<table>
<thead>
<tr>
<th>Title</th>
<th>Some relations among various numerical invariants for links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shibuya, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1974, 11(2), p. 313-322</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10907</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
SOME RELATIONS AMONG VARIOUS NUMERICAL INVARIANTS FOR LINKS

TETSUO SHIBUYA

(Received September 20, 1973)

Introduction. Throughout this paper, "a link \(l \) of \(\mu(l) \) components" means disjoint union of \(\mu(l) \) oriented 1-spheres in \(\mathbb{R}^3 \).

In §1, we study some 3-dimensional numerical invariants of links, that is, \(g(l) \) (genus of \(l \)), \(u(l) \) (see Definition 1) and \(c(l) \) (see Definition 3) will be defined and we will have some relations among them as follows.

Theorem 1. For any link \(l \), \(g(l) \leq c(l) \) and \(u(l) \leq c(l) \).

In §2, the 4-dimensional numerical invariants \(g^*(l) \), \(g^*_y(l) \) (see Definition 4), \(u^*(l) \), \(u^*_y(l) \) (see Definition 5), \(c^*(l) \) and \(c^*_y(l) \) (see Definition 6) will be defined and the main theorem will be proved.

Theorem 2. For any link \(l \), we obtain

\[
\begin{align*}
g^*(l) & \leq g^*_y(l) \leq g(l) \\
\forall l & \forall l & \forall l \\
c^*(l) & \leq c^*_y(l) \leq c(l) \\
\forall l & \forall l & \forall l \\
u^*(l) & \leq u^*_y(l) \leq u(l)
\end{align*}
\]

As is usual, two links \(l \) and \(l' \) are said to be of the same type or isotopic, denoted by \(l \simeq l' \), if there exists an orientation preserving homeomorphism \(f \) of \(\mathbb{R}^3 \) onto itself such that \(f(l) = l' \).

\(\partial X \), \(\text{Int } X \) and \(\text{cl } X \) represents the boundary, the interior and the closure of \(X \) respectively.

The author wishes to thank to the members of Kobe Topology Seminar for their kind and helpful suggestions.

1. 3-dimensional numerical invariants

Let \(l \) be a link of \(\mu(l) \) components in \(\mathbb{R}^3 \). It is known in [9], [11] that \(l \) always bounds an orientable connected surface \(F \) in \(\mathbb{R} \). The minimum genus of these surfaces is called the genus of the link \(l \) and is denoted by \(g(l) \). Note that \(g(F) \) denotes the usual genus of a surface \(F \).
Let \(L \) be a diagram of \(l \), i.e. \(L = p(l) \), where \(p \) is a regular projection of \(\mathbb{R}^3 \) to \(\mathbb{R}^2 \) \([2]\). \(L \) has in general at least one double point if \(l \) is not a trivial link (unknotted and unlinked). A link can be deformed into a trivial link by employing a finite number of unlinking operation \((\Gamma)\) defined as follows.

\((\Gamma)\) \textit{Change an underpass into an overpass at a double point.}

\textbf{Definition 1.} The minimum number of unlinking operations required to deform a given link \(l \) into a trivial link is called the \textit{unlinking number} of \(l \) (in the 3-dimensional sense) and is denoted by \(u(l) \).

\textbf{Definition 2.} Let \(F_0 \) be a surface which may not be connected and \(f \) be an immersion of \(F_0 \) into \(\mathbb{R}^3 \). Put \(F = f(F_0) \). Suppose that \(F \) has a finite number of simple double lines and these double lines do not intersect each other. Each double line \(J \) is one of the following three types (see \([4]\))

1. a closed curve whose antecedents are closed curve \(J' \) and \(J'' \) that lie in \(\text{Int } F_0 \),
2. an arc whose antecedents are an arc \(J' \) that spans \(\partial F_0 \) and an arc \(J'' \) that lies entirely in \(\text{Int } F_0 \),
3. an arc whose antecedents are arcs \(J' \) and \(J'' \) each of which has an end point on \(\partial F_0 \), and the other one lies in \(\text{Int } F_0 \).

