Osaka University Knowledge Archive

Title	Some relations among various numerical invariants for links
Author(s)	Shibuya, Tetsuo
Citation	0saka Journal of Mathematics. 1974, 11(2), p. $313-322$
Version Type	VoR
URL	https://doi.org/10.18910/10907
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

SOME RELATIONS AMONG VARIOUS NUMERICAL INVARIANTS FOR LINKS

Tetsuo SHIBUYA

(Received September 20, 1973)

Introduction. Throughout this paper, "a link l of $\mu(l)$ components" means disjoint union of $\mu(l)$ oriented 1 -spheres in R^{3}.

In §1, we study some 3-dimensional numerical invariants of links, that is, $g(l)$ (genus of l), $u(l)$ (see Definition 1) and $c(l)$ (see Definition 3) will be defined and we will have some relations among them as follows.

Theorem 1. For any link $l, g(l) \leqq c(l)$ and $u(l) \leqq c(l)$.
In §2, the 4-dimensional numerical invariants $g^{*}(l), g_{r}^{*}(l)$ (see Definition 4), $u^{*}(l), u_{r}^{*}(l)$ (see Definition 5), $c^{*}(l)$ and $c_{r}^{*}(l)$ (see Definition 6) will be defined and the main theorem will be proved.

Theorem 2. For any link l, we obtain

As is usual, two links l and l^{\prime} are said to be of the same type or isotopic, denoted by $l \approx l^{\prime}$, if there exists an orientation preserving homeomorphism f of R^{3} onto itself such that $f(l)=l^{\prime}$.
∂X, Int X and $c l X$ represents the boundary, the interior and the closure of X respectively.

The author wishes to thank to the members of Kobe Topology Seminar for their kind and helpful suggestions.

1. 3-dimensional numerical invariants

Let l be a link of $\mu(l)$ components in R^{3}. It is known in [9], [11] that l always bounds an orientable connected surface F in R. The minimum genus of these surfaces is called the genus of the link l and is denoted by $g(l)$. Note that $g(F)$ denotes the usual genus of a surface F.

Let L be a diagram of l, i.e. $L=p(l)$, where p is a regular projection of R^{3} to R^{2} ([2]). L has in general at least one double point if l is not a trivial link (unknotted and unlinked). A link can be deformed into a trivial link by employing a finite number of unlinking operation (Γ) defined as follows.
(Γ) Change an underpass into an overpass at a double point.
Definition 1. The minimum number of unlinking operations required to deform a given link l into a trivial link is called the unlinking number of l (in the 3-dimensional sense) and is denoted by $u(l)$.

Definition 2. Let F_{0} be a surface which may not be connected and f be an immersion of F_{0} into R^{3}. Put $F=f\left(F_{0}\right)$. Suppose that F has a finite number of simple double lines and these double lines do not intersect each other. Each double line J is one of the following three types (see [4])
(1) a closed curve whose antecedents are closed curve J^{\prime} and $J^{\prime \prime}$ that lie in Int F_{0},
(2) an arc whose antecedents are an arc J^{\prime} that spans ∂F_{0} and an arc $J^{\prime \prime}$ that lies entirely in Int F_{0},
(3) an arc whose antecedents are arcs J^{\prime} and $J^{\prime \prime}$ each of which has an end point on ∂F_{0} and the other one lies in Int F_{0}
We call J a singularity of F. The singularities satisfying the condition (1), (2), (3) will be called (simple) loop, ribbon and clasp singularities respectively. [4]

We call F a non-singular surface if f is an embedding.
Then, to define the clasp number $c(l)$ of a link l we need to prove the following lemma.

Lemma 1. Any link l spans $\mu(l)$ singular disks whose singularities are only clasps and the number of these clasps is finite.

