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In our paper, "The First Eigenvalue of P-manifolds" [2] we proved the following

Theorem 1. Let (M, g) be a Pιπ-manifold of dimension n > 2 with Ricci curva-

ture RICA/ > / and λi = (l/3)(2/ + n + 2). Then
1. (a) λi = k(m + l)/2 = λ\(M) and I = Ric^- where M is a simply connected

compact rank-1 symmetric space(CROSS) of dimension n = km with sec-
tional curvature 1/4 < Kjf < 1 and k = 1, 2, 4, 8 or n is the degree
of the generator of H*(M, Q) = #*(M, Q) and #*(M, Z2) = //*(M, Z2)
where M is the simply connected cover of M.

(b) If k > 4 f/z£fl M is simply connected and the integral cohomology ring of
M is same as that of M.

(c) If k = 2 f/zew eif/zer M is simply connected or M is non-orientable and
it has a two sheeted simply connected cover M. Moreover //*(M, Z) =
//*(M, Z).

2. If k = 1 ί/z£tt (M, g) is isometric to Sn with constant sectional curvature 1/4.
3. If k = n then (M, g) is isometric to Sn with constant sectional curvature 1.

(Lichnerowicz-Obata Theorem)

4. If k = 2, 4 or 8 flnd // fΛtfre is « ̂ rsί eigenfunction without saddle points then
the universal cover (M,£) of (M, g) is isometric to M of dimension km.

The proof of Theorem 1(4) above depends on Lemma 4.1 of [2] where we have

discovered an error in the proof of the fact E(i_coso/2 ^s Para^el along y. The no-
tations are as in [2]. We showed there that any Jacobi field / along γ such that
J(0) € ΓDmax and J(π) = 0 with the normalization ||/r(π)|| = 1, is of the form

J(t) = 2cos((ί/2)£"(ί)), where E(t) e £"(1-0050/2 is a unit parallel field along γ. To
show this we claimed that (Jf, J)/\\J\\ > -(l/2)(sin(f/2)/cos(ί/2)) on (-π,τr). How-
ever, we can only say that this inequality is valid on (0, π) and not on (—π, π).

In this note we prove Lemma 4.1 and hence Theorem 1(4) of [2].
Assume to begin with that Vol(M) = Vol(Pm(fc)). Any Jacobi field J along γ such

that ,7(0) e ΓDmax and J(π) = 0 with the normalization H/^TΓ)!! = 1 satisfy the in-

equality 117(011 < 2cos(ί/2) along γ on (0, π). Hence Vol(Dmax) < VoKPW). Further
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equality holds iff the fibration Πmin : 5(0, 1) —> Dmax defined by Πmin(w) := exp(πw)
of the unit normal sphere 5(0, 1) of Z)min at x over Dmin is congruent to the Hopf

fibration and the Jacobi field J(t) is of the form J(t) = 2cos((ί/2)£(0) along γ on
(0, TT) with E(t) e £(i-Coso/2 a parallel unit vector field along /.

Similarly by starting with Jacobi fields / along γ from Z>min, with the same initial

conditions as the Jacobi fields described above, we see that Vol(Z)min) < Vol(Ph(k)).
Further equality holds iff the fibration Πmax : 5(0, 1) —> Dm\n of the unit normal sphere
at x over Dmax is congruent to Hopf fibration and the Jacobi fields are of the form

J(t) = 2 sin((t/2)E(t)) along γ where E(t) 6 £-(i+cos/)/2 is a parallel vector field along
γ. Therefore, if we show that either Vol(Dmax) = VoKFΌk)) or Vol(Dmin) = Vol(P*(*))
we will be through.

First we show that the volume density relative to Dmax (respectively relative to

Anin) is same as in Pm(k) relative to V"(k) (respectively relative to P*(i)).
Since / is an eigenfunction of Δ, we have (Δ/)(jc) = (k(m + l)/2)(cosί + C) for

x G 5(/), the level set of radius ί around Dmax. We write

where H is the mean curvature of the hypersurface 5(ί) and A$(t) is the Laplacian on
5(ί) with respect to the induced metric from (M, g). Since the function / is constant
on 5(/), Δ5(,)/ = 0 on 5(0. Therefore

= cosί + (km - l)//sinί

Hence (km - l)H sint = ((k(m + l)/2) - l)cosί + (k(m + 1)/2)C. The constant C is
computed as follows: Along Z)max,

= k(m - α)

and therefore (k(m + 1)/2)C = k(b + 1) - (fc(α + b + 2)/2) = (k(b - α)/2). We substitute
this value of C in the equation above to get

1 Γ kα t kb t

Hence the volume density relative Dmax is coskα(t/2)smkb(t/2)sink~l ί which is

same as the volume density of Pm(fc) relative to F1^) (Pb(k)). This proves that
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Vol(M,s)/Vol(F"(t)) = Vol(Dmax)/ Vol(fa(k)) = Vol(Dmin)/ Vol(P*(*)). Since we as-

sume that Vol(M,g) = Vol(Pm (&)), this completes the proof of the Lemma 4.1 under

the assumption on the volume of M. We now proceed to justify the assumption. We

consider two cases:

(a) Either Dmax or Dmin is a point.

(b) None of them is a point.

Proof in case (a). Let, without loss of generality, Dmax = {/?} and / be a Jacobi

field describing the variation of a geodesic γ starting at p with the initial conditions

7(0) = 0, J(π) e ΓZ)min. We normalize / so that ||/'(0)|| = 1. Then using the inequal-

ity (V2/(E), £) > -((1 + cos ί)/2)|| E \\2 for every E e ΓM, we get that ||/(ί)ll <

2sin(ί/2) along γ\ in particular H/OOII < 2. Hence Vol(Dmin) < VolζF11"1^)). More

over equality holds iff the fibration Πmax : 5(0, 1) ->> Dmin of the unit sphere 5(0, 1)

in TPM is congruent to Hopf fibration and J ( t ) = 2 sin((f /2)E(/)) along γ where

E(t) e £-(i+cosr)/2 is a parallel unit vector field along γ.

