<table>
<thead>
<tr>
<th>Title</th>
<th>On P-exchange rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kambara, Hikoji; Oshiro, Kiyoichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 25(4) P.833-P.842</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/10913</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/10913</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
ON P-EXCHANGE RINGS

HIKOJI KAMBARA AND KIYOICHI OSHIRO

(Received July 24, 1987)

There is a problem concerning the exchange property: which ring R satisfies the condition that every projective right R-module satisfies the exchange property. A ring R with the above condition is said to be a right P-exchange ring. P-exchange rings have been studied in [2], [3], [4], [6], [7], [11], [12], and recently in [9]. Among others, it is shown in [9] that semi-regular rings with right T-nilpotent Jacobson radical are right P-exchange rings, and the converse holds for commutative rings but not in general. It is still open to determine the structure of P-exchange rings. Our main object of this paper is to show that a ring is a right P-exchange ring if and only if all Pierce stalks R_x are right P-exchange rings.

1. Preliminaries

Throughout this paper, all rings R considered are associative and all R-modules are unitary. For an R-module M, $J(M)$ denotes the Jacobson radical of M. For a ring R, $B(R)$ represents the Boolean ring consisting of all central idempotents of R and, as usual, $\text{Spec}(B(R))$ denotes the spectrum of all prime (=maximal) ideals of $B(R)$. For a right R-module M and an element a in M and x in $\text{Spec}(B(R))$ we put $M_x=M/Mx$ and $a_x=a+Mx(\in M_x)$. M_x is called the Pierce stalk of M for x ([8]). Note that $M_x=M\otimes_R R_x$ and R_x is flat as an R-module, hence for a submodule N of M, $N_x\subseteq M_x$. For e in $B(R)$, note that $e_x=1_x$ if and only if $e\in B(R)-x$. Let A and B be right R-modules and x in $\text{Spec}(B(R))$. Then there exists a canonical homomorphism σ from $\text{Hom}_R(A, B)$ to $\text{Hom}_{R_x}(A_x, B_x)$. We denote $f^*=\sigma(f)$ for f in $\text{Hom}_R(A, B)$. We note that if A is projective, then σ is an epimorphism.

We will use later the following well known facts [8]:

a) Let M and N be finitely generated right R-modules with $M\subseteq N$. If $x\in\text{Spec}(B(R))$ and $M_x=N_x$ then $Me=Ne$ for suitable e in $B(R)-x$.

b) For right R-modules M and N with $M\supseteq N$, if $N_x=M_x$ for all x in $\text{Spec}(B(R))$, then $M=N$.

c) A ring R is a commutative regular ring if and only if all stalks R_x are fields, and similarly, a ring R is a strongly regular ring if and only if all R_x are division rings.
For an R-module M and a cardinal α, αM denotes the direct sum of α-copies of M.

2. P-exchange ring

An R-module M is said to satisfy (or have) the exchange property if, for any direct sums

$$X = \bigoplus_i X_i = M \oplus Y$$

of R-modules, there exist suitable submodules $X_i \subseteq X_\alpha$ such that

$$X = M \oplus \bigoplus_i X_i.$$

Whenever this property hold for any finite set I, M is said to satisfy the finite exchange property. Recently, B. Zimmerman and W. Zimmerman pointed out an important fact that, in the definition above, we can assume that each X_i is isomorphic to M. A ring R is said to be an exchange ring (or a suitable ring) if R satisfies the exchange property as a right, or equivalently left, R-module.

Definition (cf. ([9])). A ring R is a right P-exchange ring (resp. PF-exchange ring) if every projective right R-module satisfies the exchange (resp. finite exchange) property.

For the study of P-exchange (and PF-exchange) rings, we need the following conditions (N_1) and (N_2) for projective right R-modules P:

(N_1) For any finite sum $P = \sum_i A_i$, there exist submodules $A_i \subseteq A$ such that $P = \sum_i A_i$.

(N_2) For any sum $P = \sum_{\alpha} a_\alpha R$, there exist suitable submodules $a_\alpha R \subseteq a_\alpha R$ such that $P = \sum a_\alpha R$.

The following is due to Nicholson ([6]).

Proposition 1. a) The following are equivalent for a ring R:

1) R is right PF-exchange.