Proof. Let n be the unlinking number of l and p be a regular projection of l such that there exist n double points p_{1}, \cdots, p_{n} in $p(l)$ and l becomes a trivial link by (Γ)-operation along these points. We may make oriented small unknotted circles $c_{i}, i=1, \cdots, 2 n$, near to $p_{i_{1}}$ linking with l as shown Fig. 1 such that $L\left(l, c_{i}\right)=-L\left(l, c_{n+i}\right)=1$ or -1 according as the orientation of l, where $p_{i_{1}}$ is a point of $p^{-1}\left(p_{i}\right) \cap l$ and $L(l, c)$ denotes the linking number of l and c. Then there exist mutually disjoint bands $B_{i}, i=1, \cdots, 2 n$, with $B_{i} \cap l=\partial B_{i} \cap l$ an arc and

$$
\begin{aligned}
& l+\partial\left(\bigcup_{i=1}^{n} B_{i}\right)+\left(\bigcup_{i=1}^{n} c_{i}\right) \approx O^{\mu} \\
& l+\partial\left(\bigcup_{i=1}^{2 n} B_{i}\right)+\left(\bigcup_{i=1}^{2 n} c_{i}\right) \approx l
\end{aligned}
$$

where O^{μ} is a trivial link of $\mu=\mu(l)$ components and + means addition in the homology sense. Let $E=\bigcup_{i=1}^{\mu} E_{i}$ be a union of mutually disjoint spanning disks

Fig. 1
of O^{μ} and $B=\bigcup_{i=n+1}^{2 n} B_{i}$. By a slight modification of E, B and $D=\bigcup_{i=n+1}^{2 n} D_{i}$, where D is oriented mutually disjoint disks with $\partial D_{i}=c_{i}$, we have $B \cap D=\partial B \cap \partial D$, $B \cap E=(\partial B \cap \partial E) \cup$ (ribbon singularities), $D \cap E=$ (clasp singularities) and $\partial(B \cup D \cup E) \approx l$. For each ribbon singularity J we draw a simple $\operatorname{arc} \alpha_{i}$ on E to connect a point of ∂E and that of Int J and put $\widetilde{E}=c l\left(E-\bigcup_{i=1}^{r} N_{i}\right)$, where r is the number of ribbon types on E and N_{i} is a regular neighborhood of α_{i} in E. Then clearly $\partial(B \cup D \cup \widetilde{E}) \approx l$ and the singularities of μ singular disks $B \cup D \cup \widetilde{E}$ are only clasps and of course the clasp number of $B \cup D \cup \widetilde{E}$ is finite. So the proof is complete.

Definition 3. For any link l, there is a singular disk with only clasps which spans l by Lemma 1. The minimum number of the clasps is called the clasp number of l, denoted by $c(l)$.

Then we have,
Theorem 1. For any link $l, c(l) \geqq u(l), c(l) \geqq g(l)$.
Proof. $\quad c(l) \geqq u(l)$ is obvious from the definitions of these numbers. So we have to prove $c(l) \geqq g(l)$. Let D be singular disks such that $c(D)=c(l)$ and $\partial D=l$, where $c(D)$ is the number of clasps of D. Making use of orientation preserving cuts ([4], [8]) along all clasps, we get an orientable surface F of genus $c(l)$ such that $\partial F=\partial D=l$. So $c(l) \geqq g(l)$, which completes the proof.

Remark. These inequalities can not be replaced by equalities. For example for the knot $6_{2}, 6_{2}$ is alternating, so $g\left(6_{2}\right)=2$ ([1]) and $c\left(6_{2}\right)=2$ by using Theorem 1 but $u\left(\sigma_{2}\right)=1$, and for the link ((), $c($ (() $)=u($ (() $)=1$ but $g($ (() $)=0$.

2. 4-dimensional numerical invariants

Let l be a link in $R^{3}[0]$, where $R^{3}[a]=\left\{(x, y, z, t) \in R^{4} \mid t=a\right\}$. Since l bounds an orientable connected surface F in $R^{3}[0], l$ always bounds an orientable locally flat connected surface in $R^{3}\left[0, t_{0}\right)=\left\{(x, y, z, t) \in R^{4} \mid 0 \leqq t<t_{0}\right\}$. The minimum genus of these surfaces is an invariant of the link type ([3], [7]). It is denoted by $g^{*}(l)$ (in the 4-dimensional sense).

