
Title Asymptotics of polybalanced metrics under
relative stability constraints

Author(s) Mabuchi, Toshiki

Citation Osaka Journal of Mathematics. 2011, 48(3), p.
845-856

Version Type VoR

URL https://doi.org/10.18910/10932

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Mabuchi, T.
Osaka J. Math.
48 (2011), 845–856

ASYMPTOTICS OF POLYBALANCED METRICS
UNDER RELATIVE STABILITY CONSTRAINTS

TOSHIKI MABUCHI �
(Received May 14, 2010, revised October 15, 2010)

Abstract
Under the assumption of asymptotic relative Chow-stability for polarized alge-

braic manifolds (M, L), a series of weighted balanced metrics!m, m � 1, called
polybalanced metrics, are obtained from complete linear systemsjLmj on M . Then
the asymptotic behavior of the weights asm!1 will be studied.

1. Introduction

In this paper, we shall study relative Chow-stability (cf. [5]; see also [11]) for
polarized algebraic manifolds (M, L) from the viewpoints of the existence problem
of extremal Kähler metrics. As balanced metrics are obtained from Chow-stability on
polarized algebraic manifolds, our relative Chow-stability similarly provides us with a
special type of weighted balanced metrics calledpolybalanced metrics. As a crucial
step in the program of [7], we here study the asymptotic behavior of the weights for
such polybalanced metrics.

By a polarized algebraic manifold(M, L), we mean a pair of a connected project-
ive algebraic manifoldM and a very ample holomorphic line bundleL over M. For
a maximal connected linear algebraic subgroupG of the group Aut(M) of all holo-
morphic automorphisms ofM, let g WD Lie G denote its Lie algebra. Since the infini-
tesimalg-action onM lifts to an infinitesimal bundleg-action onL, by setting

Vm WD H0(M, Lm), mD 1, 2, : : : ,
we view g as a Lie subalgebra ofsl(Vm). We now define a symmetric bilinear formh , im on sl(Vm) by

hX, Yim D Tr(XY)=mnC2, X, Y 2 sl(Vm),

where the asymptotic limit ofh , im as m!1 often plays an important role in the
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study of K-stability. In fact one can show

hX, Yim D O(1)

by using the equivariant Riemann–Roch formula, see [1] and [11]. Let T be an alge-
braic torus in SL(Vm) such that the corresponding Lie algebrat WD Lie T satisfies

t � g.

Then by theT-action on Vm, we can write the vector spaceVm as a direct sum of
t-eigenspaces:

Vm D �mM
kD1

V(�k),

whereV(�k) WD {v 2 VmI g �v D �k(g)v for all g 2 T} for mutually distinct multiplica-
tive characters�k 2 Hom(T, C�), k D 1, 2, : : : , �m.

To studyVm, let !m be a Kähler metric in the classc1(L)R, and choose a Hermit-
ian metrichm for L such that!m D c1(LIhm)R. We now endowVm with the Hermitian
L2 inner product onVm defined by

(1.1) (u, v)L2 WD Z
M

(u, v)hm!n
m, u, v 2 Vm,

where (u, v)hm denotes the pointwise Hermitian pairing ofu, v in terms of hm. Then
by this L2 inner product, we haveV(�k) ? V(�k0 ), k ¤ k0. Put Nm WD dim Vm and
nk WD dimC V(�k). For eachk, by choosing an orthonormal basis{�k,i I i D 1, 2,: : : , nk}

for V(�k), we put

Bm,k(!m) WD nkX
iD1

j�k,i j2hm
,

where juj2hm
WD (u, u)hm for eachu 2 Vm. Then!m is called apolybalanced metric, if

there exist real constants
m,k > 0 such that

(1.2) BÆ
m(!m) D �mX

kD1


m,k Bm,k(!m)

is a constant function onM. Here 
m,k are called theweights of the polybalanced
metric !m. On the other hand,