We call \(J \) a \textit{singularity} of \(F \). The singularities satisfying the condition (1), (2), (3) will be called \textit{(simple) loop}, \textit{ribbon} and \textit{clasp} singularities respectively. \([4]\)

We call \(F \) a \textit{non-singular} surface if \(f \) is an embedding.

Then, to define the \textit{clasp number} \(c(l) \) of a link \(l \) we need to prove the following lemma.

\textbf{Lemma 1.} Any link \(l \) spans \(\mu(l) \) singular disks whose singularities are only clasps and the number of these clasps is finite.

Proof. Let \(n \) be the unlinking number of \(l \) and \(p \) be a regular projection of \(l \) such that there exist \(n \) double points \(p_1, \ldots, p_n \) in \(p(l) \) and \(l \) becomes a trivial link by \((\Gamma)\)-operation along these points. We may make oriented small unknotted circles \(c_i, i=1, \ldots, 2n, \) near to \(p_i \) linking with \(l \) as shown Fig. 1 such that \(L(l, c_i) = -1 \) or \(-1 \) according as the orientation of \(l \), where \(p_i \) is a point of \(p^{-1}(p_i) \cap l \) and \(L(l, c) \) denotes the linking number of \(l \) and \(c \). Then there exist mutually disjoint bands \(B_i, i=1, \ldots, 2n, \) with \(B_i \cap l = \partial B_i \cap l \) an arc and

\[
\begin{align*}
\text{L}_+ & \partial (\bigcup_{i=1}^n B_i) + (\bigcup_{i=1}^n c_i) \approx O^\mu \\
\text{L}_+ & \partial (\bigcup_{i=1}^{2n} B_i) + (\bigcup_{i=1}^{2n} c_i) \approx l
\end{align*}
\]

where \(O^\mu \) is a trivial link of \(\mu = \mu(l) \) components and \(+ \) means addition in the homology sense. Let \(E = \bigcup_{i=1}^{\mu} E_i \) be a union of mutually disjoint spanning disks
of O^n and $B = \bigcup_{i=0}^{2n} B_i$. By a slight modification of E, B and $D = \bigcup_{i=0}^{2n} D_i$, where D is oriented mutually disjoint disks with $\partial D_i = c_i$, we have $B \cap D = \partial B \cap \partial D$, $B \cap E = (\partial B \cap \partial E) \cup$ (ribbon singularities), $D \cap E = (\text{clasp singularities})$ and $\partial (B \cup D \cup E) \approx l$. For each ribbon singularity J we draw a simple area α_i on E to connect a point of dE and that of $\text{Int } J$ and put $E = \text{cl}(E - \bigcup_{i=1}^{r} N_i)$, where r is the number of ribbon types on E and N_i is a regular neighborhood of α_i in E. Then clearly $\partial (B \cup D \cup \bar{E}) \approx l$ and the singularities of μ singular disks $B \cup D \cup \bar{E}$ are only clasps and of course the clasp number of $B \cup D \cup \bar{E}$ is finite. So the proof is complete.

Definition 3. For any link l, there is a singular disk with only clasps which spans l by Lemma 1. The minimum number of the clasps is called the **clasp number** of l, denoted by $c(l)$.

Then we have,

Theorem 1. For any link l, $c(l) \geq u(l)$, $c(l) \geq g(l)$.

Proof. $c(l) \geq u(l)$ is obvious from the definitions of these numbers. So we have to prove $c(l) \leq g(l)$. Let D be singular disks such that $c(D) = c(l)$ and $\partial D = l$, where $c(D)$ is the number of clasps of D. Making use of orientation preserving cuts ([4], [8]) along all clasps, we get an orientable surface F of genus $c(l)$ such that $\partial F = \partial D = l$. So $c(l) \leq g(l)$, which completes the proof.

