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PREFACE

One of the most important tasks of the life sciences is to clarify the
fine functions found in the biological system, by fully applying all the sci-
en;ific techniques developed up to the present, and to turn the subsequent
knowledge to the advancement of scientific technology and to the promotion of
public welfare. Tremendous progress has been made in the areas of elec-
tronics, control engineering and computer science. Engineers are now in
the position of turing this technique to the advancement of life science
or the aid of less fortunate fellow man. However, the problems here are
certainly more complex and difficult than expected.

So far engineers interested in Biomechanism or Bio-Medical Engineering
have been involved in producing new artificial augmentations and replacements
for man's subsystem, such as prostheses and heart—lung machines, and further
in developing new artificial limbs, manupilators, walking machines and robots,
In these fields, however, there are many unsolved problems significant enough
to require detailed investigations. The point we particularly emphasize is
that the complex engineering devices such as driving actuators, automatic
control instruments and information processing systems, do not yet exhibit
the same desirable performance, function and stability as our own muscles
and motor control systems. And, in relation to the development of artificial
limb, it is particularly necessary to solve the two following problems:

i) the development of compact, sufficiently powerful and flexible

actuators, similar to living muscles;

ii) the development of a rational system of controlling the various
actuating mechanisms in highly functional 1limbs, the system to be
similar to the neuromuscular control system.

As far as these two problems are concerned, however, present technology is
able to reproduce (create) only the simplest of the functions provided in the

muscular contractile mechanism and in the motor control system.
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In this view, it is of great significance to reveal excellent functions
of the living motor system and to find in the system some valuable clues which
may lead the way to important developments of new actuators and to a high qua-
lity automatic control system.

In general, the mechanisms of muscle contraction and motor control have
been extensiveiy studied by the sciences of biology, medicine, physiology and
biophysics, but it has been felt that these studies have failed to go beyond a
fragmentary explanation of specific phenomena and most investigation proceeds
without a unifying theory of muscle contraction and similarly without that of
motor control system. A comprehensive approach relating all the studies of
the muscle contraction or of the motor system is needed, and development of a
unifying theory of them has obviously important and interesting ramifications
in applied science as well as basic science.

The present study is indeed along this line, the purpose of which is to
clarify the mechanisms of muscle contraction and motor control from the point
of view of engineering, paying special attentions to their dynamic functiomns.
However, to our chagrins, the results obtained in the present study are pro-
bably far from the principal objects attempted and seem to fail to achieve
entire elucidation of the mechanisms of muscle contraction and motor control,
although they undoutedly constitute an important and valuable contribution to
the study of the question. Of course, the vast field of biological motor ac-
tivity obviously exceeds the limits of one man's investigation. One short
decade of investigation in a new area of research can hardly be expected to
have solved more than a fraction of the problems facing us in interpreting
the chemo-mechanical coupling of the muscular contractile mechanism and the
role of nervous systems in motor control. The results presented in this thesis

seem to indicate new openings for further investigations.
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ABSTRACT

The present thesis consists of two parts. The purpose of this study is to
elucidate the mechanism of muscle contraction and to uncover the control func-
tions of the neuromuscular system in the fully dynamic sense. At the same
time, the subject is to find some valuable clues that may lead respectively to
the development of artificial muscles and to the synthesis of control systems
for artificial limbs or paralyzed limbs.

Part I deals with the mechanism of muscular contraction. First, mechani-
cal properties of skeletal muscle are clarified by various physiological ex-
periments on the frog semitendinosus muscles; the viscous elastic properties
of the resting muscle, the force-load-velocity and load-extension relations of
the contracting muscle and the time courses of the active state are determined
quantitatively.

Second, a mechanical model of the muscle consisting of a contractile com-
ponent (composed of force generator and viscou-like component) and viscous
elastic components, is developed on the basis of these physiological findings.
Dynamic characteristics of muscle contraction are accounted for by simulations
of the model.

Then, the contractile component is modeled, based on the sliding-filament
theory, the chemical reaction mechanism of actin-myosin-ATP system and the
excitation-contraction coupling. All the system parameters involved are de-
termined quantitatively from the physiological data obtained from the frog
semitendinosus muscle.

Finally, the unified model capable of accounting for all the contractile
process from neural impulses to mechanical work is developed by synthesizing
the models mentioned above. This model is not only able to explain various
steady state properties such as the force-load-velocity, force-energy libera-

tion and force-heat production relations but also to inpetpret the transient
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responses such as isometric and isotonic contractions and time courses of
inner Ca ion concentraction. The responses of the model show close agreement

with those obtained from frog skeletal muscles.

Part II deals with the motor control system, which includes sensory
and motor neurons at the spinal cord level and their associated muscles, joint,
skeletons and muscle proprioceptors (spindle receptors and Golgi tendon organs)
A mathematical model of each physiological element is developed, based on re-
cent physiological and anatomical findings of cat's soleus musclgs. Dynamic
properties of the muscle spindle is particularly investigated in detail, pay-
ing special attentions to variation of position and velocity sensitivities due
to the gamma efferent activities.

A model of stretch reflex concerning single muscles is synthesized by
connecting the models of muscle, spindle receptor and alpha motoneuron into
an equivalent feedback system. Responses of the model of the stretch reflex
are in a good agreement with the physiological result. The mechanism of
length control as well as the role of spindle receptor and gamma motor system
in its reflex is made clear.

A neuromuscular control system model concerning a pair of agonist and
antagonist muscles is developed. Computer simulations reveal the mechanisms
of postural control, velocity control and tension control, and besides the
mechanism of how these control actions are made to cooperate with each other.
At the same time, the synergetic actions originating from the functional ele-
ments such as gamma motor system, alpha-gamma linkage, spindle group Ia,
tendon group Ib and spindle group IT afferent fibers are accounted for by
analyzing each control action.

Besides, a mathematical model of a human forearm motor system is developed
based on anatomical and phsyiological data. Movements of the forearm gene-
rated by functional electrical stimulation via surface electrodes as well as

normal innervation are explained by the model.
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PART 1

STUDY ON THE

CONTRACTILE MECHANISM OF THE

SKELETAL MUSCLE



CHAPTER 1

INTRODUCTION

The remarkable difference from ordinary engineering actuators such as
electrical, pneumatic and hydraulic actuators is that living muscles are
biological machines which convert chemical energy into force development
and mechanical work. The contractile machinery is basically composed of
contractile proteins, actin and myosin, and the fuel is universally ATP
(adenosine triphosphate) with high energy. Furthermore, in comparison
with the engineering actuators, the following characteristics of muscle func-
tions can be emphasized.

(i) The muscle is a compact and soft machine capable of generating forcible
power; the ratio of output power /weight dis surprisingly great (2-10
Kg/cm2 cross section).

(ii) Viscous and elastic properties vary with contractile activity of muscle
contraction. Their coefficients change significantly with the transi-
tion from rest to contractioni

(iii) An autogenetic control mechanism is provided in the contractile machin—
ery; energy liberation is effectively regulated according to - change in
applied load.

These magnificient functional characteristics can neither be provided in

the present engineering machines nor be materialized by any possibility even

by means of applying the modern progressive techniques. Recently, various
kinds of artificial muscles have been developed in parallel with the
development of externally-powered prostheses for physically impaired indi-
viduals. There are, for instance, McKibben muscle, artificial rubber muscle

55
designed by Kato and Ishida (1969) and artificial mechano~chemical muscle

54 81
developed by Katchalsky (1954) and Tatara (1973). All these artificial
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muscles, however, are far from living muscles in respect to the power/weight
ratio. Indeed, to develop such compact, flexible and sufficiently power-
ful artificial muscles that can generate forces of a magnitude similar to
the intact muscles has been strongly urged. In this context, it is of im-
portant significance to elucidate the mechanism of contractile machinery

in the living muscle from the point of view of engineering.

Indeed, there seems to be significant advances in the last decade in
knowledge of the details of muscle structure and of the molecular mechanism
of muscle contraction. 1In spite of them, no comprehensive theory has been
proposed yet which_satisfactorily explains the molecular events involved
in the mechano-chemical process of muscle contraction. A complete exﬁlana—
tion of the contractile process can only come when structural, biochemical
and physiological findings are melded into a single theory. The present
study is essentially under this view. Seeing that the contractile machin-
ery comprises a complex of interacting processes and components, simulation
study seems to be quite available for the present purpose. Further, the
mathematical modeling can be recognized as being a useful way to quantify
the interacting behaviors within the contractile machinery and to determine
the dynamic characteristics of the contractile mechanism. In such a case
the point that should be emphasized is that a mathematical model of the
muscle, treating it as a chemo-mechanical system, should be in such a form
as involves the following contents:

1) There be a clear correspondence between the model and the ultrastructure
and function of muscle fiber elucidated during the last decade.

2) The characteristics of each component of the model be figured out quan-
titatively,

3) The various mechanical behaviors during shortening and lengthening ex-—
hibited by the contracting and resting muscles be able to be explained

quantitatively by the model.



4) Microscopic characteristics (sliding movements of myofilaments, chemical
process of the actin-myosin-ATP system) as well as macroscopic ones ( ten-
sion development, shortening, work, energy liberation, heat production
and Ca ion release) be inclusively accounted for by means of the model in
the dynamic sense.

Various kinds of models have been presented in order to interpret the
functional characteristics of the muscle, as shown in the extensive litera-
69 77
ture concerned with muscle models (Pringle, 1960 ; Sandow, 1970 ). For
example, the classical viscoelastic model of muscle was introduced by Gasser
33 57

and Hill (1924) and Levin and Wyman (1927) ; a two-component model which

consisted of the series elastic component and the contractile component

36 87 71
was developed by Hill (1938) , Wilkie (1950) and Ritchie and Wilkie (1958) ;
68
the physicochemical model by Polissar (1952) , the transmutation chain
17

model by Buchthal and Kaiser (1951), and recently the modified viscoelastic
model by Bahier (1968;? All these models, however, are no; satisfactory
in the sense that there is no clear correspondence between the model and
the microstructure of muscle fiber elucidated during the last decade, and
that the characteristics of each component of the model are not figured out

45
quantitatively. Since 1957, A. F. Huxley and his co-workers (Huxley, 1957 ;

Gordon et al., l9663u) have established the sliding-filament theory in
parallel with the electron-microscopic findings on myofilaments made by

H. E. Huxley (1957;? Quantitative approaches, involving mathématical descrip-
tions and the formulation of appropriate models of the sliding~filament
mechanism, have been presented by many workers : Deshcherevskii (l968§f
Volkenstein (1969§f T. L. Hill (1970;3 Chaplain and Frommelt (1971)29 and
Huxley and Simmons (1971;? All these models, however, have been rather meagre
because none of them goes beyond explanation of specific phenomena in

muscular contraction, although they have furnished us with useful informa-

tion in understanding muscular contraction or in constructung a mathematical

model.
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The present study is undertaken in order to develop a new model of mus-
cle including the modern concepts of the sliding-filament mechanism, molécu—
lar mechanism of the actin-myosin-ATP system and excitation-contraction cou-
pling, paying special attentions to the correspondence between the model and
the microstructure of the muscle. This kind of modeling of the muscle may
open a useful way not only for the better understanding of the contractile
mechanism but also for further application of the contraction principle to
the development of small-sized, efficiently powerful artificial muscle and
to the analysis of neuromuscular control s?stem.

The current pressing problems are those concerned with the formulation
of a mathematical model of muscle contraction, which lies at the junction
between experimental evidence and theoretical construct. Although many in-
vestigations have been already made on the dynamic properties of the
skeletal muscles, it is not easy and even impossible to compare the re-
sults of them quantitatively with each other because of the difference of
materials and experimental conditions. They can not provide all data
needed for the simulations. Therefore, in this study, necessary data for
the simulations are obtained by focusing all the physiological experiments
on the frog semitendinosus muscle. To sum up, we have carefully made a
&athematical model of muscle contraction with an iterative process between

physiological experimentation and simulation.

The organization of the present thesis (part I) is as follows.

In chapter II, well-established findings about structure and functions
of skeletal muscles are reviewed, detailing the ultrastructure of muscle
fiber, the theory of sliding-filament mechanism and the molecular mechanism
of contraction. Further, mechanical properties of skeletal muscles are
outlined in comparison with the mechanical model. The experimental set—up
and preparations of the frog semitendinosus muscle which were used in the

physiological experiments are described.
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In chapter TII, mechanical properties of the resting and contracting
states are determined quantitatively from the frog semitendinosus muscle, by
designing pertinent physiological experiments by which each mechanical ele-
ﬁent is identified as independently as possible. That is, viscous and elastic
properties of the resting muscles, load-extension relations of the series
elastic component of the contracting muscles, force-load-velocity relations
of the contractile component and viscous-like force are together determined,

In chapter IV, active contractile forces generated in the contractile
component~ intensities of active state- are estimated by an analytical method,
and are compared with those estimated experimentally by quick-release and
quick-stretch techniques.

In chapter V, a mechanical model of the muscel is developed, based on
the experimental findings determined in chapters III and IV, and muscle
dynamics are explained , comparing the responses of the model with what
are actually observed on the muscle.

In chapter VI, a mathematical model of the contractile component is
developed, based on the molecular mechanism of contraction (actin-myosin-
ATP system), sliding-filament mechanism, excitation-contraction coupling
and ultrastructure of muscle fibers. Finally, an unified model of
muscle contraction is developed by putting this model into the contractile
component of the mechanical model, All the paraméters of the model
are determined by employing the values obtained in chapter III. Dynamic
characteristics of the contractile mechanism are distinctly revealed in
a quantitative sense by simulating various contractile phenomena such as
isometric and isotonic contractions.

Chapter VII does summarize major findings obtained in the present

study.



CHAPTER 11
REVIEW OF THE MECHANISM OF MUSCLE CONTRACTION AND METHODS

2.1 MUSCLE STRUCTURE AND CONTRACTILE MECHANISM

a) Muscle structure

The structure of a muscle fiber and orgéns that compose it offers impor-
tant clues to understanding of how the muscle does function. Examination of
the fine structure of striated muscle fibers, made possible by a electron
microscope and X-ray, has shed new light on the question of how the muscle
cell translates chemical energy of contraction into mechanical work. We may
begin by representing the well-established anatomical findings of the stri-

ated muscle cell.

whole muscle

_—

muscle fiber

so-toor] (((((((((((((((((((((((((((((((((((((((((((((((((((

myofibril

] (R (E (T samen

i)
! !
i thin filament

\\\\iiiék filament

Fig. 2.1 ‘Structure of muscle fiber.

A skeletal muscle (striated muscle) is made up of many individual muscle
fibers (Fig. 2.1). Each fiber is a cylindrical, long cell enclosed in a sheath

called the sarcolemma. It is made up of a large number of myofibrils. The myo-
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fibril is a rod of contractile protein which runs one end of the fiber to the
other. The fibril is subdivided by thin partitions called Z~discs (Z-lines)
into sarcomere. - The sarcomere is a functional unit in the contractile machi-
nery; the contraction of a muscle fiber is produced by the collective and co-
ordinated shortening of many sarcomeres composing it. The myofibril itself

is composed of longitudinal fine filaments. The protein filaments are of two
types, thin and thick. The thick myosin-containing and thin actin-containing
filaments give the regular band pattern of cross~striations (A-band,
I-band). The thick filaments are spaced out in a hexagonal lattice 400-450 2
apart, with the thin filaments in between them at the trigonal positions of
the lattice. The space between the filaments is occupied by sarboplasma (a

dilute aqueous solution of salts and of other proteins).

(a) thick filament

4208
4298

(b) thin filament

troponin actin

(c)

Fig. 2.2 The fine structure of actin and myosin filaments.
(a) The six staggered rows of heads on fhe myosin filament (H. E.
Huxley, 1967). (b) Double-stranded super-helix of the actin filement,
decorated by troponin and tropomyosin (Ebashi and Endo, 1968). (c)
Schematic drawing of the formation of cross-bridges (Mashima, 1972).

M, myosin filament; A, actin filament.
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b) The fine structure of thin and thick filaments
According to the recent X-ray diffraction observations and electron

microscopic recordings of fixed, stained muscles, following conclusions may
50 13 i 25

be outlined (H. E. Huxley, 1969; Bendall, 1969; Davies, 1963).

1) The ultrastructure of the thin and thick filaments is schematically illu-

strated in Fig. 2.2.

2) The myosin-containing filaments can link with the actin-containing fila-

ments with the formation of cross-bridges *) between them.

3) Thick filaments are in the central region of the sarcomeres, and have a-

six-fold screw axis of symmetry with a helical arrangement of the cross-bridges

which contain the H-meromyosin ATPase. The individual cross-bridges in the

myosin filaments are oriented in opposite directions on either side of the

center of the filaments.