2) $J(R)$ is right T-nilpotent (equivalently, $J(\mathfrak{R}_0 R)$ is small in $\mathfrak{R}_0 R$) and $R/J(R)$ is right PF-exchange.

3) (N_1) holds for any projective right R-module P.

b) If R is right PF-exchange, then so is every factor ring of R.

Similar results on P-exchange ring also hold:

Proposition 2 (Stock [9]). a) The following are equivalent for a ring R:

1) R is right P-exchange.

2) $J(R)$ is right T-nilpotent and $R/J(R)$ is right P-exchange.

3) (N_2) holds for any projective right R-module P.
b) If R is right P-exchange, then so is every factor ring of R.

Lemma 1. If K_aR satisfies the condition (N_2) for any countable set I, then so does every free (hence every projective) right R-module.

Proof. Let $F=\sum a_\lambda R_\lambda$ be a free right R-module with $R_\lambda \subseteq R$. Consider a sum $F=\sum a_\lambda R_\lambda$. For subsets $I \subseteq \Lambda$ and $J \subseteq \Gamma$, put $F(I)=\sum a_\lambda R_\lambda$ and $A(J)=\sum a_\lambda R_\lambda$. First we take a finite subset $I_1 \subseteq \Lambda$. Starting from I_1, we can proceed to take $J_1 \subseteq \Gamma, J_2 \subseteq \Lambda, J_3 \subseteq \Gamma, \ldots$ such that

1) each I_i and J_i are finite sets,
2) $I_1 \subseteq I_2 \subseteq \cdots, J_1 \subseteq J_2 \subseteq \cdots$,
3) $F(I_1) \subseteq A(J_1) \subseteq F(I_2) \subseteq A(J_2) \subseteq \cdots$.

Putting $\Lambda_1=\bigcup I_i$ and $\Gamma_1=\bigcup J_i$, we see that

4) $|\Lambda_1| \leq \aleph_0$, $|\Gamma_1| \leq \aleph_0$,
5) $F(\Lambda_1)=A(\Gamma_1)$.

Next, we take a finite subset $K_1 \subseteq \Lambda-\Lambda$. And again starting from K_1, we take subsets $L_1 \subseteq \Gamma-\Gamma, K_2 \subseteq \Lambda-\Lambda, K_3 \subseteq \Lambda-\Lambda, \cdots$ such that

1) each K_i and L_i are finite sets,
2) $K_1 \subseteq K_2 \subseteq \cdots, L_1 \subseteq L_2 \subseteq \cdots$,
3) $F(\Lambda_1) \oplus F(K_1) \subseteq A(\Gamma_1) + A(L_1) \subseteq F(\Lambda_2) \oplus F(K_2) \subseteq A(\Gamma_2) + A(L_2) \subseteq \cdots$.

Putting $\Lambda_2=\bigcup K_i$ and $\Gamma_2=\bigcup L_i$, we see that

4) $|\Lambda_2| \leq \aleph_0$, $|\Gamma_2| \leq \aleph_0$,
5) $F(\Lambda_2)=A(\Gamma_2)$.

Proceeding this argument transfinite-inductively, we can get a well ordered set Ω and subfamilies $\{\Lambda_\alpha\}_{\alpha \in \Omega} \subseteq 2^\Lambda$ and $\{\Gamma_\alpha\}_{\alpha \in \Omega} \subseteq 2^\Gamma$ such that

a) for each $\alpha \in \Omega$, $|\Lambda_\alpha| \leq \aleph_0$ and $|\Gamma_\alpha| \leq \aleph_0$,

b) for each $\alpha \in \Omega$, $\sum_{\beta \leq \alpha} F(A_\beta) = \sum_{\beta \leq \alpha} A(\Gamma_\beta)$,

c) $F=\sum_{\alpha \in \Omega} \oplus F(\Lambda_\alpha) = \sum_{\alpha \in \Omega} A(\Gamma_\alpha)$.

For each $\alpha \in \Omega$, let $\psi_\alpha: F=\sum_{\alpha} \oplus F(\Lambda_\alpha) \rightarrow F(\Lambda_\alpha)$ be the projection. By b) we see that

$F(\Lambda_\alpha) = \psi_\alpha(A(\Gamma_\alpha))$.

and

$F = \sum_{\alpha} \oplus F(\Lambda_\alpha) = \sum_{\alpha} \psi_\alpha(A(\Gamma_\alpha))$.