Definition 4. Especially for any link l we may span an orientable locally flat surface F in $R^{3}\left[0, t_{0}\right.$) which has no minimum points with $\partial F=l$ in $R^{3}[0]$. The minimum genus of these surfaces is called the ribbon type genus of l and is denoted by $g_{r}^{*}(l)$.

It is clearly that $g_{r}^{*}(l)$ is an invariant of the link type of l.
Then from the definition of $g^{*}(l), g_{r}^{*}(l)$ and $g(l)$, we have
Lemma 2. For any link $l, g^{*}(l) \leqq g_{r}^{*}(l) \leqq g(l)$.
A link l will be called $s p l i t$ into two components l_{1} and l_{2} if there is a 3-ball B^{3} such that $l_{1} \subset B^{3}, l_{2} \subset R^{3}-$ Int B^{3}. Then l is denoted by $l=l_{1} \circ l_{2}$. Then

Lemma 3. For any link l, there is a number μ such that $g^{*}(l)=g_{r}^{*}\left(l \circ O^{\mu}\right)$ for some trivial link O^{μ} of μ components.

Proof. Let F be a locally flat orientable surface in $R^{3}[0,1)$ with $\partial F=l$ in $R^{3}[0]$ and $g(F)=g^{*}(l)$. Let p_{1}, \cdots, p_{μ} be the minimum points of F. We may take μ distinct points q_{1}, \cdots, q_{μ} in $R^{3}[-1]$ and disjoint simple arcs $\alpha_{1}, \cdots, \alpha_{\mu}$ and α_{i} connects p_{i} with q_{i} and $\alpha_{i} \cap R^{3}[t]$ is at most one point for each $i, 1 \leqq i \leqq \mu$ and $t, 0 \leqq t<1$. Then we can deform F to a surface F^{\prime} by an isotopy along α_{i}. The minimum points of F^{\prime} are q_{i} and $F^{\prime} \cap R^{3}[0,1)$ has no minimum points. Of course, $F^{\prime} \cap R^{3}[0] \approx l \circ O^{\mu}$, so $g_{r}^{*}\left(l \circ O^{\mu}\right) \leqq g^{*}(l)$. ([5], [10]).

Conversely, let F_{0} be a locally flat surface in $R^{3}[0,1)$ with $F_{0} \cap R[0]=l \circ O^{\mu}$ which has no minimum points and $g_{r}^{*}\left(l \circ O^{\mu}\right)=g\left(F_{0}\right)$. In $R^{3}[-1,0]$ we make $l \times[-1,0]$. As O^{μ} is splitted from l, O^{μ} bounds mutually disjoint disks D_{i}, $i=1, \cdots, \mu$, in $R^{3}[-1,0]$ which do not intersect with $l \times[-1,0]$. So $F=F_{0} \cup$ $l \times[-1,0] \cup\left(\bigcup_{i=1}^{\mu} D_{i}\right)$ is a locally flat orientlabe surface with boundary l and $g(F)=g\left(F_{0}\right)=g_{r}^{i=1}\left(l \circ O^{\mu}\right)$. Therefore $g^{*}(l) \leqq g\left(l \circ O^{\mu}\right)$, which completes the proof.

Lemma 4 is essential to prove the main theorem.
Lemma 4. Let F be a locally flat orientable surface which has no minimum and maximum points and $F \cap R^{3}[0]=l, F \cap R^{3}[1]=l^{\prime}$. Then there is a locally flat orientable surface F^{\prime} properly embedded in $R^{3}[0,1]$ and isotopic to F in $R^{3}[0,1]$ ($F^{\prime} \cap R^{3}[0] \approx l$ in $R^{3}[0], F^{\prime} \cap R^{3}[1] \approx l^{\prime}$ in $R^{3}[1]$ respectively). Furthermore there exist some disjoint 3 -balls $B_{i}^{3}, i=1, \cdots, n$, in $R^{3}[0]$ such that

$$
c l\left(F^{\prime}-\bigcup_{i=1}^{n} B_{i}^{3} \times[0,1]\right)=c l\left(F^{\prime} \cap R^{3}[0]-\bigcup_{i=1}^{n} B_{i}^{3}\right) \times[0,1] .
$$

