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Abstract
Under the assumption of asymptotic relative Chow-stabildr polarized alge-
braic manifolds |1, L), a series of weighted balanced metriog, m > 1, called
polybalanced metrics, are obtained from complete lineatesys|L™| on M. Then
the asymptotic behavior of the weights ms— oo will be studied.

1. Introduction

In this paper, we shall study relative Chow-stability (cb];[ see also [11]) for
polarized algebraic manifoldsM, L) from the viewpoints of the existence problem
of extremal Kahler metrics. As balanced metrics are obthiinem Chow-stability on
polarized algebraic manifolds, our relative Chow-sta&pilimilarly provides us with a
special type of weighted balanced metrics calfalybalanced metrics As a crucial
step in the program of [7], we here study the asymptotic hiehayf the weights for
such polybalanced metrics.

By a polarized algebraic manifoldM, L), we mean a pair of a connected project-
ive algebraic manifoldM and a very ample holomorphic line bundle over M. For
a maximal connected linear algebraic subgrdBipof the group AutM) of all holo-
morphic automorphisms o, let g := Lie G denote its Lie algebra. Since the infini-
tesimal g-action onM lifts to an infinitesimal bundlgg-action onL, by setting

Vi = HO(M, L™, m=1,2,...,

we view g as a Lie subalgebra aofl(Vi,). We now define a symmetric bilinear form
(, )m onsl(Vy) by

(X, Y)m = Tr(XY)/m™2, X, Y € sl(Vm),

where the asymptotic limit of , ), asm — oo often plays an important role in the
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846 T. MABUCHI
study of K-stability. In fact one can show
(X, Y)m = 0(1)

by using the equivariant Riemann—Roch formula, see [1] ddd. [Let T be an alge-
braic torus in SLVy,) such that the corresponding Lie algelira= Lie T satisfies

tCyg.

Then by theT-action onVy,, we can write the vector spacé, as a direct sum of
t-eigenspaces:

Vim = Gma V (xk),

k=1

whereV (xk) := {v € Vin; g-v = xk(Q)v for all g € T} for mutually distinct multiplica-
tive charactersx € Hom(T, C*), k=1, 2,..., vny.

To study Vy, let oy, be a Kéhler metric in the class(L)g, and choose a Hermit-
ian metrichy, for L such thatwy, = ¢3(L;hy)r. We now endow,, with the Hermitian
L2 inner product onVi, defined by

(1.2) U, v)2 = /’;l(u, V)h, @ U, U E Vi,

where (1, v)n, denotes the pointwise Hermitian pairing of v in terms ofhy,. Then
by this L2 inner product, we have¥(xx) L V(xx), k # K. Put Ny, := dimV,, and
ny := dim¢ V(x«). For eachk, by choosing an orthonormal badiss;;i =1,2,...,ny}
for V(x«), we put

Nk
B k(@m) = Y |0l

i=1

Where|u|ﬁm := (U, U)p, for eachu € V. Thenwy, is called apolybalanced metricif
there exist real constanig,x > 0 such that

(1.2) Br(@m) = Y VmkBmk(@m)
k=1

is a constant function oM. Here y« are called theweightsof the polybalanced
metric wm. On the other hand,

Br(m) == ) Bnk(@m)

k=1
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is called them-th asymptotic Bergman kernef wn,. A smooth real-valued function
f € C*(M)r on the Kéhler manifold M, wy,) is said to beHamiltonianif there exists
a holomorphic vector fieldX € g on M such thatixwm = ~/—13f. Put N/, :=
Nm/c1(L)"[M]. In this paper, as the first step in [7], we shall show thedfelhg:

Theorem A. For a polarized algebraic manifoldM, L) and an algebraic torus
T as above assume tha{M, L) is asymptotically Chow-stable relative to T. Then
for each m> 1, there exists a polybalanced metig, in the class ¢(L)r such that
Ymk = 1+ O(1/m), i.e,

C
(1.3) |ym,k—1|sﬁl, k=1,2,...,vm m> 1,

for some positive constant;Gndependent of k and m. Moreoyéhere exist uniformly
CPbounded functions fe C*(M)g on M such that

(1.4) Br(wm) = N/, 4 fm™t 4 O(m"~2)

and that each 4 is a Hamiltonian function or(M, wm) satisfying k. om = =18ty
for some holomorphic vector field Xe t on M.