We know that the relative density is same as in the standard P"̂ /;). From this it

follows that Vol(Af) = Vol(Pm(£)) and hence Vol(Z)min) = VolOP"1"1^)). Since (1 -

cos 0/2 is not an eigenvalue of V2/, the proof of Lemma 4.1 and hence the proof of

the theorem is complete. D

Proof in case (b). The first thing to note is that in this situation k cannot be

equal to 8. It is either 2 or 4, i.e. our manifold is either a homology complex or a ho-

mology quaternionic projective space. The reason being that the dimension of M has

to be k(a + b + 1) and in case k = 8, it can only be 8 or 16 forcing at least one of a

or b to vanish.

Let 5P(0, 1) denote the set of unit normal vectors at /?, whenever p is in either

Anax or Dmin. For u e 5P(0, 1) and υ _L M, let Jv denote the Jacobi field along γu

with Λ(0) = 0, ^(0) = v. D

Lemma 1. Let p 6 Dmax, u e 5^(0, 1) and further v be a unit vector at p tan-

gential to Dmax. Let q = χM(τr) be the point in Dmjn where γu meets it and J^(π) be

the component of Jv(π) normal to Dmjn at q. Then

(i) 11/^0011=2.
(ii) J"(π) is orthogonal to the fibres of Πmin : 5^(0, 1) — > Dmax

Proof. Set UQ = cosθu + sin#υ, γβ = γUf). Then AUθ = cos2 θ and consequently

/(X0(0) = cos20(cosί — 1) + C + 1. As χM(π) is a critical point (an absolute minimum)

of /, we conclude that

. /.Or)) = dθ2 =4
(9=0
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Since V 2/ has eigenvalues 0 and 1 along tangent and normal directions respectively,

we get the proof of (i).

For the proof of (ii), let w be a vector tangent to the fibre contained in Sp(0, 1)

based at u. Then Jw(π) will vanish at q and J'w(π) will be tangent to the fibre in-

side 5^(0, 1). (Jw is tangent to the 'link sphere' between p and q.) Now let ω be the

symplectic form on the space of normal Jacobi fields along γu. ω(Jv, Jw) vanishes as

Λ(0) = Λ,(0) = 0. On the other hand at t = π, ω(Jv, Jw) = (Λ(π), J'w(π)). This proves

that the normal component of Jv(π) is a 'horizontal' vector, i.e. orthogonal to the fi-

bres of the fibration of 5^(0, 1) over Dmax. D

Lemma 2. Πmax : SP(Q, 1) —> Dmjn is a Riemannian submersion (up to a con-

stant scale factor of 2).

Proof. Let q e Dmin and u e Π~^x(^). This means that χM(0) = p and γu(π) - q.

Let w € TgDmin and w* e 7^5^(0, 1) be such that Πmax *O*) = w. In other words,

there is a Jacobi field / = /„;* along γu satisfying /(O) = 0, /'(O) = w*, J(π) = w.

Also given any v € TqD^ιn there is a Jacobi field L such that L(π) = 0, L'(π) = v.

Since L is just the /„ of lemma 1 when viewed from q to /?, we see that L(Q)N is

a horizontal vector of length equal to 2||v||. Now at t = 0, ω(J, L) = — (w*, L(0)) =

-(u;*, L(0)N), and at / = π, ω(J, L) = (w, v). It follows then that w*h, the horizontal

component of w*, has length (l/2)||ty||. This proves the lemma. D

Corollary 1. Volume of M is equal to that of its model CROSS.

Proof. Since the exponential map from the unit normal spheres to the opposite

critical set is a Riemannian submersion with fibres of dimension 1 or 3, by the classi-

fication theorem in [1] they are all standard Hopf fibrations. Thus critical sets are iso-

metric to their respective model CROSSes and in particular have the correct volumes.

Consequently, so does M. D

Now the proof of Lemma 4.1 of [2] is complete in all cases.

REMARKS. 1. In the more general situation when there are more critical sets of

/ other than just a maximum and a minimum, the computations done here can be re-

peated to see that each critical set is a CROSS. One just has to obsereve that if we

take critical sets Da and Dβ and study the geodesies between them, then lemma 2.8

from [2] ensures that j£ is tangential to Da * Dβ. (For explanation of the notation,

refer to its definition just prior to lemma 2.13 in [2]) Note that classification of Rie-

mannian submersions of S15 with 7-dimensional fibres is not needed since it can occur

only when M is a homology CaP2 and there are only two critical sets: a situation al-

ready taken care of.
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2. Further, one can try to show that there can be no short geodesies in M by
observing that any short geodesic will perforce stay in a level set of / and those
geodesies that start tangentially to a regular level set but do not lie in it must stay
on only one side of it. Moreover, a generic geodesic starting tangentially to a regular
level set will have to leave it. (A regular level set cannot be totally geodesic.) Since a
nearby long geodesic must go 'around' a short one, we can see that there can be no
short geodesies in regular level sets. This can be seen more clearly perhaps by lifting
/ to UM. Thus short geodesies will only be confined to critical levels. Within criti-
cal sets there are no short geodesies. The problem lies with regular points in a critical
level. If it could be resolved it will follow that M is actually a C-manifold and hence
its volume is same as that of its model CROSS. See [3] and [4].
3. These observations make one believe that ultimately one should be able to drop
the condition that / be without saddle points.
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