

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A CLUSTER OF SETS OF EXCEPTIONAL TIMES OF LINEAR BROWNIAN MOTION

YASUKI ISOZAKI

(Received June 7, 2000)

1. Introduction and the main theorems

Aspandiiarov-Le Gall [1] studied the following random closed sets K^- , K and ': Let $(B_t; t \ge 0)$ be a linear standard Brownian motion starting at 0, and let

$$
K^{-} = \left\{ t \in [0, 1]; \int_{s}^{t} (B_{u} - B_{t}) du \le 0 \quad \text{for every } s \in [0, t). \right\},
$$

\n
$$
K = \left\{ t \in K^{-}; \int_{t}^{s} (B_{u} - B_{t}) du \le 0 \quad \text{for every } s \in (t, 1]. \right\},
$$

\n
$$
K' = \left\{ t \in K^{-}; \int_{t}^{s} (B_{u} - B_{t}) du \ge 0 \quad \text{for every } s \in (t, 1]. \right\}.
$$

They computed the Hausdorff dimension of K^- , K and K' .

Theorem ([1]). *It holds* dim $K^- = 3/4$, dim $K = 1/2$ *and* dim $K' \le 1/2$ *almost surely. The set* K' *is possibly empty or* $\dim K' = 1/2$ *, both with positive probability. The same statements hold if the weak inequalities in the definition of* K^- , K and K' *are replaced by the strict inequalities.*

In this paper, we consider a cluster of random sets having various dimension. For $\alpha \geq 0$ and $c > 0$, we define the following functions $V(\alpha, c)$ increasing on R:

$$
V(\alpha, c; y) = y^{\alpha} \text{ for } y > 0; V(\alpha, c; 0) = 0; V(\alpha, c; y) = -\frac{|y|^{\alpha}}{c} \text{ for } y < 0.
$$

Let α , α_+ , $\alpha_- \geq 0$, c, c_+ , $c_- > 0$ and write V for $V(\alpha, c)$, V_{\pm} for $V(\alpha_{\pm}, c_{\pm})$. We define the random sets depending on the functions V , V_+ and V_- :

$$
(1.1) \qquad K^{-}(V) = \left\{ t \in [0,1]; \int_{s}^{t} V(B_{u} - B_{t}) du \le 0 \quad \text{for every } s \in [0,t). \right\},
$$
\n
$$
(1.2) \quad K(V_{-}; V_{+}) = \left\{ t \in K^{-}(V_{-}); \int_{t}^{s} V_{+}(B_{u} - B_{t}) du \le 0 \quad \text{for every } s \in (t,1]. \right\},
$$

AMS 1991 subject classifications. Primary 60J65; Secondary 60J55.

$$
(1.3) \ \ K'(V_-; V_+) = \left\{ t \in K^-(V_-); \int_t^s V_+(B_u - B_t) du \ge 0 \quad \text{for every } s \in (t, 1]. \right\}.
$$

These sets consist of exceptional times in the sense that $P[t \in K^-(V)] = 0$ for every $\in (0, 1]$ and $P[t \in K(V_-, V_+)] = P[t \in K'(V_-, V_+)] = 0$ for every $t \in [0, 1]$.

Theorem 1. *We define* $\nu = 1/(2 + \alpha)$ *,* $\nu = 1/(2 + \alpha -)$ *and* $\nu_{+} = 1/(2 + \alpha_{+})$ *. Let* ρ , ρ ₋, ρ ₊ ∈ (0, 1) *be the unique solutions of the equations*

$$
c^{\nu} \sin \pi \nu (1 - \rho) = \sin \pi \nu \rho,
$$

\n
$$
c^{\nu}_{-} \sin \pi \nu_{-} (1 - \rho_{-}) = \sin \pi \nu_{-} \rho_{-},
$$

\n
$$
c^{\nu_{+}}_{+} \sin \pi \nu_{+} (1 - \rho_{+}) = \sin \pi \nu_{+} \rho_{+}
$$

respectively.

- (a) *For* $V = V(\alpha, c)$ *, we have almost surely* dim $K^-(V) = 1 \rho/2$ *.*
- *For* $V_+ = V(\alpha_+, c_+)$ *and* $V_- = V(\alpha_-, c_-)$ *we have* (b) *and* (c):
- (b) dim $K(V_-, V_+) \leq 1 (\rho_- + \rho_+)/2$ *almost surely and*

$$
P\left[\dim K(V_{-};V_{+})\geq 1-\frac{\rho_{-}+\rho_{+}}{2}\right]>0.
$$

(c) $\dim K'(V_-, V_+) \leq (1 - \rho_- + \rho_+)/2$ *almost surely and*

$$
P\left[\dim K'(V_-; V_+) \ge \frac{1-\rho_-+\rho_+}{2}\right] > 0.
$$

The behavior of V, V_+ and V_- outside any neighborhood of the origin have no influence on the Hausdorff dimension; We could state the theorem in that fashon. The parameters ρ , ρ ₋, ρ ₊ ∈ (0, 1) in the statement of Theorem 1 are continuous and increasing in c, c₊, c₋ and have the range (0, 1) since $\lim_{c\to 0} \rho = 0$ and $\lim_{c\to \infty} \rho = 1$. In fact, they are equal to the probability of some event related to the parameters in the theorem, see the remark 4 in [4].

Note that for fixed α , it holds $\rho = 1/2$ if $c = 1$. Hence the statements in the theorem in [1] for K^- and K' can be included in Theorem 1 since $K^- = K^-(V(1, 1))$ and $' = K'(V(1, 1); V(1, 1))$. The implication by Theorem 1 on K, however, is weaker than [1], since we have not obtained the almost sure estimate from below.

Let α , $\tilde{\alpha} \ge 0$ and c , $\tilde{c} > 0$. If $V = V(\alpha, c)$ and $\tilde{V} = V(\tilde{\alpha}, \tilde{c})$, then there is no inclusion in general between $K^-(V)$ and $K^-(\tilde{V})$. However it is easy to see, for each α , that $K^-(V(\alpha, c)) \subset K^-(V(\alpha, \tilde{c}))$ if $\tilde{c} < c$. Hence we obtain a family

$$
\{K^-(V(\alpha, c)); c \in (0, 1)\}
$$

of decreasing random sets having strictly decreasing dimension.