4) A thin filament is F-actin ( two-strings of globular protein arranged

in double~stranded chains) decorated by troponin and tropomyosin. The thin

filaments are attached to the Z~discs between each sarcomere, and structurally

polarized in opposite senses on either side of the Z-discs.

¢) Process of muscle contraction

It is commonly believed that the contraction of living muscle is composed
of the excitation-contraction coupling followed by the chemo-mechanical coup-
ling (Fig. 2.3). Neural impulses are propagated in the motor nerve fibers
from its neuron (in the ventral horn of the spinal cord) to a motor end-

plate on a muscle fiber, and all-or-none action potentials are in turn

*) A cross-bridge is formed when the myosin head attaches to an actin fila-
ment; the cross-bridge results from the attachment of a projecting part of the
myosin filament (myosin head, heavy meromyosin subfragment) to specific

sites on the actin filaments.



Ca ion TENSION
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Fig. 2.3 Schematic diagram of the process of muscle contraction

generated in the surface membrane of the muscle fiber. The action potential
is conveyed inwards via transverse tubular system of the sarcoplasmic reticu-
lum (SR), where it finally activates the release of Ca ions (excitation-
contraction coupling, E-C coupling). Thus, it initiates ATP (adenosine tri-
phosphate) splitting at the active sites on the actin and myosin filaments
and the subsequent conversion of the cheminal energy, which turns into work
or development of tension (chemo-mechanical coupling, C-M coupling). That is,
when Ca ions are bound with reactive sites on the actin filaments, the cross-—
bridges are formed between myosin and actin filaments, which immediately de-
velop interfilamentary sliding forces. Work is done by the sliding force (
contractile force). This active contractile force probably corresponds to
the so-called "active state'- defined as a potentiality for force production
(Hill, l949b)3.8 The interfilamentary force can not be observed directly
because of the filtering effects of viscous and elastic properties of the
muscle, but indirectly measured in the form of tension or shortening of the
muscle.

A fundamental response of a skeletal muscle to a single adequate stimulus
is a twitch, i.e. a brief period of contraction followed by relaxation. If a
second shock is given to the muscle before the response to the first has com-—
pletely died away, summation occurs. When the stimuli are repeated at high
enough frequency, the twitch summations are fused to become a smooth tetanus.

Two types of mechanical recording are commonly done. In one isometric

recording, muscle length is fixed and tension development is recorded. In



- 10 -

the other isotonic recording, the muscle is allowed to shorten against a fixed

load and a change in muscle length is recorded.

d) Excitation-contraction coupling and Ca ion.

A number of investigations have been made on the action of Ca ion as a
regulating agent of the contractile system (Ebashi and Endo, 1968188and0w,
1970)7.7 It is now well-established that Ca ion is the final activator of the
contractile system. According to Ebashi and Endo, the troponin-tropomyosin
complex is bound uniformly along the whole length of the actin filaments.

At rest, the tripartite complex (actin, troponin, tropomyosin) prevents inter-
action of the actin and myosin filaments, i.e., prevents cross-bridge formatiom.
In the presence of sufficient free Ca ions, troponin (acting specially as the
Ca-receptive protein of the whole complex) binds the Ca ions and 1lifts the
inhibition ( by some reaction necessarily involving tropomyosin as a sort of
intermediary) and thus permits the contractile actomyosin complex to develop.
The process of the excitation-contraction coupling is listed as follows

(Fig. 2.4).

(1) Rest (2) Contraction (3) Relaxation

\ action potential

<
sarcoplasmic @
/ reticulum T ) e + Ca

IR

— ==

<«

sliding

- slidin
C32+_'—¢=..

s1iding

thick filament Z-1ine

thin filament

Fig. 2.4 Schematic illustration of the excitation-contraction coupling.
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Rising phase of the active state:

1) Action potential and its inward spread through the transeverse tubular
system.

2) Release of Ca ion from the sarcoplasmic reticulum.

3) Diffusion of Ca icn to the contractile proteins.

4) Binding of Ca ion to the contractile proteins.

5) Reaction of Ca-bound proteins which affects mechanical responses.

Falling phase of the active state:

6) Uptake of Ca ion by the sarcoplasmic reticulum.

7) Diffusion of Ca ion from the sarcoplasma to the sarcoplasmic reticulum.

8) The contractile proteins release the bound-Ca ions.

Ebashi and Endo (1968)28 has obtained the steady state relation between ﬁhe
isometric tension and the free Ca ion concentration, by using the skinned
fibers (Fig. 2.5), The figure shows that the larger tension is developed as the
concentration of Ca ion is increased. At rest, Ca ion concentration is about

lO_6 Mol (pCa=6.0).

200 ———
//// hd
E~ A,(://</”“——————_1
= }{// «“B
L)
=1
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Fig. 2.5 Steady isometric tension developed by skinned fibres as a
function of free Ca ion concentration. Curve A, 1 mM Mg; curve B,

12 mM Mg; pCa=—loglO[Ca++], (from Ebashi and Endo, 19682°).



Fig. 2.6 Result of applying a single depolarizing pulse to the fibre
membrane. Trace 1, membrane response, 20 mM.cm—l; trace 2, calcium-
mediated light emission, 1.9 x 10_9 1m.cm_1; trace 3, isometric ten-
sion, 5 g.cm_l; trace 4, 1 V calibration pulse and stimulus mark.
Horizontal calibration: 100 msec.cm—l. Intensity 3.5 V; nominal dura-
tion: 200 msec. Temp. 11-12 °C. Resting light emission: 0.64 nlm.
Mean resting potential: -56 mV. Calibration bar: 1 cm.

(from Ashley and Ridgway, l970f.

Recently, transient responses of the release of Ca ions have been ex-

perimentally observed in comparison with the development of temsion (Ashley
8 13
and Ridgway, 1970; Jobsis and O'Connor, 1966). The figure 2.6 is a typical
8
record obtained by Ashley and Ridgway (1970) that shows membrane potential

(trace 1), calcium-mediated light emission (trace 2, {ts height corresponds

to the Ca ion concentration) and isometric tension (trace 3). It should be
noted that the peak of the Ca ion concentration is at the time when the gra-

dient of isometric tension curve is approximately maximum.

e) The sliding-filament theory

This theory was evolved independently and more or less simultaneously
45 47
by A. F. Huxley (1957) and H. E. Huxley (1957), and it is now accepted al-

most universally as a result of the evidence that has been accumulated since
3y 46
that time (Gordon, Huxley and Julian, 1966; Huxley and Simmons, 1971; H. E.
. 49 50 34
Huxley, 1967, 1969). Gordon et al. (1966) have accurately measured the re-
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Fig. 2.7 (a) Standard filament lengths. a=1.60 py; b=2.05 y; ¢=0.15 y;
z=0.05 . (b) Tension-length curve from part of a sihgle muscle fibre
(schematic summary of results). The arrows along the top show the vari-
ous critical stages of overlap that are potrayed in (c). (c¢) Critical

stages in the increase of overlap between thick and thin filaments as a
3u
sarcomere shortens. (from Gordon, Huxley and Julian, 1966).

lation between sarcomere lengtn and active tension in living muscle fibres,
and confirmed that the maximum active tension is directly proportional to the
length of overlap regions of thick and thin filaments (see Fig. 2.7). Accor-
ding to this theory, shortening and lengthening of the muscle are the relative
displacement of thick and thin filaments interdigitating into each other. The
theory may be outlined as follows.
1) A force of contraction is developed by the interaction between the thick
- and thin filaments in the overlap region, and active shortening is caused
by movements of the myosin cross-bridges, coupled with hydrolysis of ATP.

2) Lengths of the filaments themselves remain essentially constant. The
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myosin and actin filaments slide past one another through the formation of
cross-bridges; the actin filaments are drawn further into the array of
myosin filaments as the muscle shortens, or are withdrawn again as the
muscle is stretched.

3) Tension development, shortening and work follow from the cyclic making and
breaking of cross-links between myosin cross-bridges and receptor sites on
the actin. That is, an elementary cycle of the contractile machine has two
phase; binding and dissociation between actin and myosin; or a force—gené—

rating phase and a free phase.

£) Energy sources for contraction

A distinct feature of muscle proteins is their ability to transform
energy from chemical to mechanical form. It is well known that the chemical
reaction to provide the energy for contraction is the hydrolysis of ATP to ADP

(adenosine diphosphate) and Pi (inorganic phosphate).

ATP —= ADP + Pi (2.1)
The free energy of ATP splitting is approximately 10-11 Kcal/Mol. The resyn-

thesis reaction of ATP is the so-called Lohman reaction, catalysed by creatine

kinase:
Ct P + ADP==Cr + ATP (2.2)

The resynthesis of ATP occurs with the greatest rapidity and most of the ATP
split is restored at the expence of CrP (creatine phosphate), so that no actual
fall in ATP concentration is caused during muscle contractions (both smooth
tetanic contractions and twitches). Recent chemical analyses have shown that

a total amount of ATP (or creatine phosphate) splitting is approximately pro-

83
portional to the work done (Tonomura and Oosawa, 1972).



g) Model of the molecular mechanism of muscle contraction
Several models have been proposed, based on the sliding-filament theory,
the chemical reaction and the molecular mechanism of muscle contraction (A. F.
45 25 84 82
Huxley, 1957; Davies, 1963; Tonomura et al. 1969; Tonomura, 1972). The models,
although they differ in detail, seem to be basically identical. The model in
B Y

Fig. 2.8 1is proposed by Tonomura et al. (1969), which schematically illustra-

tes the molecular mechanism of muscle contraction. This figure shows only a
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Fig. 2.8 Molecular mechanism of muscle contraction.
F-A (or A) and M indicate F-actin and myosin, respectively.
HMM represents the head part of myosin (H-meromyosin). o and B
indicate two different types of conformation of the myosin molecule.

(from Tonomura et al. 1969%%).

part of the myofibril, where the essential biochemical reactions occur,i.e.,
F-actin and the cross-bridge of the myosin filament. The system operates as
follows: (i) In the resting state, myosin is in the form of a myosin-phosphate
complex. (ii) When Ca ion is set free in the contractile system from the sarco-
plasmic reticulum by excitation, Ca ions bind to troponin, which is bound to

the F-actin-tropomyosin system. This Ca ion-binding induces a conformational
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change in tropomyosin, and the latter produces the change in conformation of
F-actin. In consequence, the linkage between myosin and F-actin is formed.
(iii) Phosphorylmyosin is rapidly dephosphorylated by the action of F-actin.
This energy-releasing process accompanies the transconformation of myosin.
Actin filaments are interdigitated into muosin filaments. (iv) ATP produces
the myosin-phosphate-ADP complex. Then, the linkage between myosin and F-actin
is broken, and myosin is transformed spontaneously to the state (i). The

whole system returns to the original state.

2.2 MECHANICAL PROPERTY OF MUSCLE AND ITS MODELS

A muscle in the resting state gives a rubber-like tension-length rela-
tion with a small stiffness. The relationship is nonlinear; the muscle is
progressively gettingAstiffer as length is increased. This behavior has been
found to reside in the connective tissue surrounding the muscle and in the
surface membrane. ' As far as an unstimulated muscle is concerned, the classi-
cal viscoelastic model as shown in Fig. 2.9 (a) would fit satisfactorily,
because no interaction between thick and thin filaments takes place. Upon
stimulation, muscle is rapidly activated and changes from a passive tissue
to a dynamic tissue capable of exerting force or doing work.

Since the study of Gasser and Hill (1924;? it has been often pointed out
that the viscous and elastic constants of the contracting muscle are much
greater than those of the resting muscle. When the muscle is transfered
from resting state to activated one, these constants would suddenly be re-
placed with entirely different values, and would not be considered to increase
continuously, because the interaction between myofilaments which are dissoci-
ated in the resting state is developed suddenly. Since the work of Hill (1938,36
l949af7l949€§ and Wilkie (1950f? mechanical behaviors of active muscles have

been described by a contractile component (CC) in series with a noncontractile
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Fig. 2.9 Mechanical model of muscle.
7

(a) Classical viscoelastic model (Levin and Wyman, 1927;,
(b) two-component model (Hill, 1949§f Wilkie, lQSOf:
(c) new mechanical model (Bahler, 1968;0Akazawa et al., 1969f.
SEC, series elastic component; PEC, parallel elastic component; VC,

viscous component; CC, contractile component; FG, force generator.

series elastic component (SEC). The responses to isotonic quick release would
demonstrate the dynamic behavior of an active muscle; a tetanic contracting
muscle is quickly released from an isometric condition and allowed to shorten
against some fixed load (cf. Fig. 3.6 or Fig. 3.7). The instantaneous shorten-
ing occurs immediately after a quick release, which is fo;lowed by slower
shortening of the contractile machinery. Rapid shortening on the early phase
strongly suggests the existence of a series elastic component. The load-
extension relation of the series elastic component has been generally deter-
mined by this quick release experiment, and identified as being compatible

to a nonlinear spring; the elasticity increases as the extension is increased.
Thé structural correspondence of the series elastic component has never been

derived yet, while some part of it certainly resides in tendons and Z-lines.
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.On the other hand, the contractile component has been identified as an
36
element obeying the familiar force-velocity relation. Hill (1938) has derived

the famous hyperbolic equation:
(P+a)(v+b)=»~ (PO + a) (2.3)

where a and b are constants, PO the isometric maximum tension, P the load,
10

and v the velocity of shortening. Recently, Bahler (1968) or Akazawa et al,
3

(1969) have developed a new mechanical model by modifying the two-component

model (Fig. 2.9 (c)); that is, the contractile component consists of two ele-

ments, a nonlinear force generator (FG) and a nonlinear viscous-like element

(vC).

2.3 METHODS
Experiments were performed on the small bundle of the fast muscle fibers
prepared from the ventral caput of the semitendinosus muscle of the frog,

rana nigromaculata. The muscle was dissected under a binocular microscope

until the diameter of the bundle was as small as 500-800 p. The lengths of
different fibers were almost equal in such a preparation. In some experi-
ments the whole muscle or the single fiber preparation was also used.

The experimental arrangement is illustrated in Fig. 2.10. The whole
apparatus was set on a special table designed to absorb external mechanical
disturbance. The bundle preparation, M, was mounted horizontally in a poly-
styrol bath ( 3 x 7 x 1.5 cm) which contained 10 ml of Ringer's solution.

On the opposite walls of the bath were placed a pair of platinum foil elect-
rodes ( 7 x 1.5 em), E. Thus, the whole length of the preparation could be
stimulated simultaneously by the transverse electric field created between
these massive electrodes. Usually, 1.0- msec square pulses at 50-100 Hz or

AC at 200-500 Hz were applied from a high-current stimulator (about 30 W), G.
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Fig. 2.10 Diagram of the recording system.

B, Ringer's solution bath; E, platinum foil electrodes; G, alternative

current or square pulse stimulator; Ll’ isometric lever; L2, isotonic

lever; L, light source; M, muscle; MG, electromagnetic relay; P, load;

PT, phototube;
thermoelectric

culation.

The temperature of the
1.8 mM CaClz, pH 7.2)
changer, Th.

The pelvic tendon

dle at the tip of the

conveyed to the anodal

R, thermoregulator; S, stop; T, RCA 5734 tube; Th,

heat exchanger; VC, velocity controller; W, water cir=-

Ringer's solution (110 mM NaCl, 12 mM NaHCO,, 2 mM KC1,

3’

was maintained at 10 °C by a thermoelectric heat ex-—

of the muscle was penetrated by a stainless steel nee-
isometric lever, Ll,by which the muscle tension was

pin of an RCA 5734 tube, T. The pelvic tendon was usu-

ally so thin that it was tied by nylon thread to prevent it from being torn

off. The tibial tendon was also tied and penetrated by a stainless steel nee-

dle at the tip of the rectangular isotonic lever, L

99 which was made of light
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wood, 7 cm in length and 400 mg in weight, and the load P was hung 0.7 cm
from the pivot. The movement of the lever was detected photoelectricaily;
namely, the lever cut the light streaming toward the phototube, PT. Thus,
the tension and displacement of the muscle were displayed simultaneously on a
cathode-ray oscilloscope, CRO. The compliance of the apparatus was about

5.0 u/g, measured under a binocular microscope (x 60). This is satisfacto-
rily small for the maximum isometric tension, which was usually less than

10 gwt.

The electromagnetic relay MG was set to the isotonic lever for quick
release of the muscle., When it was necessary to adjust the velocity of
muscle lengthening or shortening, a velocity controller VC which has been
described by Mashima and Matsumura (l960)i3was connected to the isotonic lever.

