

Title	Some Considerations on State of Flourine Ion in Flux
Author(s)	Iwamoto, Nobuya; Makino, Yukio; Umesaki, Norimasa
Citation	Transactions of JWRI. 1975, 4(2), p. 111-115
Version Type	VoR
URL	https://doi.org/10.18910/10921
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

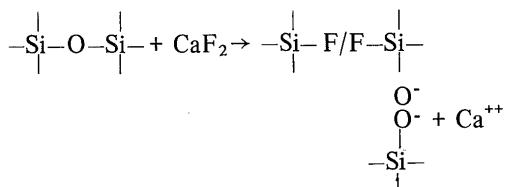
<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

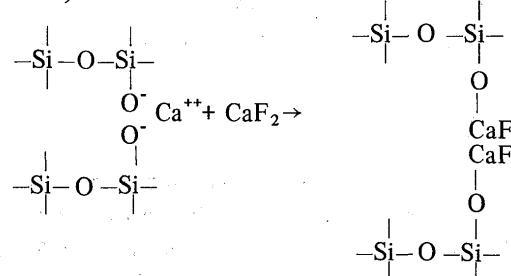
Some Considerations on State of Flourine Ion in Flux[†]

Nobuya IWAMOTO*, Yukio MAKINO** and Norimasa UMESAKI***

Abstract


State of flourine ion in silicate melt was investigated by several spectroscopic methods. Infrared absorption study could not make clear on the state of flourine ion, but it was determined that the intensity of absorption near 780cm⁻¹ increased with increasing CaF₂ content in the system xCaF₂·(1-x)CaO·SiO₂. In the chemical shift study using ESCA, fairly clear results were obtained in this system. These results seem to reject the formation of Si-F bond that has been predicted in previous studies. Likewise, emission X-ray peak shift was found in the system CaF₂-CaO-SiO₂. Further investigation are desired because detailed discussion was impossible on account of insufficient data at present.

1. Introduction


Flouride in flux, for example CaF₂ or KF, is generally used to improve weldability. Although prevention of water vapour dissolution in slag or improvement of arc stability has been achieved from the addition of CaF₂ or KF in flux, roles of flouride added, especially, behaviours of flourine ion in slag have been not clarified in welding process. In general, it is thought that in flourosilicate SiF₄ or HF gas is produced from the reaction between slag components or between slag and water vapour in atmosphere. Therefore, further investigation for utilities of flouride is aquired from environmental standpoint.

In previous works as to formation of flourosilicate, the formation of Si-F bond has been discussed with infrared absorption measurement and with changes of various physical properties by flouride addition. It was first report that Kozakevitch discussed the formation of CaF₂-Al₂O₃-SiO₂ from viscosity measurement.¹⁾ Bills also measured viscosity about the system CaO-Al₂O₃-SiO₂ containing CaF₂.²⁾ They suggested following structural changes respectively.

(after Kozakevitch)

(after Bills)

Kumar, Ward and Williams presented that absorption at 855 cm⁻¹ is attributed to the formation of Si-F bond with infrared absorption studies.^{3),4)} However, Mitchell gave the interpretation that new absorption band did not appear even if (Si₃O₉F)⁻⁷ ion was formed with flouride addition.⁵⁾

Up to the present time, state of flourine ion in flourosilicate melt has been mostly studied with physical properties measurements and infrared absorption method. In this paper, state of flourine ion in some silicate slags has been studied with several spectroscopic means.

2. Experimental procedures

Sample slags were prepared from reagent grade SiO₂, alkaline-earth carbonate and flouride by mixing them in a mortar and porcelain pestle. After all specimens were melted at the temperature of 100°C higher than those melting points and kept for 0.5 hr or 1hr in platinum crucible in resister-type furnace, they were taken out into air and cooled.

† Received on July 26, 1975

* Professor

** Research Associate

*** Graduate Student

Infrared absorption spectra were measured in the range from 450 cm^{-1} to 4000 cm^{-1} with KBr dilution method. The apparatus used was a spectrometer of 225 type (Hitachi Co., Ltd.).

The experimental conditions for X-ray emission study were as follows:

Target : Rh K_{α} , Voltage and Current : 50kV x 60mA

Crystel : TAP, Path : Vacum, P.H.