Remark. These inequalities can not be replaced by equalities. For example for the knot 6_2, 6_2 is alternating, so $g(6_2) = 2$ ([1]) and $c(6_2) = 2$ by using Theorem 1 but $u(6_2) = 1$, and for the link \otimes, $c(\otimes) = u(\otimes) = 1$ but $g(\otimes) = 0$.
2. 4-dimensional numerical invariants

Let \(l \) be a link in \(R^3[0] \), where \(R^3[a]=\{(x, y, z) \in R^4 | t=a\} \). Since \(l \) bounds an orientable connected surface \(F \) in \(R^3[0] \), \(l \) always bounds an orientable locally flat connected surface in \(R^3[0, t_o]=\{(x, y, z, t) \in R^4 | 0 \leq t < t_o\} \). The minimum genus of these surfaces is an invariant of the link type ([3], [7]). It is denoted by \(g^*(l) \) (in the 4-dimensional sense).

Definition 4. Especially for any link \(l \) we may span an orientable locally flat surface \(F \) in \(R^3[0, t_o) \) which has no minimum points with \(dF=l \) in \(R^3[0) \). The minimum genus of these surfaces is called the ribbon type genus of \(l \) and is denoted by \(g^*(l) \).

It is clearly that \(g^*(l) \) is an invariant of the link type of \(l \).

Then from the definition of \(g^*(l) \), \(g^*(l) \) and \(g(l) \), we have

Lemma 2. For any link \(l \), \(g^*(l) \leq g^*(l) \leq g(l) \).

A link \(l \) will be called split into two components \(l_1 \) and \(l_2 \) if there is a 3-ball \(B^3 \) such that \(l \cap B^3 \neq \emptyset \). Then \(l \) is denoted by \(l=l_1 \cup l_2 \). Then

Lemma 3. For any link \(l \), there is a number \(\mu \) such that \(g^*(l)=g^*(l \cup \mu) \) for some trivial link \(l \cup \mu \) of \(\mu \) components.

Proof. Let \(F \) be a locally flat orientable surface in \(R^3[0, 1) \) with \(\partial F=l \) in \(R^3[0] \) and \(g(F)=g^*(l) \). Let \(p_1, \cdots, p_\mu \) be the minimum points of \(F \). We may take \(\mu \) distinct points \(q_1, \cdots, q_\mu \) in \(R^3[-1, 1] \) and disjoint simple arcs \(\alpha_1, \cdots, \alpha_\mu \) and \(\alpha_i \) connects \(p_1 \) with \(q_1 \) and \(\alpha_i \cap R^3[t] \) is at most one point for each \(i, 1 \leq i \leq \mu \) and \(t, 0 \leq t < 1 \). Then we can deform \(F \) to a surface \(F' \) by an isotopy along \(\alpha_i \). The minimum points of \(F' \) are \(q_i \) and \(F' \cap R^3[0, 1) \) has no minimum points. Of course, \(F' \cap R^3[0]=l \cup \mu \), so \(g^*(l \cup \mu) \leq g^*(l) \). ([5], [10]).

Conversely, let \(F_\mu \) be a locally flat surface in \(R^3[0, 1] \) with \(F_\mu \cap R^3[0]=l \cup \mu \) which has no minimum points and \(g^*(l \cup \mu)=g(F_\mu) \). In \(R^3[-1, 0] \) we make \(l \cup [-1, 0] \). As \(O^\mu \) is splitted from \(l \), \(O^\mu \) bounds mutually disjoint disks \(D_i, i=1, \cdots, \mu \) in \(R^3[-1, 0] \) which do not intersect with \(l \cup [-1, 0] \). So \(F=F_\mu \cup l \cup [-1, 0] \cup \bigcup D_i \) is a locally flat orientable surface with boundary \(l \) and \(g(F)=g(F_\mu)=g^*(l \cup \mu) \). Therefore \(g^*(l) \leq g(l \cup \mu) \), which completes the proof.

Lemma 4 is essential to prove the main theorem.

