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Introduction

The purpose of the present note is to pursue some analogies for number fields
after the model of A. Weil’s work [13].

Weil ([13]) studied the space of representations of the fundamental group of
a curve and showed it has a structure of an algebraic variety, as a generalization of
the Jacobian variety, by employing his generalized Riemann-Roch theorem for
matrix divisors. He used the Poincaré zeta (theta) Fuchs functions in order to
attach matrix divisor classes to representations of the fundamental group. This
process may be regarded as a sort of non-abelian Kummer theory. Actually, we
may observe that the “Poincaré sum” in Hilbert’s theorem 90 plays an analogous
role to the Poincaré zeta (theta) Fuchs function.

Following the principle on the analogy between number fields and function
fields ([14]), we would like to discuss some analogies, for number fields, of the
function field case described as above. In Section 1, we introduce matrix divisors
for number fields. A version of the Riemann-Roch theorem for them is then known
as the Poisson summation formula ([11], 4.2). So, this section has totally exposi-
tory nature. In Section 2, we will attach matrix divisor classes to integral, unitary
representations of unramified Galois groups by means of Hilbert’s theorem 90 for
the general linear group and see some general properties. In Section 3, we discuss
an example.

NotaTION. Z, @, R and C denote the ring of rational integers, the fields of
rational, real and complex numbers respectively. For a number field K of finite
degree over @, we use the following notation.

O k . =the ring of integers in K.

Xk : =Spec(O k) together with the structure sheaf O x

Xk : =the set of closed points of Xx=the set of finite places of K.

Xg : =the set of complex conjugation classes of the embeddings of K into
C =the set of infinite places of K.
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Xk: =XxkUXR.

Ky : =the completion of K at v€ XxU X%,

O »: =the ring of integers in K, for v&€ Xx.

x(v) : =the residue field of O,

Ax : =the adele ring of K.

Ax: ZHUEX;O o X HueX;Kv-

R*: =the group of invertible elements in a ring R.
hx : =the class number of K.

K : =the maximal unramified extension of K.

1. Matrix divisors for number fields

Thoughout this section, a number field K of finite degree over @ will be fixed
and so the subscript K will be omitted often.

1.1. Let GL. denote the general linear group of rank # over K and GLA(A)
denote its adele group. We take the standard maximal compact subgroup Un(K»)
of GLA(0.): Un(Ky)=GLA(0,) if vEX°, O(n) (orthogonal group) if K»~R,
U(n) (unitary group) if K»=~C, and set Un(A): =11, Unr(K>).

We call a coset D=div(a)=aU(A)E GL.(A)/UA), aE GLA(A), a divisor
of rank # over X. For a€GLA(K), call aU,(A) a principal divisor, where
GLA(K) is embedded into GL.(A) diagonally. Two divisors D and D’ of rank #
are equivalent if there is @€ GL(K) so that @D=D’. The set of divisor classes of
rank # on X is the double coset space GL(K)\GLA(A)/Ux(A) which is denoted
by Cln(X) for simplicity. We set CI(X): =U,»1Cli(X).

The set C/(X) has natural operations. For two divisors Di=div(a1) of rank
n1 and D;=div(az) of rank #., the sum D; @ D; and D; ® D, are well defined to
be the divisors div(a1 @D az) of rank #1+#2 and div(a: @ az) of rank iz
respectively, and both operations are associative. Those of divisor classes are
commutative and distributive. The dual D" of D=div(a) is div(‘a™*) and the i-th
exterior power /\'D is div(/\'a). The degree of D=div(a), aS GLA(A), is well
defined to be degx(D):=|/\"allx=|det(a)|x, where | |x stands for the idele
volume. Owing to the product formula, the degree of a principal divisor is 1 and
so the degree is a continuous function on Clx(X) with values in positive real
numbers. For degrees of the sum and product, we have deg(Di@® D.)=
deg(D1)deg(D,), deg(Di ® D;)=deg(D:\)"*deg(D:)". We set CI(X)i: =U,
Clu(X)1, Cln(X)1=the degree 1 part of Cl.(X).