Since $F(\Lambda_\alpha) = \sum_{\sigma \in \Lambda_\alpha} \oplus R_{\sigma} = \sum_{\lambda \in \Gamma_\alpha} \psi_\alpha(\alpha R_{\lambda}) = \psi_\alpha(A(\Gamma_\alpha))$, we can take $a_\lambda \in \alpha R$ for all $\lambda \in \Gamma_\alpha$ such that

$\sum_{\lambda \in \Gamma_\alpha} \oplus \psi_\alpha(\alpha R_{\lambda}) = \sum_{\lambda \in \Lambda_\alpha} \oplus R_{\lambda}$.
Since $\psi_\lambda(a^\lambda R)$ is projective, we can take $a^\lambda \in a_\lambda R$ such that the restriction map $\psi_\lambda|_a^\lambda R$ is an isomorphism for each $\lambda \in \Gamma_\alpha$ and $\alpha \in \Omega$. Then we see that

$$F = \sum_{\alpha \in \Omega} \left(\sum_{\lambda \in \Gamma_\alpha} \langle a^\lambda R \rangle \right)$$

as desired.

Lemma 2. If \mathfrak{m}_R satisfies the exchange property, then \mathfrak{m}_R satisfies the condition (N_2).

Proof. Let $F = \sum_{i=1}^\infty \oplus m_i R$ be a free right R-module $R \twoheadrightarrow m_i r$ by $r \mapsto m_i r$. Consider a sum $F = \sum_{i=1}^\infty a_i R$, and let $\psi: \sum_{i=1}^\infty m_i R \rightarrow \sum_{i=1}^\infty a_i R$ be the canonical epimorphism from Lemma 1. Since $F = \sum_{i=1}^\infty a_i R$ is projective, $	ext{Ker} \psi = \sum_{i=1}^\infty m_i R$; say $F = B \oplus \text{Ker} \psi$. Let $\pi: F = B \oplus \text{Ker} \psi \rightarrow B$ be the projection and put $b_i = \pi(m_i)$ for all i. Then $\psi(b_i) = a_i$ for all i. By assumption, there exist a decomposition $m_i R = n_i R \oplus t_i R$ for each i such that

$$F = (\sum_{i=1}^\infty b_i R) \oplus \text{Ker} \psi = (\sum_{i=1}^\infty a_i R) \oplus \text{Ker} \psi.$$

Since $\pi(n_i R) \subseteq b_i R$ and $\sum_{i=1}^\infty \pi(n_i R) = \sum_{i=1}^\infty b_i R$, we have that $\sum_{i=1}^\infty \psi \pi(n_i R) = \sum_{i=1}^\infty a_i R$ and $\psi \pi(n_i R) \subseteq a_i R$ for each i. Thus F satisfies the condition (N_2).

Theorem 1. The following conditions are equivalent for a given ring R:

1. R is a right P-exchange ring.
2. Every projective right R-module satisfies the condition (N_2).
3. \mathfrak{m}_R has the exchange property.
4. \mathfrak{m}_R satisfies the condition (N_2).

Proof. The implications 1) \Rightarrow 3) and 2) \Rightarrow 4) are trivial. 1) \Rightarrow 2) is Proposition 2. The implication 4) \Rightarrow 2) is Lemma 1 and 3) \Rightarrow 4) is Lemma 2.

3. **Commutative P-exchange ring**

In this section, we study the rings whose Pierce stalks are local right perfect rings. Such rings are right P-exchange rings and for commutative rings the converse also holds (Theorem 2 and Corollary 1)

Lemma 3. If R is a ring such that all R_x are local right perfect rings, then so is every factor ring of R.

Proof. Let I be an ideal of R, and put $\tilde{R} = R/I$. Let y be in $\text{Spec}(B(\tilde{R}))$ and put $x = \{e \in B(R) | e + I \in y \}$. Then $x \subseteq \text{Spec}(B(R))$ and there is a ring
epimorphism from \(R_x \) to \(R_y \) as a result, \(R_y \) is also a local right perfect ring.