B�
m(!m) WD �mX

kD1

Bm,k(!m)
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is called them-th asymptotic Bergman kernelof !m. A smooth real-valued function
f 2 C1(M)R on the Kähler manifold (M,!m) is said to beHamiltonian if there exists
a holomorphic vector fieldX 2 g on M such that i X!m D p�1 N� f . Put N 0

m WD
Nm=c1(L)n[M]. In this paper, as the first step in [7], we shall show the following:

Theorem A. For a polarized algebraic manifold(M, L) and an algebraic torus
T as above, assume that(M, L) is asymptotically Chow-stable relative to T . Then
for each m� 1, there exists a polybalanced metric!m in the class c1(L)R such that
m,k D 1C O(1=m), i.e.,

(1.3) j
m,k � 1j � C1

m
, k D 1, 2, : : : , �m I m� 1,

for some positive constant C1 independent of k and m. Moreover, there exist uniformly
C0-bounded functions fm 2 C1(M)R on M such that

(1.4) B�
m(!m) D N 0

mC fmmn�1C O(mn�2)

and that each fm is a Hamiltonian function on(M, !m) satisfying iXm!m D p�1 N� fm

for some holomorphic vector field Xm 2 t on M.

In view of [8], this theorem and the result of Catlin–Lu–Tian–Yau–Zelditch ([3],
[12], [13]) allow us to obtain an approach (cf. [7]) to an extremal Kähler version of
Donaldson–Tian–Yau’s conjecture. On the other hand, as a corollary to Theorem A, we
obtain the following:

Corollary B. Under the same assumption as inTheorem A,suppose further that
the classical Futaki characterF1 W g! C for M vanishes ont. Then for each m� 1,
there exists a polybalanced metric!m in the class c1(L)R such that
m,k D 1CO(1=m2).
In particular

B�
m(!m) D N 0

mC O(mn�2).

2. Asymptotic relative Chow-stability

By the same notation as in the introduction, we consider the algebraic subgroup
Sm of SL(Vm) defined by

Sm WD �mY
kD1

SL(V(�k)),

where the action of each SL(V(�k)) on Vm fixes V(�i ) if i ¤ k. Then the central-
izer Hm of Sm in SL(Vm) consists of all diagonal matrices in SL(Vm) acting on each
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V(�k) by constant scalar multiplication. Hence the centralizerZm(T) of T in SL(Vm)
is Hm � Sm with Lie algebra

zm(t) D hmC sm,

wheresm WD Lie Sm andhm WD Lie Hm. For the exponential map defined byhm 3 X 7!
exp(2�p�1X) 2 Hm, let (hm)Z denote its kernel. Regarding (hm)R WD (hm)Z 
Z R as
a subspace ofhm, we have a real structure onhm, i.e., an involution

hm 3 X 7! NX 2 hm

defined as the associated complex conjugate ofhm fixing (hm)R. We then have a Hermit-
ian metric ( , )m on hm by setting

(2.1) (X, Y)m D hX, NYim, X, Y 2 hm.

For the orthogonal complementt? of t in hm in terms of this Hermitian metric, letT?
denote the corresponding algebraic torus inHm. We now define an algebraic subgroup
Gm of Zm(T) by

(2.2) Gm WD T? � Sm.

For the T-equivariant Kodaira embedding8m W M ,! P�(Vm) associated to the com-
plete linear systemjLmj on M, let d(m) denote the degree of the image8m(M) in the
projective spaceP�(Vm). For the dual spaceW�

m of Wm WD Sd(m)(Vm)
nC1, we have the
Chow form

0¤ OMm 2 W�
m

for the irreducible reduced algebraic cycle8m(M) on P�(Vm), so that the correspond-
ing element [OMm] in P�(Wm) is the Chow point for the cycle8m(M). Consider the
natural action of SL(Vm) on W�

m induced by the action of SL(Vm) on Vm.

DEFINITION 2.3. (1) (M,Lm) is said to beChow-stable relative to Tif the orbit
Gm � OMm is closed inW�

m.
(2) (M, L) is said to beasymptotically Chow-stable relative to Tif ( M, Lm) is Chow-
stable relative toT for each integerm� 1.