1.2. We note that the set C/,(X) is much bigger than the usual class set of
GL, over K, Clu(X): =GLA(K)\GLA(A)/GL:(A®). Actually, the strong
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approximation property of the special linear group ([2]) implies that the determi-
nant induces a bijection Cl.(X)= Ch(X)=the ideal class group of K. On the
other hand, to see the structure of Cln(X), let {g:}(1<7<1«) be a set of complete
representatives of C/(X). We then have a decomposition

GLA(A)=U%1GLA(K)g:GLA(A%), g:=diag(g;, 1, -+, 1).

Put I;=GLA(K)N g:GLA(A%)g:*. By sending the class of ((@»)vex-, (giv)oex-) in
GLn(K)\GLn(K)ngLn(Aw)/Un(A) to n(av)HvEX“ Un(Kz)), we obtain

Clu(X) =Mkl \H#,

where J6,=I1.cx-GLn(K»)/Un(Ko).

Let Cl,(X): denote the degree 1 part of Cl»(X). In particular, C/4(X), which
should be the analogous object, in our context, of the Jacobian variety of a curve,
is 7h-dimensional real torus (» =#X>~—1) by the Dirichlet unit theorem.

1.3. It is not difficult to interpret a matrix divisor as a transition matrix of a
hermitian vector bundle on X. A hermitian vector bundle on X is a pair(&, <,
>={<, >u},ex-), where & is a locally free O x-module of rank # and < , > is
a positive definite hermitian form on the #-dimensional Kp-vector space & & o,K»
for each v& X™, which is preserved under the complex conjegation. Two hermitian
bundles (&1, <, >1) and (&2, <, >») are isometric if there is an isomorphism &1
&2 preserving the hermitian forms for the induced Ko-linear map &, ® K>
&2 Q®K, for each vEX>. Denote by Pic,(X) the set of isometry classes of
hermitian vector bundles of rank # on X and put Pic(X): =U,=1Pica(X).
Pic(X) also has operations such as sum, product, dual and exterior power. The
correspondence between Cl,(X) and Pica(X) is given as follows ;

Clu(X)— Pica(X) : Take a divisor D=div(a), a= GLA(A). For an open subset
UofX,set I'(U, &): =K"N(Il.errarO%). Then, & is a locally free O x-module
of rank #. The hermitian form <, >, on & ® K,=K/, vE X" is defined by
<x,y>p: =<av'x, @'y >0 where <, >o,5 is the trivial form defined by <x,
Y0 =200 x: 7 for x=(x:), y=(v.)EK}.

Picn(X)— Cl,(X) : Take a hermitian vector bundle (&, <, >) of rank 7 over X.
Let V:=6& o, K be the generic fibre together with a basis w1, ...,u%». Note that
Ey: =6 ® O, is a free Oy-module of rank # for each vEX° which is a O
o~lattice in V ® K,. Choosing Oy-basis e, -, ej of &, for vE X", and
K,-orthonormal basis ey, -+, ) of V & K, with respect to <, >, for vEX",
define the transition matrices a=(a»)E GLx(A) by (es, -+, e)=as(w, -, un).
We then associate the class of @ in Cl.(X) to (&, <, >).

It is easy to see that the induced bijection C/(X)= Pic(X) preserves the sums,
products, exterior powers and duals.
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1.4. We give a version of Riemann-Roch theorem by writing explicitly down
the Poisson summation formula (cf [11], 4.2) in the following way. Let (0(D),
<, >p) be the hermitian bundle corresponding to a divisor D=div(a), aE
GLA(A), on X as in 1.2. Define the functions fp,» on Ky(vE X°UX") by

fp,» . =the characteristic function of ¢,07%, vE X°,
ool : :{exp[—ﬂ<x, x>0 Kv=R,
PR T lexpl—27<x, x>p0] Ko=C.