Proposition 3. Let \(R \) be a ring whose Pierce stalks are local right perfect rings. Then

1) \(J(R) \) is right \(T \)-nilpotent,
2) \(J(E) \) coincides with the set of all nilpotent elements of \(R \).

Proof. 1) Let \(\{a_i | i = 1, 2, \ldots \} \) be a subset of \(J(R) \) and let \(x \in \text{Spec}(\beta(B(R))) \). Since \(J(R)_x \subseteq J(R_x) \), \(\{(a_i)_x | i = 1, 2, \ldots \} \subseteq J(R_x) \). Hence there exists \(n \) such that \((a_n)_x(a_{n-1})_x \cdots (a_1)_x = 0 \). So there exists a neighborhood \(N(x) \) of \(x \) such that \((a_n a_{n-1} \cdots a_1)_x = 0 \) for all \(z \) in \(N(x) \). Hence by the partition property of \(\text{Spec}(\beta(B(R))) \), we can have neighborhoods \(N_1, \ldots, N_k \) and \(n_1, \ldots, n_k \) such that \(\text{Spec}(\beta(B(R))) = N_1 \cup \cdots \cup N_k \) and \((a_n a_{n-1} \cdots a_1)_x = O_x \) for all \(x \) in \(N_i \) for \(i = 1, \ldots, k \). Hence if we put \(m = \max \{n_i \} \), then \((a_m a_{m-1} \cdots a_1)_x = O_x \) for all \(x \) in \(\text{Spec}(\beta(B(R))) \), hence \(a_m a_{m-1} \cdots a_1 = 0 \).

2) By 1) \(J(R) \) is nil. For \(x \) in \(\text{Spec}(\beta(B(R))) \), we denote by \(M(x) \) the unique maximal (right) ideal of \(R \) containing \(R_x \). Then we see that \(\{M(x) | x \in \text{Spec}(\beta(B(R)))\} \) is just the family of all maximal right ideals of \(R \). For, if \(M \) is a maximal right ideal of \(R \), then \(\{e \in B(R) | e \in M\} \subseteq \text{Spec}(\beta(B(R))) \). As a result, we have \(J(R) = \cap \{M(x) | x \in \text{Spec}(\beta(B(R)))\} \). Now, let \(a \) be a nilpotent element of \(R \). Since \(M(x) | R_x = J(R_x) \), we see that \(a \in M(x) \). (Note that \(R_x \) is local). Hence \(a \in \cap \{M(x) | x \in \text{Spec}(\beta(B(R)))\} = J(R) \). Accordingly \(J(R) \) coincides with the set of all nilpotent elements of \(R \).

Lemma 4. Let \(R \) be a ring such that \(J(R) = 0 \) and all stalks \(R_x \) are local right perfect rings. Then \(R \) is a strongly regular ring.

Proof. We may show that all stalks are division rings. Let \(x \in \text{Spec}(\beta(B(R))) \). Let \(a \) be in \(R \) such that \(a_x \in J(R_x) \). Then there exists \(n \) such that \((a_n)^x = (a_n^x) = 0 \), so \(a^n e = O \) for a suitable \(e \) in \(B(R) - x \). Since \((ae)^n = a^n e = O \), Proposition 4 shows that \(ae \in J(R) = 0 \), so \(a_x = O_x \). Thus \(J(R_x) = O \). Since \(R_x \) is a right perfect ring, it follows that \(R_x \) is a division ring.

Notation. For a ring \(R \), we denote by \(I(R) \) the set of all idempotents of \(R \). Of course \(B(R) \subseteq I(R) \).

Lemma 5. For a ring \(R \), the following are equivalent:

1) \(I(R) = B(R) \).
2) \(I(R_x) = \{1_x, O_x\} \) for all \(x \) in \(\text{Spec}(B(R)) \).

Proof. 1) \(\Rightarrow \) 2): Let \(a \in R \) such that \(a_x \in I(R_x) \) (where \(x \in \text{Spec}(\beta(B(R))) \). Since \((a_x)^x = a_x, a x e = ae \) for some \(e \) in \(B(R) - x \). Then \(ae \in I(R) = B(R) \), we see that \(a_x = (ae)_x \) is either \(1_x \) or \(O_x \). 2) \(\Rightarrow \) 1): Let \(a \in I(R) \) and \(x \in \text{Spec}(B(R)) \). Then \(a_x = 1_x \) or \(a_x = 0_x \) since \(a_x \in I(R_x) \). Here using the partition property of
Spec(B(R)), we can take a suitable e in $B(R)$ such that $ae=e$ and $a(1-e)=0$, whence $a=e \in B(R)$. Thus $I(R)=B(R)$.