CaF_2 was used to establish the standard angular position of the fluorine K_{α} radiation. The angular shift, $\Delta^{\circ}(2\theta)$, of the fluorine K_{α} peak for specimens was determined from the equation

$$\Delta^{\circ}(2\theta) = {}^{\circ}(2\theta)(\text{CaF}_2) - {}^{\circ}(2\theta)(\text{specimen})$$

ESCA spectra were measured on the following conditions:

Target : Al K_{α} Voltage : 9kV,

Scanning rate : 0.05v/sec, Sensitivity : 100cps or 200cps

3. Infrared absorption

Although it is anticipated that fluorides would take similar behaviours to alkali or alkaline-earth metal oxides in silicate melt⁶⁾, its behaviour remains unclear. State of fluorine ion in silicate melt has been often discussed in

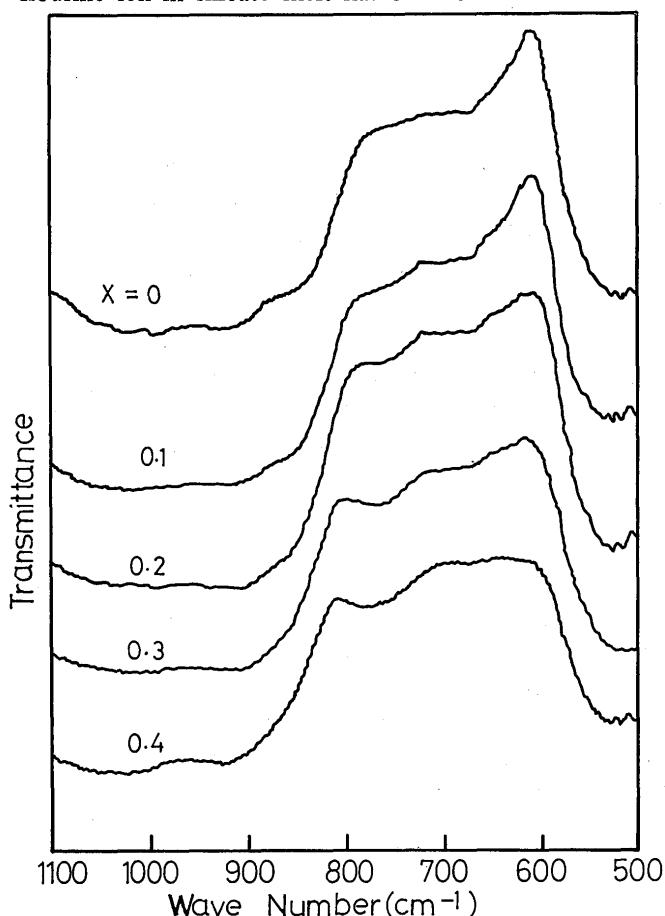


Fig. 1 Absorption spectra of slags in the system $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$

previous works and the formation of Si-F bond or solvating effect of fluoride⁷⁾ is a subject of discussion.

The shift of absorption near 1000 cm^{-1} was attributed to the formation of unbridged oxygen by addition of alkali or alkaline-earth metal oxide.⁸⁾ If fluoride behaves as modifier perfectly, the role of one molecule of fluoride corresponds to that of two molecules of oxide modifier for the formation of unbridged oxygen. Therefore, the shift of absorption near 1000 cm^{-1} increases with increasing fluoride content when modifier oxide is exchanged with corresponding fluoride. The shift was slight in $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$ slags as shown in Fig. 1. However, it is the noticeable result that the absorption near 780 cm^{-1} appears with increasing fluoride content. Kumar et al. observed an absorption at 855 cm^{-1} in the system $\text{CaF}_2 - \text{CaO} - \text{SiO}_2$.⁹⁾ They considered that the absorption was attributed to Si-F bond. However, Mitchell indicated the fact that the absorption at 855 cm^{-1} was attributed to crystalline rankinite($3\text{CaO} \cdot 2\text{SiO}_2$).¹⁰⁾ The origin of the absorption observed in this study seems different from that of the absorption at 855 cm^{-1} because samples used in this study were identified as amorphous state with X-ray diffraction method.

