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In this note, we are concerned with Von Neumann regular rings having
(pseudo-) rank functions. Let R be a regular ring and N a pseudo-rank
function on R. Then N induces a pseudo-metric topology on R, and R, the
completion of R at this pseudo-metric, is a right and left self-injective regular
ring. If N is an extremal pseudo-rank function, R is simple moreover. It is
known that there exist uncountable nonisomorphic simple right and left self-
injective regular rings [1, Cor. 2. 9].

From this observation, K.R.Goodearl asked for two different extremal rank
functions P, Q on a given simple unit-regular ring R, whether the P-completion
of R is isomorphic to the Q-completion of R or not. ([3, Open problem 38]).
Now we answer that this problem is negative. Let F be any field and K; (=1, 2)
any qudratic extensions of F. We give an example of a simple regular F-algebra
R with two extremal rank functions P; such that the center of the P;-comple-
tion of R is K; (i=1, 2). In prarticular, put F=Q, K,=Q(7), and K,=Q(\/2).
Then, since Q(7) is not isomorphic to @(\/2) over @, the P;-completion of R is
not isomorphic to the P,-completion of R.

We use most of our terminologies and notations from Goodearl’s book [3].

1. A construction an example

Let K, K, be quadratic extension fields of a field F and g;: K;—M,(F)
(=1, 2) matrix representations of K; over F with respect to regular representa-
tion of K;. We shall constract an F-algebra R, as 2 direct limit of a sequence
R,—R,—> -+ of semisimple F-algebras. We shall refer to K.R.Goodearl’s
example [2, Scheme I] and D. Handelman’s one [4, p.1144]. Let p,, p,, =
be integers (p,>2). Define positive integers (1), w(2), -+ by setting w,=1
and @y=(Pp-1+2)(Ps-o+2)*(p1+2) and put

Rn = Mw(n)(F)®FKl@Mw(n)(F)®FK2
Next we shall define F-algebra maps from R, to R,,,. Let {1, v;} be F-basis of
K;. Then any elemant of M, (F)®rK; is written by the following form;

2Q14+yQu;, where x, yE M, (F). We use xHHy to denote the Kronecker
product of matrices ¥, yEM,,»(F). Let I, be the identity matrix in My(F).
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Define maps Giy: Myu)(F)Q®pK;—> M,yy(F) by the rule; 2;=x2Q14+yQuv;
—xtHL,+yHgi(v;). Define maps ¢,: R,— R,4, by the rule;

[2'1, 22] ERn
o Vb G
m(zx)zl\<'_2 ln(zl)z.z\p\z——Z
‘e ‘e, ER,H_
2, 2y 1
G?n(zz) ) Gzn(zz)

where x, x’, y and y’' &€ M, (F).

Now define R to be the limit of {R,, ¢,} and let 6,: R,— R natural em-
beddings. Obviously R is a simple unit-regular F-algebra with the center F.

Next we shall determine all (exremal) rank functions on R. We use P(R)
to denote the set of all rank functions on R. Put R,=M,,\(F)D M,y (F)
for each n. We consider R; as a sub-F-algebra of R, by the embedding
[x, y] = [*®1, y®1] where x, yEM,,)(F). Put ¢, =¢,|Rs, then ¢, is as
follows:

[x, 5] ER,
v

x\\p,, X \
- x
X _1’ Pn e Rl’l +1
y KN
}]

Y,
Define R’ to be the limit of {R’, ¢4}.
Lemma 1. P(R) is affinely homeomorphic to P(R') by the restriction map.
Proof. For any N €P(R,)(resp. P(R;)),
N([4, B]) = a rank (A)+ B rank (B)

w(n)

, where A€ M, (F)QK,, BE M, (F)QK, (resp. A, BE M »(F)), a=
N([1,, O)), and B=N([O, 1,]) by [3, Cor. 16.6]. Then P(R,) is affinely homeo-
morphic to P(R;) by the restriction map for all n. Since P(R) (resp. P(R")) is
the inverse limit of {P(R,), ¢5} (resp. {P(Ry), $5}), by [3, Prop. 16.21], P(R) is
affinely homeomorphic to P(R’).