Lemma 4. Let \(F \) be a locally flat orientable surface which has no minimum and maximum points and \(F \cap R^3[0]=l, F \cap R^3[1]=l' \). Then there is a locally flat orientable surface \(F' \) properly embedded in \(R^3[0, 1] \) and isotopic to \(F \) in \(R^3[0, 1] \) \((F' \cap R^3[0]=l \) in \(R^3[0], F' \cap R^3[1]=l' \) in \(R^3[1] \) respectively). Furthermore there exist some disjoint 3-balls \(B_i^3, i=1, \cdots, n \) in \(R^3[0] \) such that
\[\text{cl}(F' - \bigcup_{i=1}^{n} B_{i}^{+3} \times [0, 1]) = \text{cl}(F' \cap R^{3}[0] - \bigcup_{i=1}^{n} B_{i}^{3}) \times [0, 1]. \]

Proof. It may be assumed that \(F \) has \(n \) critical points and \(R^3[t_i] \) contains only one critical point for \(t_i, 0 < t_i < \cdots < t_n < 1 \). A critical point \(p_i \) may be changed by a critical band \(B_i^+ \) for each \(i \) (see [6]). We may deform \(F \) by an isotopy of \(R^3[0, 1] \) carrying \(B_i^+ \) into \(R^3[\frac{1}{2}] \) so that maximum and minimum points do not appear in the resulting surface. We will write the resulting surface and the band \(F \) and \(B_i^+ \) again. Since \(F \cap R^3(\frac{1}{2}, 1) \) is a locally flat orientable surface which has no maximum, minimum points and critical bands,

\[
\left(F \cap R^3\left[\frac{1}{2}, 1 \right] - \partial(\bigcup_{i=1}^{n} B_i^{+3}) \right) \cup \left(\bigcup_{i=1}^{n} \alpha_i \cup \alpha_i \right) \cong (F \cap R^3[1]) \times \left[\frac{1}{2}, 1 \right]
\]

in \(R^3[\frac{1}{2}, 1] \) (for \(\alpha_i \) and \(\alpha_i \), see Fig. 2). Then using the same argument as in [10] we may assume that the critical bands do not intersect with each other. Put \(F = F \cap R^3[1] \times \left[\frac{1}{2}, 1 \right] \). Because \(F \cap R^3\left[0, \frac{1}{2} \right) \) has no minimum, maximum points and critical bands, we see

\[
\left(F \cap R^3\left[0, \frac{1}{2} \right] - \partial(\bigcup_{i=1}^{n} B_i^{+3}) \right) \cup \left(\bigcup_{i=1}^{n} \beta_i \cup \beta_i \right) \cong (F \cap R^3[1]) \times \left[0, \frac{1}{2} \right] \text{ in } R^3\left[0, \frac{1}{2} \right]
\]
Then we project mutually disjoint bands \(\bigcup_{i=1}^{n} B_i^2 \) in \(\mathbb{R}^3 \left[\frac{1}{2} \right] \) to \(\mathbb{R}^2[0] \) by a natural projection \(p \) i.e. for any points \((x, y, z, t) \in \mathbb{R}^4, p(x, y, z, t) = (x, y, z, 0) \in \mathbb{R}^2[0] \).

Then we can take mutually disjoint 3-balls \(B_i^3 \) each of which contains only one band properly, i.e. \(\text{Int} \ B_i^3 \supset \text{Int} \ p(B_i^3) \) and \(\partial B_i^3 \supset \partial(p(B_i^3)) \). So we may easily determine the surface \(F' \) to be a required one. This completes the proof.

Let \(l \) be a link in \(\mathbb{R}^3 \) (or \(\mathbb{R}^3[0] \)). \(l \) is called a **weak ribbon link** if \(l \) bounds a singular surface \(F \) in \(\mathbb{R}^3 \) of genus 0 with \(\partial F = l \) and mutually disjoint ribbon singularities. And \(l \) is called a **weak slice link** if \(l \) bounds a non-singular locally flat orientable surface \(F \) of genus 0 in \(\mathbb{R}^3[0, \infty) \) with \(\partial F = l \) \(([3], [4])\).

Then if \(l \) is a weak ribbon link \(l \) is also a weak slice link (see Lemma 5).

Lemma 5. \(l \) is a weak ribbon link if and only if \(l \) bounds a non-singular locally flat orientable surface \(F \) in \(\mathbb{R}^3[0, 1) \) of genus 0 with \(\partial F = l \) which has no minimum points.