The estimate in Theorem 1 for dim $K^-(V)$ is exhaustive in the following sense: Let H be the set of times t when B_t attains its past-maximum:

$$
H:=\left\{t\in[0,1];B_t=\sup_{0\leq s\leq t}B_s\right\}.
$$

It is well known that dim $H = 1/2$ a.s. Since $H \subset K^{-}(V(\alpha, c)) \subset [0, 1]$, we have $1/2 \le \dim K^{-}(V) \le 1$. The range of $1 - \rho/2$ is exactly $(1/2, 1)$ and the trivial case $K^{-}(V) = H$ or $K^{-}(V) = [0, 1]$ could be included if we allow $c = \infty$ or $c = 0$.

The estimate in Theorem 1 for dim $K(V_-; V_+)$ is also exhaustive in the following sense: Let τ be the time when the maximum on [0, 1] of B is attained: $B_{\tau} \ge$ B_t for every $t \in [0, 1]$. The inclusion $\{\tau\} \subset K(V_-; V_+) \subset [0, 1]$ implies $0 \le$ $\dim K(V_-; V_+) \leq 1$ and the range of the value $1 - (\rho_- + \rho_+)/2$ is exactly (0, 1). The extreme cases could also be included here.

In the same sense as Aspandiiarov and LeGall [1] noted concerning K' , $K'(V_-; V_+)$ can be interpreted as a weakened notion of the increasing points of Brownian motion and it is not straightforward to exhibit an element of $K'(V_-; V_+)$.

If both V_- and V_+ are $V(\alpha, c)$ then $(1 - \rho_- + \rho_+)/2 = 1/2$ irrespective of α and . This motivates the next theorem, which could be a version of settlement of a conjecture at the end of [1]: dim $K' = 1/2$ a.s. on the event ${B_1 > 0}$.

Theorem 2. *Let* $V = \{V : \mathbb{R} \to \mathbb{R}; V(0) = 0, V$ *is strictly increasing* $\}.$

We define $\tilde{K}'(V; V)$ *for* $V \in V$ *in the same way as* (1.3) *replacing the weak inequalities by strict inequalities in the definition of* $K'(V; V)$:

$$
\tilde{K}'(V;V) = \left\{ t \in [0,1]; \int_s^t V(B_u - B_t) du < 0 \text{ for every } s \in [0,t),
$$

and
$$
\int_t^s V(B_u - B_t) du > 0 \text{ for every } s \in (t,1]. \right\}.
$$

Then we have $P[\dim \tilde{K}'(V; V) = 1/2] > 0$, $P[\tilde{K}'(V; V) \subset \{0, 1\}] > 0$ and

$$
P\left[\dim \tilde{K}'(V;V) = \frac{1}{2} \quad or \quad \tilde{K}'(V;V) \subset \{0,1\}\right] = 1.
$$

REMARK 1. When the set $\tilde{K}'(V; V)$ consists of exceptional times, we have the dichotomy that dim $\tilde{K}'(V; V) = 1/2$ if it is not empty.

The result of Theorem 2 is stronger than Theorem 1(c) for each strictly increasing functions $V(\alpha, c)$, i.e. $\alpha > 0$, while Theorem 2 says nothing about $V(0, c)$.

Theorem 2 is in fact a corollary of the following Theorem 3 due essentially to Bertoin [3].

Let $V \in V$, $x \in \mathbb{R}$ and $X = (X(t); t \ge 0)$ be a cadlag path with $\liminf_{t \to \infty} X(t) =$ $+\infty$. We define, inspired by Bertoin [3],

$$
K'_{\infty}(V, x, X) = \left\{ t \in [0, \infty); \int_{s}^{t} V(X_{u} - x) du \le 0 \text{ for every } s \in [0, t),
$$

and
$$
\int_{t}^{s} V(X_{u} - x) du \ge 0 \text{ for every } s \in (t, \infty). \right\},
$$

$$
K'_{1}(V, x, X) = \left\{ t \in [0, 1]; \int_{s}^{t} V(X_{u} - x) du \le 0 \text{ for every } s \in [0, t),
$$

and
$$
\int_{t}^{s} V(X_{u} - x) du \ge 0 \text{ for every } s \in (t, 1]. \right\}.
$$

It is then easy to see $\tilde{K}'(V; V) \bigcup \{0, 1\} = \bigcup_{\sharp K'_1(V, x, B)=1} K'_1(V, x, B)$.

In other words, $K'_{\infty}(V, x, X)$ and $K'_{1}(V, x, X)$ consist of the locations of the overall minimum of the function $s \mapsto \int_0^s V(X_u - x) du$ on $[0, \infty)$ or $[0, 1]$ respectively and $\tilde{X}'(V; V)$ is the collections of such t's that the function $s \mapsto \int_0^s V(B_u - B_t) du$ has the unique minimum at $s = t$.

The following results are proven in Bertoin [3] in the case where $V(y) \equiv y =$ $V(1, 1; y)$.

Theorem 3. Let $V \in V$ and X be a Lévy process with no positive jump such *that* $\liminf_{t\to\infty} X(t) = +\infty$ *a.s. Let* $a(x)$ *be the rightmost element of* $K'_{\infty}(V, x, X)$ *.* (a) ${a(x) - a(0); x \ge 0}$ *and the process* $T^X(x) := \inf\{t \ge 0; X_t \ge x\}$ *have the same law.*

(b) *For every fixed* $x \in \mathbb{R}$, $P^X[\sharp K'_{\infty}(V, x, X) = 1] = 1$.