3. Relative Chow-stability for each fixedm

In this section, we consider a polarized algebraic manifold(M, L) under the as-
sumption that (M, Lm) is Chow-stable relative toT for a fixed positive integerm. Then
we shall show that a polybalanced metric!m exists in the classc1(L)R.
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The space3m WD {�D (�1,�2, : : : ,��m) 2 C�m I P�m
kD1nk�k D 0

}

and the Lie algebra
hm are identified by an isomorphism

(3.1) 3m � hm, �$ X�,
with (hm)R corresponding to the set (3m)R of the real points in3m, where X� is the
endomorphism ofVm defined by

X� WD �mM
kD1

�kidV(�k) 2 �mM
kD1

End(V(�k)) (� End(Vm)).

In terms of the identification (3.1), we can write the Hermitian metric ( , )m on hm in
(2.1) in the form

(�, �)m WD �mX
kD1

nk�k N�k

mnC2
,

where� D (�1, �2, : : : , ��m) and � D (�1, �2, : : : , ��m) are in C�m. By the identifi-
cation (3.1), corresponding to the decompositionhm D t� t?, we have the orthogonal
direct sum

3m D 3(t)�3(t?),

where3(t) and 3(t?) are the subspace of3m associated tot and t?, respectively.
Take a Hermitian metric�k on V(�k), and for the metric

� WD �mM
kD1

�k

on Vm, we see thatV(�k) ? V(�k0 ) wheneverk ¤ k0. By choosing an orthonormal
basis{sk,i I i D 1, 2, : : : , nk} for the Hermitian vector space (V(�k), �k), we now set

(3.2) j (k, i ) WD i C k�1X
lD1

nl , i D 1, 2, : : : , nk I k D 1, 2, : : : , �m,

where the right-hand side denotesi in the special casek D 1. By writing sk,i as sj (k,i ),
we have an orthonormal basis

S WD {s1, s2, : : : , sNm}

for (Vm, �). By this basis, the vector spaceVm and the algebraic group SL(Vm) are
identified withCNm D {(z1, : : : , zNm)} and SL(Nm, C), respectively. In terms ofS, the
Kodaira embedding8m is given by

8m(x) WD (s1(x) W � � � W sNm(x)), x 2 M.
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Consider the associatedChow norm W�m 3 � 7! k�kCH(�) 2 R�0 as in Zhang [14] (see

also [4]). Then by the closedness ofGm � OMm in W�
m (cf. (2.2) and Definition 2.3), the

Chow norm on the orbitGm � OMm takes its minimum atgm � OMm for somegm 2 Gm.
Note that, by complexifying

Km WD �mY
kD1

SU(V(�k)),

we obtain the reductive algebraic groupSm. For each� 2 Km and each diagonal matrix1 in sl(Nm, C), we put

e(�, 1) WD exp{Ad(�)1}.

Then gm is written as�1 � e(�0, D) for some�0, �1 2 Km and a diagonal matrixD D
(d j )1� j�Nm in sl(Nm,C) with the j -th diagonal elementd j . Put g0m WD e(�0, D). In view

of kg0m � OMmkCH(�) D kgm � OMmkCH(�) (cf. [10], Proposition 4.1), we obtain

(3.3) kg0m � OMmkCH(�) � ke(�0, t(X� C A)) � g0m � OMmkCH(�), t 2 C,

for all � D (�1, �2, : : : , ��m) 2 3(t?) and all diagonal matricesAD (a j )1� j�Nm in sm,
where eacha j denotes thej -th diagonal element ofA. We now writea j (k,i ) asak,i for
simplicity. Put

s0j WD ��1
0 � sj , bk,i WD �k C ak,i , ck,i WD expd j (k,i ).