Set /o=Iluvfp,» on A" and fZ=Il.ex-fo,» on [l.,ex-K7 and define
ID): =2 folx)= _ 2 f5(x).

x€I(X, 0(D))

We easily see that ./(D) depends only on the class of DECI(X). Let 8, be the
local different of K,/Q, for vEX° and d»=1 for v&€X"™. The canonical divisor
W on X is defined to be div(9)™!, 6=(8»)E Ch(X). Now, by computing the both
sides of the Poisson summation formula

2 folx)= 2 f3(x)
xEK" xEK"
where f5 =the Fourier transform of fp with respect to the self dual measure on A"
([15], Ch. VII, §2), we obtain
[(D)=1(D" ® W)deg(D)"|dk|"",
where |dx|=deg(W) is the absolute value of the discriminant of K.
REMARK. We can formulate Grothendieck-like Riemann-Roch theorem

introducing the Grothendieck ring made out of all isometry classes of hermitian
vector bundles on X. For this, we refer to J. Neukirch’s account ([4], Kap. III).

2. Poincaré sums of integral representations of unramified Galois groups

2.1. Let K be the maximal unramified extension of K and G its Galois group
equipped with the Krull topology. Put Un(Ok): =GLA(K)N Ur(Ak)
Suppose we are given a continuous homomorphism

o0: G—Un(Ok).
Denote by K, the subfield of K/K correponding to Ker(p).
Choose a finite Galois subextension of L of K/K containing K,. Then, o

determines 1-cocycle Gal(L/K)— GLA(L). By Hilbert-Speiser ([8], Prop. 3, p159),
we can find Z€ GLA(L) so that

(1) o(s)=Z"1s(Z) for all s€Gal(L/K),



UNRAMIFIED GALOIS GROUPS 569
where s(Z)=(s(Z.,)) if Z=(Z.;).
We note that Z~' is given as a “Poincaré sum”
2) Z7 = ccawm 0(s)s(T) for some T =M,(L).
There Poincaré sums play analogous role to the Poincaré zeta (theta) Fuchs

functions in [13].

Let R.(Xk) denote the set of all continuous homomorphisms of G into
U.(Ok). First of all, R.(Xk) contains regular representions of finite quotients of
G and Galois theory tells us

Lemma 2.1.1. K is generated over K by all Z’s satisfying (1) for all pE
R(Xx).

Proof. For a finite Galois subextension L of K~/K, consider the regular
representation reg : Gal(L/K)— Un(Z)Z Un(Ok). By (1), we have ZE GLA(L) so
that reg(s)=Z"'s(Z) for all s€Gal(L/K). Therefore, s(Z)=Z if and only if s€
Ker(reg)={1}. This implies L=K(Z). (Q.E.D.)

For the choice of T in (2), we have

Lemma 2.1.2. We can take any normal basis element 0 of L/K as T.
Moreover, its trace Xsecawi) tv(0(s))s(0) generates K, over K.

Proof. [7], Theorems (2.4) and (3.2). (Q.E.D.)

Next, we attach a divisor class of rank # over Xk to each o0& Rn.(Xx). The
following Galois descent argument was communicated by T. Ono.

A finite Galois subextension L/K of IZ/K being as above, consider the exact
sequence of Gal(L/K)-pointed sets
3) 1> Un(AL)> Gn(AL) = GLA(AL) | Un(AL)—1

We first see
Lemma 2.1.3. H'(L/K, U.(AL))={1}.

Proof. It is enough to show H'(Lw/Kv, GL.(O »))=1 where O is the ring
of integers in L, w|v, vE X%. The argument in ([8], Prop.3, p159) shows that this
follows from its reduction H'(x(w)/x(v), GL.(x(w)))=1 by lifting, since L./K»
is unramified. (Q.E.D.)



570 M. MORISHITA

Hence, (3) induces the bijection ([9], 5.4, Prop. 36)

4) GLA(Ax)/Un(Ak)=(GLA(AL) [Un(AL))*H 5,
where the right hand side means the Gal(L/K)-invariant part.