(c) *Let* $g(0) = \sup\{t \ge 0; X(t) \le 0\}$ *be the last exit time from* $(-\infty, 0]$ *. If* $V \in V$ *satisfies* $V(y) = -V(-y)$ *, then* $a(0)$ *and* $g(0) - a(0)$ *are independent and have the same law.*

(d) If X is a Brownian motion with unit drift, then $\{a(x) - a(0); x \ge 0\}$ has *the Lévy measure* $(2\pi)^{-1/2}y^{-3/2}e^{-y/2}dy$ on $(0, \infty)$ *. If, moreover,* $V \in V$ *satisfies* $V(y) = -V(-y)$, then the density of the common law of $a(0)$ and $g(0) - a(0)$ is $2^{-1/4}\Gamma(1/4)^{-1}y^{-3/4}e^{-y/2}dy$ on $(0, \infty)$.

REMARK 2. The statement (a) and the first sentence in (d) hold for nondecreasing V satisfying $V(0) = 0$. The second sentence in (d) was known to Jean Bertoin(private communication).

This paper is organized as follows: We prove Theorem 1 in Section 2 using Theorem 4, which contains an asymptotic estimate for some fluctuating additive functionals. Theorems 2 and 3 are proven in Section 3. We prove Theorem 4 in Section 4 using a theorem in [4].

ACKNOWLEDGEMENT. The author would express his gratitude to Professor Shin'ichi Kotani for his careful reading of a draft of this paper and for his helpful comment. Thanks also goes to the anonymous referee for advice on improving the presentation.

2. Proof of Theorem 1

The argument here mimics that of Aspandiiarov and Le Gall [1] line by line. We first state Theorem 4, an estimate for the distribution of the first hitting time of $\int_0^t V(B_u) du$, next define suitable approximations of $K^-(V)$, $K(V_-; V_+)$ and $K'(V_-; V_+)$ and obtain some preliminary estimates. From that point on, we only need the straightforward changes.

Theorem 4. *Let* $\alpha \geq 0$, $c > 0$, $V = V(\alpha, c)$, $\nu = 1/(2 + \alpha)$ and $\rho \in (0, 1)$ be *the solution of* $c^{\nu} \sin \pi \nu (1 - \rho) = \sin \pi \nu \rho$. We denote by $p(t, x, y; V)$ the probability $[\forall s \in [0, t], x + \int_0^s V(y + B_u) du \le 0].$

For any $t > 0$, $x < 0$, $y \in \mathbb{R}$ *and there exist constants* $C_0(t, x, y; V) > 0$, $C_1(\alpha, c) > 0$ and $\tilde{C}(x, y) > 0$ such that it holds

(2.4)
$$
\sup_{\sigma > 0} \sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V) = C_0(t, x, y; V),
$$

(2.5)
$$
\lim_{\sigma \to 0} \sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V) = C_1(\alpha, c) t^{-\rho/2} \tilde{C}(x, y),
$$

Moreover it holds

(2.6)
$$
C_0(t, x, y; V) \leq \text{const } t^{-\rho/2} (|x|^{\nu \rho} \vee |y^-|^{\rho}),
$$

DEFINITION. Let $\varepsilon \in [0, 1/2]$, $a \in [0, 1 - \varepsilon]$ and $b \in [\varepsilon, 1]$. For V, V_+ , $V_- \in \bigcup_{\alpha \geq 0, c > 0} \{V(\alpha, c)\}\$ we define

$$
K_{\varepsilon,a}^{-}(V) = \left\{ t \in [a+\varepsilon, 1]; \int_{s}^{t} V(B_{u} - B_{t}) du \le 0 \text{ for every } s \in [a, t - \varepsilon] \right\},
$$

\n
$$
K_{\varepsilon,b}^{+}(V) = \left\{ t \in [0, b-\varepsilon]; \int_{t}^{s} V(B_{u} - B_{t}) du \le 0 \text{ for every } s \in [t + \varepsilon, b] \right\},
$$

\n
$$
K_{\varepsilon,b}^{*}(V) = \left\{ t \in [0, b-\varepsilon]; \int_{t}^{s} V(B_{u} - B_{t}) du \ge 0 \text{ for every } s \in [t + \varepsilon, b] \right\},
$$

\n
$$
K_{\varepsilon,a,b}^{-}(V_{-}; V_{+}) = K_{\varepsilon,a}^{-}(V_{-}) \cap K_{\varepsilon,b}^{+}(V_{+}),
$$

\n
$$
K_{\varepsilon,a,b}^{'}(V_{-}; V_{+}) = K_{\varepsilon,a}^{-}(V_{-}) \cap K_{\varepsilon,b}^{*}(V_{+}).
$$

We also define

(2.7)
$$
K_{\varepsilon}^{-}(V) = K_{\varepsilon,0}^{-}(V), \qquad K^{-}(V) = K_{0}^{-}(V),
$$

(2.8)
$$
K_{\varepsilon}(V_{-};V_{+})=K_{\varepsilon,0,1}(V_{-};V_{+}), \qquad K(V_{-};V_{+})=K_{0}(V_{-};V_{+}),
$$

214 Y. ISOZAKI

(2.9)
$$
K'_{\varepsilon}(V_-; V_+) = K'_{\varepsilon,0,1}(V_-; V_+), \qquad K'(V_-; V_+) = K'_0(V_-; V_+).
$$

Lemma 5. *Let* α , α_+ , $\alpha_- \geq 0$, c , c_+ , $c_- > 0$ *and let* ρ , ρ_+ , ρ_- *be defined in the statement of* Theorem 1*.*

(a) *For any* $V = V(\alpha, c)$, $0 < \varepsilon < 1/2$ *and* $t > a$, *it holds*

$$
\left(\frac{t-a}{\varepsilon}\right)^{\rho/2}P[t \in K_{\varepsilon,a}^{-}(V)] < \text{const.}
$$

There exists a constant $C_3(V) > 0$ *such that it holds*

$$
P[t \in K_{\varepsilon,a}^{-}(V)] \sim C_3(V) \left(\frac{\varepsilon}{t-a}\right)^{\rho/2}
$$