Then we shall now identifyVm with CNm D {(z01, : : : , z0Nm
)} by the orthonormal basis

S 0 WD {s01,s02,:::,s0Nm
} for Vm. In view (3.2), we rewrites0j , z0j ass0k,i , z0k,i , respectively by

s0k,i WD s0j (k,i ), z0k,i WD z0j (k,i ),

wherek D 1, 2,: : : , �m and i D 1, 2,: : : , nk. By writing bk,i , ck,i also asb j (k,i ), c j (k,i ),
respectively, we consider the diagonal matricesB and C of order Nm with the j -th
diagonal elementsb j and c j , respectively. Note that the right-hand side of (3.3) is

k(expt B) � C � ��1
0 � OMmkCH(�),

and its derivative att D 0 vanishes by virtue of the inequality (3.3). Hence, by set-
ting 2 WD (

p�1=2�) � N� log
�P�m

kD1

Pnk
iD1jck,i z0k,i j2�, we obtain the equality (see for in-

stance (4.4) in [4])

(3.4)
Z

M

P�m
kD1

Pnk
iD1 bk,i jck,i s0k,i j2P�m

kD1

Pnk
iD1jck,i s0k,i j2 80�

m(2n) D 0
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for all � 2 3(t?) and all diagonal matricesA in the Lie algebrasm, where80
m W M ,!P�(Vm) is the Kodaira embedding ofM by S 0 which sends eachx 2 M to�

s01(x) W s02(x) W � � � W s0Nm
(x)
� 2 P�(Vm). Here we regard

s0k,i D 80�z0k,i .

Let k0 2 {1, 2, : : : , �m} and let i1, i2 2 {1, 2, : : : , nk0} with i1 ¤ i2. Using Kronecker’s
delta, we first specify the real diagonal matrixB by

�k D 0 and ak,i D Ækk0(Æi i 1 � Æi i 2),

wherek D 1, 2,: : : , �m; i D 1, 2,: : : , nk. By (3.4) applied to thisB, and let (i1, i2) run
through the set of all pairs of two distinct integers in{1, 2, : : : , nk0}, where positive
integerk0 varies from 1 to�m. Then there exists a positive constant�k > 0 independent
of the choice ofi in {1, 2, : : : , nk} such that, for alli ,

(3.5)
Z

M

jck,i s0k,i j2P�m
kD1

Pnk
iD1jck,i s0k,i j280�

m(2n) D �k, k D 1, 2, : : : , �m.

Let k0, i1, i2 be as above, and let�2 be the element inKm such that

�2z0k0,i1 D 1p
2

(z0k0,i1 � z0k0,i2), �2z0k0,i2 D 1p
2

(z0k0,i1 C z0k0,i2)

and that�2 fixes all otherzk,i ’s. Let �3 be the element inKm such that

�3z0k0,i1 D 1p
2

�
z0k0,i1 Cp�1z0k0,i2

�
, �3z0k0,i2 D 1p

2

�p�1z0k0,i1 C z0k0,i2

�

and that�3 fixes all otherz0k,i ’s. Now

k�2g0m � OMmkCH(�) D k�3g0m � OMmkCH(�) D kg0m � OMmkCH(�),

and note that

2z0k0,i1 Nz0k0,i2 D (j�2z0k0,i2j2 � j�2z0k0,i1j2) �p�1(j�3z0k0,i2j2 � j�3z0k0,i1j2).

Hence replacingg0m by ��g0m, � D 2, 3, in (3.3), we obtain the casek0 D k00 of the
following by an argument as in deriving (3.5) from (3.3):

(3.6)
Z

M

s0k0,i 0 Ns0k00,i 00P�m
kD1

Pnk
iD1jck,i s0k,i j280�

m(2n) D 0, if (k0, i 0) ¤ (k00, i 00).
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Here (3.6) holds easily fork0 ¤ k00, since for every elementg of the maximal compact
subgroup ofT , we have:

L.H.S. of (3.6)D Z
M

g�
(

s0k0,i 0 Ns0k00,i 00P�m
kD1

Pnk
iD1jck,i s0k,i j280�

m(2n)

)

D �k00(g)�k0 (g)

Z
M

s0k0,i 0 Ns0k00,i 00P�m
kD1

Pnk
iD1jck,i s0k,i j280�

m(2n).

Put � WD (�1, �2, : : : , ��m) 2 R�m and �0 WD �P�m
kD1 nk�k

�=Nm, where�k is given in
(3.5). In view of Nm DP�m

kD1 nk, by setting�
k
WD �k � �0, we have

� WD � �
1
, �

2
, : : : , � �m

� 2 3m.