Proof. It may be assumed that F has n critical points and $R^{3}\left[t_{i}\right]$ contains only one critical point for $t_{i}, 0<t_{1}<\cdots<t_{n}<1$. A critical point p_{i} may be changed by a critical band B_{i}^{2} for each i (see [6]). We may deform F by an isotopy of $R^{3}[0,1]$ carrying B_{i}^{2} into $R^{3}\left[\frac{1}{2}\right]$ so that maximum and minimum points do not appear in the resulting surface. We will write the resulting surface and the band F and B_{i}^{2} again. Since $F \cap R^{3}\left(\frac{1}{2}, 1\right]$ is a locally flat orientable surface which has no maximum, minimum points and critical bands,

$$
\left(F \cap R^{3}\left[\frac{1}{2}, 1\right]-\partial\left(\bigcup_{i=1}^{n} B_{i}^{2}\right)\right) \cup\left(\bigcup_{i=1}^{n} \alpha_{i} \cup \bar{\alpha}_{i}\right) \approx\left(F \cap R^{3}[1]\right) \times\left[\frac{1}{2}, 1\right]
$$

in $R^{3}\left[\frac{1}{2}, 1\right]$ (for α_{i} and $\bar{\alpha}_{i}$ see Fig. 2) Then using the same argument as in [10] we may assume that the critical bands do not intersect with each other. Put $F_{1}=F \cap R^{3}[1] \times\left[\frac{1}{2}, 1\right]$. Because $F \cap R^{3}\left[0, \frac{1}{2}\right)$ has no minimum, maximum points and critical bands, we see

$$
\begin{aligned}
& \left(F \cap R^{3}\left[0, \frac{1}{2}\right]-\partial\left(\bigcup_{i=1}^{n} B_{i}^{2}\right)\right) \cup\left(\bigcup_{i=1}^{n}\left(\beta_{i} \cup \bar{\beta}_{i}\right)\right) \\
& \approx\left(\left(F_{1} \cap R^{3}\left[\frac{1}{2}\right]-\partial\left(\bigcup_{i=1}^{n} B_{i}^{2}\right)\right) \cup\left(\bigcup_{i=1}^{n} \beta_{i} \cup \bar{\beta}_{i}\right)\right) \times\left[0, \frac{1}{2}\right] \text { in } R^{3}\left[0, \frac{1}{2}\right] \\
& \quad R^{3}\left[\frac{1}{2}+\varepsilon\right]
\end{aligned}
$$

Fig. 2

Then we project mutually disjoint bands $\bigcup_{i=1}^{n} B_{i}^{2}$ in $R^{3}\left[\frac{1}{2}\right]$ to $R^{3}[0]$ by a natural projection p i.e. for any points $(x, y, z, t) \in R^{4}, p(x, y, z, t)=(x, y, z, 0) \in R^{3}[0]$. Then we can take mutually disjoint 3-balls B_{i}^{3} each of which contains only one band properly, i.e. Int $B_{i}^{3} \supset \operatorname{Int} p\left(B_{i}^{2}\right)$ and $\partial B_{i}^{3} \supset \partial\left(p\left(B_{i}^{2}\right)\right)$. So we may easily determine the surface F^{\prime} to be a required one. This completes the proof.

Let l be a link in R^{3} (or $R^{3}[0]$). l is called a weak ribbon link if l bounds a singular surface F in R^{3} of genus 0 with $\partial F=l$ and mutually disjoint ribbon singularities. And l is called a weak slice link if l bounds a non-singular locally flat orientable surface F of genus 0 in $R^{3}[0, \infty)$ with $\partial F=l$. ([3], [4]).