 $as \varepsilon \searrow 0$ *for every t.*

(b) *For any* $V_+ = V(\alpha_+, c_+), V_- = V(\alpha_-, c_-), 0 < \varepsilon < 1/2$ *and* $t \in (a, b)$ *,*

$$
\left(\frac{t-a}{\varepsilon}\right)^{\rho_-/2} \left(\frac{b-t}{\varepsilon}\right)^{\rho_+/2} P[t \in K_{\varepsilon,a,b}(V_-, V_+)] < \text{const},
$$

$$
\left(\frac{t-a}{\varepsilon}\right)^{\rho_-/2} \left(\frac{b-t}{\varepsilon}\right)^{(1-\rho_+)/2} P[t \in K'_{\varepsilon,a,b}(V_-, V_+)] < \text{const}.
$$

We denote by $V_{+}(- \cdot)$ *the function* $y \mapsto V_{+}(-y)$ *. It holds as* $\varepsilon \searrow 0$

$$
P[t \in K_{\varepsilon,a,b}(V_{-};V_{+})] \sim C_{3}(V_{-})C_{3}(V_{+}) \left(\frac{\varepsilon}{t-a}\right)^{\rho_{-}/2} \left(\frac{\varepsilon}{b-t}\right)^{\rho_{+}/2},
$$

$$
P[t \in K'_{\varepsilon,a,b}(V_{-};V_{+})] \sim C_{3}(V_{-})C_{3}(V_{+}(-\cdot)) \left(\frac{\varepsilon}{t-a}\right)^{\rho_{-}/2} \left(\frac{\varepsilon}{b-t}\right)^{(1-\rho_{+})/2}
$$

Proof. We only prove (a) since the statement (b) follows by time-reversal $\tilde{B}_s =$ B_{1-s} and by reflection $\tilde{B}_s = -B_s$.

Let $P_{(x,y)}^V$ be the law of the following two-dimensional diffusion $(X(t), Y(t))$:

$$
Y(t) = y + B(t),
$$
 $X(t) = x + \int_0^t V(Y(s))ds.$

By the strong Markov property,

$$
P[t \in K_{\varepsilon,a}^{-}(V)] = E_{(0,0)}^{V}[p(t - a - \varepsilon, X(\varepsilon), Y(\varepsilon); V)]
$$

Under $P_{(0,0)}^V$, the law of $(X(\varepsilon), Y(\varepsilon))$ is the same as that of $(\varepsilon^{1/2\nu} X(1), \varepsilon^{1/2} Y(1))$. By (2.4) and (2.6), we have for any $\varepsilon > 0$,

$$
\varepsilon^{-\rho/2} p(t-a-\varepsilon,\varepsilon^{1/2\nu} X(1),\varepsilon^{1/2} Y(1);V)
$$

<
$$
< \text{const}(t-a-\varepsilon)^{-\rho/2} \left(|X(1)^{-}|^{\rho\rho} \vee |Y(1)^{-}|^{\rho} \right)
$$

<
$$
< \text{const}(t-a)^{-\rho/2} \left(|X(1)^{-}|^{\rho\rho} \vee |Y(1)^{-}|^{\rho} \right).
$$

The quantity $((t-a)/\varepsilon)^{\rho/2} P[t \in K_{\varepsilon,a}^{-}(V)]$ is hence bounded. This bound also enables us to prove the second sentence of (a) with $C_3(V) = C_1(\alpha, c) E_{(0,0)}^V[\tilde{C}(X(1), Y(1))]$. \Box

Lemma 6. *We use the same notations as the previous lemma. It holds for any* $\varepsilon \in (0, 1/2)$ *and* $0 < s < t < 1$,

$$
(2.10) \t P[\{s,t\} \subset K_{\varepsilon,a}^{-}(V)] \leq \text{const} \frac{\varepsilon^{\rho}}{s^{\rho/2}(t-s)^{\rho/2}}
$$

$$
(2.11) \t P[{s,t}\subset K_{\varepsilon,a,b}(V_-,V_+)] \leq \frac{\text{const } \varepsilon^{\rho_-+\rho_+}}{s^{\rho_-/2}(t-s)^{(\rho_-+\rho_+)/2}(1-t)^{\rho_+/2}},
$$

$$
(2.12) \qquad P[\{s,t\} \subset K'_{\varepsilon,a,b}(V_-;V_+)] \leq \frac{\text{const}\,\varepsilon^{\rho_-+(1-\rho_+)}}{s^{\rho_-/2}(t-s)^{(\rho_-+1-\rho_+)/2}(1-t)^{(1-\rho_+)/2}}
$$

The constants here depend on α *,* α_+ *,* α_- *and c, c₊<i>, c*₋*.*

Proof. This can be done using Lemma 5. See the proof of Proposition 4 in [1]. \Box

Lemma 7. *Let* $\mathcal{F}_{a,b}$ *be the* σ *-field* $\sigma(B_u - B_a; u \in [a, b])$ *for* $0 \le a < b \le 1$ *. For any* $\alpha \geq 0$, $c > 0$ *and* $V = V(\alpha, c)$ *there exist* $\mathcal{F}_{a,b}$ *-measurable random variables* $U_{a,b,-}$, $U_{a,b,+}$ *and* $U_{a,b,*}$ *such that*

(2.13)
$$
P\left[K^{-}(V) \cap [a,b] \neq \emptyset \mid \mathcal{F}_{a,1}\right] \leq (b-a)^{\rho/2}U_{a,b,-},
$$

(2.14)
$$
P\left[K^{+}(V) \cap [a,b] \neq \emptyset \mid \mathcal{F}_{0,b}\right] \leq (b-a)^{\rho/2}U_{a,b,+},
$$

$$
(2.15) \t P [K^*(V) \cap [a,b] \neq \emptyset | \mathcal{F}_{0,b}] \leq (b-a)^{(1-\rho)/2} U_{a,b,*},
$$

 $and E_0[(U_{a,b,-})^2] \leq \text{const } a^{-\rho}, E_0[(U_{a,b,+})^2] \leq \text{const } (1-b)^{-\rho}, E_0[(U_{a,b,+})^2] \leq$ $\text{const}(1-b)^{-1+\rho}$. The constants here depend on α and c .