We are now ready to show the following.

Theorem 2. The following conditions are equivalent for a given ring R:
1) R is a right P-exchange ring and $I(R)=B(R)$.
2) $R/J(R)$ is a strongly regular ring, $J(R)$ is right T-nilpotent and $I(R)=B(R)$.
3) All stalks are local right perfect rings.

Proof. 1)\Rightarrow3): By Proposition 2 (b) and Lemmas 3 and 5, each R_x is a P-exchange ring with $I(R_x)=B(R_x)$, whence R_x is a right perfect ring by [11, Theorem 8]. The implication 2)\Rightarrow1) follows from Proposition 2. The implication 3)\Rightarrow2) follows from Proposition 3 and Lemmas 3 and 4.

Corollary 1. The following conditions are equivalent for a commutative ring R.
1) R is P-exchange ring.
2*) $R/J(R)$ is a regular ring and $J(R)$ is T-nilpotent.
3) All stalks are local perfect rings.

REMARK 3. The equivalence of 1) and 2) in Theorem 2 above is shown in [9]. It should be noted that an exchange ring with T-nilpotent Jacobson radical need not be a P-exchange ring, because there exist a non-regular commutative exchange ring R with $J(R)=0$ ([5]).

4. Main Theorem

As we see later, or by [9] the equivalence of 1) and 2) in Corollary 1 does not hold in general. However we show that 1) and 3) are equivalent, that is, the following holds:

Theorem 3. A ring R is a right P-exchange ring if and only if all Pierce stalks R_x are P-exchange rings.

Lemma 6. Let P be a projective right R-module and let $x \in \text{Spec}(B(R))$.
1) If A is a finitely generated submodule with $A_x \lhd \bigoplus P_x$, then $Ae \lhd \bigoplus P$ for a suitable e in $B(R)\setminus x$. 2) If P is finitely generated and A_1 and A_2 are finitely generated submodules of P with $P_x=(A_1)_x \oplus (A_2)_x$, then $Pe=A_1e \oplus A_2e$ for a suitable e in $B(R)\setminus x$.

Proof. As 1) follows from 2), we may only show 2). Let τ_i be the

* Prof. Y. Kurata informed the authors that commutative rings R which satisfy the condition 2) in Corollary 2 are studied in [1].
inclusion mapping: $A_i \to P$ for $i = 1, 2$. Since P is projective, there exist $\pi_1: P \to A_1$ and $\pi_2: P \to A_2$ such that $(\pi_i)^*\ (i = 1, 2)$. Noting that P, A_1 and A_2 are finitely generated, we can take a suitable e in $B(R) - x$ such that
\[
(1 - (\tau_1\pi_1 + \tau_2\pi_2))(Pe) = 0, \quad ((\pi_1 - (\pi_2)^*)(Pe) = 0, \quad (\tau_1\pi_1, \tau_2\pi_2)(Pe) = 0 \quad \text{for } i \neq j.
\]
Then it follows that $Pe = A_1e \oplus A_2e$.

Lemma 7. Let P be a projective right R-module with a sum $P = \sum_{i=1}^n a_i R$, and let $x \in \text{Spec}(B(R))$. If $P_x = \sum_{i=1}^n (a_i R)_x$, then there exists $\{e_i\}_{i=1}^n \subseteq B(R) - x$ such that $\sum_{i=1}^n a_i e_i R = \sum_{i=1}^n a_i e_i R \oplus P$ for all n.