Embedding the global Z in (1) diagonally in GLA(A.), ZUx(AL) is
Gal(L/K)-invari_ant by (1) and so we obtain the corresponding divisor div(z)=
z2U(Ak) over Xk under (4): z2Un(AL)=ZU(AL).

We then define a map

671: Rn(XK)—’ C[n(XK)
by setting @.(p) : =the class of div(z), z being as above. We will also write c(p)
for @.(p) below.

First of all, we need to check

Lemma 2.14. @, is well defined, namely, it is independent of the choice of
L and Z in the above.

Proof. Suppose (L', Z’) is another choice which gives div(z’). We may
assume LC L. Since Z'7's(Z)=p(s)=Z"'s(Z) for all s€Gal(L'/K), Z'Z ‘e
GLA(K) and so div(z) and div(z’) belong to the same class. (Q.E.D.)

Like the function field case, we easily see
Proposition 2.1.5. Image( ®»)C Clu(Xi).

Proof. Suppose @.(p)=the class of div(z) as above. Then, 1=deg.(div(Z))
=degx(div(z))* . (Q.E.D.)

For the preimage of @,, we have

Proposition 2.1.6. Forpi, 0:= Ru(Xk), @x(01)= 0@(02) if and only if there
is BE Ux(OF) so that p:(s)=B'0:(s)s(B) for all s€Gal(F/K), where F is any
finite Galois subextension of K /K containing the fields corresponding to ker(p:)(7
=1, 2) and Un(@F)I ZGLn(F)ﬂ Un(AF).

Proof. Suppose p:(s)=Z:'s(Z;) and z:Ur(Ar)=Z:Un(Ar) with Z;E GLA(F),
2:€GLA(Ax), i=1, 2.
= : Since div(z1) and div(z») are in the same class in Cl.(Xk), Zo=aZiu with a
EGLA(K), u€ Un(Ar). Put B=Zi'a'Zy=u. Then, BE U,(OF) and p(s)=
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B0i(s)s(B).
&: Since Z;'s(Z)=B'Zi's(Z1)s(B), Z\BZ;*€ GL,(K) and so div(z) and
div(z2) are in the same class. (Q.E.D.)

Denote by Ma(Xk) the quotient space of Rn()_(:_K) by the equivalence relation
in 2.1.6. Set M(Xx)=U,21 Ma(Xk). Getting all @, together, we have

0 : M(Xx)— Cl(Xx).

M(Xx) also has the operations such as sum, product, exterior power and dual.
We can prove in a straightforward manner the following

Theorem 2.1.7. The injective map @ constructed in the above preserves
sums, products, exterior poweres and duals.

REMARK 2.1.8. Let R.(Xxk) denote the set of continuous homomorphisms of
G into GL.(Ok). By the similar argument using Hilbert-Speiser theorem, we
obtain a map

@n: Rn(XK)‘—)Clﬂ(XK)
for each #n. However, as we have noted in 1.2. we have a commutative diagram

Dy
Rn(XK) — CZn(XK)
det | o, 0| det
Ri(Xx) —— Ch(Xkx) =the ideal class group of K

So, @ does not reflect the non-ibelian nature. Actually, we shall find an example
in Secti_on 3 which shows that @»(01)% @2(02) and @2(01)= @2(p2) for some p1, o2
ERZ(XK).

2.1.9. Unlike the function field case, the divisor classes which become princi-
pal in a finite unramified extension may not be obtained from representaions in
RA(Xk) via @, since Ur(Ox)+ Ur(OL) can happen for some unramified exten-
sion L/K.

2.1.10. Suppose K/k is a Galois extension for some k. Then, the Galois
group Gal(K/k) acts on both R.(Xx) and Cl.(Xx) in natural manners. By the
construction of @,, we can easily see that @, is Gal(K/k)-equivariant.