Then if l is a weak ribbon link l is also a weak slice link (see Lemma 5).
Lemma 5. l is a weak ribbon link if and only if l bounds a non-singular locally flat orientable surface F in $R^{3}[0,1)$ of genus 0 with $\partial F=l$ which has no minimum points.

Proof. If l is a weak ribbon link, there is a singular surface F_{0} in $R^{3}[0]$ of genus 0 with $\partial F_{0}=l$ and just ribbon singularities. Now we take small disks $D_{i}, i=1, \cdots, n$, on F_{0} along the singularities such that $c l\left(F_{0}-\bigcup_{i=1}^{n} D_{i}\right)$ is a nonsingular surface and $l \cap\left(\bigcup_{i=1}^{n} \partial D_{i}\right)=\phi . \quad$ As $\partial\left(\bigcup_{i=1}^{n} D_{i}\right)$ is a trivial link, we may construct mutually disjoint cones $p_{i}^{*} \partial D_{i}$ in $R^{3}\left[0, \frac{1}{2}\right]$, where p_{1}, \cdots, p_{n} are different points in $R^{3}\left[\frac{1}{2}\right]$. Then $\left(F_{0}-\bigcup_{i=1}^{n} D_{i}\right) \cup\left(\bigcup_{i=1}^{n} p_{i}^{*} \partial D_{i}\right)$ is a required surface F.

Conversely, let F be a locally flat orientable surface of genus 0 with $\partial F=l$ which has no minimum points and is embedded in $R^{3}[0,1)$. We can bring the maximum points of F to $R^{3}[2]$ by the same technique we used to prove Lemma 3 without making new maximum and minimum points and with ∂F fixed. Put the deformed surface F^{\prime}. Clearly $F^{\prime} \cap R^{3}[1] \approx O^{n}$ and $F^{\prime} \cap R^{3}[0,1]$ has no minimum and maximum points. So by Lemma 4, we may construct a proper surface $F^{\prime \prime}$ in $R^{3}[0,1]$ which is isotopic to $F^{\prime} \cap R^{3}[0,1]$ and there exist mutually disjoint 3-balls $B_{i}^{3}, i=1, \cdots, p$, in $R^{3}[0]$ such that

$$
c l\left(F^{\prime \prime}-\bigcup_{i=1}^{p} B_{i}^{3} \times[0,1]\right) \approx c l\left(F^{\prime \prime} \cap R^{3}[0]-\bigcup_{i=1}^{p} B_{i}^{3}\right) \times[0,1]
$$

and the mutually disjoint bands B_{i}^{2} are properly embedded in $B_{i}^{3} \times\left[\frac{1}{2}\right]$. Let $D, i=1, \cdots, n$, be mutually disjoint disks in $R^{3}[1]$ with boundary O^{n}. Then we project $\widetilde{F}=F^{\prime \prime} \cup\left(\bigcup_{i=1}^{n} D_{i}\right)$ on $R^{3}[0]$ by a natural projection p. Then we may easily prove that $\partial p(\widetilde{F}) \approx l$ and the singularities of $p(\widetilde{F})$ are only ribbon singularities by
an easy modification of disks and bands. Now the proof is complete.
Remark. From this Lemma, l is a weak ribbon link if and only if $g_{r}^{*}(l)=0$ (Clearly l is a weak slice link if and only if $g^{*}(l)=0$).

Definition 5. The minimum number of unlinking (Γ) operations required to deform a given link l into a weak slice link, a weak ribbon link are called the unlinking number of l (in the 4 -dimensional sense), denoted by $u^{*}(l), u_{r}^{*}(l)$ respectively. We may easily prove the following.

