



|              |                                                                             |
|--------------|-----------------------------------------------------------------------------|
| Title        | Correction to : "The first eigenvalue of P-manifolds"                       |
| Author(s)    | Ranjan, Akhil; Santhanam, Gopalakrishnan                                    |
| Citation     | Osaka Journal of Mathematics. 2000, 37(2), p. 519-523                       |
| Version Type | VoR                                                                         |
| URL          | <a href="https://doi.org/10.18910/10923">https://doi.org/10.18910/10923</a> |
| rights       |                                                                             |
| Note         |                                                                             |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

## CORRECTION TO “THE FIRST EIGENVALUE OF P-MANIFOLDS”

AKHIL RANJAN and GOPALAKRISHNAN SANTHANAM

(Received March 1, 1999)

In our paper, “The First Eigenvalue of  $P$ -manifolds” [2] we proved the following

**Theorem 1.** *Let  $(M, g)$  be a  $P_{2\pi}$ -manifold of dimension  $n \geq 2$  with Ricci curvature  $\text{Ric}_M \geq l$  and  $\lambda_1 = (1/3)(2l + n + 2)$ . Then*

1. (a)  *$\lambda_1 = k(m + 1)/2 = \lambda_1(\overline{M})$  and  $l = \text{Ric}_{\overline{M}}$  where  $\overline{M}$  is a simply connected compact rank-1 symmetric space (CROSS) of dimension  $n = km$  with sectional curvature  $1/4 \leq K_{\overline{M}} \leq 1$  and  $k = 1, 2, 4, 8$  or  $n$  is the degree of the generator of  $H^*(M, \mathbb{Q}) = H^*(\overline{M}, \mathbb{Q})$  and  $H^*(\tilde{M}, \mathbb{Z}_2) = H^*(\overline{M}, \mathbb{Z}_2)$  where  $\tilde{M}$  is the simply connected cover of  $M$ .*
1. (b) *If  $k \geq 4$  then  $M$  is simply connected and the integral cohomology ring of  $M$  is same as that of  $\overline{M}$ .*
1. (c) *If  $k = 2$  then either  $M$  is simply connected or  $M$  is non-orientable and it has a two sheeted simply connected cover  $\tilde{M}$ . Moreover  $H^*(\tilde{M}, \mathbb{Z}) = H^*(\overline{M}, \mathbb{Z})$ .*
2. *If  $k = 1$  then  $(\tilde{M}, \tilde{g})$  is isometric to  $S^n$  with constant sectional curvature  $1/4$ .*
3. *If  $k = n$  then  $(M, g)$  is isometric to  $S^n$  with constant sectional curvature 1. (Lichnerowicz-Obata Theorem)*
4. *If  $k = 2, 4$  or  $8$  and if there is a first eigenfunction without saddle points then the universal cover  $(\tilde{M}, \tilde{g})$  of  $(M, g)$  is isometric to  $\overline{M}$  of dimension  $km$ .*

The proof of Theorem 1(4) above depends on Lemma 4.1 of [2] where we have discovered an error in the proof of the fact  $E_{(1-\cos t)/2}$  is parallel along  $\gamma$ . The notations are as in [2]. We showed there that any Jacobi field  $J$  along  $\gamma$  such that  $J(0) \in TD_{\max}$  and  $J(\pi) = 0$  with the normalization  $\|J'(\pi)\| = 1$ , is of the form  $J(t) = 2\cos((t/2)E(t))$ , where  $E(t) \in E_{(1-\cos t)/2}$  is a unit parallel field along  $\gamma$ . To show this we claimed that  $\langle J', J \rangle / \|J\| \geq -(1/2)(\sin(t/2)/\cos(t/2))$  on  $(-\pi, \pi)$ . However, we can only say that this inequality is valid on  $(0, \pi)$  and not on  $(-\pi, \pi)$ .

In this note we prove Lemma 4.1 and hence Theorem 1(4) of [2].

Assume to begin with that  $\text{Vol}(M) = \text{Vol}(\mathbb{P}^m(k))$ . Any Jacobi field  $J$  along  $\gamma$  such that  $J(0) \in TD_{\max}$  and  $J(\pi) = 0$  with the normalization  $\|J'(\pi)\| = 1$  satisfy the inequality  $\|J(t)\| \leq 2\cos(t/2)$  along  $\gamma$  on  $(0, \pi)$ . Hence  $\text{Vol}(D_{\max}) \leq \text{Vol}(\mathbb{P}^a(k))$ . Further

equality holds iff the fibration  $\Pi_{\min} : S(0, 1) \rightarrow D_{\max}$  defined by  $\Pi_{\min}(u) := \exp(\pi u)$  of the unit normal sphere  $S(0, 1)$  of  $D_{\min}$  at  $x$  over  $D_{\min}$  is congruent to the Hopf fibration and the Jacobi field  $J(t)$  is of the form  $J(t) = 2 \cos((t/2)E(t))$  along  $\gamma$  on  $(0, \pi)$  with  $E(t) \in E_{(1-\cos t)/2}$  a parallel unit vector field along  $\gamma$ .