The muscle length was varied with an accuracy of 0.1 mm by moving the iso-
metric lever, which was mounted on a sliding scale with a vernier.

Simulation studies were made on analog and digital computers. For the
convenience of simulation, a measured tension was always normalized by the
maximum tetanus tension, Po, and a length by the standard length, LO, at
which a muscle generated the maximum tension. The muscle length without
containing the tendon length was always measured in the mounted state under

a binocular microscope.



CHAPTER  TIII

PHYSIOLOGICAL DETERMINATION OF MECHANICAL PROPERTIES
OF THE FROG SKELETAL MUSCLE

3.1 INTRODUCTION

It is well known that resting muscles behave as a flexible rubber-like
body and active muscles behave as a two-component system consisting of a
contractile component in series with a passive elastic one (Fig. 2.9 (b));
namely, dynamics of muscle contraction depend on the load-extension re-
lation of the series elastic component, the force-velocity relation of the

38
contractile component and the time course of the active state (Hill, 1949b;
71 52
Ritchie and Wilkie, 1958; Jewell and Wilkie, 1958). 1In this chapter, mechan-
ical properties of the active and resting muscles are determined quantita-

tively from adequate physiological experiments on the frog semitendinosus
muscles; namely, viscous and elastic properties of the resting muscles, the
load-extension relation of the series elastic component and the force-load-
velocity relation of the contractile component are determined, while the
active state is identified in the following chapter. Much effort is devoted
to design pertinent physiological experiments from which these mechanical
parameters might be estimated as easily and independently as possible.

First, mechanical properties of the resting muscle are determined from
steady-state and transient responses to change in load or in length. The
tension-extension relation of isolated tendons is also observed. 1In addition
the steady-state relation between isometric tetanus tension and muscle length
is measured.

Second, the load-extension relation of the series elastic component is

determined. There are at least three methods of estimating the curve. The

first method is to calculate the load-extension curve from two experimental

- 21 -
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36
curves, i.e. the force-velocity curve and the isometric myogram (Hill, 1938,

l949biBWilkie,19ﬂﬁi The second is to map out the curve using fast constant-
velocity releases (Hill, 1950,33976Y{ The third is an isotonic quick release
technique commonly used (Wilkie, 19555 Jewell and Wilkie, 195822Bahler, 196;;
Cavagna, 1976; Akazawa et al., 19693. The same quick release technique is
employed here since the method is the most applicable with the present prepa-
ration. TFrog semitendinosus muscle at 10 °C does shorten so rapidly that
the quick release method is made by taking extreme care over details of tech-
nique and is modified to counterbalance the effects of the combined mass (
moment of inertia) of the load and lever system. In order to examine the
existence of the series elastic component and the correspondence of it with
the muscle structure, the effects of various muscle lengths, various times
after a single stimulus and different temperatures are investigated.

Further, transient responses to the isotonic quick release are simula-
ted by using the mathematical model in order to estimate analytically the
characteristics of the series elastic component. That is, responses of the
model are compared with the existing physiological data, and at the same time
a slight viscosity within the series elastic component is also estimated by
the simulation.

Then, the force-load-velocity relation of the contractile component is
determined. The force-velocity relation of the skeletal muscle was described
by Hill (1938)36 on the isotonic shortening of the frog sartorius muscle

in terms of a simple hyperbolic equation:
(P+a)(v+b)=b(Po+a) (3.1)

or

P0 -P = ( PO +a)v/ (v+b) = FV (3.2)

where P is the load, v is the shortening velocity, Po is the maximum isometric

tension, a is the heat constant and b is the rate constant of energy libera-
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tion. The value of ( PO - P ) or FV in Eq. (3.2) represents the velocity-
dependent tension loss during isotonic shortening or the viscous-like force.
Hamely, when a muscle shortens at the velocityvv, the force PO is decreased
to P as though there were a viscous-like force in the contractile component
(Bahler et al., l967f. Since then, it has been widely confirmed that this

equation holds not only in various skeletal muscles (Wilkie, 1950, human

87 2
muscle; Abbott and Wilkie, 1953, tortoise muscle; Close and Hoh, 1967, kitten
23 78 29
muscle) but also in the cardiac (Sonnenblick, 1962; Edman and Nilsson, 1968)
24 61

and smooth muscles (Csapo, 1955; Mashima and Handa, 1969), although the val-
ues of the dynamic constants ( a and b ) are quite different in these muscles.
However, this equation is applicable only to the fully activated muscle, in
which the force of the contractile component is steady and equals PO. Only

in a muscle exerting a steady contractile force does the load represent the
force during isotonic shortening.

65
On the other hand, Mashima and Washio (1968) and Mashima and Tsuchiya

64
(1968) showed that it is possible to depolarize the muscle membrane to a
certain extent and to maintain the contractile force at a certain level be-
low PO by applying alternating current (AC) at 200-500 Hz in an excess
potassium solution containing 10-20 mM KCI.

The purpose of the present chapter is also to examine the property of

the viscous—like force during shortening and lengthening, determining the

load-velocity relations at various steady or changing contractile forces.

3.2 MECHANICAL PROPERTIES OF THE RESTING MUSCLE AND THE TENSION-
LENGTH CURVE OF THE CONTRACTING MUSCLE

In order to test the elastic properties of the bundle preparation, the

load-extension curves of a whole muscle, two bundle preparations, and an iso-
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Fig. 3.1 Load-extension curves of the resting muscle; a, whole muscle;
b, c, two-bundle preparations; d, single fiber; Po, maximum tension;

S, cross section; Lo, 14 mm in all preparation; 10 °C.

lated single fiber were compared, as shown in Fig. 3.1. The muscle was
stretched from the standard length, Lo’ at which the maximum isometric temsion,
PO, was developed. Curve a was obtained from the whole muscle, curve b and c
from two-bundle preparations, and curve d from the single fiber. The stand-
ard length, Lo’ was 14 mm in all preparations. The values of P0 and the
area of cross section S are shown in the insert in Fig. 3.1. As is apparent,
curve b and c¢ are far closer to curve d than curve a. The compliance of the
bundle preparation is quite similar to that of the single fiber, probably
because a small bundle contains less connective tissue. As the size of bun-
dle preparations used in this study was nearly the same as ¢ in the table,
the following results would be comparable with those obtained on single fibers.
When the muscle is stimulated, the contractile component develops an
active tension, which varies with the length of muscle. The steady tension
generated in isometric tetanus of the bundle preparations was measured at
different lengths. The result is shown in Fig. 3.2, curve T. The resting

tension was also measured for this preparation, curve R. This curve must give
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Fig. 3.2 Active tension-length relation. Maximum tension (curve T,
total tension; A, active tension, A = T - R ) and resting tension
(curve R) developed at each muscle length in the frog semitendinosus
muscle. O, Po=3.1 gwt, Lo=l3 mm; @, PO=4.4 gwt, LO=13 mm; @, P0=33.8
gwt, Lo=l4 mm. Solid line, S, redrawn from Gordon et al. (1966).

the elasticity of the parallel elastic component (SECl + PECl in Fig. 3.5).
Since the parallel elastic component is structurally parallel with the con-
tractile component (CC), their tension mugt be added together, so that the
intrinsic active tension developed by stimulation is given by curve A (A=
T-R). The active tension-length curve of the bundle preparation does also
show nearly the same as obtained from a single muscle fiber preparation (see
Fig. 2.7; Gordon, Huxley and Julian, l9663i Note that all these curves were
obtained by setting the length of the muscle before it was stimulated teta-
nically.

In order to determine elastic and viscous characteristics of the rest-
ing muscle, following physiological experiments were designed. A typical re-
cord of the responses to step change in load is shown in Fig. 3.3. Note that

records A and B were obtained from the whole muscle, records C and D from the

bundle preparation. Responses to ramp stretching were also recorded (Fig. 3.4);
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Fig. 3.3 Responses of the resting muscle to step change in load.
Upper trace, length(elongation, downward); lower trace, tension on
muscle. A, B, whole muscle; C, D, bundle preparation. Solid line,
physiological result; broken line, calculated curve obtained with

the values in Table ITI-1,

in these experiments, the muscle was stretched by a small amount at a certain
velocity, using a velocity controller, then maintained at the fixed length.
All these experimental results indicate that the viscoelastic model illus-
trated in Fig.3.5 is the simplest and adequate one to interpret the dynamic
B *)
properties of resting muscles .
The viscous and elastic constants of the components (viscous constant Bl

of VCl, elastic constant El of SECl and elastic one Ep of PECl) were estimated

by applying the curve fitting procedure to the physicloiical data in Fig . 3.3

*) All the experiments show the existence of an elastic element supporting

the load. For the early slight quick phase of the elongation curve in Fig.
3.3, two elastic elements SECl and PECl shown in Fig. 3.5 must be introduced
where a viscoelastic Voigt model is employed. For the slow phase of the elon-
gation curve in Fig. 3.3 and the phase-lead (differential) characteristics

in Fig. 3.4, the viscous element VC1 in Fig. 3.5 must be introduced. Con-
sequently, at least three components are necessary; series elastic component
(SECl), parallel elastic component (PECl) and viscous component (VCl). As

for the series elastic component, it is convenient to separate it into two
subcomponents SECt and SECP. The former corresponds to definitely non-

contractile structures, such as tendons and Z-lines.
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Fig. 3.4 Response of the resting muscle fo ramp stretching.
Upper trace, tension on muscle; lower trace, length (elongation is
upward). A, PO=4.65 gwt, LO=lO mm; B, C, D, PO=8.5 gwt, Lo=ll mm.
Solid line, physiological result obtained from the bundle prepara-
tion; broken line, calculated curve obtained with the values in Table

I11-2.

and Fig. 3.4. The estimated values of them are shown in Table III-1 and
Table III-2, and the responses obtained with these values are shown in Fig. 3.
3 and Fig. 3.4, broken lines. In this estimation, it was not necessary to
take account of the nonlinearity in the resting tension-length curve in Fig.
3.1, because the amount of elongation in the stretching experiment was as
small as less than 10 Z of LO.

Both the whole muscle and the bundle preparation seem to have a similar
dynamic property as seen in Fig. 3.3, but the elastic and viscous damping con-—
stants of the whole muscle are naturally greater than those of the bundles
as shown in Table III-1. ©Namely, the former is less compliant as expected
from the tension~length curve in Fig. 3.1 and more viscous than the latter,

because of more connective tissue between muscle fibers.
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TABLE III-1

ELASTIC AND VISCOUS CONSTANTS IN THE RESTING MUSCLE
OBTAINED FROM SUDDEN LOADING EXPERIMENT

PREPARATION Experiment Lo o Load Ey EP 31
: shown in (mm) (gwt) (g) (gwt/mm) (gwt/mm) (gwt.sec/mm)
Fig. 3.3A 13 m 0.9 5.14 0.56 0.112
Whole B 0.25 6.21 0.69 0.082
muscle Mean 5.81 0.63 0.097
Fig. 3.3C 11 8.4 0.3 1.61 0.23 0.0115
Bundle D ) 0.1 1.92 0.27 0.0274
preparation Mean 1.76 0.25 0.0195
TABLE  T1I-2

NORMALIZED ELASTIC AND VISCOUS CONSTANTS IN THE BUNDLE PREPARATION
OBTAINED FROM STRETCH EXPERIMENT

. Velocity Amount of
E:Ei‘z:mfgt Lo Fo of stretch stretch By Ep B1
- (mm) (gwt) (mm/sec) (mm) (PQ/LQ) (Pg/Ly) (Py-sec/Ly)

Fig. 3.4A 10 4.65 37.0 1.85 1.03 0.258 0.0161
Fig. 3.4B 64.0 2.08 1.31 0.186 0.0124
C 11 8.5 24.0 1.32 1.48 0.211 0.0140

D 18.6 0,95 1.35 0.194 0.0129

Mean 1,29 0.212 0.0139

In Table ITI-2, the values of mechanical parameters

are normalized by Po

and LO in order to make easy a quantitative comparison between differential

preparations, e.g., 1.03 PO/L0 in E
by P0=4.65 gwt and Lo=ll.0 mm.

elastic and viscous constants calculated in the bundle preparations

1

is the normalized value of 0.48 gwt/mm

These results of estimation indicate that the

satis~

factorily coincided with each other, regardless of the difference in the thick-

ness or length of the bundle.

It is concluded that the dynamic behaviors of

the resting muscle can be represented by the viscoelastic model, consists of

three linear components as shown in Fig. 3.5, within a limit of variation in

length less than 10 % of LO.
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Fig. 3.5 Viscoelastic model of resting muscle.
SEC, series elastic component; PEC, parallel elastic component;

VC, viscous component.

After the experiment two tendons were isolated from both ends of the
muscle (Lo=l3 mm) and connected together thin metal wire (13 mm). Then the
load-extension curve of the tendon was measured in Ringer's solution, neglect-
ing the compliance of the wire. The curve was nearly straight, and the same
tension as Po was obtained when the tendon was stretched by about 1 7 of L0
Namely, the elastic constant of the tendon Et is about 100.0 PO/LO. This
value is so large in comparison with E, that the compliance of tendon can be

1
neglected from that of the whole SECl

3.3 THE LOAD-EXTENSION RELATION OF THE SERIES ELASTIC COMPONENT

The load-extension curve of the series elastic component has been com-—

39
monly determined by the isotonic gquick release technique (Hill, 1950; Jewell

52 9
and Wilkie, 1958; Bahler, 1967). The principle of the quick release is sche~

matically illustrated in Fig. 3.6. The resting muscle (Fig. 3.6 a) is teta-
nically stimulated and exerts an isometric tension Po' (Fig. 3.6 b). This
muscle was released quickly (Fig. 3.6 c¢) and allowed to shorten with a certain

fixed load P (Fig. 3.6 d). The instantaneous shortening of SEC S, occurs

23

immediately after the release due to a sudden decrease of the force from PO'
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Fig. 3.6 Diagram of estimating the load-extension curve of the series
elastic component,
A, schematic illustration of the isotonic quick release experiment.
CC, contractile component; M, thick filament; A, thin filament; SECZ,
series elastic component. (a) resting state; (b) isometric contraction;
(c) immediately after the quick release with load P; (d) following
isotonic contraction; S, intrinsic shortening of the series elastic
component.
B, a typical record of the isotonic quick release experiment.
Time course of shortening (A) and tension (B) changes after the
quick release. Tension (B) on the muscle was suddenly reduced from
the isometric tension (PO'=4.1 gwt) to a fixed isotonic load (p=1.5 g)
after 80 msec from the onset of stimulation. Frog semitendinosus
muscle, P0=4.l ewt, Lo=l3 mm, 10 °C. Tension-extension curve (C)

of the series elastic component may be obtained from (A) and (B).

to P, because SEC2 is assumed to shorten much more rapidly than the contractile
component for the rapid change in tension. Namely, the load-extension curve

of SEC2 is given as the relation between P and S. In this technique, however,
inaccuracy for the estimation of S may be unavoidable due to undesirable fac-

tors, such as an active shortening of the contractile component and a slight
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viscosity in parallel with the series elastic component. Moreover, in the
simple qﬁick feleaéevthe £eﬁsipn after the release.usually shows an undershoot
falling to zero tension céffesponding to the overshoot in the length curve and
keeps zero for a considerable time, especially under light or no load (Fig.
3.7 A, B ). While the intersection of the shortening curve dnd the axis formed
by the time of release determines S, this undershoot should cause overesti-
mation of S, because the velocity of active shortening of CC is very rapid
under no load. On the other hand, under heavy load the tension falls much
slower and the wundershoot of tension curve is not so deep. So, there must
be no overestimation of S, but rather occur the possibility of slight under-
estimation due to the slow active shortening, as pointed out by Bahler

9
(1967). Eventually, it is necessary to control the velocity after release
to an appropriate value depending on the load. For this purpose Jewell and
Wilkie (1958)5:dded an external viscosity, that is a small dashpot con-
taining castor o0il, to the isotonic lever. In the present work, the velocity
of instantaneous shortening immediately after the release under light load
was adjusted by the velocity controller wuntil the undershoot of tension curve
was minimized (Fig. 3.7 C). The velocity of release at which the tension
undershoot disappears completely is slow, because the shortening curve becomes
round and gives no means to separate the quick shortening from the active
contraction.

The load-extension curves obtained by the quick release and the controlled
are compared in Fig. 3.8 a and b. The extension at zero load was determined
from the shortening at the instant when the tension curve fell to zero under
adequately controlled release. Besides these methods, the direct X-Y record
was. also adopted, in which the tension and length changes immediately after
the release fed into X- and Y-axis of CRO (Fig. 3.7 D). The X-Y record of
the quick release under no load is shown in Fig. 3.8 c where the velocity of

shortening was not controlled at all. In such a case, the compliance of the
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25msec

Fig. 3.7 Typical records of isotonic quick release.