The structure of P(R’) has been determined by K.R. Goodearl [2, pp. 277~
280]. For the sake of copmleteness, we shall again explain it.

Put u(1)=1 and w(n+1)=(p,—2)---(p,—2) for all n=1. For NeP(R’),
there exist positive real numbers a,(?) (n=1, 2, ---; i=1, 2) such that

(1) a, (1)+a,2)=1 foralln
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2) s (z)——@"_‘-(_’)’g for all n, i
(3) N((4, B))=2={1)rank (x)J(r‘)"n (@)rank(y)  gor 411 [4, BER,
w(n
where [4, B]=6,([x, y]) for some 7 and [x, y]ER;. Convercely, if {a,(Z)} are
any positive real numbers satisfing (1) and (2), then (3) defines a rank function

NonR'.

Now we assume that lim M>0. Put A = 1 lim M
— w(n) 2 — w(n)

We define a,(l) = ; N z’((:)) 8.(1) = %—x %
1 w(n) _ 1 w(n)
as(2) = 5 u(n) Ba(2) = 5 4+ w(n)

for alln=1. Then {a,(¢)} and {B,(z)} satisfy the above conditions (1) and (2).
Let N, (resp. N,) be the rank function determined by {a,(i)} (resp. {B.(?)}).
by [2, Lemma 27], N, and N, are all extremal rank functions on R’. Therefore,
by Lemma 1, N, and N, can be extended to extremal rank functions on R. N;
(=1, 2) induce metrics on R given by the rule; d;(x, y)=N,(x— y) for x, yER,
which we call the N;-metric [3, §19]. Let 7T; be the completion of R with
respect to N;-metric (7=1, 2). Then T; are simple regular, right and left self-
injective F-algebras by [3, Th. 19. 14].

2. Caluculation of the centers of T

In this note, we shall calculate the center Z(T};) of T;. Let I, be the identity
matrix for My(F) and 6, the natural embedding: R,—R.

Lemma 2. If 37 1/(P,+2)<oco, then {0,([l.n®c, 0])} (resp.
0,([0, I,»w®RBY)) is a Cauchy sequence with respect to N,-metric (resp. N,-metric)
for each ac K, (resp. BEK,).

Proof. Put K=K, and N=N,. For ¢K and each n, we see that
d’n([lxo(n)@a: 0])

&)\ gw(n) &)\ wo(n)
&) &(a)
Iw(n) ®a p,,—Z 0
]w('n)®a -
0
N . 0 ) 0
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Therefore, we have

[Iw(n+])‘®a; O] - d)n(['[w(n).@a) 0])

al—gi(a) “w(n) —&(@) N\ w(n) )
al,—g(a) —g(@)
0 0
- "0 L
a&vm
'a s 0/).

We can calculate that

N(0n+1([1w(n+l)®a’ O])_en([‘[w(n)®a’ 0]))
=N([Iw(n+l)®a’ O]_¢n[lw(n)®ar O])
1

=— -+ {@(1)(w() rank (al,—gy(@)) +-200(n)) + Q4 (2)eo() rank (g1())}
w(n+41)

ity s e () o)

<4/($4+2)
Then {g,([L.n @, 0])} is a Cauchy sequence.

By Lemma 2, we define 7\(at)=kim 6,([L,» @, 0]) (resp. 7(B)=0,([0, L, RB])
for each a €K, (resp. B€K,). Then 7;: K;—T; is a map as F-algebra for i=1, 2.

Lemma 3.
(1) 7(K)SZ(T;) fori=1, 2.
(2) 7d{a)=a forallacF.