Absorption spectra containing various fluoride are shown in Fig. 2. It will be seen that the stronger the

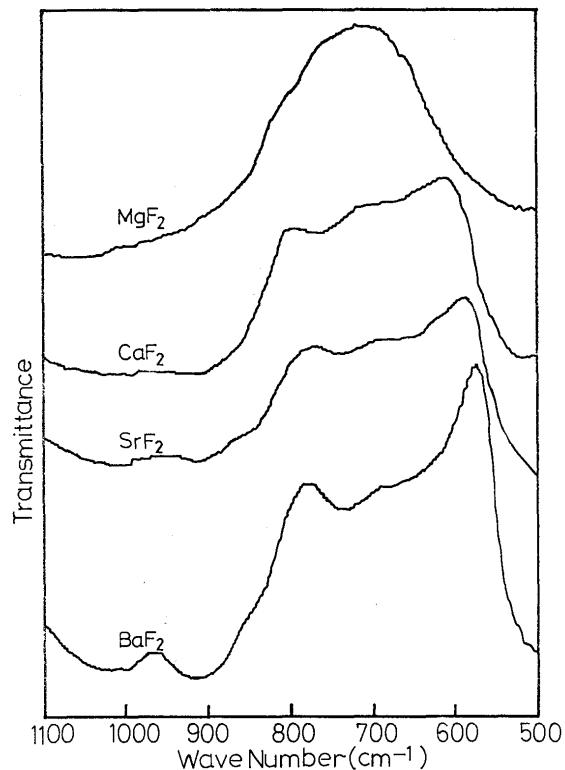


Fig. 2 Absorption spectra of $0.3\text{MF}_2 \cdot 0.7\text{MO} \cdot \text{SiO}_2$ slags (M : Mg, Ca, Sr, Ba)

polarizing power of divalent cation in slag is, higher wave number absorption appears.

The absorption near 800 cm^{-1} can be observed as very weak in vetreous silica and strong in quartz and other crystalline silicate. The absorption has often been interpreted with occurrence of ring ions, for example, $(\text{Si}_3\text{O}_7)^{2-}$.^{11),12)} In silica glass it is also considered that the absorption is attributed to asymmetry of SiO_4 group.¹³⁾ Infrared absorption results gave unclear conclusion as to the formation of Si-F bond or solvating effect of fluoride in silicate slag. The absorption near 780 cm^{-1} would not be related to the formation of Si-F bond but to the increase of degree of asymmetry in SiO_4 groups due to fluoride addition.

4. Chemical shifts in ESCA and emission X-ray spectroscopy

As is generally known, energy state of electron sensitively changes corresponding to change in the crystal field. In ESCA, binding electron is released by X-ray radiation and the binding energy of released electron is obtained with measurement of its kinetic energy. On the other hand, characteristic X-ray of atoms composed of compound is measured in emission X-ray spectroscopy. Change in the crystal field gives a shift of energy level of electron and reflects as chemical shift in ESCA as well as emission X-ray spectroscopy.

(i) Chemical shift in ESCA^{14),15)}

Generally, electronegativity of surrounding atoms is believed as the most effective factor to chemical shift. The larger electronegativity of surrounding atoms becomes, the more electrons of noticed atom are attracted to neighbouring atoms and the larger effective charge around its nucleus becomes. Thus it will be interpreted that chemical shift in ESCA depends on the difference of effective charge around the nucleus.

When noticed atom is cation, the larger electronegativity of neighbouring anions becomes, the more effective charge of nucleus of cation increases. Thus, potential field of cation nucleus becomes stronger because average electron density of cation decreases and energy spectrum of electron released from cation shifts in higher energy. On the contrary, the larger electronegativity of neighbouring cations becomes in the case of anion, the more effective charge of anion nucleus decreases. Thus, potential field of anion nucleus becomes weaker and energy spectrum of electron released from anion shifts in lower energy.