Proof. Since $(a_i R)_x \subseteq P_x$, there exists $e_i \in B(R) - x$ such that $a_i e_i R \subseteq P_x$ by Lemma 6. Since $(a_i R \oplus a_i R)_x \subseteq P_x$, there exists $e_i \in B(R) - x$ such that $a_i e_i R \oplus a_i e_i R \subseteq P_x$. Put $e_2 = e_1 e_2$. Then we see that
\[
a_i e_i R + a_2 e_2 R = a_i e_i R \oplus a_2 e_2 R \subseteq P_x.
\]
By similar argument, we can take $\{e_i\}_{i=1}^n \subseteq B(R) - x$ such that $e_n e_{n+1} = e_{n+1}$ for $n = 1, 2, \ldots$ and
\[
a_i e_i R + \cdots + a_n e_n R = a_i e_i R \oplus \cdots \oplus a_n e_n R \subseteq P
\]
for $n = 1, 2, \ldots$.

Lemma 8. Let P be a finitely generated projective right R-module such that all stalks P_x have the exchange property. Then P has the exchange property.

Proof. Since P is finitely generated, we may show that P satisfies the condition (N_1) (Proposition 1). So, let $P = A + B$, where A and B are finitely generated submodules. Let $x \in \text{Spec}(B(R))$. Since P_x satisfies (N_1), we can take finitely generated submodules $A_x \subseteq A$ and $B_x \subseteq B$ such that $P_x = (A_x)_x \oplus (B_x)_x$. Then, by Lemma 6, $Pe = A_x e \oplus B_x e$ for a suitable e in $B(R) - x$. Using the partition property of $\text{Spec}(B(R))$, we can take orthogonal idempotents e_1, \ldots, e_n in $B(R)$ and finitely generated submodules A^*_1, \ldots, A^*_n of A and B^*_1, \ldots, B^*_n of B such that
\[
P = A^*_1 e_1 \oplus \cdots \oplus A^*_n e_n \oplus B^*_1 e_1 \oplus \cdots \oplus B^*_n e_n.
\]
Hence putting $A^* = A^*_1 e_1 \oplus \cdots \oplus A^*_n e_n$ and $B^* = B^*_1 e_1 \oplus \cdots \oplus B^*_n e_n$, we have that $P = A^* \oplus B^*$.

Proof of Theorem 3. If R is a right P-exchange ring, then all R_x are right P-exchange rings by Proposition 2. Conversely, assume that all R_x are right P-exchange rings. We may show that $R_x R$ satisfies the condition (N_2). Let
\(F = \sum_{i=1}^{\infty} R_i \oplus \oplus R \) be a free right \(R \)-module with \(R_i \cong R \) for all \(i \), so \(F = \oplus_{i=1}^{\infty} R_i \). We put \(F(s) = R_i \oplus \oplus \oplus R \) for \(s=1, 2, \ldots \). Now, consider a sum \(F = \sum_{i=1}^{\infty} a_i R \). For any \(x \) in Spec(\(B(R) \)), as \(F_\xi \) satisfies \((N_2) \), we can take by Lemma 7 \(\{ b_1^\xi \in a_i R \mid i=1, 2, \ldots \} \) such that \(F_\xi = \sum_{i=1}^{\infty} (b_i^\xi R)_\xi \) and

\[
F \oplus b_1^\xi R + \cdots + b_n^\xi R = b_1^\xi R \oplus \cdots \oplus b_n^\xi R
\]

for all \(n \).

Let \(x \in \text{Spec}(B(R)) \) and take any \(s_1 \geq 1 \). Then there exists \(n(x) \) such that

\[
F(s_1)_x \subseteq \sum_{i=1}^{n(x)} (b_i^\xi R)_x
\]

and so there exists \(e(x) \) in \(B(R) - x \) such that

\[
F(s_1) e(x) \subseteq \sum_{i=1}^{n(x)} b_i^\xi e(x) R \subseteq F
\]

Using the partition property, we have \(x_1, \ldots, x_m \) in Spec(\(B(R) \)), orthogonal idempotents \(\{ e(x_1), \ldots, e(x_m) \} \subseteq B(R) \) and \(m_1 \) such that \(1 = \sum_{i=1}^{m_1} e(x_i) \) and

\[
F(s_1) \subseteq \sum_{i=1}^{m_1} b_i^\xi e(x_i) R \oplus \cdots \oplus \sum_{i=1}^{m_1} b_i^\xi e(x_i) R \subseteq F
\]

Put \(b_i^\xi = \sum_{j=1}^{m_1} b_i^\xi e(x_j) \) for \(i = 1, \ldots, m_1 \). Then \(b_i^\xi \in a_i R \) and

\[
F(s_1) \subseteq \sum_{i=1}^{m_1} b_i^\xi R \subseteq F
\]