Next for each� 2 3(t?), by settingak,i D 0 for all (k, i ), the equality (3.4) above
implies 0D P�m

kD1(nk�k)�k. From this together with the equality
P�m

kD1 nk�k D 0, we
obtain (�, �)m D 0, i.e.,

(3.7) � 2 3(t).

We now define a Hermitian metrichFS (cf. [14]) for Lm as follows. Letu be a local
section forLm. Then1

(3.8) juj2hFS
WD juj2P�m

kD1

Pnk
iD1jck,i s0k,i j2 .

For the Hermitian metrichm WD (hFS)1=m for L, we consider the associated Kähler met-
ric !m WD c1(LI hm)R on M. In view of (3.5),

(3.9)

�0 D
P�m

kD1 nk�k

Nm
D N�1

m

Z
M
8�

m(2n)

D N�1
m mnc1(L)n[M] D n!

�
1C O

�
1

m

��
.

Then for 
m,k WD �k=�0 and �k,i WD ck,i s0k,i (m
n��1

k )1=2, we have

(3.10)

�mX
kD1

nkX
iD1


m,kj�k,i j2hm
D �mX

kD1

nkX
iD1


m,kj�k,i j2hFS

D mn

�0

�mX
kD1

nkX
iD1

jck,i s
0
k,i j2hFS

D mn

�0
.

1In view of (3.8), there is some error in [4]. Actually, for thenumerator of (5.7) in the paper [4],
please read (Nm C 1)jsj2.
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By operating (
p�1=2�) N�� log on (3.8), we obtain

(3.11) 80�
m(2) D c1(LmI hFS)R D mc1(LI hm)R D m!m.

Then in terms of the HermitianL2 inner product (1.1), we see from (3.5), (3.6), (3.8)
and (3.11) that{�k,i I k D 1, : : : , �m, i D 1, : : : , nk} is an orthonormal basis forVm.
Moreover, (3.10) is rewritten as

(3.12) BÆ
m(!m) D mn

�0
,

where BÆ
m(!m) is as in (1.2). Hence!m is a polybalanced metric, and the proof of

Theorem A is reduced to showing (1.3) and (1.4). By summing up, we obtain

Theorem C. If (M, Lm) is Chow-stable relative to T for a positive integer m,
then the Kähler class c1(L)R admits a polybalanced metric!m with the weights
m,k

as above.

4. The asymptotic behavior of the weights
m,k

The purpose of this section is to prove (1.3). If� D 0, then we are done. Hence,
we may assume that� ¤ 0. Consider the sphere

X WD {X 2 tR I hX, Xi0 D 1}

in tR WD t \ (hm)R, whereh , i0 denotes the positive definite symmetric bilinear form
on g as in [2]. Since all components�

k
of � are real, we see from (3.7) that, in view

of (3.1), � WD rm� satisfies

(4.1) X� 2X
for some positive real numberrm. Hence by writing� D (�1, �2, : : : , ��m), we ob-
tain positive constantsC2, C3 independent ofk and m such that (see for instance [5],
Lemma 2.6)

(4.2) �C2m� �k � C3m.

Put g(t) WD exp(t X�) and 
 (t) WD logkg(t) � C � ��1
0 � OMmkCH(�), t 2 R, by using the

notation in Section 3. Sinceg(t) commutes withC � ��1
0 , we see thatg(t) defines a

holomorphic automorphism of80
m(M). In view of Theorem 4.5 in [4], it follows from

Remark 4.6 in [4] that (cf. [14])

(4.3) P
 (t) D P
 (0)D �mX
kD1

nk�k�k, �1 < t < C1.
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Consider the classical Futaki invariantF1(X�) associated to the holomorphic vector field
X� on (M, L). Since M is smooth, this coincides with the corresponding Donaldson–
Futaki’s invariant for test configurations. Then by applying Lemma 4.8 in [6] to the prod-
uct configuration of (M, L) associated to the one-parameter group generated byX� on the
central fiber, we obtain (see also [1], [11])