ESCA spectra of F_{1s} and Si_{2p} in the system $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$ and their peak positions are shown in Figs. 3, 4 and 5, respectively. Their peak positions were measured at half value width. Although the slight

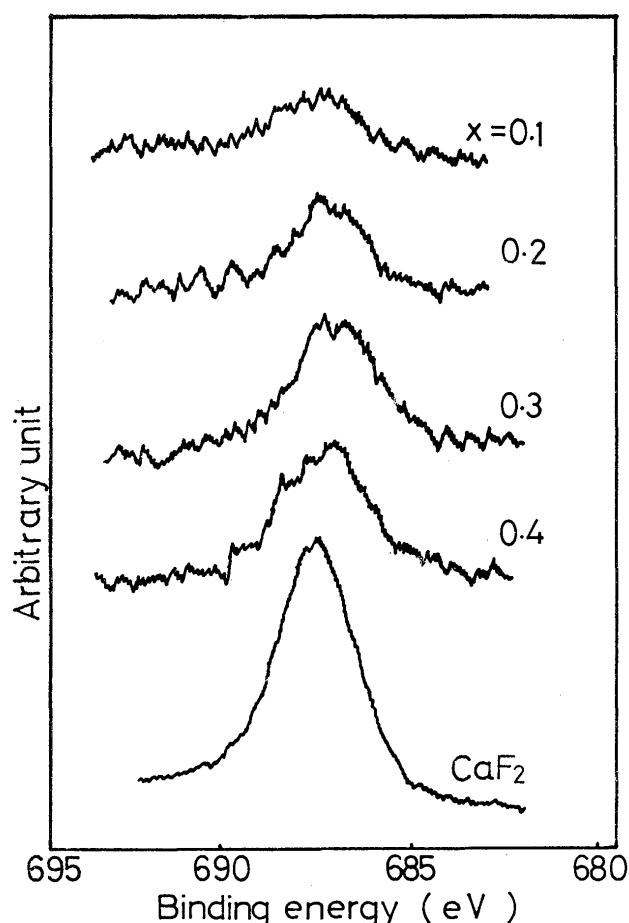


Fig. 3 F_{1s} ESCA spectra of slags in the system $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$

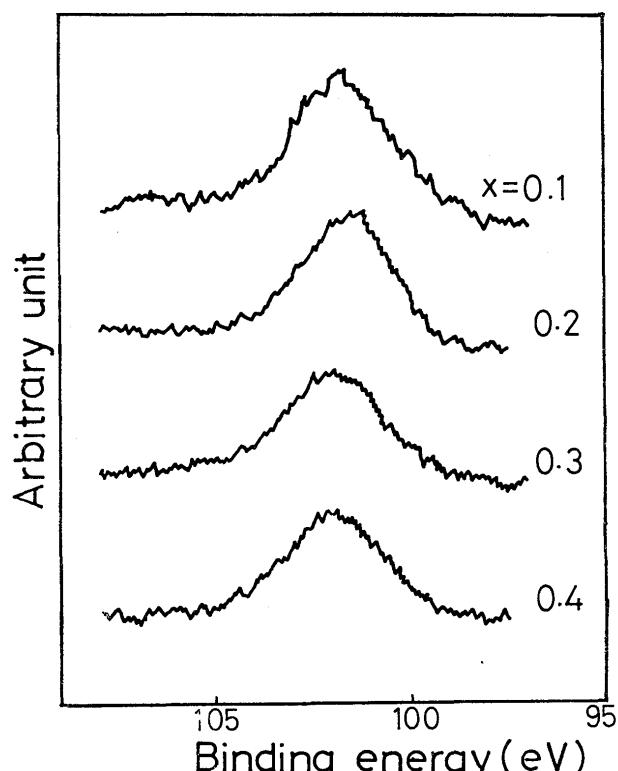


Fig. 4 Si_{2p} ESCA spectra of slags in the system $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$