In view of [8], this theorem and the result of Catlin—Lu-Tixau—Zelditch ([3],
[12], [13]) allow us to obtain an approach (cf. [7]) to an extral Kahler version of
Donaldson-Tian-Yau’s conjecture. On the other hand, aga@laxry to Theorem A, we
obtain the following:

Corollary B. Under the same assumption asTheorem A,suppose further that
the classical Futaki characteF;: g — C for M vanishes ort. Then for each m> 1,
there exists a polybalanced mettig, in the class ¢(L)g such thaty,x = 1+ O(1/m?).
In particular

B (wm) = N/ 4+ O(m"~?).

2. Asymptotic relative Chow-stability

By the same notation as in the introduction, we consider tgebaaic subgroup
Sn of SL(Vy) defined by

Sn = ]_m[ SL(V (xx)),
k=1

where the action of each SV(xx)) on Vn, fixes V(x) if i # k. Then the central-
izer Hy of S, in SL(Vy) consists of all diagonal matrices in SIf) acting on each



848 T. MABUCHI

V(xk) by constant scalar multiplication. Hence the centraliZg(T) of T in SL(Vn)
is Hy - Sy with Lie algebra

3m(® = by + 5m,

wheresp, := Lie §, and b, := Lie Hy,. For the exponential map defined by, > X —
exp(2r v—1X) € Hp, let (h,)z denote its kernel. Regarding(r := (hn)z ®z R as
a subspace ofj,,, we have a real structure dy,, i.e., an involution

by 2 X = X € by,

defined as the associated complex conjugate,ofixing (h,,)r. We then have a Hermit-
ian metric (, ), on b, by setting

(2.1) K YV)m =X Y)m X, Y€bn.

For the orthogonal complement of t in b, in terms of this Hermitian metric, 1T+
denote the corresponding algebraic torusHp. We now define an algebraic subgroup
Gm of Zn(T) by

(2.2) Gm:=T%-S,.

For the T-equivariant Kodaira embedding,,: M — P*(V,) associated to the com-
plete linear systenmiL™| on M, let d(m) denote the degree of the imadg,(M) in the
projective spac@* (V). For the dual spaceV? of Wy, := S M(V,,)®+1 we have the
Chow form

0% My € W

for the irreducible reduced algebraic cycig,(M) on P*(Vy), so that the correspond-
ing element Mm] in P*(Wy) is the Chow point for the cycleb,,(M). Consider the
natural action of SLVy,) on W induced by the action of SM,) on V.

DEFINITION 2.3. (1) M,L™) is said to beChow-stable relative to Tif the orbit
Gn - I\7Im is closed inW;.
(2) (M, L) is said to beasymptotically Chow-stable relative to if (M, L™) is Chow-
stable relative tol for each integem > 1.

3. Relative Chow-stability for each fixedm

In this section, we consider a polarized algebraic manifdtd L) under the as-
sumption that ¢1,L™) is Chow-stable relative td for a fixed positive integem. Then
we shall show that a polybalanced mettig, exists in the clasg;(L)g.
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The spacehy := {A = (A1,A2,..., Ay,) € C'™; 3" nd = 0} and the Lie algebra
b, are identified by an isomorphism

(3.1) Am by, A< X,

with (h,)r corresponding to the sei\(,)r of the real points inAn, where X, is the
endomorphism o, defined by

X5 1= P Mddvy) € P ENd(V (xi)) (€ EndWvim))-

k=1 k=1

In terms of the identification (3.1), we can write the Heramtimetric (, ) on b, in
(2.1) in the form

Vm

Nk Ak ik
(A )m = Z W’
k=1

wherex = (A1, A2, ..., A,,) and pu = (u1, 12, - - ., (y,) are inC. By the identifi-
cation (3.1), corresponding to the decompositign= t @ t*, we have the orthogonal
direct sum

Am = A{) ® A(th),

where A(t) and A(t") are the subspace ok, associated tat and t*, respectively.
Take a Hermitian metrigx on V(xx), and for the metric