Similarly by starting with Jacobi fields  $J$  along  $\gamma$  from  $D_{\min}$ , with the same initial conditions as the Jacobi fields described above, we see that  $\text{Vol}(D_{\min}) \leq \text{Vol}(\mathbb{P}^b(k))$ . Further equality holds iff the fibration  $\Pi_{\max} : S(0, 1) \rightarrow D_{\min}$  of the unit normal sphere at  $x$  over  $D_{\max}$  is congruent to Hopf fibration and the Jacobi fields are of the form  $J(t) = 2 \sin((t/2)E(t))$  along  $\gamma$  where  $E(t) \in E_{-(1+\cos t)/2}$  is a parallel vector field along  $\gamma$ . Therefore, if we show that either  $\text{Vol}(D_{\max}) = \text{Vol}(\mathbb{P}^a(k))$  or  $\text{Vol}(D_{\min}) = \text{Vol}(\mathbb{P}^b(k))$  we will be through.

First we show that the volume density relative to  $D_{\max}$  (respectively relative to  $D_{\min}$ ) is same as in  $\mathbb{P}^m(k)$  relative to  $\mathbb{P}^a(k)$  (respectively relative to  $\mathbb{P}^b(k)$ ).

Since  $f$  is an eigenfunction of  $\Delta$ , we have  $(\Delta f)(x) = (k(m+1)/2)(\cos t + C)$  for  $x \in S(t)$ , the level set of radius  $t$  around  $D_{\max}$ . We write

$$\Delta = -\frac{\partial^2}{\partial t^2} - (km - 1)H \frac{\partial}{\partial t} + \Delta_{S(t)}$$

where  $H$  is the mean curvature of the hypersurface  $S(t)$  and  $\Delta_{S(t)}$  is the Laplacian on  $S(t)$  with respect to the induced metric from  $(M, g)$ . Since the function  $f$  is constant on  $S(t)$ ,  $\Delta_{S(t)}f = 0$  on  $S(t)$ . Therefore

$$\begin{aligned} \frac{k(m+1)}{2}(\cos t + C) &= \Delta f \\ &= \cos t + (km - 1)H \sin t \end{aligned}$$

Hence  $(km - 1)H \sin t = ((k(m+1)/2) - 1)\cos t + (k(m+1)/2)C$ . The constant  $C$  is computed as follows: Along  $D_{\max}$ ,

$$\begin{aligned} \frac{k(m+1)}{2}(1 + C) &= (\Delta f)(x) \\ &= -\text{Tr}(\nabla^2 f(x)) \\ &= k(m - a) \end{aligned}$$

and therefore  $(k(m+1)/2)C = k(b+1) - (k(a+b+2)/2) = (k(b-a)/2)$ . We substitute this value of  $C$  in the equation above to get

$$H = \frac{1}{km - 1} \left[ -\frac{ka}{2} \tan \frac{t}{2} + \frac{kb}{2} \cot \frac{t}{2} + (k - 1) \cot t \right]$$

Hence the volume density relative  $D_{\max}$  is  $\cos^{ka}(t/2) \sin^{kb}(t/2) \sin^{k-1} t$  which is same as the volume density of  $\mathbb{P}^m(k)$  relative to  $\mathbb{P}^a(k)$  ( $\mathbb{P}^b(k)$ ). This proves that

$\text{Vol}(M, g)/\text{Vol}(\mathbb{P}^m(k)) = \text{Vol}(D_{\max})/\text{Vol}(\mathbb{P}^a(k)) = \text{Vol}(D_{\min})/\text{Vol}(\mathbb{P}^b(k))$ . Since we assume that  $\text{Vol}(M, g) = \text{Vol}(\mathbb{P}^m(k))$ , this completes the proof of the Lemma 4.1 under the assumption on the volume of  $M$ . We now proceed to justify the assumption. We consider two cases:

- (a) Either  $D_{\max}$  or  $D_{\min}$  is a point.
- (b) None of them is a point.