22. Let p€Ri(Xx). Since Ui(Ok) is the group of roots of 1 in K, by 2.1.
7, c(p)™ is trivial, where # is the number of roots of 1 in K. Conversely, suppose
c€ Cl(Xk) satisfies ¢"=1 and K containas m-th roots of 1. If D is a divisor
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belonging to ¢, D™"=aU(Ax) for some a=K*. The cyclic extension K(Va)/K
is unramified outside 7. Suppose it is unramified (everywhere). Define o by o(s)
=s(Wa)/Va for s€Gal(K(%a)/K). Then, p is in Ri(Xx) and satisfies c(p)(=
@:(p))=c. We want to proceed the above observation in the non-abelian situation
as Weil started ([13], pp85-86. See also [5]).

Let o€ R.(Xx), namely, we have a faithful representation p:
Gal(K,/K)— U.(Ox). Since the character values x(s)=tr(o(s)), s€Gal(K,/K),
take algebraic integers, there exist polynomials f and g whose coefficients are
non-negative integers so that f(x(s))=g(x(s)) for all s€Gal(K,/K). Hence, the
representation theory tells that two representations /(o) and g(p) are K-equivalent.
Here, note that /(o) and g(p) are in Rx(Xk), N=f(n)=g(n). Suppose further
that /(o) and g(p) are equivalent in the sense of 2.1.6. Then, we have f(c(p))=
g(c(0)).

Conversely, suppose a divisor div(z) of rank # becomes principal in a finite
unramified extension L over K and its class ¢ satisfies f(c)=g(c) with poly-
nomials f and g whose coefficients are non-negative integers. Then, we can find &
eGLN(K), uc Ux(Ak) and ZEGLA(L), N=f(n)=g(n), such that af(z)=
9(2)u, f(2)Un(AL)=F(Z)Un(AL). Hence, we have af(Z)=g(Z)B with BE
Un.(O 1). Define p by o(s)=Z"'s(Z), s=Gal(L/K). We then easily see that
f(o(s))=B7"g(p(s))s(B). According to Weil [12], the set {Z€GLA(K)|f(Z)=
A'g(Z)A} is finite for AS GLx(K) and it is in GLA(K) if K is large enough
([10]). In our case, we must assume further that o(s) defined above is in U(O k).
Then, we have o€ Rx(Xx) and c(p)=c.

3. An example

In this section, we give an example of a number field K whose maximal
non-abelian unramified extension K is given explicitly and see the images in
ClL(Xx) of some representations in K2(Xx) under @ in Section 2. The author
learned from K. Yamamura (letters to the author, Jan. and Feb. 1992) our method
to make the maximal unramified externsion, which is finite over the ground field,
using Odlyzko’s results ([3], [6]) on the lower bounds of root discriminants (cf.
[16]). By using the idea in Appendix of [16], we can give a simple remark on the
maximal unramified Galois group Gal(K/K). Let nx=[K: Q] and let
r1(K)(resp. 72(K)) denote the number of real (resp. imaginary) places of K. Set
rdx =|dx|"'™=the root discriminant of K. Let B(#, 7, 72) be the lower bound for
the disriminant of a number field L of degree =# so that 7:(L)/n.=7:/n(i=1, 2).
We then have

Proposition 3.1. Assume rdx<B(60nk, 607:(K), 607(K)). Then, the
Galois group Gal(K/K) is prosolvable, namely, K is the union of Hilbert class
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fields tower of K.

Proof. Suppose Gal(K/K) is not prosolvable. Then, there exists a finite
unramified Galois extension L over K so that Gal(L/K) is not solvable. Hence,
[L: K]=60 and rdxk=7rd.=B(n., n(L), r(L))=B(60nk, 607(K), 607(K)),
which contradicts our assumption. (Q.E.D.)