Vm
p = @ Pk
k=1

on Vp, we see thatV(xk) L V(xx) wheneverk # k'. By choosing an orthonormal

basis{s ;i =1, 2,...,ng} for the Hermitian vector spacé/(x«), o), we now set
k-1

(3.2) jki):=i+>"m, i=12_..,n:k=12.. vy
I=1

where the right-hand side denote# the special cask = 1. By writing s as Sj.is
we have an orthonormal basis

S:=1{s1,% ..., SN}

for (Vim, p). By this basis, the vector spadé, and the algebraic group S{) are
identified withCNm = {(zy, ..., zy,)} and SL(Np, C), respectively. In terms of, the
Kodaira embeddingb,, is given by

Dp(X) := (s1(X) 1 -+ - 19N, (X)), X e M.
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Consider the associatethow norm W, > & > ||&|lcH() € R=0 as in Zhang [14] (see
also [4]). Then by the closedness Gf, - M in W, (cf. (2.2) and Definition 2.3), the
Chow norm on the orbiG,, - l\7|m takes its minimum ag, - I\7Im for somegm € Gp,.
Note that, by complexifying

K= [ ] SUV (),
k=1

we obtain the reductive algebraic gro@g. For eachk € K, and each diagonal matrix
A in sl(Nm, C), we put

ek, A) ;= explAd(k)A}.

Then gm, is written ask; - e(kg, D) for somexyg, k1 € Ky, and a diagonal matrbD =
(dj)1<j<N, in s[(Ny,C) with the j-th diagonal elemend;. Putg;, := €(ko, D). In view
of |Gl - MmllcHp) = |9m - Mimllcrg) (cf. [10], Proposition 4.1), we obtain

(3.3) gl Milichgy < ll€(ko, tOXG, + A)) - Gy - Minllchg), t € C,

for all A = (A1, A2, .. ., Ay,) € A(th) and all diagonal matriced = (a;)1<j=n,, iN $m,
where eacha; denotes the-th diagonal element oA. We now writea;,y asay; for
simplicity. Put
S} = Ko_l S, b = A+ aki, G i= expdj,).
Then we shall now identifyy, with CNe = {(Z), .. ., zy, )} by the orthonormal basis
S :={s],8),...,8y,} for V. In view (3.2), we rewrites;, z; ass;, z;, respectively by
Si = Sikiy Zi = Zji);

wherek=1,2,...,vn andi =1, 2,...,n. By writing by, c; also asbju.), Cjiy,
respectively, we consider the diagonal matrid@sand C of order N, with the j-th
diagonal elementy; andc;, respectively. Note that the right-hand side of (3.3) is

[ (exptB) - C - ko - Mmllchg),
and its derivative at = 0 vanishes by virtue of the inequality (3.3). Hence, by set-
ting ® := (v/=1/27) 38 log(}_y"; > lckiz;1?), we obtain the equality (see for in-
stance (4.4) in [4])

Dokma ity biileis P
M Dkms Ziniﬂck,iﬁ;,i 2

(3.4) (O" =0
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for all » € A(t") and all diagonal matrices\ in the Lie algebrasy, where®),: M —

P*(Vm) is the Kodaira embedding oM by & which sends eachx € M to
(S1(%) : 5(x) = - - 2 sy (X)) € P*(Vim). Here we regard

i = @7z

Let ko € {1,2,..., vy} and letiy, iz € {1, 2,..., Ny} with i1 # i». Using Kronecker’s
delta, we first specify the real diagonal matiix by

=0 and a = Sk (Sii, — Sii,),

wherek =1,2,...,vy; i =1,2,...,n By (3.4) applied to thisB, and let {,i,) run

through the set of all pairs of two distinct integers{ib, 2,..., ng}, where positive
integerky varies from 1 tovy,. Then there exists a positive constgiat> 0 independent
of the choice ofi in {1, 2,..., n¢} such that, for alli,

CiS. . 2
(35) | k,l§(1||

OO =By, k=1,2,..., v
M ket imaloisgl? " m

Let kg, i1, 12 be as above, and leb be the element irK,, such that

1 1
K2Zy i) = TZ(Z,ko,il —Z i) K2Zi i, = TZ(ZkD,il +2Z.i,)

and thatk, fixes all otherz;’s. Let k3 be the element irK,, such that

1

1 J J J
K3Z i, = —=(Zgi, +V=12,), K3z, = NG

V2

and thatxs fixes all otherz ;'s. Now

(V=1Z,, + Z.i,)

290 - MimllcH) = I3 - MmllcHe) = 119 - MmllcHe)»
and note that
22 1 2, = (Kk2z i, 17 — 2z 1, 1P) — V=1 k3z 1, 1> — K3z, i, ).