A, quick release under no load; B, quick release under light load (P=
0.3 g); C, controlled release under light load (P=0.3 g); D, X-Y record.
A, B, C: the same preparation (frog semitendinosus bundle preparation),
PO=2.5 gwt, Lo=12 mm, 10 °C; T, tension curve, 1.0 g/div; S, shortening
curve, 0.29 mm/div; R, resting tension level. D: Another bundle
preparation , Po=6.2 gwt, Lo=l4 mm, 10 °C; T, tension curve, 5.0 g/div;
ST, stimuli; inserted X-Y record, X-axis is tension, lg/div, Y-axis is

shortening, 0.04 mm/div.



- 33 -

series elastic component is underestimated owing to a slight viscosity in para-

llel with SEC2 , which was estimated as being 0.008 Po.sec/L0 in the pre-

sent bundle preparation (See section 3.4) and of the order of 300 dyne.sec/
9
cm in the rat gracilis muscle by Bahler (1967) and in the frog sartorius
89
muscle by Woledge (1961). After all, the most reliable curve is Fig. 3.8 b,

and X~Y record obtained by the controlled release was also agreed well with
this curve. Any way, the load-extension curve of SEC2 is not

linear, and the maximum extension at PO is about 3-3.5 % of Lo. The curve b

in Fig. 3.8 is expressed with series expanded terms:

(3.3)
_ n b Ao
E, = (2.96 + 51.8 X, + 1.9 x 10" X,2 ) P_/L_

where E2 = elastic coefficient, function of extension,
x, = extension of SECZ’
A . A
X, = normalized value of x X, =

9 2 Xy = Xy/L.
8

-
P
|
i
|
|

s

7 t

2

5 N

x|

=~

z |y

Q4 1y

a |\

z |\

M \

19 Q

ui

0 02 04 06 08 10
LOAD PP,

Fig. 3.8 Load-extension curves of the series elastic component obtained
by the simple quick release (a), the controlled release (b), and X-Y
record of the simple quick release (c). Frog semitendinosus bundle

preparation, PO=2.75 gwt, L0=12 mm, 10 °C.
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Fig. 3.9 Load-extension curves of the series elastic component at
various temperatures. Frog semitendinosus bundle preparation;

L =12 mm.
o]

a) The effect of temperature

In order to examine how much the active shortening of the contractile
component is contained in the load-extension curve determined by the controlled
release ' method: the effect of temperature was observed. Normalized load-
extension curves at different temperatures are shown in Fig. 3.9. A sligﬁt
change in the series compliance with temperature as well as in the curvature
of load-extension curve was observed, If the compliance contains much
active contraction, the differences between these curves are presumed to be
more definite, so that a slight change of the compliance would be attributed

to the temperature dependence of the passive element.

b) The effect of contractile tension

Applying the controlled release method at various tension levels during
tetanic contraction, the effect of contractile tension on the load-extension
curve of the series elastic component was examined. One of the results is
shown in Fig. 3.10. The curves obtained by the release at more 0.5 Po are
roughly superposable with each other by shifting along the vertical axis.
Namely, the compliance of the series elastic component does not alter at near

the peak tension, but it is clearly increased at the early beginning of con-
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Fig. 3.10 Load-extension curves of the series elastic component at
various times during tetanic contraction. Tetanic stimulation ( 1.0
msec pulse, 100 Hz) was affected for 100 msec. Figure above each
curve indicates the time (msec) after the beginning of the stimula-

tion. Frog semitendinosus bundle preparation; Lo=l3 mm, 10 °C.

traction and after half relaxation. This result implies that the compliance
of the series elastic component is practically independent of the contractile
tension, except the very beginning of the contraction and the late relaxation

period.

c) The effect of muscle length

As in the contracting muscle the thick and thin filaments are actively
connected by cross-bridges at the overlap region, the series elastic compo-
nent would be divided into two subcomponents, SECt and SECa. The former is
the same as in the resting muscle, and the latter would correspond mainly
to the inactive parts of the thin and thick filaments. If so, the length
of SECa or SEC2 will bg increased with an increase in the muscle length as
illustrated schematically in Fig. 3.11. Therefore, the effect of muscle length

on the series elasticity was examined. One of the results is shown in Fig.

3.11, in which the load-extension curve was determined at LO—Z mm (86 % LO),
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Fig. 3.11 Effect of muscle length on the series elasticity.
(a) Schematical illustration of an increase in the length of SEC,
with increasing muscle length from left to right, (b) calculated
load~extension curves at various muscle lengths, figures show the
muscle lengths in % of LO, (c) load-extension curves obtained at
various muscle lengths ; a, 14 mm (=LO); b, 12 mm; ¢, 16 mm; frog

semitendinosus bundle preparation; 10 °C.

Lo=14 mm, Lo+ 2 mm (114 2 LO). Suppose that the compliance of SEC, is 0.01
LO/PO(see section 3.2) and that of SEC, is also linear, the total load-exten-
sion curves at various muscle lengths are to be as illustrated in Fig. 3.11(b).
Of course, the measured load-extension curves shown in Fig. 3.11(c) do not suf-
ficiently agree with the theoretical ones because of the nonlinear property, but
apparently the series elastic component is more compliant at the longer length
of the muscle. Then it is concluded at least quantitatively that a part of

the series elastic component contains the inactive regions of the thick and
thin filaments where both filaments do not ovelap each other. TFor the better

fit of the theoretical curves, the nonlinear compliance of SEC, must be taken

into the theory.
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3.4 DETERMINATION OF THE LOAD-EXTENSION CURVE OF THE SERIES
ELASTIC COMPONENT BY MEANS OF COMPUTER SIMULATIONS

The purpose of this section is to simulate the transient responses
to the isotonic quick release and to determine analytically the load-extension
curve of the series elastic component and finally to verify the experimental
curve determined at section 3.3. In order to do this, a mathematical model
in Fig. 3.12 is employed here; the series elastic component is modeled
as a purely mechanical spring (SECZ) in parallel with a weak viscosity (VCS)*).
The contractile component is modeled, based on the molecular mechanism of

muscle contraction, its modeling being expressed in detail in chapter VI.

i
= -

SEC

1

%_

Contractile

Component

[

Fig. 3.12 Mechanical model of muscle for quick release experiments.
CC, contractile component; SECZ, series elastic component; VCg, vis-—

A
cous component; P, temsion; x, X, shortening; M, equivalent mass.

a) Equation of the muscle-load system
Kinetic equation for the muscle and loading system in Fig. 3.12 is

\

¥ X

Il
2w/
1
=
&

mx=F_ -P (3.4)

P=E2(x-X)+Bs(£;-§c)

g =8 -X /
o

*) This viscous damping element may be neglected on the ordinary contraction,
because the velocity of normal shortening is considerably slower than

that of instanteneous shortening immediately after the isotonic quick release.
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where ﬁ = equivalent mass, consisting of an applied load and the isotomnic
lever,
P = tension on muscle,
X = shortening of muscle,
x = shortening of CC,
F_ = force exerted in CC,
m = mass of muscle; we make an approximation of m §=O, because of its

minor effects on muscle dynamics,

=1
I

2 elastic coefficient of SECZ’

==}
Il

viscous damping constant of VCg,

£ = length of muscle,

]

o initial length of muscle,

2a accerelation of gravity, (980 cm/sec?).

An equivalent mass of our experimental arrangement is (see Appendix A)

M= 0.28 + 0.01 Pg (3.5)

where P, = mass of the applied load.

The relation between load on SEC, ( Psec) and extension of SECy (xjp) 1is
expressed as
Psec = E2 %2 (3.6).
x2 =x - X
b) Mathematical model of the contractile component

When repetitive tetanic stimuli are applied to the muscle, inner Ca ion
concentration can be assumed to maintain a steady state (state of equilibrium).
This section treats the contractile process under this condition, while
chapter VI deals with transient changes in Ca ion concentration. Therefore,
descriptions of the model are given in a simplified form of; but equiva-

lent to, those of the complete model described in chapter VI,
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Fig. 3.13 Schematic drawing illustrating the molecular mechanism of
contractile process under the steady state of Ca ion concentration.

A, actin filament; M, myosin cross-bridge.

It is assumed here that a single working cross-bridge (unit contractile
machine) is generating constant active force f with dissipating the force
loss f, din proportion to the velocity v ; thus, the unit machine exerts the
net force f-f. Consequently, the total active force generated in the con-

tractile component F, is expressed as

Fo=ny (£-f ) (3.7)

f -[BV (vZ2o)

v (3.8)
R'v (v=20)

v = x

where g = constant of proportionality during shortening,
g'= constant of proportionality during lengthening,

n, = number of working cross-bridges at the state 2) in Fig. 3.13.

Interactions between myosin cross—bridges and Ca ion-receptive proteins (
active center) in the thin filaments may be separated into five following

states (Fig. 3.13): R) resting state; 1) activation of the active center
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resulted from binding of Ca ion; 2) formation of a cross-bridge between both
filaments (the cross-bridge is developing a sliding force f );

3) in the instant of breaking down the cross-bridge; 4) the cross-bridge is

completely broken down. Note that the cycle 1)—2)-»3)—>4) is considered

to continue as long as the tetanic stimulation lasts. Taking the numbers

of the active center at the states 1), 2), 3) and 4) to be ng, Ny, 0 and

3

n,, respectively, we obtain following kinetic equations for the contractile

2

reaction under the steady Ca ion concentration:

nl = K4 n, - K. n

2 171 2 2
. (3.9)
ny = Ky my = K3 nyg
n4 = K3 n3 - K4 n4
where Ki’ (i= 1, 2, 3, 4) = rate constant of transition from the state i)
to the state i+l),
The total number of working active centers N is expressed as:
N=n, +n. +n,+n (3.10)

1 2 3 4
The value of N 1is dependent on an intrinsic length of the overlap region

of two kinds of filaments, which depends on the length of muscle, £. Namely,
N/ N = F (L) /[ F (3.11)

where FK(Q) = intrinsic length of the overlap region, function of %,
NO = the value of N where the maximum tension Po is developed,
Flo = maximum of Fz(l), F

4o = FQ(LO).

Considering the sliding movement of filaments produced by the cyclic move-
ments of cross-bridges, we introduce following nonlinear properties into the
rate constant K2; K2 is increased linearly with an increase in the velocity

of sliding movement v :



(3.12)

constants.

¢) Simulated results

Responses of a tetanus muscle to an isotonic quick release are simulated
by using equations (3.4)-(3.12), and the elastic coefficient of SEC2 is es-
timated. In the simulation, the values in Table III-3 are used for the para-
meters of the contractile component. These values are determined by investi-
gating the physiological data, such as the force-load-velocity relation and
muscle energetics (details are given in section 6.4). The function Fz(l) is
given by Eq. (6.54). Figure 3.14 is a typical record of the isotonic quick
release obtained from the frog semitendinosus muscle. The solid line is a
traced line of the physiological record; after—load is 0.13 g in (a), 0.34 g
in (b) and 0.48 g in (c).

Initial conditions at the time of the quick release (at =t ) are

L = LO, X =0, P-= PO, X = Po / E2 (t= tq ) (3.13)
and the initial wvalues of 0, (i=1, 2, 3, 4) are
n, =mng=m, = 0.017 No s my = 0.8 No ( t=tq) (3.14).

In order to estimate the value of E,, simulations are done on three cases;

_ bao

case 1, E2 = 6.4 x 10 x, PO/L0 (3.13)
_ 4 2

case 2, E, = 2.5 x 10% %,2 P /L, (3.16)
_ L)

case 3, E2 =1.1 x 10 %, Po/Lo ’ (3.17),

The load-extension curves of these three cases are shown in Fig. 3.15; the

extension of SEC2 at P = Po are 2.5 7 of LO, 3.4 7 of LO and 4.5 % of Lo
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TABLE III-3

PARAMETERS OF THE CONTRACTILE COMPONENT

o, = 21.0 /sec, o = 120.0 /LO s ai = 130.0 /Lo , f =0.125 Po/No’

w
]

T =K =K =
0.35 Po.sec/LO , B' = 3.43 Po.sec/LO , K1 K3 K4 258 /sec

(mm}

SHORTENING

0 1 i 1 1
0 10 20 30 40 50
(ms)

Fig. 3.14 Simulation of responses to the isotonic quick release of
tetanically stimulated muscle. Solid line, experimental record ob-
tained from frog semitendinosus bundle preparation, PO=2.Z gwt, Lo=
13 mm, 10 °C; after-load, (a) 0.13 g, (b) 0.34 g, (c) 0.48 g.

Broken line, simulated respomnse obtained from the model by
using Eq. (3.16) as E2

in the cases 1, 2 and 3, respectively. On the other hand, eight values of
viscous constant BS were employed in the simulations; BS = 0.001, 0.002,
0.005, 0.007, 0.008, 0.01, 0.02, and 0.05 Po.sec/Lo. Simulation experiments

were done in all the possible combinations of E2 and Bs’ i.e. 24 combinations.



P/P0
o

TENSTION

LENGTH (% of LO)

Fig. 3.15 The load-extension curves of the series elastic component, SECZ.
Open circle, experimental curve obtained from the controlled release.

Curve a, the relation of case 1l; curve b, case 2; curve c, case 3.

Consequently, we obtained such suitable values as could satisfactorily
account for the physiological data of the isotonic quick release in Fig. 3.14;

namely, E, was the relation of case 2 (Eq. (3.16)) and BS was about 0.007-

2
0.01 Po.sec/Lo. The broken line in Fig. 3.14 is the response of the model
obtained from these wvalues ( Bs=0.008 Po.sec/Lo), which shows close agree-
ment with the physiological result. As for the cases 1 and 3, we also attempt-
ed to fit the responses of the model to the physiological ones by chang-

ing the values of Bs over a wide range, but failed. Those responses of

the model tended to differ comnsiderably from the experimental results. We

may thus conclude that the elastic constant of SEC approximately obeys the

2
relation of Eq. (3.16) and viscous damping constant in parallel with SEC2
is about 0.008 Pousec/Lo. It should be noted that, as seen in Fig. 3.15,

the load-extension curve of Eq. (3.16) is in a good agreement with that ob-
tained from the frog muscle. Finally, the load-extension curve obtained

experimentally at section 3.3 can be recognized as being satisfactorily

accurate.
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It was also indicated that the viscous damping constant considerably
affected the instantaneous quick shortening after a quick release, although
it had insignificant effects on normal shortening of contraction because of
its slight viscosity and normal slow shortening. The value of its constant
has been already identified by Woledge (l96l§9as being BS=0.OO7—O.009 Po.sec/
cm in frog sartorius at 10 °C, and also by Bahler (l967§ as being BS=0.Ol
Po.sec/cm in rat gracilis at 17.5 °C. The value obtained here is BS=0.008

Po.sec/LO=O.Ol Po.sec/cm, which is quite the same as Bahler's. These facts

also seem to support the simulation result.

3.5 FORCE-LOAD-VELOCITY RELATION OF THE CONTRACTILE COMPONENT
AND VISCOUS-LIKE FORCE
a) Load-velocity relations of the shortening muscle determined at various

steady contractile forces

The load-velocity relation of the skeletal muscle has usually been deter-
mined only in the fully activated muscle. 1In our research, however, it was
first determined in the partially activated muscle as well as in the fully
activated one, using the isotonic quick release method.

First, the muscle was isometrically tetanized at the initial length of
Lo by square pulses at 50-100 Hz until the tension reached Po’ and then quick
release was performed using an electromagnetic relay. Following this, the
fully activated muscle shortened against the load P, as seen in Fig. 3.16 A.
The shortening velocity v was measured at the linear part of the shortening
curve which began immediately after the quick shortening of the series elas-—
tic component. Measuring the velocities for various loads at the same initial
length LO, the load~velocity relation was obtained as shown in Fig. 3.17,

curve 1. This curve was hyperbolic , and the dynamic constants were a/PO=
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Fig. 3.16. Measurement of the shortening velocity by the isotonic quick

release method. The muscle was released after 200 msec from the start

of stimulation. A, square pulses stimulation at 50 Hz in Ringer's

solution, load=l.0 g; B, AC stimulation at 300Hz, in 20 mM potassium

solution, load=0.7 g; L, shortening curve, 1 mm/div; T, tension curve

2g/div; S, stimulus; time, 25 msec/div; P = 7.6 gwt; L= 12 mm ; 10 °cC.
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Fig. 3.17. Force-velocity (load-velocity) curves obtained at various

contractile forces. Filled circle, determined by isotonic shortening;
open circle, determined by isotonic lengthening; triangle, determined

by isovelocity stretching; 10°%.
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0.23 and b/Lo=0.9/sec. In the average of 10 cases, a/PO was 0.25 (0.23-
0.28) and b/L0 was 0.9/sec(0.85-0.90/sec). Of course, under these experi-~
mental conditions, load P means the force of the contractile component during
isotonic shortening, and the intrinsic contractile force is PO.