Proof in case (a). Let, without loss of generality,  $D_{\max} = \{p\}$  and  $J$  be a Jacobi field describing the variation of a geodesic  $\gamma$  starting at  $p$  with the initial conditions  $J(0) = 0$ ,  $J(\pi) \in TD_{\min}$ . We normalize  $J$  so that  $\|J'(0)\| = 1$ . Then using the inequality  $\langle \nabla^2 f(E), E \rangle \geq -((1 + \cos t)/2)\|E\|^2$  for every  $E \in TM$ , we get that  $\|J(t)\| \leq 2 \sin(t/2)$  along  $\gamma$ ; in particular  $\|J(\pi)\| \leq 2$ . Hence  $\text{Vol}(D_{\min}) \leq \text{Vol}(\mathbb{P}^{m-1}(k))$ . Moreover equality holds iff the fibration  $\Pi_{\max} : S(0, 1) \rightarrow D_{\min}$  of the unit sphere  $S(0, 1)$  in  $T_p M$  is congruent to Hopf fibration and  $J(t) = 2 \sin((t/2)E(t))$  along  $\gamma$  where  $E(t) \in E_{-(1+\cos t)/2}$  is a parallel unit vector field along  $\gamma$ .

We know that the relative density is same as in the standard  $\mathbb{P}^m(k)$ . From this it follows that  $\text{Vol}(M) = \text{Vol}(\mathbb{P}^m(k))$  and hence  $\text{Vol}(D_{\min}) = \text{Vol}(\mathbb{P}^{m-1}(k))$ . Since  $(1 - \cos t)/2$  is not an eigenvalue of  $\nabla^2 f$ , the proof of Lemma 4.1 and hence the proof of the theorem is complete.  $\square$

Proof in case (b). The first thing to note is that in this situation  $k$  cannot be equal to 8. It is either 2 or 4, i.e. our manifold is either a homology complex or a homology quaternionic projective space. The reason being that the dimension of  $M$  has to be  $k(a + b + 1)$  and in case  $k = 8$ , it can only be 8 or 16 forcing at least one of  $a$  or  $b$  to vanish.

Let  $S_p(0, 1)$  denote the set of unit normal vectors at  $p$ , whenever  $p$  is in either  $D_{\max}$  or  $D_{\min}$ . For  $u \in S_p(0, 1)$  and  $v \perp u$ , let  $J_v$  denote the Jacobi field along  $\gamma_u$  with  $J_v(0) = 0$ ,  $J'_v(0) = v$ .  $\square$

**Lemma 1.** *Let  $p \in D_{\max}$ ,  $u \in S_p(0, 1)$  and further  $v$  be a unit vector at  $p$  tangential to  $D_{\max}$ . Let  $q = \gamma_u(\pi)$  be the point in  $D_{\min}$  where  $\gamma_u$  meets it and  $J_v^N(\pi)$  be the component of  $J_v(\pi)$  normal to  $D_{\min}$  at  $q$ . Then*

- (i)  $\|J_v^N(\pi)\| = 2$ .
- (ii)  $J_v^N(\pi)$  is orthogonal to the fibres of  $\Pi_{\min} : S_q(0, 1) \rightarrow D_{\max}$

**Proof.** Set  $u_\theta = \cos \theta u + \sin \theta v$ ,  $\gamma_\theta = \gamma_{u_\theta}$ . Then  $A_{u_\theta} = \cos^2 \theta$  and consequently  $f(\gamma_\theta(t)) = \cos^2 \theta (\cos t - 1) + C + 1$ . As  $\gamma_u(\pi)$  is a critical point (an absolute minimum) of  $f$ , we conclude that

$$\langle (\nabla^2 f)(J_v(\pi)), J_v(\pi) \rangle = \frac{\partial^2 f(\gamma_\theta(\pi))}{\partial \theta^2} \Big|_{\theta=0} = 4$$

Since  $\nabla^2 f$  has eigenvalues 0 and 1 along tangent and normal directions respectively, we get the proof of (i).

For the proof of (ii), let  $w$  be a vector tangent to the fibre contained in  $S_p(0, 1)$  based at  $u$ . Then  $J_w(\pi)$  will vanish at  $q$  and  $J'_w(\pi)$  will be tangent to the fibre inside  $S_q(0, 1)$ . ( $J_w$  is tangent to the 'link sphere' between  $p$  and  $q$ .) Now let  $\omega$  be the symplectic form on the space of normal Jacobi fields along  $\gamma_u$ .  $\omega(J_v, J_w)$  vanishes as  $J_v(0) = J_w(0) = 0$ . On the other hand at  $t = \pi$ ,  $\omega(J_v, J_w) = \langle J_v(\pi), J'_w(\pi) \rangle$ . This proves that the normal component of  $J_v(\pi)$  is a 'horizontal' vector, i.e. orthogonal to the fibres of the fibration of  $S_q(0, 1)$  over  $D_{\max}$ .  $\square$

**Lemma 2.**  $\Pi_{\max} : S_p(0, 1) \longrightarrow D_{\min}$  is a Riemannian submersion (up to a constant scale factor of 2).