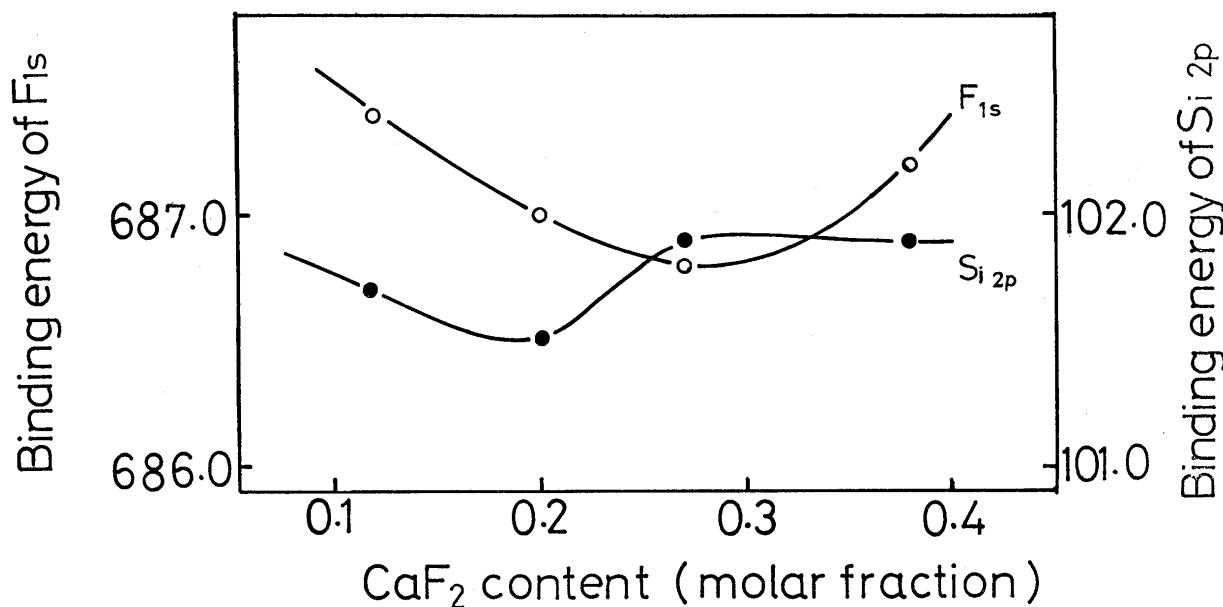


Fig. 5 Dependence of F_{1s} and Si_{2p} binding energy on CaF₂ content

shift was obtained in Si_{2p} spectra, the shift of F_{1s} spectra was fairly remarkable.

If Si-F bond is formed in slag, the effective charge of Si nucleus becomes larger than that in Si-O bond because χ_F is larger than χ_O (χ_F and χ_O are electro-regativities of flourine oxygen ion, respectively). Therefore, ESCA spectrum of Si_{2p} is believed to shift in higher energy. On the other hand, spectrum of F_{1s} is also believed to shift in higher energy because χ_{Si} is larger than χ_{Ca} and effective charge of flourine nucleus in Si-F bond is larger than that in Ca-F bond. According to the result, it must be considered that Si-F bond is not formed in the system. Formation of O-Ca-F bond rather than that of Si-F bond must be anticipated from the shifting behaviour of F_{1s} spectrum because effective charge of flourine nucleus in O-Ca-F bond is smaller than that in F-Ca-F bond.

(ii) Chemical Shift in emission X-ray spectroscopy^{16), 17)}

Chemical shift in slags of the system CaF₂-CaO-SiO₂ was measured with changing CaO/SiO₂ ratio under constant 10 wt% CaF₂. In Table 1, it was showed that chemical shift decreased with decreasing

Table 1 Chemical shift of X-ray emission spectra

Sample composition	$\Delta^\circ 2\theta$
CaO/SiO ₂ =40/60 CaF ₂ =10wt%	0.021
45/55	0.034
50/60	0.037
55/45	0.037

CaO/SiO₂ ratio. Although clear explanation was impossible at present on account of insufficient data, it is

supposed that state of flourine ion depends on basicity of slag.

5. Vaporization of flourine and change of refractive index

Flourine ion in flourosilicate is believed to evaporate in the form of HF or SiF₄. The result of chemical analysis of flourine and silicon in slag is shown in Table 2. Silicon loss was under 4 mole% as shown in Table 2. Therefore, it can be thought that in the system xCaF₂·(1-x)CaO·SiO₂ evaporation of flourine occurs in the form of HF.