Proof. We prove (2.14) since (2.13), (2.15) and the corresponding moment estimates follow by time-reversal $\tilde{B}_s = B_{1-s}$ and by reflection $\tilde{B}_s = -B_s$.

Let $\eta_{a,b}$ be the amplitude of B_s on $[a, b]$. Note that V is increasing. By modifying the argument in the proof of Lemma 7 in [1], we can take

$$
U_{a,b,+} = (b-a)^{-\rho/2} p(1-b, (b-a)V(-\eta_{a,b}), -\eta_{a,b}; V).
$$

The bound of the moment follows by (2.6) and by the fact that $\eta_{a,b}$ has the same law as $(b-a)^{1/2}\eta_{0,1}$. \Box

Proof of Theorem 1. The upper estimates for the Hausdorff dimension is obtained by the argument in the proof Proposition 6 in [1].

To obtain the lower estimates, we define the normalized Lebesgue measures: For any Borel subset F of $[0, 1]$, let

$$
\mu_{\varepsilon}^-(F) = \varepsilon^{-\rho/2} |F \cap K_{\varepsilon}^-(V)|,
$$

\n
$$
\mu_{\varepsilon}(F) = \varepsilon^{-(\rho - +\rho_+)/2} |F \cap K_{\varepsilon}(V_-; V_+)|,
$$

\n
$$
\mu_{\varepsilon}'(F) = \varepsilon^{-(\rho_- + 1 - \rho_+)/2} |F \cap K_{\varepsilon}'(V_-; V_+)|.
$$

We denote by \mathcal{M}_f the Polish space of all finite measures on [0, 1] equipped with the topology of weak convergence, and by $C([0, 1])$ the Banach space of all continuous map from $[0, 1]$ to \mathbb{R} .

Let (ε_n) be a sequence strictly decreasing to 0. We define the random variables ζ^n taking values in $\mathcal{M}_f \times C([0, 1])$ by $\zeta^n = (\mu_{\varepsilon_n}, (B_t; 0 \le t \le 1))$. We define $\zeta^{-,n}$ and ζ' in the same way using $\mu_{\varepsilon_n}^-$ and μ'_{ε_n} . The argument in [1] ensures that we may assume the sequence (ζ^n) is weakly convergent by extracting a subsequence. Skorohod's representation theorem says that there is a probalility space carrying a sequence of random variables $\overline{\zeta^n} = (\mu^n, (B_i^n; 0 \le t \le 1))$ and a random variable $\overline{\zeta^{\infty}} = (\mu^{\infty}, (B_i^{\infty}; 0 \le t \le 1))$ 1)) such that $\overline{\zeta^n}$ and ζ^n have the same law and $\overline{\zeta^n}$ converges to $\overline{\zeta^{\infty}}$ almost surely.

Let $K(V_-, V_+; B^{\infty})$ be defined in the same way as $K(V_-, V_+)$ replacing B by B^{∞} . To prove that μ^{∞} is a.s. supported on $K(V_-; V_+; B^{\infty})$, we change the definition of $G(\eta, \gamma)$ appearing in the proof of Lemma 9 in [1].

$$
G(\eta, \gamma) = \left\{ t < 1 - \eta; \sup_{t + \eta < s \le 1} \int_t^s V_+(B^\infty_u - B^\infty_t) du > \gamma \right\}.
$$

Since V_{+} has no discontinuities of the second kind, it is locally bounded and hence we can deduce, from the occupation time formula, that $G(\eta, \gamma)$ is an open set.

On the other hand, μ^n is a.s. supported on

$$
\left\{t\leq 1-\varepsilon_n;\sup_{t+\varepsilon_n
$$

To deduce that $\mu^{\infty}(G(\eta, \gamma)) = 0$ and μ^{∞} is a.s. supported on $K(V_-; V_+; B^{\infty})$ by the argument in the proof of Lemma 9 in [1], we need only to prove the following:

(2.16) For fixed *s* and *t*,
$$
\int_t^s V_+(B^n_u - B^n_t) du \to \int_t^s V_+(B^\infty_u - B^\infty_t) du
$$
 as $n \to \infty$.

To prove (2.16), let ε , ε' be arbitrary positive numbers and let

$$
R^{\infty}(\varepsilon',s):=\left\{x\in\mathbb{R};\exists u
$$

Since V_+ has discontinuity only at the origin (when $\alpha = 0$), there exists $0 < \delta <$ ε' such that for any $x, y \in R^{\infty}(\varepsilon', s)$ satisfying $|x - y| < \delta$ and $|x| > \varepsilon'$, it holds $|V_+(x) - V_+(y)| < \varepsilon.$

We can make $\int_t^s 1_{\{|B_\mu^\infty - B_\tau^\infty| \leq 3\varepsilon'\}} du$ arbitrarily small by taking ε' small, and hence $\int_t^s V_+(B^n_u - B^n_t)1_{\{|B^n_u - B^n_t| \leq \varepsilon'\}} du$ is also small if $||B^n - B^{\infty}|| < \varepsilon'$, since V_+ is bounded on $R^{\infty}(\varepsilon', s)$.

For $u \in [t, s]$ satisfying $|B_u^{\infty} - B_t^{\infty}| > \varepsilon'$, we have $|V_+(B_u^n - B_t^n) - V_+(B_u^{\infty} - B_t^{\infty})|$ ε if $||B^n - B^{\infty}|| < \delta/2$, which is satisfied for all large *n*.

We have thus proven (2.16) .

Using Lemma 5 and the weak convergence we have

$$
E[\mu^{-,\infty}([0,1])] = \int_0^1 dt \, t^{-\rho/2} C_3(V) > 0,
$$
\n
$$
E[\mu^{\infty}([0,1])] = \int_0^1 dt \, t^{-\rho-1/2} C_3(V_-)(1-t)^{-\rho_+/2} C_3(V_+) > 0,
$$
\n
$$
E[\mu'^{,\infty}([0,1])] = \int_0^1 dt \, t^{-\rho-1/2} C_3(V_-)(1-t)^{-(1-\rho_+)/2} C_3(V_+(-\cdot))) > 0.
$$

The positivity of these values is, through Frostman's lemma, related to the positivity of $P[\dim K^-(V) \leq 1 - \rho/2]$ and its companions; The a.s. estimate from below follows by the scaling property of Brownian motion as in [1]. by the scaling property of Brownian motion as in [1].