**Proof.** Let  $q \in D_{\min}$  and  $u \in \Pi_{\max}^{-1}(q)$ . This means that  $\gamma_u(0) = p$  and  $\gamma_u(\pi) = q$ . Let  $w \in T_q D_{\min}$  and  $w^* \in T_u S_p(0, 1)$  be such that  $\Pi_{\max} \ast(w^*) = w$ . In other words, there is a Jacobi field  $J = J_{w^*}$  along  $\gamma_u$  satisfying  $J(0) = 0$ ,  $J'(0) = w^*$ ,  $J(\pi) = w$ . Also given any  $v \in T_q D_{\min}$  there is a Jacobi field  $L$  such that  $L(\pi) = 0$ ,  $L'(\pi) = v$ . Since  $L$  is just the  $J_v$  of lemma 1 when viewed from  $q$  to  $p$ , we see that  $L(0)^N$  is a horizontal vector of length equal to  $2\|v\|$ . Now at  $t = 0$ ,  $\omega(J, L) = -(w^*, L(0)) = -\langle w^*, L(0)^N \rangle$ , and at  $t = \pi$ ,  $\omega(J, L) = \langle w, v \rangle$ . It follows then that  $w^{*h}$ , the horizontal component of  $w^*$ , has length  $(1/2)\|w\|$ . This proves the lemma.  $\square$

**Corollary 1.** Volume of  $M$  is equal to that of its model CROSS.

**Proof.** Since the exponential map from the unit normal spheres to the opposite critical set is a Riemannian submersion with fibres of dimension 1 or 3, by the classification theorem in [1] they are all standard Hopf fibrations. Thus critical sets are isometric to their respective model CROSSes and in particular have the correct volumes. Consequently, so does  $M$ .  $\square$

Now the proof of Lemma 4.1 of [2] is complete in all cases.

**REMARKS.** 1. In the more general situation when there are more critical sets of  $f$  other than just a maximum and a minimum, the computations done here can be repeated to see that each critical set is a CROSS. One just has to observe that if we take critical sets  $D_\alpha$  and  $D_\beta$  and study the geodesics between them, then lemma 2.8 from [2] ensures that  $J_v^N$  is tangential to  $D_\alpha \ast D_\beta$ . (For explanation of the notation, refer to its definition just prior to lemma 2.13 in [2]) Note that classification of Riemannian submersions of  $S^{15}$  with 7-dimensional fibres is not needed since it can occur only when  $M$  is a homology  $CP^2$  and there are only two critical sets: a situation already taken care of.

2. Further, one can try to show that there can be no short geodesics in  $M$  by observing that any short geodesic will perform stay in a level set of  $f$  and those geodesics that start tangentially to a regular level set but do not lie in it must stay on only one side of it. Moreover, a generic geodesic starting tangentially to a regular level set will have to leave it. (A regular level set cannot be totally geodesic.) Since a nearby long geodesic must go ‘around’ a short one, we can see that there can be no short geodesics in regular level sets. This can be seen more clearly perhaps by lifting  $f$  to  $UM$ . Thus short geodesics will only be confined to critical levels. Within critical sets there are no short geodesics. The problem lies with regular points in a critical level. If it could be resolved it will follow that  $M$  is actually a  $C$ -manifold and hence its volume is same as that of its model CROSS. See [3] and [4].

3. These observations make one believe that ultimately one should be able to drop the condition that  $f$  be without saddle points.

---

### References

- [1] D. Gromoll and K. Grove: *The low dimensional metric foliations of Euclidean spheres*, J. Diff. Geom., **28** (1988), 143–156.
- [2] A. Ranjan and G. Santhanam: *The first eigenvalue of  $P$ -manifolds*, Osaka J. Math., **34** (1997), 821–842.
- [3] R.G. Reznikov: *The weak Blaschke conjecture of  $IHP^n$* , Sov. Math. Dokl., **32** (1985), 100–103.
- [4] R.G. Reznikov: *The weak Blaschke Conjecture of  $\mathbb{C}P^n$* , Invent. Math., **117** (1994), 447–454.

A. Ranjan  
 Department of Mathematics  
 Indian Institute of Technology  
 Mumbai-400 076  
 India  
 e-mail: aranjan@math.iitb.ernet.in

G. Santhanam  
 Department of Mathematics  
 Indian Institute of Technology  
 Kanpur-208 016  
 India  
 e-mail: santhana@iitk.ac.in