Lemma 6. For any link $l, u^{*}(l) \leqq u_{r}^{*}(l) \leqq u(l)$.
By Lemma 1 any link l in $R^{3}[0]$ may span $\mu(l)$ singular disks D whose only singularities are finite clasps. Let $\alpha_{1}, \cdots, \alpha_{n}$ be all the clasps on D and take mutually disjoint regular neighborhoods $\bigcup_{i=1}^{n} N\left(\alpha_{i}: R^{3}[0]\right)$. Then $\partial\left(N\left(\alpha_{i}: R^{3}[0]\right) \cap D\right) \approx$ () . Let p_{1}, \cdots, p_{n} be different points in $R^{3}[1]$ and make a cone $\tilde{D}_{i}=p_{i}^{*}\left(\partial\left(N\left(\alpha_{i}: R^{3}[0]\right) \cap D\right)\right)$ for each i and we may construct these cones not to intersect with each other. Then $\tilde{D}=\left(D-\bigcup_{i=1}^{n} N\left(\alpha_{i}: K^{3}[0]\right)\right) \cup\left(\bigcup_{i=1}^{n} \tilde{D}_{i}\right)$ is a locally flat $\mu(l)$ disks with singularities p_{1}, \cdots, p_{n} such that $\partial\left(N\left(p_{i}: R^{3}\left[\frac{1}{2}, \frac{3}{2}\right]\right)\right.$ $\cap \tilde{D}) \approx(1) \partial \tilde{D}=l$ and \tilde{D} has no minimum points. So we may define the clasp number of a link (in the 4-dimensional sense) as follows.

Let F be an orientable surface of genus 0 with μ boundaries. Suppose that f is a locally flat immersion of F in $R^{3}[0, \infty)$ such that $f(\partial F)=l$ is a given link l in $R^{3}[0], f($ Int $F) \subset R^{3}(0, \infty)$ and the singularities of $f($ Int $F)$ are finite points p_{1}, \cdots, p_{n} with $\partial B^{4}\left(p_{i}\right) \cap f($ Int $F) \approx$ (t).

Definition 6. For all the locally flat immersions satisfying the above condition, the minimum number of these singularities is called the clasp number of l and is denoted by $c^{*}(l)$. Especially when we restrict Definition 6 only for the locally flat immersions which has no minimum points, the minimum number of these singularities is denoted by $c_{r}^{*}(l)$.

Then the next Lemma is trivial from the definition and the explanation above Definition 6.

Lemma 7. For any link $l, c^{*}(l) \leqq c_{r}^{*}(l) \leqq c(l)$
Modifying the technique we used to prove Lemma 3, we obtain
Lemma 8. For any link l, there is a number μ such that $c^{*}(l)=c_{r}^{*}\left(l \circ O^{\mu}\right)$ for some trivial link O^{μ}.

Now we will examine the relation between $g^{*}(l), c^{*}(l), u^{*}(l)$ and $g_{r}^{*}(l), c_{r}^{*}(l)$, $u_{r}^{*}(l)$.

Lemma 9. For any link, $g^{*}(l) \leqq c^{*}(l), g_{r}^{*}(l) \leqq c_{r}^{*}(l)$.
Proof. Let F be a locally flat non-singular surface except $c^{*}(l)$ points p_{1}, \cdots, p_{n}, where $n=c^{*}(l)$, with $\partial F=l$ and $l_{i}=\partial N\left(p_{i}: R^{3}[0, \infty)\right) \cap F \approx$ (U). Then l_{i} may span an orientable surface F_{i} of genus 0 in $\partial N\left(p_{i}: R^{3}[0, \infty)\right.$). So

$$
\widetilde{F}=\left(F-\bigcup_{i=1}^{n} N\left(p_{i}: R^{3}[0, \infty)\right)\right) \cup\left(\bigcup_{i=1}^{n} F_{i}\right)
$$

is a non-singular locally flat orientable surface of genus n with $\partial \widetilde{F}=l$. Thus $g^{*}(l) \leqq c^{*}(l)$. We can prove $g_{r}^{*}(l) \leqq c^{*}(l)$ by using the technique to prove the first half of Lemma 9. Now the proof is complete.