Second, the potassium concentration of Ringer's solution was raised to
20 mM and the muscle was stimulated by AC at 500 Hz. In such an excess potas-
sium solution, the action potential was abolished and the muscle membrane was
partially but uniformly depolarized by AC stimulation (Mashima and Washio,
1968;? Since the depth of depolarization depends on the potassium concentration
and the field strength, various steady tensions were obtained by applying
various field strenghts. Thus, the contractile force was kept at a certain
level without changing the muscle length. 1In the partially activated muscle
thus obtained, the contractile force, F,was less than Po;for example, F is
0.35 PO in Fig. 3.16B. Repeating the velocity measurements for various loads,

a set of load-velocity curves was obtained, as shown in Fig. 3.17, curves 2-6.

0.8

VISCOUS-LIKE FORCE Fv /P,

0 0.2 0.4 0.6 0.8 1.0
CONTRACTILE FORCE F/P,

Fig. 3.18 Relation between the viscous-like force and the contractile

force at various shortening velocities. a, at 2.0 Lo/sec; b, at 1.0

. ec.
L /sec; c, at 0.4 L,/sec
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The intersection of each curve and the abscissa (at v = 0) represents the

isometric tetanus tension before release, that is, the contractile force of
that curve. TFor example, in Fig. 3.17, curve 3, F is 0.65 PO.
11
According to Bahler et al. (1967), the fact that the faster a muscle

shortens the less force it exerts is interpreted as meaning that part of the

force is dissipated internally as a function of the velocity, as though there

were an intermal load or viscous-like force. This viscous-like force, Fv’ is
the difference between the contractile force and the load, i.e.;FV = F - P,

In order to examine the propertyof the viscous—like force, the quantity (F - P)
at a certain velocity was plotted against F, as shown in Fig. 3.18. It is re-
markable that the relation is exactly linear at every shortening velocity
arbitrarily selected. Thus, we concluded that the viscous-like force is not
only a hyperbolic function of velocity, as shown in Eq.(3.2), but also a linear
function of contractile force in the partially as well as the fully activated

muscle. Consequently, the following equation is proposed, instead of Eq.(3.2):

_ __F
FV(V,F) =F-P=x5 (Po + a)

o]

— (3.18)
v+ b
Further, the load-velocity equation of the fully activated muscle [Eq. (3.1)]

is generalized to the following force-load-velocity equation,

(P+A) (v + B) =B(F+A4)

or
v(A+P)=>b (F=-P) (3.19)

where A = (F/Po)a and B = b, Using Eq. (3.19) and the dynamic constants

(a/Po = 0.23, b/LO = 0.9/sec), the load-velocity curves were calculated for
various contractile forces, and it was confirmed that curves 1-6 in Fig.3.17
showed a good coincidence with these calculated curves. Therefore, Egs.(3.18)

and (3.19) are applicable to any contractions of partially activated muscle
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Fig. 3.19 Three-dimensional diagram of the contractile force, viscous-

like force and shortening velocity at LO.

where F £ Po, at least during steady state activity. Furthermore, it was
derived that the heat constant A increases linearly with an increase of the
contractile force, and Hill's constant a is the maximum value at F = Po’
whereas the constant b does not change in the partially activated muscle.
In order to show the property of the viscous-like force represented by Eq.
(3.18), the relation between the contractile force, the viscous-like force,
and the shortening velocity at Lo is illustrated as a three-dimensional dia-
gram, as seen in Fig. 3.19. From these results it is suggested that the
contractile component of the muscle involves the viscous~like element, which
works as a function of the velocity and the contractile force.

The effect of muscle length on the load-velocity relation was also
examined by repeating the same experiments at muscle lengths between 0.8 LO

and 1.2 Lo' Thus, similar hyperbolic curves were obtained, as shown in Fig.

3.20, and the dynamic constants were a/PO = 0.28 and b/LO = 0.9/sec.
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Fig. 3.20. Force-velocity curves obtained at various muscle lengths.

Contractile force was changed by AC stimulation in the excess

potassium solution. p =15 gwt; 10 °C.
o

Fig. 3.21. Changes in tension and length during the lengtheniné by a
load larger than Po. L, lengthening curve, 0.4 mm/div; T, tension
curve, 0.7g/div in A, 1.4g/div in B and C; time, 50 msec/div in A,

20 msec/div in B and C; R, resting tension level; S, stimulus, 80HZ;
A, quick stretch by 1.3 Po (3.5g); B, controlled stretch by 1.5 Po{4g);
C, controlled stretch by 2.0 P_ (5.5g); P = 2.7 gwt; L =12 mm; 10 °C.
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It was confirmed that these curves fit Eqs. (3.18) and (3.19) within this

range of muscle length.

b) The Velocity of isotonic lengthening induced by loads larger than Po

The viscous-like force in the contractile component also worked when the
muscle was lengthened by a stretch or during isometric relaxation, at which
time the contractile component is stretched by the series elastic component,
In order to examine the viscous-like force of the lengthening muscle, the
load-velocity relation of the lengthening muscle was determined.

First, the muscle was isometrically tetanized at L0 by square pulses at
80 HZ, and at the maximum tension PO it was stretched‘isotonically by a load
larger than PO, removing the stop for the isotonic lever suddenly. The
changes in tension and muscle length during isotonic lengthening were recorded
simultaneously, as shown in Fig. 3.21A. As pointed out by Katz (l939;f the
lengthening curve consists of two phases, that is, an immediate downstroké
and slow uniform lengthening, when the load is less than 1.6 Po. As the
tension curve was maintained at the load level, the lengthening velocity was
measured in the linear part of the lengthening curve after the immediate
downstroke due to the lengthening of the series elastic component. The
lengthening velocity, -v, thus obtained was plotted against the load, as shown
in Fig. 3.17, curve 7. This curve is not completely identical to curve 1,
but it is also hyperbolic. As seen in Fig. 3.21A, an overshoot appeared in
the tension curve, corresponding to the immediate downstroke of the lengthen-
ing curve. A large overshoot might accelerate the initial "giving" of the
contractile component. Therefore, the maximum lengthening velocity was confined
by the velocity controller, in order to minimize the overshoot. Thus, the

lengthening velocity for loads up to 1.6 PO was measured (Fig. 3.21B).
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Fig. 3.22 Relation between the wviscous-like force and the contractile

force at various lengthening velocities. a, at 0.2 Lo/sec; b, at
0.6 Lo/sec. Circles, obtained by isotonic lengthening; triangles,

obtained by isovelocity stretching.

BN

3.23 Measurement of tension developed by the isovelocity stretching.
A, in Ringer's solution, stimulated by square pulsed at 80 Hz, stretched
by 0.4 mm at a velocity of 4.4 mm/sec, PO = 4.3 g; B, in excess
potassium solution, stimulated by AC at 500 Hz, stretched by 0.4 mm at
a velocity of 3.7 mm/sec, F = 0.7 PO; L, length, 0.24 mm/div; T,

tension, 2 g/div; time, 50 msec/div; LO=14 mm, 10 °C.



- 52 -

For loads between 1.6 P and 1.8 Po,however, various lengthening velocities
were observed for a certain load by repeating the same experiments, so that
it was difficult to determine the real velocity. This situation is expressed
by the dotted line in curve 7. For loads larger than 1.8 PO, a large downstroke
was followed by a rapid "giving" or relaxation, as seen in Fig. 3.21C, and
no linear lengthening was observed, as though myofilaments had slipped off.
When the maximum velocity was not controlled, the temsion curve was raised
steadily over the load level during the stretch and isotonic condition was no
longer realized. Therefore, within the load range of less than 1.6 Po or the
velocity range of less than 1.0 Lo/sec, the following equations were obtained:
(ZPO - P+ a)(-v + b)) =01 (PO + a') (3.20)

or

P - P = (PO + a ) ——— (3.21)

In curve 7, a'/PO = 0.4 and b'/LO = 0.85/sec. Namely, the heat constant a'
during lengthening is about 1.6 times larger than a during shortening. The rate
constant of energy liberation b' during lengthening, however, is the same as
b during shortening.

Second, the muscle was soaked in excess potassium solution containing
10-20 mM KCl and stimulated by AC at 300 Hz at various intensities. Thus, a
set of load~velocity curves at various contractile forces was determined on
the lengthning muscle, as shown in Fig.3.17, curves 8-12. All these curves were
also hyperbolic, unless the lengthening velocity exceeded about 1.0 Lo/sec.

The viscous-like force during lengthening at a certain velocity was plotted
against the contractile force, as shown in Fig. 3.22. The relation was also

linear, as observed on shortening in Fig. 3.18. Thus, the following equation
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is introduced instead of Eq. (3.21):

F =P - F = (p + &) —— (3.22)

And the generalized force-load-velocity relation of the lengthening muscle

becomes
(P - 2F - A")(v - B') = B'(F + A.) (3.23)

ox

v (P - 2F - A') = B'(F - P)

where A'=a'(F/PO) and B'=b'. Finally, it was concluded that the viscous-
like force in the contractile component was increased linearly with increas-—
ing contractile force not only on shortening but also on lengthening in

the velocity range of less than 1.0 Lo/sec.

c¢) The force-velocity relation determined by isovelocity stretching

Another method of determing the force-velocity relation was also
adopted. The muscle was tetanized isometrically at LO and , after the
maximum tension was attained, it was stretched at various constant veloci-
ties, using the velocity controller. The tension and muscle length during
the stretch were recorded simultaneously, as shown in Fig. 3.23. The ten-
sion curve attained a new steady level about 50 msec after the beginning
of the stretch. Then the lengthening velocity, -v, and the developed
steady force, P, were measured and plotted, as seen in Fig. 3.17, curve 13,
The maximum tension measured by this method was about 1.8 Po at the velo-
city of 1.0 Lo/sec, that is , a little larger than the value obtained by the
isotonic lengthening method.

Second, by AC stimulation in excess potassium solution (Fig. 3.23) , a

set of P-v relations was determined at various contractile forces, as
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shown in Fig. 3.17, curves 14-16. These curves are essentially similar to
curves 7-12 which were obtained by isotonic lengthening. The viscous-like
force measured from these curves also coincided with those obtained by iso-
tonic lengthening, as seen in Fig. 3.22. TUsing Eq. (3.23) and a'/P0=O.4,
b'/LO=0.85 /sec as dynamic constants, the force-velocity curves were calcu~
lated. These curves coincided satisfactorily with experimental curves 7-16
in Fig. 3.17.

These results are also confined within the velocity range of less than
1.0 Lo/sec. When the velocity of stretch was larger than 1.0 Lo/sec, the
tension curve rose rapidly and continuously, so that no plateau in the tem-
sion curve was observed.

Comparing Fig. 3.18 with Fig. 3.22, it is found that the viscous-like
force during lengthening is about 1.4 times larger than that during short-

ening, if contractile forces and velocities are identical.

d) TForce-velocity relation during the change in contractile force

In order to apply Eqs. (3.18) -(3.23) to a transient state during
contraction, it is necessary to examine whether these relations represent
an instantaneous contractility or not, because these relations were determined
only in steady state activity. On the falling phase of the tension in a re-
laxing muscle, Jewell and Wilkie (1960;3determined the force-velocity relation
and stated that Hill's hyperbolic equation fit at any instance during re-
laxation. 1In our research, the force-velocity relation during the rising
phase of contraction was also determined. As it was impossible for the quick
release method to measure an instantaneous velocity during the rapid change
in tension, the muscle was soaked in the excess potassium solution and stimu-
lated by AC at 500 Hz, the voitage of which was increased almost linearly with
time. By this stimulation the rate of tension rise was slowed down to 1.5

Po/sec, as seen in Fig. 3.24A. Then the muscle was released at a given time
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after the start of stimulation, and the changes in tension and length of the
muscle were recorded simultaneously. - Immediately after quick shortening due
to the series elastic component came linear shortening of the contractile
component against a certain load (Fig. 3.24B). This shortening velocity

was plotted against the load, as shown in Fig. 3.25. The load-velocity curves
in Fig. 3.25 were obtained by using Eq.(3.19), taking a/PO = 0.25 and D/LO=
0.9 /sec as the dynamic constants. Observed points in Fig. 3.25 fit satis-
factorily with the calculated curves. Therefore, we concluded that Eq. (3.19)
holds not only during steady state activity but also for any instance during
the change in contractile force, so that F in Eq. (3.19) can be generalized
to a function of time, F(t), at least in the observed rate of temnsion rise.
Actually, the transition from isometric to isotonic contraction is so quick,
as seen in Fig. 3.24B, that the above generalization may be valid for the

rising phase of normal contraction.

—4

Fig.3.24 Measurement of shortening velocity during the rising phase
of contraction generated by increasing AC stimulation at 500 Hz in
excess potassium solution. T, tension, 0.lg/div in A, 0.9g/div in
B; L, length, 0.3 mm/div; S, stimulus; time, 200 msec/div in A,50
msec/div in B; A, whole course of contraction, LO = 12mm; B, isotonic
quick release at 700 msec from the start of stimulation, Lo = ]lmm;

10%¢.
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w

SHORTENING VELOCITY(L, /sec)
— N

FORCE P/P,

Fig. 3.25 Force-velocity curves calculated from Eq. (3.19), taking
a/P_ = 0.25 and b/L0 = 0.9/sec. Observed points determined by the
isotonic quick release method during the rising phase of contraction

. o
fit with calculated curves; three preparations; 10 C.

3.6 DISCUSSION
a) The series elastic component

The series elastic component has been commonly identified by isotonic
quick release experiments. As to this technique, Podolsky (1960;7 and Civan
and Podolsky (1966)21 pointed out as follows; the non-steady phase of the
motion following lever release could not be attributed solely to mechanical
interaction of lever inertia with the series elastic element, and there
was an additional component that appeared to be originated in the contractile

element of the muscle. Certainly, seeing that the series elastic component

does work together with the contractile component, it is very hard or
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impossible to identify solely the series elastic component from performing
any mechanical experiments., Further, mechanical measurement would not

lead to a clear decision for the question because of inaccuracy of measuring
instantaneous rapid movements éfter quick releases. So, simulation study
described at section 3.4 is considered to be of important significance in
leading to the explicit conclusion for this problem. Especially the simu-
lated result is worthy to be emphasized; namely, the load-extension relation
of the series elastic component, being separated from effects of the con-
tractile component, was determined quantitatively and close agreements were
obtained between the simulated results and the experimental ones.

The question has been often posed whether the series elastic com-
ponent is all in the tendon or whether part of it may be located within the
the microstructure of the muscle fibers. The present work showed that about
one third of the whole series elasticity corresponded to the tendons. For
the residual series compliance, it is difficult to say the structural cor--
respondence in the present study, while Z-~lines would be contained in it.
However, the failure of the series elastic component to change remarkably
with temperature or time after a single shock (Fig. 3.9 and Fig. 3.10) in
addition to the dependence of series compliance on muscle length (Fig. 3.11)
would strongly suggest that the cite must be located in a region not sub-
ject to the profound change which occurs 1in the contractile proteins during
activity; namely, the fact may point to its being in an inactive region
and may probably include the possibility that it is in the inactive parts
of thin and thick filaments, and not dominantly in the working sites of
the filaments. This consideration would be supported by electron-microscopic
observations demonstrated by Galey (l969;% On the other hand, Huxley and
Simmons (l97l)u6have accurately recorded the change in tension after a step-
wise length change and pointed out that the instantaneous elasticity is

mostly in the filament themselves, i.e., resides in the cross-bridges them-—
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selves. If so, at least a part of the series compliance actually observed
does come from the movement of the cross-bridges, and it seems to be sugges-
tive that the series compliance of the active mgscle is larger at the begin-
ning of contraction and at late relaxation. It is pity. that the mechanical
exper;ments can not lead to a clear decision for the question; whether a

partial participation of the cross-bridges in the series elasticity or am—

biguity of mechanical measurement would be the cause. Any way, macroscopic-

ally the total extension of the series elastic component of the frog semi-

tendinosus muscle was about 3-3.5 7 of L0 under the maximum tension.

b) The viscous-like component

In the present study the load and the contractile force were separated.
The contractile force, F, is defined as the steady isometric tension, which
may represent the intensity of the active state, and the maximum contractile
force in the fully activated state is P0 , while the load P means the
force during the isotonic shortening or lengthening. And the difference
between F and P is the viscous-like force, Fv’ because when the muscle is
released from isometric to isotonic contraction, the force is decreased
from F to P, as though there were a viscous-like force, which works as a
function of velocity v. Hill's equation, Eq. (3.2), describes the viscous-
like force as a hyperbolic function of v. However, Eq. (3.2) holds only
in the fully activated muscle, where F=PO. The present study on partially
activated muscles, where F is less than PO, showed that the viscous-like
force is a linear function of F, and Eqs. (3.18) and (3.19) were intro-
duced. Of course, the viscous force should be a mere function of v. But

b7
from the viewpoint of the sliding filament theory (H. E. Huxley, 1957 ;

L5
A. F. Huxley, 1957 ), the cross-bridges between myofilaments functioning
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as force generators are all in parallel, as in shown schematically in Fig.
3.26. Assuming that each cross-bridge has a proper force £ and viscosity
fv’ the total wviscosity FV or the total force F may become the sumsof the
viscosity or force of each cross—bridge. Thus, it should not seem strange
that the viscous-like force is proportional to the contractile force, because

both of them are proportional to the number of active cross-bridges.