Proof. (1) For any rER and a€K,, we shall show that 7 (a)r=rr(a).
Let r=40,([x, y]) for some n and [x, y]€R,. Since [L,»Ra, 0][x, y]=
[%, Y][1ow®@at, 0] for all k>n, we have, that = (a)r =rr(a). Since T, is the
completion of R with respect to N;-metric, we have that 7,(a)x=xr () for all
xeT,.

(2) Since a=0,([L,m»®a, I,,»Qa]) for all ac F and all n, we see that

Ny(a—0,([1,Ra, 0]))
= N([0, L,(»®al)
== an(z)

Therefore we have that a=lim 8, ([1,(, ®a, 0], because lim ¢,(2)=0.
—_— —_
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Lemma 4. Let p,, p,, -+ be integers such that lim % >0 and
—w(n

Si-1 4/(pat2)<<oo. Then v;: Ki—Z(T;) is an isomorphism over F.

Proof. Put T=T, and N=N,. We shall show that r,(K,)=Z(T). First
for any x& Z(T') and any real number €>0, there exists 7 & R such that N(x—r)<<
&/4.  And there exists 7, € Ry such that 7=0,)(7sp). We note that r=8,,(r,,)
for all m=k(1), where some r,ER,. For any 7, there exist 2, Z(R,) and
YwER,, such that N(7,,—2,,) S N(7pVm—Yu’w) by [1, Cor. 2.4].

Since N(rm—zm) §N("m.’ym _ymrm)

= M(r—2)0n(ym)+N(On(ym)(x—7))
<2N(x—r)
<é€/2,

we see that for any m=k(1),

SN(x—7)+N(ry—2,)
<€-3/4.

Put 2, = [I,w® Am, Lyt @ Bu] for some a, K, and B, K,. Since
lim e,,(2)=0, there exists k(2) such that «,,(2)<<€/4 for all m=k(2).
We see that for all m=max(k(1), k(2)),

N(x_ 0,,,( [Iw(n) ®amx 0]))
S N(x—0(2) N0, Ly @Bwm))
SN(X—0(2m)) F(2)
<E. (by (¥))

Since 3.1 4/(pat+2)<oo, for &, there exists a natural number k(3) such that
(x%) Di-.4/(pit2)<€ forall I>n=k(3).

Select some k=max (k(Z) 7=1, 2, 3). Then we have already seen that a,€ K,
and N(x—0([1,»®@ay 0]))<€. Put y=a;. We shall show that N(x—7y(v))
<&. There exists a positive integer k(4)>>k such that for any m=%(4),

(dekek) N(GM([Iw(m)®'7, 0]_71('7)))<8 .

We see that for some m=max{k(z); =1, 2, 3, 4},
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Nx—(7))=N(x—0([Law ®7, 01))
+NO[Low®7> 0)—Orss([Lute+n @75 01))
+NOn-s[Lutm-B7; 01)— O u([Luem @, 01))
+NOn([Lum @75 0)—7u(7)))

, using the inequality in the proof of Lemma 2, (%) and (%)

<E+TL 4(pit2)tE
<6€ .

Since T is a simple ring, Z(T) is a field, so if & is less than 1/6,
N(x—7y(v))=0. Therefore x belongs to 7,(K,).

Now we shall give a negative answer for the Goodearl’s problem No. 38
[3, p. 348].

ExampLE There exists a simple unit-regular ring R such that
(1) R has two extremal rank functions NV,, N,.
(2) The N;-completion of R is not isomorphic to the N,-completion of R.

Proof. Set F=Q, K;=Q(i) and K,=Q(\/2). Put p,=n*+4n+2 for all

n, and construct R accoding to the previous method. Since w(n) _2(n+2)(n+3)
u(n) In(n+1)

h: 11 M:l And that bl _1_ = __—l__zi
we avean(n) 5 nd we see that > 1Pn+2<2 1(n—1—1)(n+3) 13

By Lemma 4, the N;-completion T of R is not isomorphic to the /V,-completion
T, of R, because Z(T,)=@Q(7) is not isomorphic to Z(T,)=Q(\/ 2 ) over Q.

?
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