Lemma 10. For any link $l, c^{*}(l) \leqq u^{*}(l)$ and $c_{r}^{*}(l) \leqq u_{r}^{*}(l)$.
Proof. Let l be a link in $R^{3}[0]$. Now we perform $u^{*}(l)$-times (or $u_{r}^{*}(l)$ times) (Γ) operation to l in $R^{3}(0,1)$ so that l^{\prime} in $R^{3}[1]$ is a weak slice (or weak ribbon) link. Then there exist proper annuli F_{0} in $R^{3}[0,1]$ with $\partial F_{0}=l \cup\left(-l^{\prime}\right)$ and F_{0} has no minimum and maximum points and singularities are finite points p_{1}, \cdots, p_{n} in Int F_{0}, where $n=u^{*}(l)\left(\right.$ or $\left.u_{r}^{*}(l)\right)$, such that $\partial N\left(p_{i}: R^{3}[0, \infty)\right) \cap F_{0} \approx$ (c) . As l^{\prime} is a weak slice (or a weak ribbon) link, we may span a locally flat orientable surface F_{1} in $R^{3}\left[1, \infty\right.$) with $\partial F_{1}=l^{\prime}$ (if l^{\prime} is a weak ribbon link, F_{1} has no minimum points by Lemma 5). Then there is a singular surface $F_{0} \cup F_{1}$ of genus 0 whose boundary is l. Thus $c^{*}(l) \leqq u^{*}(l)$ (or $c_{r}^{*}(l) \leqq u_{r}^{*}(l)$). This completes the proof of Lemma 10.

And by Lemma 11, $c_{r}^{*}(l)=u_{r}^{*}(l)$ follows.
Lemma 11. For any link $l, u_{r}^{*}(l) \leqq c_{r}^{*}(l)$.
Proof. Let l be a link in $R^{3}[0]$ and F be a surface in $R^{3}[0,1)$ which has no minimum points with $\partial F=l$ and $c_{r}^{*}(l)$ be the number of clasps. F has m singular points p_{1}, \cdots, p_{m} and n maximum points p_{m+1}, \cdots, p_{m+n}, where $m=c_{r}^{*}(l)$. We may connect these points to distinct points q_{1}, \cdots, q_{m+n} in $R^{3}[2]$ by disjoint arcs $\alpha_{1}, \cdots, \alpha_{m+n}$ such that $\alpha_{i} \cap F=\partial \alpha_{i} \cap F=p_{i}$ and $\alpha_{i} \cap R^{3}[t]$ is at most one point for each $i, 0<t \leqq 2$. By an isotopy we may bring p_{i} to q_{i} along α_{i} with ∂F fixed to make a new surface F^{\prime} which is isotopic to F and $F^{\prime} \cap R^{3}[1] \approx$ (() $\circ \ldots$ () $\circ O^{n}$, where the number of (() is m. By Lemma $4, F^{\prime}$ is deformed to $F^{\prime \prime}$ which is a proper surface in $R^{3}[0,1]$ and is isotopic to $F^{\prime} \cap R^{3}[0,1]\left(F^{\prime \prime} \cap R^{3}[0] \approx\right.$ $F^{\prime} \cap R^{3}[0]$ in $R^{3}[0] \underset{p}{p}$ and $F^{\prime \prime} \cap R^{3}[1] \approx F^{\prime} \cap R^{3}[1]$ in $\left.R^{3}[1]\right)$, and $c l\left(F^{\prime \prime}-\bigcup_{i=1}^{p} B_{i}^{3} \times[0,1]\right)$ $=c l\left(F^{\prime \prime} \cap R^{3}[0]-\bigcup_{i=1}^{b} B_{i}^{3}\right) \times[0,1]$ for some mutually disjoint 3-balls B_{i}^{3} in $R^{3}[0]$. Let $D_{i}^{3}, i=1, \cdots, m$, be mutually disjoint 3 -balls in $R^{3}[1]$ such that D_{i}^{3} contains only one (৫) in its interior and $D_{i}^{3} \cap D_{j}^{2}=\phi$, where D_{j}^{2} is a spanning disk of O_{j} which is a component of O^{n}, for each $i, j, 1 \leqq i \leqq m, m+1 \leqq j \leqq m+n$. Then we may take a simple arc β_{i} in $p\left(D_{i}^{3}\right)-\bigcup_{j=1}^{p} B_{j}^{3}$ to connect two points of l as shown in