Proof. If \(l \) is a weak ribbon link, there is a singular surface \(F_0 \) in \(\mathbb{R}^3[0] \) of genus 0 with \(\partial F_0 = l \) and just ribbon singularities. Now we take small disks \(D_i, i=1, \cdots, n, \) on \(F_0 \) along the singularities such that \(\text{cl}(F_0 - \bigcup_{i=1}^{n} D_i) \) is a non-singular surface and \(l \cap (\bigcup_{i=1}^{n} D_i) = \emptyset \). As \(\partial(\bigcup_{i=1}^{n} D_i) \) is a trivial link, we may construct mutually disjoint cones \(p_i^* \partial D_i \) in \(\mathbb{R}^3 \left[0, \frac{1}{2} \right] \), where \(p_1, \cdots, p_n \) are different points in \(\mathbb{R}^3 \left[0, \frac{1}{2} \right] \). Then \((F_0 - \bigcup_{i=1}^{n} D_i) \cup (\bigcup_{i=1}^{n} p_i^* \partial D_i) \) is a required surface \(F \).

Conversely, let \(F \) be a locally flat orientable surface of genus 0 with \(\partial F = l \) which has no minimum points and is embedded in \(\mathbb{R}^3[0, 1) \). We can bring the maximum points of \(F \) to \(\mathbb{R}^3[2] \) by the same technique we used to prove Lemma 3 without making new maximum and minimum points and with \(\partial F \) fixed. Put the deformed surface \(F' \). Clearly \(F' \cap R^3[1] \approx O^n \) and \(F' \cap R^3[0, 1) \) has no minimum and maximum points. So by Lemma 4, we may construct a proper surface \(F'' \) in \(\mathbb{R}^3[0, 1] \) which is isotopic to \(F' \cap R^3[0, 1] \) and there exist mutually disjoint 3-balls \(B_i^3, i=1, \cdots, p, \) in \(\mathbb{R}^3[0] \) such that

\[
\text{cl}(F'' - \bigcup_{i=1}^{n} B_i^3 \times [0, 1]) \approx \text{cl}(F'' \cap \mathbb{R}^3[0] - \bigcup_{i=1}^{n} B_i^3) \times [0, 1]
\]

and the mutually disjoint bands \(B_i^3 \) are properly embedded in \(B_i^3 \times \left[\frac{1}{2} \right] \). Let \(D, i=1, \cdots, n, \) be mutually disjoint disks in \(\mathbb{R}^3[1] \) with boundary \(O^n \). Then we project \(\tilde{F} = F'' \cup (\bigcup_{i=1}^{n} D_i) \) on \(\mathbb{R}^3[0] \) by a natural projection \(p \). Then we may easily prove that \(\partial p(\tilde{F}) \approx l \) and the singularities of \(p(\tilde{F}) \) are only ribbon singularities by
an easy modification of disks and bands. Now the proof is complete.

Remark. From this Lemma, \(l \) is a weak ribbon link if and only if \(g^* (l) = 0 \) (Clearly \(l \) is a weak slice link if and only if \(g^* (l) = 0 \)).

Definition 5. The minimum number of unlinking (\(\Gamma \)) operations required to deform a given link \(l \) into a weak slice link, a weak ribbon link are called the unlinking number of \(l \) (in the 4-dimensional sense), denoted by \(u^* (l) \), \(u^*_x (l) \) respectively. We may easily prove the following.

Lemma 6. For any link \(l \), \(u^* (l) \leq u^*_x (l) \leq u (l) \).