Put \(G_1 = \sum_{i=1}^{m_1} b_i^\xi R \). Then \(G_1 \subseteq F(s_2) \) for a suitable \(s_2 > s_1 \). By the same argument as above, we can take \(m_2 \) and \(b_i^\xi \in a_i R \) for \(i=1, \ldots, m_2 \) such that

\[
F(s_2) \subseteq \sum_{i=1}^{m_2} b_i^\xi R
\]

Put \(G_2 = \sum_{i=1}^{m_2} b_i^\xi R \). Then \(G_2 \subseteq F(s_3) \) for some \(s_3 > s_2 > s_1 \). Continuing this argument, we can take \(s_1 < s_2 < s_3 < \cdots \) and \(G_1 = \sum_{i=1}^{m_1} b_i^\xi R \), \(G_2 = \sum_{i=1}^{m_2} b_i^\xi R \), \(\cdots \) such that \(b_i^\xi \in a_i R \) for all \(i, k \), each \(G_i \) is a direct summand of \(F \) and

\[
F(s_1) \subseteq G_1 \subseteq F(s_2) \subseteq G_2 \subseteq F(s_3) \subseteq \cdots
\]

Since \(\bigcup_{i=1}^{\infty} G_i \subseteq \bigcup_{i=1}^{\infty} F(s_i) \), we see \(F = \sum_{i=1}^{\infty} G_i \). Since \(G_{n+1} \) has the exchange property by Lemma 8, there exists \(\{ c_i^\xi \in b_i^\xi R \mid i=1, \ldots, m_n \} \) such that

\[
G_n = G_{n-1} \oplus \sum_{i=1}^{m_n} c_i^\xi R.
\]

In particular, put \(c_i^\xi = b_i^\xi \) for \(i=1, \ldots, m_1 \). Then we see that

\[
F = \sum_{i=1}^{m_1} c_i^\xi R \oplus \sum_{i=1}^{m_2} c_i^\xi R \oplus \cdots \fection 1000.0x729.0
Then \(A_i \subseteq a_i R \) for all \(i \) and \(F = \sum_{i=1}^{\infty} A_i \). This completes the proof.

Corollary 2. If \(R \) is a ring such that all Pierce stalks are right perfect rings, then \(R \) is a right \(P \)-exchange ring.

By making use of the corollary, we shall give a right \(P \)-exchange ring.

Example. Let \(P \) be an indecomposable right perfect ring and \(Q \) an indecomposable right perfect subring of \(P \) with the same identity. Consider the rings \(W = \prod_{\alpha} P_\alpha \) and \(V = \prod_{\alpha} Q_\alpha \), where \(Q_\alpha \simeq Q \) and \(P_\alpha \simeq P \) for all \(\alpha \in I \). Then the ring \(W \) is an extension ring of \(V \) and becomes a right \(V \)-module. Put \(R = \sum_{\alpha} P_\alpha + 1Q \), where 1 is the identity of \(W \). Then \(R \) is a ring such that \(B(R) = \sum_{\alpha} B(P_\alpha)^* + B(Q) \). We can easily see that \(\text{Spec}(B(R)) = \{ x_0 \} \cup \{ x_\alpha | \alpha \in I \} \), where \(x_0 = \sum_{\alpha} B(P_\alpha) \) and \(x_\alpha = \sum_{\alpha} B(P_\alpha) + 1B(Q) \). Further we see that \(R_{x_0} \simeq Q \) and \(R_{x_\alpha} \simeq P \) for all \(\alpha \in I \). Hence Corollary 3 says that \(R \) is a right \(P \)-exchange ring. In particular, if we take \(\begin{pmatrix} F & F \\ F & F \end{pmatrix} \) and \(\begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix} \) as \(P \) and \(Q \), respectively, where \(F \) is a division ring, then \(R \) is a non-singular, right \(P \)-exchange ring with \(J(R) = 0 \).

References

\(^{*)}\) Note that \(B(P) = B(Q) = GF(2) \)

Hikoji KAMBARA
Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan

Kiyoichi OSHIRO
Department of Mathematics
Yamaguchi University
Yamaguchi 753
Japan