3. Proof of Theorems 3 and 2

In this section, V is an strictly increasing function with $V(0) = 0$ and $a(x)$ is the rightmost element in $K'_{\infty}(V, x, X)$.

Lemma 8. (a) If $x_0 < x_1$ and there exists a triple (t_0, t_1, t_2) such that

$$
t_0 \in K'_{\infty}(V, x_0, X) \backslash K'_{\infty}(V, x_1, X),
$$

\n
$$
t_1 \in K'_{\infty}(V, x_0, X) \cap K'_{\infty}(V, x_1, X),
$$

\n
$$
t_2 \in K'_{\infty}(V, x_1, X) \backslash K'_{\infty}(V, x_0, X),
$$

then it holds $t_0 < t_1 < t_2$ *.*

(b) The cardinality of $K'_{\infty}(V, x_0, X) \cap K'_{\infty}(V, x_1, X)$ are 0 or 1 for all $x_0 < x_1$. For *all but countable x's, the cardinality of* $K'_{\infty}(V, x, X)'$ *s are* 1*.*

(c) If $\int_0^t V(X_u - x) du$ is continuous in t and x, then $a(x)$ is right contnuous.

Proof. We first note that for $s < t$, $\int_{s}^{t} V(X_u - x) du$ is strictly decreasing in x.

(a) Assume $t_1 < t_0$. We then have $\int_{t_1}^{t^0} V(X_u - x_0) du = 0$ and $\int_{t_1}^{t^0} V(X_u - x_1) du >$ 0, which is a contradiction. We can prove $t_1 < t_2$ by the same argument and timereversal.

(b) If both t_0 and t_1 with $t_0 < t_1$ belong to $K'_{\infty}(V, x_0, X) \cap K'_{\infty}(V, x_1, X)$ then we have $\int_{t_0}^{t_1} V(X_u - x_0) du = 0 = \int_{t_0}^{t_1} V(X_u - x_1) du$, which provides a contradiction.

By (a) and the first part of (b), we have for any $x_0 < x_1$, $t_0 \in K'_{\infty}(V, x_0, X)$ and $I_1 \in K'_{\infty}(V, x_1, X), t_1 - t_0 \geq \sum_{x \in (x_0, x_1)} \text{diam } K'_{\infty}(V, x, X).$ Hence at most countably many x's admit diam $K'_{\infty}(V, x, X) > 0$.

(c) For any sequence $t_n \to t_\infty$ and $x_n \to x_\infty$ such that $t_n \in K'_\infty(V, x_n, X)$, we prove $t_{\infty} \in K'_{\infty}(V, x_{\infty}, X)$. If s is greater than t_{∞} , then eventually $s > t_n$. By the definition of $t_n \in K'_{\infty}(V, x_n, X)$,

$$
0\leq \int_{t_n}^s V(X_r-x_n)dr\to \int_{t_\infty}^s V(X_r-x_\infty)dr.
$$

If $s < t_{\infty}$, $\int_s^{t_{\infty}} V(X_r - x_{\infty}) dr \leq 0$ by the same argument and this establishes $t_{\infty} \in$ $\int_{\infty}^{'}(V, x_{\infty}, X).$

We have thus proven that $a(x+) \equiv \lim_{\delta \searrow 0} a(x + \delta)$ is in $K'_{\infty}(V, x, X)$. It follows from (a) that $a(x+)$ dominates every element in $K'_{\infty}(V, x, X)$ and hence $a(x+) = a(x)$.

Lemma 9. If X is a Lévy process with no positive jumps which satisfies $\lim_{t\to\infty} X_t = \infty$, then for any $x \geq 0$, the two processes $(X_t - x; 0 \leq t \leq a(x))$ and $(X - x) \circ \theta_{a(x)} \equiv (X_{a(x)+t} - x; t \ge 0)$ are independent. Moreover, the law of the latter *process does not depend on .*

Proof. It can be proved by the same argument in Bertoin [3].

We define $I_s^x = \int_0^s V(X_u - x) du$ and $m_s^x = \inf_{0 \le t \le s} I_t^x$. Then $a(x)$ is the last exit time for the process $(X_t - x, I_t^x - m_t^x)$ from the point (0,0), which is finite almost surely. It can also be proved $X_{a(x)} = x$. This enables us to apply the result by Getoor on the last exit decomposition as in Bertoin [3]. \Box

Proof of Theorem 3(a). To use Lemma 8(c), we first show that $f(x, t) =$ $\int_0^t V(X_u - x) du$ is jointly continuous in t and x. Fix an $\tau > 0$ and $\xi > 0$. The set

$$
R(\tau,\xi) = \{X_t - x; 0 \le t \le \tau, |x| < \xi\}
$$

is bounded and so is its image by $V(\cdot)$. This implies $f(x, t)$ is uniformly continuous in t on the rectangle $\{0 \le t \le \tau, |x| < \xi\}.$

Single point sets are not essentially polar for a Lévy process with no positive jump diverging to + ∞ . There exist local times $L_t(\cdot)$, the sojourn time density, so that

$$
f(x,t) = \int_{R(\tau,\xi)} V(y)L_t(y+x)dy
$$

for $0 \le t \le \tau$ and $|x| < \xi$. See e.g. Bertoin [2]. Let a and x' be two points such that $|x| < \xi$, $|x'| < \xi$. By making x' arbitraily close to x, the \mathcal{L}^1 -norm of $L_t(y + x')$ –

 $L_t(y+x)$ with respect to dy can be made arbitrarily small since $L_t(\cdot)$ is integrable. The boundedness of V on $R(\tau, \xi)$ enables us to conclude that $f(x, t)$ is continuous in x. Local uniform continuity in t combined with this implies continuity in two variables.

