, n$, be mutually disjoint disks in R^3 with boundary O^n. Then we project $\bar{F} = F'' \cup (\bigcup_{i=1}^{n} D_i)$ on $R^3[0]$ by a natural projection p. Then we may easily prove that $\partial p(\bar{F}) \approx l$ and the singularities of $p(\bar{F})$ are only ribbon singularities by
VARIOUS NUMERICAL INVARIANTS FOR LINKS

an easy modification of disks and bands. Now the proof is complete.

REMARK. From this Lemma, l is a weak ribbon link if and only if $g^*_l(l)=0$ (Clearly l is a weak slice link if and only if $g^*_l(l)=0$).

DEFINITION 5. The minimum number of unlinking (I') operations required to deform a given link l into a weak slice link, a weak ribbon link are called the unlinking number of l (in the 4-dimensional sense), denoted by $u^*(l)$, $u^*_l(l)$ respectively. We may easily prove the following.

Lemma 6. For any link l, $u^*(l) \leq u^*_l(l) \leq u(l)$.

By Lemma 1 any link l in $R^4[0]$ may span $\mu(l)$ singular disks D whose only singularities are finite clasps. Let α_1, ..., α_μ be all the clasps on D and take mutually disjoint regular neighborhoods $\cup N(\alpha_i; R^4[0])$. Then $\partial(N(\alpha_i; R^4[0]) \cap D) \approx \varnothing$. Let p_1, ..., p_μ be different points in $R^4[1]$ and make a cone $\tilde{D}_i=p_i* (\partial(N(\alpha_i; R^4[0]) \cap D))$ for each i and we may construct these cones not to intersect with each other. Then $\tilde{D}=D- \bigcup_{i=1}^\mu N(\alpha_i; R^4[0]) \cup (\bigcup \tilde{D}_i)$ is a locally flat $\mu(l)$ disks with singularities p_1, ..., p_μ such that $\partial\left(N\left(p_i; R^4\left(\frac{1}{2}, \frac{3}{2}\right)\right) \cap \tilde{D}\right) \approx \varnothing$, $\partial \tilde{D}=l$ and \tilde{D} has no minimum points. So we may define the clasp number of a link (in the 4-dimensional sense) as follows.

Let F be an orientable surface of genus 0 with μ boundaries. Suppose that f is a locally flat immersion of F in $R^4(0, \infty)$ such that $f(\partial F)=l$ is a given link l in $R^4[0]$, $f(\text{Int } F)\subset R^4(0, \infty)$ and the singularities of $f(\text{Int } F)$ are finite points p_1, ..., p_μ with $\partial B^4(p_i) \cap f(\text{Int } F) \approx \varnothing$.

DEFINITION 6. For all the locally flat immersions satisfying the above condition, the minimum number of these singularities is called the clasp number of l and is denoted by $c^*(l)$. Especially when we restrict Definition 6 only for the locally flat immersions which has no minimum points, the minimum number of these singularities is denoted by $c^*_l(l)$.

Then the next Lemma is trivial from the definition and the explanation above Definition 6.

Lemma 7. For any link l, $c^*(l) \leq c^*_l(l) \leq c(l)$

Modifying the technique we used to prove Lemma 3, we obtain

Lemma 8. For any link l, there is a number μ such that $c^*(l)=c^*_l(l\cdot O^\mu)$ for some trivial link O^μ.

Now we will examine the relation between $g^*(l)$, $c^*(l)$, $u^*(l)$ and $g^*_l(l)$, $c^*_l(l)$, $u^*_l(l)$.
Lemma 9. For any link, \(g^*(l) \leq c^*(l) \), \(g^*_r(l) \leq c^*_r(l) \).

Proof. Let \(F \) be a locally flat non-singular surface except \(c^*(l) \) points \(p_1, \ldots, p_m \), where \(n = c^*(l) \), with \(\partial F = l \) and \(l_i = \partial N(p_i; R^3[0, \infty)) \cap F \approx \bigcirc \). Then \(l_i \) may span an orientable surface \(F_i \) of genus \(0 \) in \(\partial N(p_i; R^3[0, \infty)) \). So

\[
\tilde{F} = (F - \bigcup_{i=1}^n N(p_i; R^3[0, \infty))) \cup \bigcup_{i=1}^n F_i
\]

is a non-singular locally flat orientable surface of genus \(n \) with \(\partial \tilde{F} = l \). Thus \(g^*(l) \leq c^*(l) \). We can prove \(g^*_r(l) \leq c^*_r(l) \) by using the technique to prove the first half of Lemma 9. Now the proof is complete.

Lemma 10. For any link \(l \), \(c^*(l) \leq u^*(l) \) and \(c^*_r(l) \leq u^*_r(l) \).