Fig. 3
Fig. 3 (a) such that © becomes a trivial link by the (Γ) operation along $p^{-1}\left(\beta_{i}\right) \cap R^{3}[1]$ in D_{i}^{3} for each i, where p is a natural projection of $R^{3}[0,1]$ to $R^{3}[0]$. Then we determine $\beta_{i_{0}}, \beta_{i_{1}}$ as shown in Fig. $3(b)$ which may be taken in the $\underset{2 m}{\text { neighborhood of } \beta_{i} \text { and } F^{\prime \prime \prime}=\left(F^{\prime \prime}-\left(\bigcup_{i=1}^{m} \beta_{i_{0}} \times[0,1]\right)\right) \cup\left(\bigcup_{i=1}^{m} \beta_{i_{1}} \times[0,1]\right) \cup\left(\bigcup_{j=m+1}^{m+n} D_{j}\right) \cup, ~(1)}$ $\left(\bigcup_{p=1}^{2 m} D_{p}\right)$, where D_{i} and D_{m+i} are disjoint disks in Int D_{i}^{3}. Then as $F^{\prime \prime \prime}$ has no minimum points, $\partial F^{\prime \prime \prime} \cap R^{3}[0]=l^{\prime}$ is a weak ribbon link by Lemma 5 and l is obtained from l^{\prime} by $c_{r}^{*}(l)$-times (Γ) operation. So $u_{r}^{*}(l) \leqq c_{r}^{*}(l)$ which completes the proof.

Let $\sigma(l)$ be the signature of a link (for the definition of (l), see [7]), then it is known $\frac{1}{2}(|\sigma(l)|-\mu(l)+1) \leqq g^{*}(l)$ by Theorem 9.1 [7].

Now we complete our researches.
Theorem 2. For any link l, we obtain $\frac{1}{2}(|\sigma(l)|-\mu(l)+1) \leqq g^{*}(l)$ and

$$
\left.\begin{array}{c}
g^{*}(l) \leqq g_{r}^{*}(l) \leqq g(l) \\
\wedge \| \\
\wedge \| \\
c^{*}(l) \leqq \\
\wedge \| \\
\wedge \| \\
u_{r}^{*}(l) \leqq c \\
\|
\end{array}\right)
$$

Remark. If l is a non-trivial weak ribbon link of 1 component, then $g_{r}^{*}(l)=c_{r}^{*}(l)=u_{r}^{*}(l)=0$, but $g(l) \cdot c(l) \cdot u(l) \neq 0$.

Question. In the above diagram of 4-dimensional numerical invariants of links, which inequality can be replaced by an equality?

Osaka City University

References

[1] R.H. Crowell: Genus of alternating link types, Ann. of Math. (2) 69 (1959), 258-275.
[2] R.H. Crowell and R.H. Fox: Introduction to Knot Theory, Ginn, 1963.
[3] R.H. Fox: Some Problems in Knot Theory, Topology of 3-manifolds, Prentice Hall (1962), 168-176.
[4] R.H. Fox: Characterization of slices and ribbons, Osaka J. Math. 10 (1973), 69-76.
[5] F. Hosokawa and T. Yanagawa: Is every slice knot a ribbon knot?, Osaka J. Math. 2 (1965), 373-384.
[6] F. Hosokawa: On trivial 2-spheres in 4-space, Quart. J. Math. Oxford (2) 19 (1968), 249-256.
[7] K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
[8] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
[9] H. Seifert: Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
[10] S. Suzuki: On slice link, Master Thesis in Waseda Univ. (1967).
[11] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.
[12] H. Wendt: Die gordisch Auflosung von Knoten, Math. Z. 42 (1937), 680-696.