By Lemma 1 any link \(l \) in \(R[0] \) may span \(\mu (l) \) singular disks \(D \) whose only singularities are finite clasps. Let \(\alpha_1 , \ldots , \alpha_n \) be all the clasps on \(D \) and take mutually disjoint regular neighborhoods \(\bigcup \bigcap N (\alpha_i : R[0]) \). Then \(\partial (N (\alpha_i : R[0]) \cap D) \approx \emptyset \). Let \(p_1 , \ldots , p_n \) be different points in \(R[1] \) and make a cone \(D_i = \partial \overline{p}_i (\partial (N (\alpha_i : R[0]) \cap D)) \) for each \(i \) and we may construct these cones not to intersect with each other. Then \(D = (D - \bigcup_{i=1}^n N (\alpha_i : R[0])) \cup (\bigcup D_i) \) is a locally flat \(\mu (l) \) disks with singularities \(p_1 , \ldots , p_n \) such that \(\partial (N (p_i : R[\frac{1}{2}, \frac{3}{2}]) \cap D) \approx \emptyset \), \(\partial D = l \) and \(D \) has no minimum points. So we may define the clasp number of a link (in the 4-dimensional sense) as follows.

Let \(F \) be an orientable surface of genus 0 with \(\mu \) boundaries. Suppose that \(f \) is a locally flat immersion of \(F \) in \(R[0, \infty) \) such that \(f (\partial F) = l \) is a given link \(l \) in \(R[0] \), \(f (\text{Int} F) \subset R[0, \infty) \) and the singularities of \(f (\text{Int} F) \) are finite points \(p_1 , \ldots , p_n \) with \(\partial B^*(p_i) \cap f (\text{Int} F) \approx \emptyset \).

Definition 6. For all the locally flat immersions satisfying the above condition, the minimum number of these singularities is called the clasp number of \(l \) and is denoted by \(c^* (l) \). Especially when we restrict Definition 6 only for the locally flat immersions which has no minimum points, the minimum number of these singularities is denoted by \(c^*_x (l) \).

Then the next Lemma is trivial from the definition and the explanation above Definition 6.

Lemma 7. For any link \(l \), \(c^* (l) \leq c^*_x (l) \leq c (l) \).

Modifying the technique we used to prove Lemma 3, we obtain

Lemma 8. For any link \(l \), there is a number \(\mu \) such that \(c^* (l) = c^*_x (l \cdot O^\mu) \) for some trivial link \(O^\mu \).

Now we will examine the relation between \(g^* (l) \), \(c^* (l) \), \(u^* (l) \) and \(g^*_x (l) \), \(c^*_x (l) \), \(u^*_x (l) \).
Lemma 9. For any link, $g^*(l) \leq c^*(l)$, $g^*_e(l) \leq c^*_e(l)$.

Proof. Let F be a locally flat non-singular surface except $c^*(l)$ points
p_1, \ldots, p_m where $n = c^*(l)$, with $\partial F = l$ and $l_i = \partial N(p_i; R^3(0, \infty)) \cap F \approx \mathbb{S}^2$. Then
l_i may span an orientable surface F_i of genus 0 in $\partial N(p_i; R^3(0, \infty))$. So
\[
F = (F - \bigcup_{i=1}^n N(p_i; R^3(0, \infty))) \cup (\bigcup_{i=1}^m F_i)
\]
is a non-singular locally flat orientable surface of genus n with $\partial F = l$. Thus $g^*(l) \leq c^*(l)$. We can prove $g^*_e(l) \leq c^*_e(l)$ by using the technique to prove the first half of Lemma 9. Now the proof is complete.

Lemma 10. For any link l, $c^*(l) \leq u^*(l)$ and $c^*_e(l) \leq u^*_e(l)$.

Proof. Let l be a link in $R^3[0]$. Now we perform $u^*(l)$-times (or $u^*_e(l)$-times) (Γ) operation to l in $R^3[0, 1)$ so that l' in $R^3[1]$ is a weak slice (or weak ribbon) link. Then there exist proper annuli F_i in $R^3[0, 1]$ with $\partial F_i = l \cup (-l')$ and F_i has no minimum and maximum points and singularities are finite points p_1, \ldots, p_n in $\text{Int } F_i$, such that $\partial N(p_i; R^3(0, \infty)) \cap F_i \approx \mathbb{S}^2$. As l' is a weak slice (or a weak ribbon) link, we may span a locally flat orientable surface F in $R^3[1, \infty)$ with $\partial F = l$. Thus $c^*(l) \leq u^*(l)$ (or $c^*_e(l) \leq u^*_e(l)$). This completes the proof of Lemma 10.