Y|

fv

cC \[f:fl

Q

1

Fig. 3.26 Schematic drawing of the contractile component (CC) and the

Y

fv

series elastic component (SEC). M, thick filament; A, thin filament;
f, and fv, contractile force and viscous-like force of a unit force-

generator.

From the finding that for a given velocity, the viscous-like force is
exactly proportional to the contractile force, it is apparent that the load-
velocity curves in Fig. 3.17 converge to a common maximum velocity when P=0.
This fact suggests that each cross-bridge has an all-or-none property even in

the partially activated muscle, that F and Fv depend on the number of active
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cross-bridges, and that a hyperbolic equation similar to Eq. (3.1) must be
valid for each force generator.

According to Bahler et al. (1968)i2 the shortening velocity is not only
a function of load and length, but is also a function of an additional vari-
able related to the time lapse after the onset of stimulation. Of course,
there is a definite relation between the contractile force and muscle length
as determined by Gordon et al. (1966):;“+ but most tension-length relations
are significant only in the fully activated muscle. It is apparent from our
results that the contractile force is much more important than the length
in explaining the viscous-like force during the sliding of myofilaments.

Abbott and Wilkie (1953)2 and Matsumoto (1967)665h0wed that the force-
velocity relationship was valid for all lengths less than LO. Our results
also showed that between(.8 Lo and 1.2 Lo the dynamic constants remained
fixed. While Gordon et al. (l966§4 found that the observed velocity was
lower than that predicted by the force-velocity curve at sarcomere lengths
below 1.7 u (0.85 LO) in unloaded contractions of single fibers, Bahler
et al. (1968)12 on the other hand, found that the velocity of shortening
achieved at a given length was lower for longer initial lengths, when tﬂe
muscle was allowed to shorten from different initial lengths. Probably,
an increase in the viscous-like force or some other resistance to short-
ening might account for these lower velocities in the length region below
0.8 LO or beyond 1.2 Lo'

As for the additional variable related to time, especially in the
beginning of contraction, the fact should be taken into consideration that
the muscle is only partially activated at that point. Not Eq.(3.1) but
Eq. (3.19) might be applicable to such a transient state. Although our
experiments were conducted during slowly rising tension, Jewell and Wilkie
(1960)53obtained similar results in experiments of the falling phase of ten-
sion in a relaxing muscle. Jewell and Wilkie (1958)52also concluded that

the change of velocity followed very quickly on the change in force
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probably in less than 1 msec. If each cross-bridge has an all-or-none
property and the contractile force in the partially activated state ex—
presses the change in the number of active cross-bridges participating in
contraction, Eg. (3.19) may rgpresent the instantaneous contractility of
the skeletal muscle, at least in the first approximation. And for

the estimation of the active state, which is nothing but the contractile
force F(t) as a function of time, in the beginning of contraction Eq.
(3.19) should be used instead of Eq. (3.1), together with the tension-
extension relation of the series elastic component.

From Eq. (3.19), it was proposed that the heat constant A increased
proportionally with the contractile force. According to Hill's study on
the shortening heat (1964;i the heat constant O increased linearly with in-
creasing load. But the relation between a and O is not yet known. Thus,

a further problem is whether the shortening heat depends on the load or

on the contractile force itself. According to Katz (1939;? the velocity

of reversible lengthening was much smaller than the value calculated from
Eq. (3.1), and the temperature coefficient (Qlo) of the lengthening velocity
was 1.56, while that of shortening velocity was about 2. In our results also
the heat constant during lengthening was 1.6 times larger than that during
shortening, confirming to the fact that the viscous-like force on length-
ening was 1.4 times larger than that on shortening. The increase in heat or
viscous-like force during lengthening may be interpreted as the result on an
increase in the friction between myofilaments (Dumoulin and Marechal, 1970),
but another interpretation is also possible, i.e., that these increases are
due to an activation of cross-bridges by stretching. Abbott and Aubert
(1952)1reported that if a tetanically stimulated muscle was stretched it was
generating more tension and able to do more work. Recently, Rgegg et al (
1970)720bserved a delayed rise in tension caused by abrupt stretching and

suggested that an activation of contractile linkages caused by stretching may
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account for this tension rise. In any case, further research on the vis-
cosity or friction-loss in an individual cross-bridge must be done in relation

to the submolecular mechanism of the sliding of myofilaments.

3,7 CONCLUSION

Mechanical properties of the resting and contracting states were de-
termined from the physiological experiments on small bundles dissected from
the frog semitendinosus muscle.

1. The tension-extension curve of the bundle was nearly the same as that
of single fibers.

2. Dynamic properties of the resting muscles were interpreted with the
three-component model, consisting of the series elastic element (elastic
constant=1.3 PO/LO), the parallel elastic element (elastic constant=0.21 Po/
LO) and the viscous element (viscous constant=0.014 Po.sec/LO), within a-
limit of length change less than 10 % of Lo' Compliance of the tendon was
estimated as about 0.01 Lo/Po'

3. The load-extension curve of the series elastic component (SECZ) in
the contracting muscle was determined by the controlled release technique,
and the maximum extension at PO was about 3-3.5 % of LO. The series elastic

coefficient E2 was increased with an increase in extension x E2 = (2.96 +

2;
51.8 %, + 1.9 « 104 %2 ) P /L X = x /L .
2 2 o' "o ? 2 270
4., The series compliance of the contracting muscle was not affected re-
markably by the change in temperature or contractile force and was in-
creased slightly at longer muscle length.
5. A kinetic model of the contractile component was developed, based on

the molecular mechanism of contraction and the sliding filament theory. A

mathematical model of muscle consisting of this kinetic model, the series
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elastic component (SECZ) and slight viscosity in parallel with SECZ’ was
simulated on a digital computer. Then, the load-extension curve of SEC2 was
estimated analytically by simulating the transient responses to isotonic
quick release. The estimated curve was in a good agreement with the experi-
mental ones.

6. The viscous element in parallel with SEC, was identified, and its

2
viscous constant was about 0.008 Po.sec/Lo.

7. The load-velocity curves of shortening muscle obtained at the stan-
dard length LO fit Hill's hyperbolic equation at any contractile force in
the partially activated muscle, and the dynamic constants were a/PO=O.25
and b/LO=O.9 /sec at 10 °C. The viscous—like force Fv at a given velocity
increased linearly with increasing contractile force F. These results were
valid in the length region between 0.8 and 1.2 LO.

8 The load-velocity curves of lengthening muscle were also hyperbolic
at any contractile force and Fv was also proportional to F, unless the velo-
city exceeded 1.0 Lo/sec. The dynamic constants were a'/PO=O.4 and b'/L0=
0.85 /sec, i.e., a'/Po was 1.6 times larger than a/PO.

9. Hill's force-velocity equation was generalized to the force (F)-
load (P) ~ velocity (v) equation (P + A)(v + b) =b (F + A), A=a F/PO; or
the force—FV—velocity equation FV= (F/PO)(Po + a) v/(v +b).

10. The value of Fv on lengthening was 1.4 times larger than that on
shortening under the same contractile force and velocity.

11. These force-load-velocity equations were valid not only during
steady contractile force but also for any instance during the change in con-
tractile force.

12. The significance of FV, or force-dependent viscosity, is discussed

with respect to the sliding theory.



CHAPTER IV

GRAPHICAL ANALYSIS AND EXPERIMENTAL DETERMINATION
OF THE ACTIVE STATE

4,1 INTRODUCTION

Since the studies of Hill (1938)36and Wilkie (l950§j it has been
generally considered that the skeletal muscle contains an active contractile
component capable of generating tension in series with a noncontractile
elastic component. On stimulating the muscle, the contractile component is
brought into an " active state", which is defined by Hill (l949b§8 as the
tension developed when the contractile component is neither lengthening
nor shortening. To determine the time course of the active state during a
twitch, several experimental methods have been proposed. A first method
described by Hill (l949b§8in frog sartorius muscle depends on quick stretch
of the muscle at various times after stimulation. It was aimed primarily.
at determining the resistance to stretch or how quickly muscle reached its
full capability for generating tension. A second method designed by Ritchie
(l954§uis the quick-release method which concerns the peak of redeveloped
twitch tension after a small amount of quick release at various times after
stimulation. According to Hill's definition, the peak of tension curve
coincides with the active state, because at the peak the change in tension
with time is zero. This method, however, gave only the falling phase of the
active state after the peak tension. A third method was described by Jewell
and Wilkie (l960§? They measured the velocity of isotonic shortening after
the quick release. This gave almost the whole course of the active state, but
there is éome doubt  about the idea that the capacity to shorten has the

same physiological meaning as the capacity to develop tension.

- 64 -
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11
Recently, Bahler et al. (1967) presented a new analytical method

for determining the whole course of the active state in rat gracilis anticus
muscle. They defined the active state as a force-generating capability of
the contractile component; The fact that the faster a muscle shortens the
less force it exerts is interpreted as meaning that part of the force is
dissipated internally as a function of the velocity, as though there were
an internal load or viscous-like force. This analytical method is based on
the three-component model which contains force generator, vyiscous—like com-—
ponent and series elastic component, as shown in Fig. 4.1. The active state
curve was drawn as the sum of the isometric tension curve and the viscous-
like force which was calculated from the force-velocity curve as the diffexr-
ence between the maximum force and the force exerted at each instant.
This method has successfully been appiied to frog cardiac muscle by Mashima
62
and Kushima (1971).

In this paper, almost the same analytical method as Bahler's was em-
ployed but difinite difference depends on the force-velocity curve. While
Bahler and his co-workers applied the simple force-velocity curve of fully
activated muscle to a twitch, we used the force-load-velocity curves, which
are a set of load-velocity curves obtained not only on fully but also on
partially activated muscle. The force-load-velocity relation has been de-
scribed in chapter III. It must be emphasized that in ﬁhe beginning of a
twitch or during the relaxation the muscle is only partially activated.

All the physiological experiments were done on the small bundle of the
frog semitendinosus muscle fibers (see section 2.3). 1In this place, in order
to make a quick release of the muscle, an electromagnetic relay to pro-
duce dinstantaneous withdrawal of a small hook was connected to the isotonic
lever. When it was necessary to control the shortening or lengthening

velocity of the muscle, the velocity controller was connected to the isotonic
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lever. A quick stretch was‘made by a quick release of the lever with a
gsufficiently heavy load. The amount of quick release was set before stimu-
lation by adjusting the position of a stop for the lever and measured on
the enlarged photograph with an accuracy of 0.01 mm. The initial length

of the preparation excluding tendons is always Lo’ at which it can exert

the maximum tension Po.
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Fig., 4.1 Mechanical model of muscle. CC, contractile component; FG,
force generator; VC, viscous-like component; SEC, series elastic
component. P(t), measured tension; X(t), shortening of the muscle;

x(t), shortening of CC.

4,2 ANALYTICAL METHOD
a) Mechanical model
It has been accepted that the mechanical behavior of the skeletal muscle
can be described by a contractile component (CC) in series with a non-
contractile series elastic component (SEC). Upon stimulation, the active
state develops in the CC, which generates force or shortens at the velocity
36

obeying Hill's force-velocity relation (Hill, 1938). According to Bahler

11
et al. (1967), the force-velocity curve is characterized by the CC which
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develops a force, part of which is transmitted through the muscle so that

it exerts tension, and part of which is dissipated internally as a fucntion
of the velocity with which the CC shortens. From these considerations a
new mechanical model shown in Fig. 4.1 is proposed. In this three-component
model, thevcontractile component consists of a force generator (FG) and a
viscous-like component (VC). And the muscle tension as a function of time,
P(t), can be expressed by the difference between the force developed in the

FG, F(t), and the velocity-dependent tension-loss in the VC, Fv(t)' Then we

obtain
P(t) = F(t) - Fv(t) (4.1)

As expressed in section 3.5, Fv(t) is a hyperbolic function of the velocity
and at the same time it is a linear function of the force. It is reasonable
to assume that F(t) is nothing but the intensity of the active state which
is difined by Hill (1949b;8as the intrinsic strength of the contractile com—
ponent, because F(t) is a time course of the force-generating capability
of the contractile component. Then the active state can be determined from
P(t) and Fv(t), which can be obtained from the force-load-velocity relation
of CC and the tension-extension relation of SEC when P(t) is given. How-
ever, it is mnecessary to obtain these relations in the same muscle and un-
der the same conditions.

b) Force-load-velocity relation of the contractile component

In the previous section 3.4, Hill's force-velocity relation,

(P+a)(v+b) =0b (PO + a)

was generalized to the following force-load-velocity equation:

P+ A +b) =b (F+A4) (v 2 0) (4.2)

A= a(F/PO)

where P is the load or the force during isotonic contraction, F is the

intensity of the active state or the force during isometric contraction,
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v is the shortening velocity of the contractile compoment, Po is the maxi-
mum isometric force, a is the heat constant and b is the rate constant of
energy liberation. The value of a/PO was 0.25 and b/LO was 0.9 sec_l in our
preparation at 10 °C.

When the muscle was lengthened by a ioad heavier than the developed

force, the relation was also described by a hyperbolic equation:
(P -2F-A"Y( -b')y =b' (F+4") (v<0) (4.3)
v 1
A a (F/Po)

The value of a'/PO was 0.4 and b'/LO was 0.85 sec_l at 10 °C. These results

were used in this chapter (see Fig. 4.4 D).

c¢) Tension-extension relation of the series elastic component

The tension-extension curve of SEC was directly determined by the con~
trolled quick-release method using the velocity controller (see section 3.3).
The tension-extension curve obtained is shown in Fig. 4.2. Curve A was ob-
tained from the preparation with short tendons, in which the pelviec and
tibial tendons were tied near the end of muscle fibers in order to make
the tendons as short as possible. On the other hand, curve B was obtained
from the long tendon preparation, both tendons of which were tied near the
bones. Usually each tendon was 1-2 mm long in the long tendon preparationm.
In the short tendon preparation the extension of SEC was about 3.5 % of LO
at the tension of Po but it was 4.5 % of Lo in the long tendon preparaion.
Obviously, the compliance of the preparation depends on the length of tendon.

Although Sandow (1958) employed an exponential equation at the experi-
mental formula of the tension-extension curve, we approximated this with a

third power equation to facilitate computer calculation. We obtain

P = E2 %, 4.4

A
E2 = (2.9 + 51.8 x. + 1.9 «x lO4 §22 ) PO/LO (for curve A)

2
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A 4 A
= (2. . + 0.9 ~ 2
E2 (2.3 + 31.4 X, 0.9 10 X, ) Po/Lo (for curve B)
x2 =x - X
where x2 is the extension of SEC, §2 is the normalized value of x2 (
A
X, = x2/Lo) s X is the shortening of the muscle and E2 is the elastic co-

efficient of SEC.
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EXTENSION (% of Lg)

Fig. 4.2 Tension-extension curve of SEC. A, short tendon preparation;

B, long tendon preparation.

d) Mathematical formulation

The active state curve, F(t), can be obtained from the force-load-
velocity relation of CC expressed by Eqs. (4.2) and (4.3) and the tension-~
extension relation of SEC expressed by Eq. (4.4), when the tension curve,
P(t), and the shortening curve of muscle, X(t), during the contracticm are
given.