Hence replacingy;, by «.9,, « = 2, 3, in (3.3), we obtain the cadé = k” of the
following by an argument as in deriving (3.5) from (3.3):

SuiSein , , .
X gren) =0, if (K, i) # (K i").
M DKot inil|ckvisK,i 2"

(3.6)



852 T. MABUCHI

Here (3.6) holds easily fok’ # k”, since for every elemerg of the maximal compact
subgroup ofT, we have:

L.H.S. of (3. 6)—/ {Zk 15‘ .%Iék. i|2<1>;j;(®“)}

(@ S
‘xkf(g)/ S |ck.$,i|2‘b’“(® )

Put B := (B, B2, ..., Buy) € R'™ and Bo := (34, NkBk)/Nm, where B is given in
(3.5). In view of Ny, = >, ng, by settingp, := Pk — Po, we have

Bi=(ByBy-B,) A

Next for eachi € A(t'), by settingay; = 0 for all (k, i), the equality (3.4) above
implies 0= )", ,(nkAx)B«. From this together with the equality’,” , nxix = 0, we
obtain ¢, B)m =0, i.e.,

(3.7) B e A

We now define a Hermitian metribgs (cf. [14]) for L™ as follows. Letu be a local
section forL™. Thert

Jul?

Y1 s alCi s

For the Hermitian metrit,, := (hgg)¥/™ for L, we consider the associated Kahler met-
rc om := ci(L; hp)r on M. In view of (3.5),

Vm n
pom T [ o
m M

(3.8) |u|hFS :

(3.9) .
= N;tm"cy(L)"[M] = n!{l + O(E)}'

Then for ymu := Bi/Bo and oy = CiS; (M"BHY2, we have

Vm Vm
> Z ymklowilh, =D Z Yinkloki [hee

(3.10) k=1 i=1 k= 1|U1
ZZlCMSK Ihps——-
k=1 i=1

lin view of (3.8), there is some error in [4]. Actually, for tmmerator of (5.7) in the paper [4],
please readNy, + 1)|s|?.
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By operating ¢(/—1/27) 39 log on (3.8), we obtain
(3.11) @(©) = c1(L™; hps)r = Mai(L; hm)r = Mom.

Then in terms of the Hermitiah? inner product (1.1), we see from (3.5), (3.6), (3.8)
and (3.11) thaf{oyi; k=1,...,vym, i =1,...,n} is an orthonormal basis fovp,.
Moreover, (3.10) is rewritten as

n

(o) = T
(3.12) Boy(wm) = o

where By, (om) is as in (1.2). Hencewy, is a polybalanced metric, and the proof of
Theorem A is reduced to showing (1.3) and (1.4). By summingwg obtain

Theorem C. If (M, L™) is Chow-stable relative to T for a positive integer, m
then the Kahler classi€L)r admits a polybalanced metrie, with the weightSym k
as above.

4. The asymptotic behavior of the weightsyn k

The purpose of this section is to prove (1.3).Alf= 0, then we are done. Hence,
we may assume thgt # 0. Consider the sphere

Y = {Xetr: (X, X)o=1)

in tg :=tN (hy)r, Where(, )o denotes the positive definite symmetric bilinear form
on g as in [2]. Since all componenis$, of B are real, we see from (3.7) that, in view
of (3.1), A :=rmp satisfies

(41) X; € Z

for some positive real number,. Hence by writingk = (A1, A2, ..., ), We ob-
tain positive constant€,, C; independent ok and m such that (see for instance [5],
Lemma 2.6)

(42) —Com < A < Cam.