And by Lemma 11, $c^*_e(l) = u^*_e(l)$ follows.

Lemma 11. For any link l, $u^*_e(l) \leq c^*_e(l)$.

Proof. Let l be a link in $R^3[0]$ and F be a surface in $R^3[0, 1]$ which has no minimum points with $\partial F = l$ and $c^*_e(l)$ be the number of clasps. F has m singular points p_1, \ldots, p_m and n maximum points p_{m+1}, \ldots, p_{m+n}, where $m = c^*_e(l)$. We may connect these points to distinct points q_1, \ldots, q_{m+n} in $R^3[2]$ by disjoint arcs $\alpha_1, \ldots, \alpha_{m+n}$ such that $\alpha_i \cap F = \partial \alpha_i \cap F = p_i$ and $\alpha_i \cap R^3[2]$ is at most one point for each i, $0 < t < 2$. By an isotopy we may bring p_i to q_i along α_i with ∂F fixed to make a new surface F' which is isotopic to F and F' has no minimum and maximum points and singularities are finite points p_1, \ldots, p_m in $R^3[0, 1]$ which is a component of O^* is m. By Lemma 4, F' is deformed to F'' which is a proper surface in $R^3[0, 1]$ and is isotopic to $F' \cap R^3[1] \approx \bigcup_{i=1}^m B^i \times [0, 1]$ for some mutually disjoint 3-balls B^i in $R^3[0]$. Let $D^i, i = 1, \ldots, m$, be mutually disjoint 3-balls in $R^3[1]$ such that D^i contains only one O^* in its interior and $D^i \cap D^j = \emptyset$, where D^i is a spanning disk of O_i which is a component of O^*, for each $i, j, 1 \leq i \leq m, m+1 \leq j \leq m+n$. Then we may take a simple arc β_i in $p(D^i) - \bigcup_{j=1}^i B^j$ to connect two points of l as shown in
Fig. 3 (a) such that \otimes becomes a trivial link by the (Γ) operation along $p^{-1}(\beta_i) \cap R^3[1]$ in D^3_i for each i, where p is a natural projection of $R^3[0, 1]$ to $R^3[0]$. Then we determine β_{i_0}, β_{i_1} as shown in Fig. 3 (b) which may be taken in the neighborhood of β_i and $F''' = (F'' - (\bigcup_{i=1}^{n} \beta_{i_0} \times [0, 1])) \cup (\bigcup_{i=1}^{n} \beta_{i_1} \times [0, 1]) \cup (\bigcup_{j=m-1}^{n} D_j) \cup (\bigcup_{j=1}^{m} D_j)$, where D_i and D_{m+i} are disjoint disks in Int D^3_i. Then as F''' has no minimum points, $\partial F''' \cap R^3[0] = l'$ is a weak ribbon link by Lemma 5 and l is obtained from l' by $c^*(l)$-times (Γ) operation. So $u^*(l) \leq c^*(l)$ which completes the proof.

Let $\sigma(l)$ be the signature of a link (for the definition of (l), see [7]), then it is known $1/2 (|\sigma(l)| - \mu(l) + 1) \leq g^*(l)$ by Theorem 9.1 [7].

Now we complete our researches.

Theorem 2. For any link l, we obtain $1/2 (|\sigma(l)| - \mu(l) + 1) \leq g^*(l)$ and

\[
\begin{align*}
g^*(l) & \leq g^2(l) \leq g(l) \\
c^*(l) & \leq c^*(l) \leq c(l) \\
u^*(l) & \leq u^*(l) \leq u(l)
\end{align*}
\]

Remark. If l is a non-trivial weak ribbon link of 1 component, then $g^2(l) = c^*(l) = u^*(l) = 0$, but $g(l) \cdot c(l) \cdot u(l) \neq 0$.

Question. In the above diagram of 4-dimensional numerical invariants of links, which inequality can be replaced by an equality?
References