Hence right continuity of $a(x)$ follows from Lemma 8(c). Let $\tilde{a}(y)$ be the rightmost location of the overall minimum of $\int_0^t V(X_{a(x)+s} - x - y) ds$. By Lemma 8(a), we have $a(x + y) = a(x) + \tilde{a}(y)$ for $x \ge 0$ and $y > 0$. The rest can be done just like the proof of Theorem 1 in Bertoin [3]. proof of Theorem 1 in Bertoin [3].

Proof of Theorem 3(b). For any $0 \le x < x_1$, the event $\left\{ \sharp K'_{\infty}(V, x_1, X) \ge 2 \right\}$ is independent of $(X_t - x; 0 \le t \le a(x))$ because it is the event that $\int_0^s V(X_{a(x)+t} - x_1)$ attains its overall minimum at least twice. Hence $P^X[\sharp K'_{\infty}(V, x, X) \geq 2]$ is the same value for all $x \ge 0$. If it is positive, then with a positive probability, $\{x \in$ $[0, \infty); \sharp K'_{\infty}(V, x, X) \geq 2$ has positive mass with respect to the Lebesgue measure. This contradicts Lemma 8(b).

In the case where $x < 0$, we just condition on the event that I_t^x hits 0. We resort to the strong Markov property at the first time $X_t = 0$ after $I_t^x = 0$ and finally use $[\sharp K'_{\infty}(V, 0, X) = 1] = 1.$ \Box

Proof of Theorem 3(c). We follow the argument by Bertoin [3]. Independence is proven in Lemma 9. By (b), $a(0)$ is the unique location of the overall minimum of $\int_0^t V(X_s) ds$. We define a new process \hat{X} by $\hat{X}_t = -X_{g(0)-t-0}$ for $0 \le t \le g(0)$, $\hat{X}_t = X_t$ for $t > g(0)$. It is known that \hat{X} and X have the same law. Since V is an odd function,

$$
\hat{I}_t = \int_0^t V(\hat{X}_u) du = \int_{g(0)-t}^{g(0)} V(-X_u) du = I_{g(0)-t} - \int_0^{g(0)} V(X_u) du.
$$

The unique location of the minimum of \hat{I}_t is $g(0) - a(0)$ and has the same law as that of $a(0)$. of $a(0)$.

Proof of Theorem 3(d). This is proven in the same way as the final part of The- \Box orem 1 in [3].

Now we restate Theorem 2 as the following Lemma. Note that $K'(V, B_1/2, B) \subset$ (0, 1) if $B_1 > 0$ and the following lemma implies dim $\tilde{K}'(V; V) = 1/2$ a.s. on the event ${B_1 > 0}.$

Lemma 10. Let $a_1(x)$ be the rightmost element in $K'_1(V, x, B)$. It holds $\dim \tilde{K}'(V; V) = 1/2$ *a.s. on* $\{\exists x, K'_1(V, x, B) \subset (0, 1)\} = \{\exists x, 0 < a_1(x) < 1\}$, and $\widetilde{X}'(V;V) \subset \{0,1\}$ a.s. on $\{\forall x, K'_1(V,x,B) = \{0\}$ or $1 \in K'_1(V,x,B)\} = \{\forall x, a_1(x) =$ 0 *or* 1}*.*

Proof. We first note that, by the continuity of $B(t)$, $B(a_1(x)) = x$ if $0 < a_1(x) <$ 1 and hence $\tilde{K}'(V; V) \cup \{0, 1\} = \{a_1(x); \sharp K'_1(V, x, B) = 1\}$. The symmetric difference of $\tilde{K}'(V; V)$ and $\{a_1(x); x \in \mathbb{R}\}\$ is at most a countable set, which has no effect on the Hausdorff dimension.

We define the event for $\xi \in \mathbb{R}$, $\eta > 0$, $x \in R$ and $\varepsilon > 0$,

$$
E(\xi, \eta, x, \varepsilon) = \{K'_1(V, x, B) \subset (0, 1), B_1 - x - \varepsilon \geq \xi, I_1^{x+\varepsilon} - m_1^{x+\varepsilon} \geq \eta\}.
$$

Let \tilde{B} be the process conditioned on $E(\xi, \eta, x, \varepsilon)$. Since $P[E(\xi, \eta, x, \varepsilon)] > 0$, the law of \hat{B} is absolutely continuous with respect to the law of a standard Brownian motion on $[0, 1]$, and hence to the law of a Brownian motion on $[0, 1]$ with unit drift.

If X is a Brownian motion on [0, ∞) with unit drift independent of B, then

$$
P\left[\forall t \geq 0, \eta + \int_0^t V(X_u + \xi) du > 0\right] > 0
$$

Let \tilde{X} be the conditioned process on this event.

Now we define Z by $Z_t = \tilde{B}_t$ for $t \in [0, 1]$ and $Z_t = \tilde{B}_1 + \tilde{X}_{t-1}$ for $t > 1$. The law of Z is absolutely continuous with respect to the law of a Brownian motion on $[0, \infty)$ with unit drift. For all $x' < x + \varepsilon$, it follows from definition $K'_1(V, x', \tilde{B}) \equiv$ $\int_{\infty}^{1}(V, x', Z) \subset (0, 1)$ and hence $0 < a_1(x') = a(x') < 1$.

By a general theory for subordinators, for every $\varepsilon > 0$, $\dim\{a(x'); x < x' < x + \}$ ε = 1/2 a.s. on the event $\{0 < a(x) < a(x + \varepsilon) < 1\}$. See e.g. Bertoin [2] Theorem III.15. Now we have a.s. on $E(\xi, \eta, x, \varepsilon)$,

$$
\frac{1}{2}=\dim\{a(x');x
$$

Let

$$
F(\xi, \eta, x, \varepsilon) := \{a_1(x'); x < x' < x + \varepsilon, E(\xi, \eta, x, \varepsilon) \text{ occurs } \},
$$

a random subset which is nonempty only on the event $E(\xi, \eta, x, \varepsilon)$. Since $\tilde{K}'(V;V)\setminus\{0,1\}$ is the same as a countable union of the random subsets of the form $(\xi, \eta, x, \varepsilon)$, the dichotomy that $\dim(\tilde{K}'(V; V)\setminus\{0, 1\}) = 1/2$ or $\tilde{K}'(V; V)\setminus\{0, 1\} = \emptyset$ holds.