Now, let K=Q(4/—155). The Hilbert class field of K is L=Q(/5, v—23).
The class number of Q(v/—23) is 3 and its Hilbert class field M is the splitting field
of X*—X—1 over Q. Since . =(1/2)hqeushae=mhx =3, the composite field N=
KM is the Hilbert class field of L. We claim that K=N :

Proof. (K.Yamamura) According to the table in [3], an imaginary number
field with degree =36 has the root discriminant >12.53.... Since N has the degree
12 and its root discriminant is that of K=,155=10.72..., we have [N:N]<2.
Assume [N : N]=2. Since N/L is non-abelian Galois extension of degree 6, its
Galois group is the symmetric group on 3 letters. It, however, contains the normal
subextension N/L of degree 3. This is contradiction. (Q.E.D.)

Let F=K(/—=3)=Q(/—155, y—3). Let’s see the Hilbert class field tower of
F again. The composite field E:=FL=Q(/5, /=23, /—3) is the Hilbert class
field of F, since 2r=(1/2)hqei=phaewmmhx=2. Hirabayashi-Yoshino’s computation
[1] tells us the class number of £=3. Hence, H : =FXK is the Hilbert class field
of E.

~t

We claim that H=F under the Generalized Riemann Hypothesis.

Proof. The root discriminant of F'=that of Q(v345)=18.59---. By the table
in [3], under G.R.H, an imaginary number field with degree =96 has the root
discriminant >19.05.... So, we have [H : H]<3. By the same reason as in the
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case of N/K, [H : H]#2. Also, [H : H] can not be 3 because if it were so, the
non-abelian Galois group Gal(H/E) of order 3* would be abelian. (Q.E.D)

Hence, the Galois group Gal(H/F)=~Gal(K/K) is the symmetric group on 3
letters. Let 0, 7€ G so that 6*=1r*=1, ror=0"".

First, consider 3 representations 0:(0<7<2) of Gal(K/K) into Ux(Ox):

po(0)=po(2')=1z; 01(0')=12, 01(7)2_12;

-1 0

ol@)=1s, (0=, )

We want to see the images c(p:)E Cl(Xk) whose structure is given as follow.
The ideal class group C/i(Xx) is generated by the prime € over 5 and we can take
n=(5++/—155)/2 for a prime element of K,. Let g=(1, -, 1, &, 1, --)E A% and
I'=GL(K)NgGL:(A%)g™". By the correpondence given in 1.2, we have

Ch(Xx)~S'US?,
S'=GLA(0 x)\GLAC)/U(n), S2=I'\GLAC)/U(n),
Cl(Xx)~ CLh(Xx)={[1], [¢]}.

Note that under the natural map Clx(Xx)— Cln(Xx), S* and S? go to [1] and [#]
respectively.

Let pi(3)=Zi_13(Zi), Gal(KVK), 2:Ux(Ax,)=Z:Us(Ax,) with Z:€ GLy(K:), z:
EGLAAx), KCK.CK, 0<i<2. Actually, we can take
Zo=2,'o=12, K0=K,
Zl=*/§12, 21=(«/§12, 12, ot 12, 7F12, 1, ), Ki=L

T T R e

By the above correspondence, we have

c(po)=[1.]€ S, c(o)=[(/5/7)1.]E€S",

o[ Dles

Here, we see c(00)% c(01), although @:(00)= @.(p1)=[1]€ CL(Xk).
Next, consider the faithful representation o of Gal(H/F) into Uz(O r) defined

by
wa=(2 8 o= )

where @ is a primitive cubic root of 1.
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06— 6)  6.(6,— 93))
2060—6) 2(6.—6s) )
1 1
<—a) —a)2> satisfies o(s)=Z""s(Z) for all s€Gal(H/F) (This Z was found by
T.0no). But I do not know 2& GLy(Ar) with 2Ux(Au)=ZU:(Ar).

Put f(x)=x%+2x and g(x)=x° By Takahishi [10], o satisfies

Letting 6:(1<7<3) be the roots of X°—X—1, Z=<

01 0000O0TO0TO

00010000

000 01O0O0O
f0=C@CC=[ ¢ 0 00 a0y o |emen

0000 O0T1O0TUO

10000000

001 000O0O0TO

Hence, we have f(c(p))=g(c(p)) in Cl(Xr) as we have seen in 2.2.
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