Put g(t) := exptX,) and y(t) := log|lg(t) - C - kot - I\7lm||CH(p), t € R, by using the
notation in Section 3. Sincg(t) commutes withC - x,*, we see thag(t) defines a
holomorphic automorphism ob;,(M). In view of Theorem 4.5 in [4], it follows from
Remark 4.6 in [4] that (cf. [14])

Vm

(4.3) p) =7(0) =) Mhpx, —o0 <t < +oo.
k=1
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Consider the classical Futaki invariahi(X;) associated to the holomorphic vector field
X, on (M, L). SinceM is smooth, this coincides with the corresponding Donaldson
Futaki’s invariant for test configurations. Then by apptylremma 4.8 in [6] to the prod-
uct configuration of 1, L) associated to the one-parameter group generatet), lmn the
central fiber, we obtain (see also [1], [11])

(4.4) im (1) = C4{}'1(X,\) + o(%)}mn,

where C4 := (n + 1)! ci(L)"[M] > 0. Hence by} ™, ngix = 0 and i = rpf, it now
follows from (4.3) and (4.4) that

1 il
C4{}—1(Xx) + O(a) }m“ — Y ne
k=1

= rn;lml'H*Z(X}H XA)mn

(4.5)

where by (4.1) above, (7) in [1] (see also [11]) implig%,, X, )m > Cs for some pos-
itive real constanCs independent ofm. FurthermoreF;(X;) = O(1) again by (4.1).
Hence from (4.5), we obtain

(4.6) rot = o( = )

m?
In view of (3.9), sinceﬁk = r Y\, (4.2) and (4.6) imply the required estimate (1.3)
as follows:
Bx By ( 1)
—1l="—=-1===0(—).
Yimk Bo Bo m
5. Proof of (1.4) and Corollary B

In this section, keeping the same notation as in the pregesiéttions, we shall
prove (1.4) and Corollary B.

Proof of (1.4). ForX, in (4.1), the associated Hamiltonian functidne C*(M)g
on the Kahler manifold M, wy) is

n
L0 2 eymowilh, Wy o AlCkisy 12

m Zﬁll Zril Vm,k|(7k,i |ﬁm m ZE";l Z?Ll|ck,i5(<,i |2 ,

where by (4.2), whem runs through the set of all sufficiently large integers, thicf
tion f, is uniformly C°-bounded. Now by (3.10),

fa

Vm

Nk n
m
(5.1) DO wvmklowilh, =

k=1i=1 'B

1
+fA
0
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We now define a function,, on M by
,]_ Vm Nk
(5.2) = DO = k) avmlowi 17,
Po (=S
Then by (1.3), (3.9), (3.10), (4.2) and (4.6), we easily ded t
(5.3) I = o< 2y Z Y klok, Ihm) = O(m"?).

k=1 i=1

By (3.10) together with (5.1) and (5.2), it now follows that

> Z|ak.|hm > Z ymkloila, =D Z(mG — Dlowil3,

k=1 i=1 k=1 i=1 k=1 i=1

n Um

=r;‘ D)3
0 \Z1i-1
mn —1 Vm

= % szk)/mklamh
N k=1 =1
m" r-tm?2

LI T LAY
B B
0 0

By (3.9), m"/Bo = N/,. Moreover, by (4.6)rtm?/82 = O(1). Since

r-tm?
fni= =, mo> 1,
Bs

855

are uniformlyC°-bounded Hamiltonian functions oM( wy,) associated to holomorphic

vector fields int, in view of (5.3), we obtain

B (wm) = ZZ|ak.|h =N, + fpom™ ! + O(m™?),

k=1 i=1

as required.

O]

Proof of Corollary B. Since the classical Futaki charactrvanishes ont, we

have F1(X;) = 0 in (4.5), so that
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Then from (3.9) andék = 1, by looking at (4.2), we obtain the following re-
quired estimate:

B _o(2
pan1= = 0[5

Hence B2 (wm) = {1+ O(1/m?)} BS (wm). Integrating this oveM by the volume form
wp, in view of (3.12), we see that

m?
1 m"
N,=11+0(=|;—.
n= o))
Therefore, from (3.12) and; (vm) = {1 + O(1/m?)}B: (wm), we now conclude that
Be(om) = N/, + O(m"~2), as required. O]
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