Table 2 The result of checmial analysis of slags in xCaF₂·(1-x)CaO·SiO₂

CaF ₂ mole fraction	heating time (min)	Si loss in slag (%)	F loss in slag (%)
X=0.1	30	0	0
	30	1.6	0.2
	10	1.6	0.2
	20	1.6	2.5
	30	0.4	3.0
	40	1.1	9.2
0.4	30	4.2	2.1

Refractive index of specimen well reflects the change of flourine content as shown in Fig. 6. Although vaporization loss of flourine sensitively corresponds to the treating temperature and the holding time, this result suggests that the difference of these experimental conditions gives effect on the refractive index of specimen. It seems appropriate that the refractive index

can be used as a measure of fluoride content in slag.

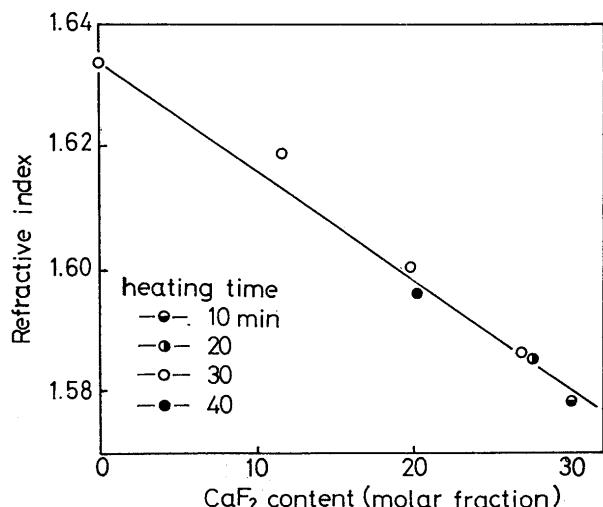


Fig. 6 Dependence of refractive index on CaF₂ content

Summary

State of flourine ion in flurosilicate was investigated with infrared absorption, ESCA and emission X-ray spectroscopy. Infrared absorption study could not make clear on the state of flourine ion in slags of the system $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$, but it was determined that the absorption near 780 cm^{-1} appeared with increasing CaF₂ content. The results of chemical shift in ESCA could be qualitatively interpreted with the difference of electronegativities of nearest neighboring atoms. According to this interpretation, it seems to reject the formation of Si—F bond in slags of the system $x\text{CaF}_2 \cdot (1-x)\text{CaO} \cdot \text{SiO}_2$. Chemical shift in emission X-ray study was also observed in slags of the system CaF₂—CaO—SiO₂. From this result, it is supposed that state of flourine depends on basicity of slag. However, clear explanation was impossible at present on account of insufficient data.

Acknowledgement

The authors are indebted to Mr. H. Yamauchi (Shimadzu Seisakusho Ltd.) for ESCA spectra. Emission X-ray measurement was performed with the aid of Rigaku Dendikogyo Co., Ltd. And we wish to thank Kobe Steel Ltd. for chemical analysis of samples.

References

- 5) A. Mitchell: Trans. Farad. Soc., 63(1967), p. 1408.
- 6) P. Kozakevitch: Rev. Met., 46(1949), p. 572.
- 7) T. Baak: Acta. Chem. Scand., 8(1954), p. 1727.
- 8) I. Simon and H. O. McMahon: J. Amer. Ceram. Soc., 36(1953), p. 160.
- 9) D. Kumar, R. G. Ward and D. J. Williams: Disc. Farad. Soc., 32(1961), p. 147.
- 10) A. Mitchell: Trans. Farad. Soc., 63(1967), p. 1408.
- 11) Modern aspects of the vitreous state, I, Chap. 6, Butterworths, London.
- 12) B. D. Saksena, G. S. Jauhri and K. C. Agarwal: Trans. Farad. Soc., 59(1963), p. 276.
- 13) T. Yanagase and Y. Sugino: Tetsu to Hagane, 57(1971), p. 142 (in Japanese).
- 14) K. Siegbahn et al.: ESCA atomic molecular and solid state structure studied by means of electron spectroscopy, Almqvist and Wilsells Boktryckeri AB, Uppsala (1967).
- 15) K. Maeda: Bunseki Kiki, 77(1969), p. 579 (in Japanese).
- 16) Y. Goshi: Yogyo-Kyokai-Shi, 77(1969), p. 12 (in Japanese).
- 17) C. G. Dodd and G. L. Glen: J. Amer. Ceram. Soc., 53(1970) p. 322.