(4.4) lim
t!�1 P
 (t) D C4

�
F1(X�)C O

�
1

m

��
mn,

whereC4 WD (nC 1)! c1(L)n[M] > 0. Hence by
P�m

kD1 nk�k D 0 and� D rm�, it now
follows from (4.3) and (4.4) that

(4.5)
C4

�
F1(X�)C O

�
1

m

��
mn D r �1

m

�mX
kD1

nk�2
k

D r �1
m mnC2hX�, X�im,

where by (4.1) above, (7) in [1] (see also [11]) implieshX�, X�im � C5 for some pos-
itive real constantC5 independent ofm. FurthermoreF1(X�) D O(1) again by (4.1).
Hence from (4.5), we obtain

(4.6) r �1
m D O

�
1

m2

�
.

In view of (3.9), since�
k
D r �1

m �k, (4.2) and (4.6) imply the required estimate (1.3)
as follows:


m,k � 1D �k�0
� 1D �

k�0
D O

�
1

m

�
.

5. Proof of (1.4) and Corollary B

In this section, keeping the same notation as in the preceding sections, we shall
prove (1.4) and Corollary B.

Proof of (1.4). ForX� in (4.1), the associated Hamiltonian functionf� 2 C1(M)R
on the Kähler manifold (M, !m) is

f� D
P�m

kD1

Pnk
iD1 �k
m,kj�k,i j2hm

m
P�m

kD1

Pnk
iD1 
m,kj�k,i j2hm

D
P�m

kD1

Pnk
iD1 �kjck,i s0k,i j2

m
P�m

kD1

Pnk
iD1jck,i s0k,i j2 ,

where by (4.2), whenm runs through the set of all sufficiently large integers, the func-
tion f� is uniformly C0-bounded. Now by (3.10),

(5.1)
�mX

kD1

nkX
iD1

�k
m,kj�k,i j2hm
D mnC1 f��0

.
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We now define a functionIm on M by

(5.2) Im WD r �1
m�0

�mX
kD1

nkX
iD1

{1� (
m,k)�1}�k
m,kj�k,i j2hm
.

Then by (1.3), (3.9), (3.10), (4.2) and (4.6), we easily see that

(5.3) Im D O

 
m�2

�mX
kD1

nkX
iD1


m,kj�k,i j2hm

!
D O(mn�2).

By (3.10) together with (5.1) and (5.2), it now follows that

�mX
kD1

nkX
iD1

j�k,i j2hm
D �mX

kD1

nkX
iD1


m,kj�k,i j2hm
� �mX

kD1

nkX
iD1

(
m,k � 1)j�k,i j2hm

D mn

�0
� �mX

kD1

nkX
iD1

�
k�0
j�k,i j2hm

D mn

�0
C Im � r �1

m�0

�mX
kD1

nkX
iD1

�k
m,kj�k,i j2hm

D mn

�0
C Im � r �1

m m2

�2
0

f�mn�1.

By (3.9), mn=�0 D N 0
m. Moreover, by (4.6),r �1

m m2=�2
0 D O(1). Since

fm WD �r �1
m m2

�2
0

f�, m� 1,

are uniformlyC0-bounded Hamiltonian functions on (M,!m) associated to holomorphic
vector fields int, in view of (5.3), we obtain

B�
m(!m) D �mX

kD1

nkX
iD1

j�k,i j2hm
D N 0

mC fmmn�1C O(mn�2),

as required.

Proof of Corollary B. Since the classical Futaki characterF1 vanishes ont, we
haveF1(X�) D 0 in (4.5), so that

r �1
m D O

�
1

m3

�
.
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Then from (3.9) and�
k
D r �1

m �k, by looking at (4.2), we obtain the following re-
quired estimate:


m,k � 1D �
k�0
D O

�
1

m2

�
.

HenceB�
m(!m) D {1C O(1=m2)}BÆ

m(!m). Integrating this overM by the volume form!n
m, in view of (3.12), we see that

N 0
m D

�
1C O

�
1

m2

��
mn

�0
.

Therefore, from (3.12) andB�
m(!m) D {1C O(1=m2)}BÆ

m(!m), we now conclude that
B�

m(!m) D N 0
mC O(mn�2), as required.
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