Proof. Let \(l \) be a link in \(R^3[0] \). Now we perform \(u^*(l) \)-times (or \(u^*_r(l) \)-times) \((\Gamma)\) operation to \(l \) in \(R^3[0, 1] \) so that \(V \in R^3[1] \) is a weak slice (or weak ribbon) link. Then there exist proper annuli \(F \in R^3[0, 1] \) with \(\partial F = l \) and \(\partial F \) has no minimum and maximum points and singularities are finite points \(p_1, \ldots, p_n \) in \(\text{Int} F \), where \(m = c^*(l) \) (or \(m = c^*_r(l) \)). As \(l' \) is a weak slice (or a weak ribbon) link, we may span a locally flat orientable surface \(F \) in \(R^3[1, \infty) \) with \(\partial F = l' \) (if \(l' \) is a weak ribbon link, \(F \) has no minimum points by Lemma 5). Then there is a singular surface \(F_0 \cup F_1 \) of genus \(0 \) whose boundary is \(l \). Thus \(c^*(l) \leq u^*(l) \) (or \(c^*_r(l) \leq u^*_r(l) \)). This completes the proof of Lemma 10.

And by Lemma 11, \(c^*_r(l) = u^*_r(l) \) follows.

Lemma 11. For any link \(l \), \(u^*_r(l) \leq c^*_r(l) \).

Proof. Let \(l \) be a link in \(R^3[0] \) and \(F \) be a surface in \(R^3[0, 1] \) which has no minimum points with \(\partial F = l \) and \(c^*_r(l) \) be the number of clasps. \(F \) has \(m \) singular points \(p_1, \ldots, p_m \) and \(n \) maximum points \(p_{m+1}, \ldots, p_{m+n} \), where \(m = c^*_r(l) \). We may connect these points to disjoint arcs \(q_1, \ldots, q_m, q_{m+1, \ldots, m+n} \) in \(R^3[2] \) by disjoint arcs \(\alpha_1, \ldots, \alpha_m + n \) such that \(\alpha_i \cap F = \partial \alpha_i \cap F = p_i \) and \(\alpha_i \cap R^3[1] \) is at most one point for each \(i, 0 < t < 2 \). By an isotopy we may bring \(p_i \) to \(q_i \) along \(\alpha_i \) with \(\partial F \) fixed to make a new surface \(F' \) which is isotopic to \(F \) and \(F' \) has no minimum and maximum points and singularities are finite points \(p_1, \ldots, p_m \). Let \(D_i = \{ p_i \} \) be disjoint balls in \(R^3[1] \) which is a component of \(O^* \). By Lemma 4, \(F' \) is deformed to \(F'' \) which is a proper surface in \(R^3[0, 1] \) and is isotopic to \(F' \cap R^3[0, 1] \) (or \(F' \cap R^3[0] \)).

Let \(D_i^3, i = 1, \ldots, m, \) be mutually disjoint 3-balls in \(R^3[1] \) such that \(D_i^3 \) contains only one \(\bigcirc \) in its interior and \(D_i^3 \cap D_j^3 = \phi \), where \(D_i^3 \) is a spanning disk of \(O_i \) which is a component of \(O^* \). Then we may take a simple arc \(\beta_i \) in \(p(D_i^3) - \bigcup_{j \neq i} B_j^3 \) to connect two points of \(l \) as shown in
Fig. 3 (a) such that \otimes becomes a trivial link by the (Γ) operation along $p^{-1}(\beta_i) \cap R^3[1]$ in D^3_i for each i, where p is a natural projection of $R^3[0, 1]$ to $R^3[0]$. Then we determine β_{i_0}, β_{i_1} as shown in Fig. 3 (b) which may be taken in the neighborhood of β_i and $F''''= (F'' - (\bigcup_{i=1}^{m} \beta_{i_0} \times [0, 1])) \cup (\bigcup_{i=1}^{m} \beta_{i_1} \times [0, 1]) \cup (\bigcup_{j=m+1}^{2m} D_j) \cup (\bigcup_{l=1}^{2m} D_l)$, where D_i and D_{m+i} are disjoint disks in $\text{Int} D^3$. Then as F'''' has no minimum points, $\partial F'''' \cap R^3[0] = l'$ is a weak ribbon link by Lemma 5 and l is obtained from l' by $c^*(l)$-times (Γ) operation. So $u^*(l) \leq c^*(l)$ which completes the proof.

Let $\sigma(l)$ be the signature of a link (for the definition of (l), see [7]), then it is known $\frac{1}{2} (|\sigma(l)| - \mu(l) + 1) \leq g^*(l)$ by Theorem 9.1 [7].

Now we complete our researches.

Theorem 2. For any link l, we obtain $\frac{1}{2} (|\sigma(l)| - \mu(l) + 1) \leq g^*(l)$ and

$$g^*(l) \leq c^*(l) \leq g(l)$$

$$c^*(l) \leq c^*(l) \leq c(l)$$

$$u^*(l) \leq u^*(l) \leq u(l)$$

Remark. If l is a non-trivial weak ribbon link of 1 component, then $g^*(l) = c^*(l) = u^*(l) = 0$, but $g(l) \cdot c(l) \cdot u(l) \neq 0$.

Question. In the above diagram of 4-dimensional numerical invariants of links, which inequality can be replaced by an equality?
References