Rearranging fqs. (4.2) and (4.3), we obtain

F=f(v) P (4.5)
fv) = BtV (vZo0) (4.6)
b - -fi— v
P
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b' - v <
f(v) = (v=20) (4.7)

T
b' - (2+—2") v

P
o]

F, P and v are functions of time. And the velocity of CC as a function of

time, v(t), can be obtained from the equation:

dxz(t) dax(t)
v(t) = + (4.8)
dt dt

If P(t) is given, xz(t) can be calculated from Eq. (4.4). Finally, F(t) can
be obtained from the tension curve P(t) and the shortening curve of muscle
X(t). The blockdiagram of computer calculation of the above-described for-
mula is shown in Fig. 4.3. If P(t) and X(t) are measured simultaneously,
this analytical method to determine the active state curve is applicable

not only to the isometric but also to the isotonic or any other type of con-

traction.
SEC %, (t) Ve
%, ADD DIF )
+ d '
P(t) — 1.0/ \—-t__>—> F(t)
, N dt ’/'/v ><
3 MOLT
X(t)

v(t)

Fig. 4.3 Blockdiagram for computer calculation of the active state curve
F(t), from tension curve P(t) and shortening curve X(t). SEC, func-
tion element generating the tension-extension (P—XZ) relation of SEC,
(input, P; output, XZ); VC, function element generating the v - £(v)
relation of VC, (imput, v; output, f(v)); ADD, adder; DIF, differenti-
ator; MULT, multiplier.

On the other hand, from Eq. (4.1) the viscous-like force is
Fv(t) = F(t) ~ P(t) (4.9)

Therefore, Fv(t) can be obtained from P(t) and F(t). Furthermore, substi-
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tuting Eqs. (4.5)-(4.7), Fv can be also expressed as a function of v and P.

(P0 + a) v

v

0)
P b~avw
o

(4.10)
(PO +a') v

L '
PO b (ZPO +a') v

4.3 DETERMINATION OF THE ACTIVE STATE DURING ISOMETRIC TWITCH

The time course of the active state, F(t), was determined from the ten-
sion curve, P(t), by the analytical method, that is, computer calculation
or graphical analysis. The procedure of graphical analysis is illustrated
in Fig. 4.4 on the isometric twitch of the short tendon preparation. In Fig.
4.4 A, the tension curve, P(t), at LO is'traced. As shown in Fig. 4.4 B the
time course of the lengthening of SEC, xz(t), is obtained by converting P(t)
through the tension-extension curve of SEC, which is the trace of Fig. 4.2 A.
The curve xz(t) thus obtained is shown in Fig. 4.4 C. 1In the isometric con-
traction, X(t) is zero and the amount of the lengthening of SEC is equal to
that of the shortening of CC. Then, the time course of shortening velocity of
CC, v(t), is the differential of xz(t), i.e. dxz(t)/dt, which is also shown
in Fig. 4.4 C. The time course of f(v) in Eq. (4.6) or (4.7) is obtained by
converting the curve v(t) through the v-f(v) curve which is seen in Fig. 4.4D.
During the relaxation v(t) has minus sign, because the CC is lengthened,
so that the v-f(v) curve in the third quardrant of Fig. 4.4 D is used. The
curve f(v) thus obtained is shown in Fig. 4.4 E. Finally, the active state
curve, F(t), can be drawn by the relation of Eq. (4.5) as the product of

P(t) and f(v), as illustrated in Fig. 4.4 A. The viscous-like force curve,

Fv(t), is also drawn by using the relation of Eq. (4.9) as the difference
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Fig. 4.4 Graphical analysis of the active state curve during isometric
twitch of short tendon preparation. A, tension curve, P(t), active
state curve, F(t), and viscous-like force curve, Fv(t); B, tension-
extension curve of SEC; C, lengthening curve of SEC, xz(t), and
velocity of CC, v(t)=dx2(t)/dt; D, v-f(v) curve of VC; E, f£(v) curve.

Arrows indicate the order of procedure.

between F(t) and P(t), as also illustrated in Fig. 4.4 A. With the long
tendon preparation, the active state curve is also determined as shown in
Fig. 4.5 by the same procedure, using the curve B in Fig. 4.2 as the tension-

extension curve of SEC. 1In both preparations F(t) curve does not attain the
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Fig. 4.5 The active state curve during isometric twitch of long tendon

preparation. P, tension curve; F, active state curve determined by

graphical analysis; P0=3.7 gwt, Lo=l4 mm, 10 °C.

full extent of PO and no plateau appears during the isometric twitch. The

peak value of F(t) is about 0.7 PO in the short tendon preparation and 0.8

PO even in the long tendon preparation. The reason for this result may be

explained by the fact the long tendon preparation is more compliant and the

rate of rise of tension is faster than that of the short one.

The time course of the active state developed by repetitive stimuli was

also drawn by the same procedure. One of the results is shown in Fig. 4.6,

where the square pulses at 100 Hz, which corresponds to the critical fusion

frequency at 10 °C, are applied. The curves in Fig. 4.6 P are the isometric

tension curves generated by 1, 2, 3, 4, 6 and 10 pulses. The active state

curves of these contractions are shown in the lower part of Fig. 4.6. Gen-

erally, 2 or 3 pulses were necessary for the summated active state to reach

the full intensity of Po. When more pulses are applied the plateau is

maintained at the level of PO. In particular, the plateau duration at more

than 6 pulses is prolonged every pulse by the amount of pulse interval. The

half time of the rising phase of the active state is about 20 msec independ-

ently of the number of pulses. The half time of the falling phase increases
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Fig. 4.6 Effect of the number of stimuli on the active state curve
of isometric contraction (short tendon preparation). Upper, P, iso-
metric tension curves generated by 1, 2, 3, 4, 6 and 10 pulses at
the interval of 10 msec; S, stimuli. Lower, active state curve
determined by graphical analysis; curve 1, 2, 3, 4, 6 and 10 are
generated by 1, 2, 3, 4, 6 and 10 pulses,respectively. The instants
A, B, C, D, E and F correspond to A, B, C, D, E, and F in Fig.4.7,

respectively.

with increasing number of pulses, for example in Fig. 4.6, about 60 msec at
a single pulse, 75 msec ét 2 pulses and 125 msec at 3 pulses, but no more
increase is observed at more than 3 pulses.

As shown in Figs. 4.4 and 4.5, the time to peak of the active state is
about 40 msec in the isometric twitch of the short tendon preparation, while
it is about 50 msec in the long tendon preparation. The time to plateau of
the active state in the isometric tetanus is also about 40 msec as seen in
Fig. 4.6, point B.

If the active state reaches its full activity during a twitch, the P-v
relation at that time should satisfy the load-velocity relation at F=Po.

Whether the active state really reached full activity or not was checked in
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Fig. 4.7 Force-velocity relation during the twitch (filled circle,
curve a) and tetanus (open circle, curve b). Dotted line 0.5 and

1.0 are P-v curves at F=0.5 P0 and F=1.0 PO, respectively. Number
under the circle represents the time after the first stimulus. A,
B, C, D, E and F show the instants of A, B, C, D, E and F in Fig. 4.6

respectively.

the following way. Curve iTB in Fig. 4.7 shows the load-velocity curve at
F= PO which was obtained by substituting F=1.0 PO for Egs. (4.2) and (4.3).
Curve a is the Lissajous' figure showing the relation between the muscle ten-
sion, P(t), and the velocity of CC, v(t), during the isometric twitch in Fig.
4.6. Apparently, curve a does not intersect curve 1.0. This means that the
full active state is never attained at any instant during the twitch. On
the other hand, curve b in Fig. 4.7 is the P-v Lissajous' curve during the
10-pulse tetanic contraction in Fig. 4.6. This curve coincides with curve
ITE between points B and C, that is, the active state was maintained at full

extent of 1.0 PO during the period between B and C, which is about 40 to 130

msec after the first stimulus. Points B and C in Fig. 4.7 correspond to
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Fig. 4.8 The active state curve during isotonic contraction determined

by graphical analysis. A, tension curve; B, shortening curve; C,

active state curve; a, isometric twitch; b, ¢, d, isotonic twitch

(after-load: b, 0.2 g; c, 0.45 g; d, 0.9 g); P, tension; X, short-

ening of muscle; F, active state. PO=3.O gwt}; LO=14 mm; 10 °C.

points B and € in Fig. 4.6, respectively.

—~—

Furthermore, curve 0.5 in Fig. 4.7 is the load—velocity curve at F=0.5

PO, which was obtained by substituting F=0.5 P0 for Eqs. (4.2) and (4.3).

This curve intersects curve a at A and D, and curve b at E and F. Therefore,

at the instants corresponding to these ponts, the intensity of the active

state 1is 0.5 PO. The points A, D, E and F in Fig. 4.7 correspond to A, D, E

and F in Fig. 4.6, which are the instants after 21, 75, 21 and 270 msec from

the start of stimulation, respectively.
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4.4 DETERMINATION OF THE ACTIVE STATE DURING ISOTONIC TWITCH

59
According to Mashima et al. (1972), the force-load-velocity relation was

valid even when the muscle length was changed between 0.8 and 1.2 Lo' There
fore, the analytical method described above is applicable to determining F(t)
cﬁrve of the isotonic contraction during which the muscle length is changing,
provided that the tension curve, P(t), and the shortening curve, X(t), are
given. For example, Fig. 4.8 A and B are the tension and shortening curves
of the after—load twitches against various after-loads. While the initial
length was always kept at the slack length of Lo by the stop for the isotonic
lever, the pre-load was zero. Curve a is the isometric twitch, and curves
b, ¢ and d are the after-load twitches against the load of 0.9 g, 0.45 g
and 0.2 g, respectively.

Firstly, the extension of SEC, xz(t), was obtained from P(t) through the
tension-extension curve of SEC. Secondly, the velocity of CC, v(t), was
calculated from Eq. (4.8), using x2(t) and X(t). Finally, the active state
curve F(t) was calculated from Egs. (4.5)-(4.7). The active state curves
thus obtained are shown in Fig. 4.8 C. Apparently, the time course of the
active state varies with load, especially in duration. With a decrease in
the load, the duration, time to peak and peak intensity clearly decrease.

All of them are largest under the isometric condition. Although the rate of
rise or fall of the active state is almost unchanged, the rate of rise in-

creases slightly at the transition from isometric to isotonic contraction.

4.5 INSTANTANEOUS RECORDING OF THE ACTIVE STATE WITH
ISOMETRIC TENSION CURVE

Instead of the graphical analysis described above, of course, it is
possible to record the active state curve of the isometric contraction simul-
taneously with the tension curve, using an on-line computer which operates

the electronic circuit shown in Fig. 4.3. But this procedure is too compli-
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cated for the practical use, because the circuit contains two variable func-

tion elements and a multiplier. Therefore, we assumed that the elastic co-
A

efficient of SEC, EZ’ is a constant which is independent of tension and that

A
the viscous coefficient of VC, B,, is a constant which is independent of

2
force or velocity, because the displacement of CC is sufficiently small in
an isometric contraction and the viscosity would be a linear function of

velocity as the first approximation. Then, we obtain the following equation

instead of Eq. (4.4),

P(t)= ﬁ xz(t) (4.11)

2
and also obtain instead of Eq. (4.1)

A " dx2(t)

P(t) = F(t) - BZ——— (4.12)

dt
Then we obtain
F(e) = p(r) + k2O (4.13)
dt
A A
k = B2/E2

A ! A
where F(t) is the approximate value of F(t). From Eq. (4.13), F(t) can be
obtained as the sum of the isometric tension curve, P(t), and its differ-

ential curve, dP(t)/dt. These calculations can easily be made by a more

AAAA
Yy

P(t) Ot —o?(t)
R3

Fig. 4.9 Operatiomal circuit for calculating the approximate active

’
state curve, F(t), during isometric contraction(see Eq. (4.14));

OPl and OPZ’ linear operational amplifiers.
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Fig. 4.10 Comparison of the approximate curve (F) with the active state
A
curve determined by graphical analysis (F). F = P + dP*/dt; P, meas—
ured isometric tension curve; A, single pulse; B, 2 pulses; C, 16—

pulse stimulation; stimulus interval, 12.5 msec.

simplified circuit, containing only linear operational amplifiers as shown in
in Fig. 4.9. Thus, an instantaneous recording of the active state becomes
far easier. Theoretically, a complete differential operation can be made

when R, in Fig. 4.9 is zero. If so; the circuit would become unstable be-

1
cause of the overload for the amplifier. Therefore, the approximate differ-
ential circuit seen in Fig. 4.9 (broken line) was used for practical appli-
cation. The transfer function of the circuit is ks/(1+Ts), where k=CR2, T=
CRl and the symbol s represents Laplace transform variable. If the time
constant, T, is set to be sufficiently small compared with that of tension
response, the differential operation is accurate enough, at least for prac-

tical use. Finally, the approximate calculation is expressed by the follow-

ing equation instead of Eq. (4.13),

dp (t)” (4.14)
dt

F(E) = P(t) +

dP(t)* -1[ k s
dt = Ll + Ts

P(s)
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where the symbol ‘I"[G(s)] denotes inverse Laplace transform of G(s), and
P(s) is the Laplace transform of P(t).

In order to operate this equation, the time constants, k and T, have
to be determined. In frog ventricle, it has been confirmed experimentally
by Mashima and Kushima (1971)6ihat the value of k is almost unchanged with
the change in muscle length, taking the nonlinearity of SEC and VC into con-
sideration, and the value of k is 0.05-0.056 sec at 20 °C. But in the skele-
tal muscle, it is impossible to estimate theoretically or experimentally this
value of k, because of the complicated nonlinearity of VC. Therefore, the
values of k¥ and T were estimated by trial and error so as to let ?(t) coin-
cide closely with the active state curve determined by the graphical analysis.
Eventually, best fit was obtained when k=17.0 msec and T=4.2 msec in our
preparation at 10 °C. One of the results of computer calculation in the
long tendon preparation is shown in Fig. 4.10. Fig. 4.10 A represents the
isometric twitch, ¥igs. B and C the isometric contractions by 2 and 16
pulses with the interval of 12.5 msec, respectively. Curve P is the measured
tension curve, curve F is the active state curve determined by graphical
analysis and curve % is the approximate curve obtained from Eq. (4.14).

The g(t) curve shows fairly good coincidence with the F(t) curve in these
isometric contractions, when the above-mentioned time constants are employed.
On materialization of the circuit shown in Fig. 4.9, the values of

k=17.0 msec and T=4.2 msec were selected, for example, by setting C=1.0 uF,
Rl=4.2 K and R2=l7.0 XQ. But even if the wvalue of Rl is not accurately

4.2 K but, for example, 5.0 K , there would be very little effect on %(t).
Moreover, on inspection of Fig. 4.4 or 4.10, it is seen that the peak value of
Fv(t) is about half that of P(t) in an isometric twitch. Therefore, it is

not necessary to look for the most adequate value of R by the trial and

2

error method described above, rather it is far more practical to adjust the

gain of differential curcuit in the following way. Firstly, P(t) and dP/dt



Fig. 4.11 Simultaneous recording of isometric temsion P, dP*/dt and
N
F curves. A, single pulse; B, 2 pulses; C, 10-pulse stimulation;
stimulus interval, 10 msec; ordinate, 2.0 g/div; sweep, 50 msec/div;

S, stimulus; long tendon preparation; LO=14 mm; 10 °C.

curves of isometric twitch are displayed simultaneously on a CRT. Secondly,
the gain of the amplifier for dP/dt, that is, the value of RZ’ is adjusted
until the maximum amplitude of dP/dt becomes about half that of P(t). 1Im
this way, P(t), dP/dt and %(t) curves were recorded simultaneously as shown
in Fig. 4.11. Another piece of evidence which may wverify this conventional
way is the fact that the plateau phase in the %(t) curve of isometric tetanus
was completely smoothed at the level of PO as shown in Fig. 4.11 C, when the
maximum dP/dt of the twitch was adjusted so as to be about half the maximum
P(t) of the twitch as seen in Fig. 4.11 A. 1If the gain of dP/dt is raised
higher than that, a spike-1ike hump higher than PO appears in the initial

~
phase of F(t) curve of the tetanus.