Finally, if $K'_1(V, x, B) \neq \{0\}$ and $1 \notin K'_1(V, x, B)$ for some x, then there exists an ' such that $K'_1(V, x', B) \subset (0, 1)$ by the continuity of $\int_0^t V(B_s - x') ds$ in x' . \Box

4. Proof of Theorem 4

We quote a theorem in [4] and the proof of Theorem 4 is based on it. We fix $\alpha \geq$ $0 \text{ } c > 0$ and write $V(y)$ for $V(\alpha, c; y)$. Throughout this section we set $\nu = 1/(\alpha + 2)$ and let $\rho \in (0, 1)$ be the unique solution of $c^{\nu} \sin \pi \nu (1 - \rho) = \sin \pi \nu \rho$ and $\tilde{C}(x, y)$ be

defined for $x \leq 0$, $y \in \mathbb{R}$ by

$$
(4.17) \tilde{C}(x, y) = \Gamma(\nu)^{-1} |x|^{1-\nu+\nu\rho} \exp\left\{\frac{-2\nu^2(y^+)^{1/\nu}}{|x|}\right\}
$$

$$
\times \int_0^\infty dt e^{-t} \left(|x|t + 2\nu^2 c^{-1} |y^-|^{1/\nu} \right)^{\nu\rho} \left(|x|t + 2\nu^2 (y^+)^{1/\nu} \right)^{-1+\nu-\nu\rho}.
$$

Now we have

Theorem 11 ([4]). *For* $\mu \geq 0$, $V = V(\alpha, c)$ *there exists a constant* $C_4(\alpha, c) > 0$ *such that it holds*

$$
(4.18)\qquad \lim_{\sigma\to 0}\int_0^\infty dt\mu e^{-\mu t}\sigma^{-\rho}p(t,\sigma^{1/\nu}x,\sigma y;V)=C_4(\alpha,c)\mu^{\rho/2}\tilde{C}(x,y).
$$

Proof of Theorem 4. Since the integrand above, $\sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V)$, is decreasing in t ,

$$
\limsup_{\sigma \to 0} \sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V)
$$

must be finite for every $t > 0$ and it is trivial that $\sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V) < \sigma^{-\rho} < 1$ for large σ . Hence we know the overall supremum is finite, verifying (2.4), and we denote it by $C_0(t, x, y; V)$, which is clearly monotone decreasing in t and inherites the scaling property from $p(t, x, y, V)$:

$$
C_0(t, x, y; V) = \sigma^{-\rho} C_0(t, \sigma^{1/\nu} x, \sigma y; V) = \sigma^{-\rho} C_0(\sigma^{-2} t, x, y; V).
$$

It is sufficient to prove (2.6) when $x < 0$ and $y < 0$. We deduce from the scaling property and the monotonicity that

$$
C_0(t, x, y; V) = |x|^{\nu \rho} C_0 \left(t, -1, \frac{y}{|x|^{\nu}}; V \right)
$$

\n
$$
\leq |x|^{\nu \rho} C_0 \left(t, (-1) \wedge \frac{-|y|^{-1/\nu}}{|x|}, (-1) \wedge \frac{y}{|x|^{\nu}}; V \right)
$$

\n
$$
= C_0 \left(t, x \wedge (-|y|^{-1/\nu}), (-|x|^{\nu}) \wedge y; V \right)
$$

\n
$$
= (|x|^{\nu \rho} \vee |y|^{\rho}) C_0(t, -1, -1; V).
$$

Combining this with $C_0(t, x, y; V) = t^{-\rho/2} C_0(1, x, y; V)$, we obtain (2.6).

To prove (2.5), we note that the family $\{\sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V); \sigma > 0\}$ of decreasing functions has an upper bound $C_0(t, x, y; V)$, which satisfies

$$
\int_0^\infty dt\mu e^{-\mu t}C_0(t,x,y;V)<\text{const}\int_0^\infty dt\mu e^{-\mu t}t^{-\rho/2}<\infty.
$$

Given any sequence $\sigma_n \searrow 0$, we can choose a subsequence σ'_n such that the functions $(\sigma'_n)^{-\rho} p(t, (\sigma'_n)^{1/\nu} x, \sigma'_n y; V)$ converge pointwise on a dense subset of $\{t > 0\}$ and that

$$
\int_0^\infty dt \mu e^{-\mu t} (\sigma'_n)^{-\rho} p(t, (\sigma'_n)^{1/\nu} x, \sigma'_n y; V)
$$

$$
\rightarrow \int_0^\infty dt \mu e^{-\mu t} \lim_{n \to \infty} (\sigma'_n)^{-\rho} p(t, (\sigma'_n)^{1/\nu} x, \sigma'_n y; V).
$$

By uniqueness of the Laplace transform, we deduce, for any $t > 0$,

$$
\lim_{\sigma \to 0} \sigma^{-\rho} p(t, \sigma^{1/\nu} x, \sigma y; V) = \frac{C_4(\alpha, c)\tilde{C}(x, y)t^{-\rho/2}}{\Gamma(1 - \rho/2)}.
$$

References

- [1] S. Aspandiiarov and J.-F. Le Gall: *Some new classes of exceptional times of linear Brownian motion*, Ann. Probab. **23** (1995), 1605–1626.
- [2] J. Bertoin: Lévy processes, Cambridge Univ. Press, Cambridge, 1997.
- [3] J. Bertoin: *The inviscid Burgers equation with Brownian initial velocity*, Comm. Math. Phys. **193** (1998), 397–406.
- [4] Y. Isozaki and S. Kotani: *Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion*, Séminaire de Probabilités 34, Lecture Notes in Mathematics **1729** (2000), 374–387.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: yasuki@math.sci.osaka-u.ac.jp