4,6 EXPERIMENTAL DETERMINATION OF THE ACTIVE STATE
a) Quick-release method
The active state after the peak of isometric curve was determined experi-

. 70
mentally by the quick-release method devised by Ritchie (1954), and it was
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Fig. 4.12 Changes in tension curve by quick release during isometric
twitch. A, isometric twitch; B, released at 62 msec; C, 94 msec; D,
115 msec; E, 160 msec after stimulus; amount of release, 0.18 mm (
1.5 % of LO); X, length curve, 0.2 mm/div; P, tension curve, 0.625

g/div; S, stimulus; sweep, 50 msec/div; Po=5.4 gwt; L0=12 mm, 10 °C.

compared with the active state curve determined by graphical analysis.
According to Jewell and Wilkie (1960§? Ritchie's method might underestimate
the duration of the active state, but it was possible to reduce this error by
decreasing the amount of quick release; for example, in the frog sartorius
muscle when the release was 1.6 % Lo (LO=31 mm, amount of release =0.5 mm,

0 °C), the measured active state curve almost conincided with the correct one.
In the present study, the amount of release was set at 1.5-7.5 % LO. One of
the results when the amount of release was 1.5 % L0 (L0=12 mm) is shown in
Fig. 4.12. The muscle was released from L0+O.18 mm to Lo at various times
after stimulation. Tension curve, P, and shortening curve, X, were recorded
simultaneously. The curve connecting a series of peaks of the redeveloped

tension after the release gave the tail of the active state. 1In order to
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Fig. 4.13 Effect of the amount of quick release on the falling phase
of the active state during isometric twitch. Amount of release is
shown in the figure. P, Tension curve; F, active state curve deter-

mined by graphical analysis; Po=5.4 gwt 3 L0=l2 mm; 10 °C.

examine the effect of the amount of release on the time course of the active
state, various amounts of quick releases, such as 0.3, 0.45, 0.7 and 0.9 mm,
were also applied. The curves obtained are traced in Fig. 4.13. Even when
the amount of release is as small as 1.5 % Lo’ the experimental curve agrees
only approximately but not completely with curve F which is determined by

the graphical analysis. As the amount of release increases, the experimental

curve decays more quickly, and the duration of the active state decreases,
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Fig. 4.14 The rising phase of the active state determined by quick
stretch method (open circle). Upper trace, length curves. Lower,
tension curves; P, tension curve; F, active state curve determined
by graphical analysis; Fe, active state curve determined by quick .
stretch method; STIM, AC at 300 Hz with linearly increasing voltage,
in the excess potassium solutionj time and amount of stretch: a, at
265 msec after the start of stimulation and 0.21 mm; b, at 310 msec

and 0.21 mm; ¢, at 325 msec and 0.22 mm; P0=6.3 gwt 3 Lo=l3 mm; 10 °C.
15
conforming to the observatiom by Briden and Alpert (1972). These results
suggest that a quick release causes some deactivation of the contractile

mechanism and its degree increases with increasing amount of quick rlease.

b) Quick-stretch method

It is impossible to determine the rising phase of the active state curve
by Ritchie's quick-release method. However, applying quick stretches at
various times during the rising phase and plotting the troughs of redeveloped
tension, the early part of the active state curve can be obtained, because

at the trough, as well as at the peak, the contractile component is neither
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lengthening nor shortening. We applied the quick stretch during the rising
phase of the isometric twitch. But it was extremely difficult fo observe

a measurable trough in tension curve at 10 °C, because the peak time was only
75 msec from the stimulus and the rate of rise of tension was too fast. 1In
order to slow down the tension development, the muscle was soaked in excess
potassium Ringer's solution([KC1l] = 14 mM) rand stimulated by AC at 300 Hz
with linearly increasing voltage,as described by Mashima and Tsuchiya (1968;?
The tension curve thus obtained is curve P in Fig. 4.14. The muscle (LO=
13 mm) was stretched at constant speed usinga velocity controller by 0.21 mm
(1.6 % Lo) from L0—0.21 mm to LO. The instant of stretch was 265 msec in a,
310 msec in b and 325 msec in ¢ from the start of stimulation. Immediately
after the quick stretch the tension shows a sudden rise and stress relaxatiom,
and then it redevelops, forming a trough. At the bottom of the trough, P(t)=
F(t), because v(t)=0 and f£(v)=1.0 in Egs. (4.5) and (4.6). Curve Fe in '
Fig. 4.14 was obtained by plotting these troughs. Curve F represents the
active state curve determined from curve P by graphical analysis. Both curves
agree approximately in the rising phase but>they differ considerably near the
peak. While the difference increases with tension, it is suggested that the
contractile component must be activated even by such a small amount of stretch
and the degree of activation depends on the contractile force.

When the temperature was lowered to/O °C, the rate of rise of tension was
sufficiently slowed for the application of quick stretch. Therefore, the
stretch experiment was repeated at 0 °C using a single pulse stimulation.

One of the results is shown in Fig. 4.15. The tension, P, and muscle length,
X, are recorded simultaneously. The original record of isometric twitch

curve at LO is shown in A. 1In B, C and D, the muscle was stretched from
L;—O.ZS mm to L0 (Lo=14 mm) by 0.25 mm (about 1.8 % LO) at 42, 55, and 72 msec
after the stimulus, respectively. 1In Fig. 4.16, curve P is the trace of

tension curve P in Fig. 4.15. Curve a is the active state curve obtained by
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Fig. 4.15 Changes in tension curve by quick stretch during isometric
twitch. A, isometric twitch; B, stretched at 42 msec; C, 55 msec; D,
72 msec after stimulus; amount of stretch, 0.25 mm (1.8 % Lo), from
Lo—0.25 mm to LO; X, length curve, 0.17 mm/div; P, temsion curve,
0.625 g/div; S, stimulus; sweep, 100 msec/div; PO=2.25 gwt; L0=14 mm;
0 °c.

plotting the troughs after the stretch. In order to examine the effect .of
the amount of stretch on the time course of the active state, the amount of
stretch was varied to 0.36, 0.46 and 0.57 mm, always keeping the final length
at LO. Curves b, ¢ and d in Fig. 4.16 are the active state curves obtained
by these experiments. Obviously, as the amount of stretch increases, the
active state increases and the rate of rise becomes gquicker, that is, the
degree of activation caused in the contractile mechanism depends on the amount
of quick stretch. But it is confirmed that the active state does not reach
its full extent of PO during the isometric twitch even at 0 °C and even in th
the muscle activated by the quick stretch of 3.6 % LO.

Finally, it is concluded that the analytical method is more favorable

than the experimental method for derermineing the active state curve,
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TENSION (9}

!
Q 100 200 300

msec

Fig. 4.16 Effect of the amount of quick stretch on the rising phase of
the active state during isometric twitch. Amount of stretch: a,
0.25 mm; b, 0.36 mm; ¢, 0.46 mm; d, 0.57 mm; P, tension curve; PO=

2.25 gwt; LO=14 mm; 10 °C.

because no release or stretch is applied during the contraction. Only an
approximate curve can be obtained by the quick-release or -stretch method,

when the amount of release or stretch is less than 2 % of the muscle length.

4,7 DIScCUSSION

The material used in the present study was a small bundle preparation
obtained from the semitendinosus muscle of the frog. The elastic property
of this preparation was quite similar to that of the single fibers examined
in chapter III or Mashima et al. (1972)%° Therefore, the results obtained
would be comparable with those obtained on a single fiber. And most of the
experiments were performed at 10 °C, because the sarcoplasmic reticulum is
ready to release Ca ion below 10 °C in caffeinized muscle fiber (Sakai, 1965)73
and even in normal muscle fiber a cooling contracture begins to occur below

74

5 °C (Sakai, 1967), although the mechanical measurement after quick release

is far easier at 0 °C than at 10 °C.
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The contractile force, F, and the load, P, were separated and dis-
cussed in detail by Mashima et al. (1972)%9 They stated that the difference
between F and P was the viscous-like force, Fv , because when the
muscle was released from isometric to isotonic contraction, the force was
decreased from ¥ to P , as though there were a viscous-like force, which
worked as a function of velocity. The three-component model in the present
study was derived from this consideration. The active state curves during
isometric and isotonic contraction were obtained by computer calculation
or graphical analysis based on the model by assuming that the force of the
force generator in the contractile component, F(t), is nothing but the active
state, as proposed by Bahler et al. (1967)1.1 The three-component model is not
a mere extension of the classical viscoelastic model established by Gasser and

33 57
Hill (1924) and Levin and Wyman (1927), but a natural conclusion derived
from the modern concept of the sliding filament mechanism. The force generator
may correspond to a sliding-force generator at the cross-bridge between myo-
filaments.

The analytical method described in the present study is similar to that
proposed by Bahler et al. (1967):lbut we employed the force—~load-velocity
relation which fits at any contractile force (at F s Po), instead of the
conventional force-velocity relation which fits only when the contractile
force is maintained at the maximum force (at F = Po). Actually, the contractile
force is less than PO during the rising phase or relaxation, probably because
some of the cross-bridges are not in active state. The advantages of the
analytical method for the determination of the active state are as follows:

(1) quantitative calculations are possible for the entire course of the active
state of isometric and isotonic contrations, (ii) when the tension—extension

curve and the force-load-velocity curves of the preparation are known, only

the tension curve is needed to determine the active state curve during isometric
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contraction and no quick release or quick stretch is required, (iii) the active
state curve can be obtained simultaneously with the tension and shortening
curves,using the operational circuit shown in Fig.4.3, (iv) the approximate
aétive state curve during isometric twitch can easily be recorded by means

of the simple circuit shown in Fig. 4.9, which contains only a linear opera-
tional amplifier.

Since the study of Hill (l9h9)fathe abrupt transition from rest to full
activity has generally been accepted in the frog sartorius muscle at 0°C and
many studies (Ritchie, 19522 Jewell and Wilkie, 1960§3Edman and Kiessling,
197l§1have been done along this line. However, Bahler et al. (1967;1pointed
out that the active state does not reach the maximum value of Po but 0.92 P0
at 17.5°C in rat gracilis anticus muscle. Our results showed that the peak
intensity of the active state during the isometric twitch reached only 0.7-0.8
P0 at 10°C or OOC, and no plateau phase was observed. Two or three stimuli
were necessary for the active state to reach its full intensity and form a
plateau. The muscle force does not reach its full extent so abruptly but it
takes about 40-50 msec at 10°C. Therefore, the force-velocity relation at
F< PO should be applied during this period. Edman and Kiessling (1971)3l
analyzed the rising and falling phases of the active state by applying four
shocks and plotting the peaks and troughs of thé isometric myogram. From
these experiments, however, it is difficult to conclude that the active state
reaches its full intensity by a single shock, because the peak or trough
produced by the second or later shocks may indicate an intensity of the
summated active state, which, of course, reaches the maximum intensity.

According to Jewell and Wilkie (1958;f the active state takes approxi-
mately 60 msec to become fully established at 0°C. Our result was about 40
mséc at 10%. Taking the temperature difference into account, these results

agree rather well. The peak time of dP/dt curve is considerably shorter
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than the peak time of the active state as seen in Fig 4.10A. This would

22
explain the value of 40 msec at 0°C obtained by Close (1962). The very rapid

rise of the active state reported by Edman (l970§0may depend not on the initial
development of tension but on the development of tension enhanced by previous
stimuli.

The rate of rise of the active state increased slightly at the transition
from isometric to isotonic contraction. More precise measurement was im-
possible because of the disturbance caused by mechanical oscillation at the
transition, but a quicker rate of rise in the isometric one was clearly shown
in the frog ventricle by Mashima and Kushima (1971)6.2 This fact suggests that
the active cross-bridge requires a higher rate of force development or energy
liberation when it moves against the viscous-like force, although the duration
of the active state is shortened.

It was pointed out by Jewell and Wilkie (1960§3that the active state
can be determined accurately when the amount of quick release is less than
27 LO. In our results also the active state curve determined by the experi-
mental method is, practically speaking, accurate enough when the amount of
release or stretch is less than 2% Lo' But as seen in Fig. 4.16, the inten-
sity of the active state increases with increasing amount of quick stretch
almost in proportion to the amount of stretch. According to Abbott and
Aubert (1952)1 if a tetanically stimulated muscle were stretched to a given
length it would generate more tension and be able to do more work that during
an isometric contraction at that length. ﬁ&egg et al. (1970)72bserved a
transient delayed rise in tension caused by abrupt stretch and suggested
that an activation of contractile linkages caused by stretching may account
for this tension rise. The measured increase in the active state may be
brough about by such activation of cross-bridges, and contractile machinery

may have a mechanism to store part of the energy supplied by stretching.
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Contrary to this, as seen in Fig. 4.13, the intensity of the active
state obtained by quick release decreases almost proportionally with increas-
ing amount of quick release. Recently, Briden and Alpert (1972;5found that
the active state decreased as the extent of shortening or release was increased
and for each 0.1 mm of isotonic shortening there was a 27 decrease in active
state force. From these observations it is apparent that quick release
produces a large decrement in the muscle force. As pointed out by Rﬂegg et al.
(1970)Zza deactivation of the contractile mechanism caused by shortening might
account for the decrease in contractile tension after a quick release. And
the muscle may have a mechanism to sustain part of the declining energy which
is rapidly exhausted by a quick release or even by an active shortening. In
order to simulate the change in active state caused by the quick change of
length, parallel elasticity within the contractile component must be assumed.
Although the physiological meaning of this elasticity is unknown, the presence
of an elastic element and another elastic element with viscous as well as
elastic properties in the myofilaments has recently been suggested by Huxley

u6
and Simmons (1971).

The analytical method described in the present study is more favorable
than the experimental method for determining the active state, because no
release or stretch is applied during the contraction. Of course, the quick
release is employed‘ when the tension-extention curve or the force-velocity
curve is determined. According to Civan and Podolsky (l966)flthe contractile
force reaches a steady value before the velocity becomes steady when the load
is changed, and the characteristics of the nonsteady state depend on the change
in load and on temperature. But the force-velocity relation is usually
mesured after the nonsteady period, where the CC shortens at a constant speed.
And the nonsteady period can be shortened when the oscillation in shortening
curve is minimized by the device of controlled release. Moreover,

59

53
Jewell and Wilkie (1960) and Mashima et al. (1972) verified that the

force-velocity relation is applicable any time during contraction.
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4,8 coNcLUSION

1. The time course of the active state was calculated by mathematical
analysis based on the three—component model, and compared with the experimental
curve determined by quick release or stretch in the small bundle preparation
dissected from frog semitendinosus muscle at 10°C.

2. The three—component model contains a contractile component, which
consists of a force generator and a viscous~like component, and a series
elastic component. The active state as the force of the force generator is
determined by substituting the tension and velocity curves of the contractile

component for the force-load-velocity relation.

3. By this analytical method, the entire active state curve can be
determined not only in the isometric but also in the isotonic contraction.

4. The active state of the isometric twitch does not reach its full
extent of PO but only 0.7-0.8 PO.

5. In the isotonic contraction the duration of the active state
decreases with decreasing load, and the rate of rise of the active state
increases at the transition from isometric to isotonic contraction.

6. The active state curve determined by quick release or quick stretch
agrees approximately with the curve determined by the analytical method
when the amount of release or stretch is less than 2% of the muscle length,

although the experimental curve varies with the amount of release or stretch.



CHAPTER V

ANALYSIS OF DYNAMIC CHARACTERISTICS OF MUSCLE CONTRACTION
BY A MECHANICAL MODEL

5.1 INTRODUCTION

High quality physiological data concerning the behaviors of skeletal
muscles have been accumulated by a wide range of physiological experiments,
which have led to the establishment of certain basic concepts of muscle
contraction (Hill, l938§6A. F. Huxley, l957;5Jewell and Wilkie, l958§? Since
the classical viscoelastic model was introduced by Gasser and Hill (192453
several kinds of mechanical models have been presented in parallel with exten-
sive physiological recordings (Levin and Wyman, l927?7Hill, 1949b§8Wilkie,

1

1950?7Buchthal and Kaiser, 1951;7Bornholst and Minardi, 1970;? Eventually,
the two-component model consisting of the contractile component and the series
elastic component has been generally accepted as a basic one (Ritchie and

71 69 4y 58
Wilkie, 1958; Pringle, 1960; Houk, 1966; McRuer et al., 1969; Apter and
Graessley, 1970;. More recently, Bahler (1968;0has developed an analytical
model based on an analysis of experimental data in rat gracilis anticus muscle.
Bahler's approach is similar to that proposed by Carlson (1957;8which consists
of factoring the pertinent variables of muscle contraction into a series of
functions. However, these quantitative approaches involving mathematical de-
scriptions and formulation of the models have been rather meagre, because
none of them goes beyond a fragmentary explanation of specific phenomena.

In this chapter, a mathematical model of skeletal muscle is developed
based on physiological findings revealed in chapters III and IV. The model
consists of a force generator and elastic and viscous components of the rest-

ing and contracting states. Mechanical behaviors, including nonlinear prop-—

erties, exhibited by the muscle under various physiological conditions are

- 93 -
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plainly interpreted in the fully dynamic sense by means of simulation studies.
Responses of the model obtained from the simulations are compared with those
from frog semitendinosus muscles. Physiological meanings of viscous and elas-
tic components are discussed with reference to the ultrastructure of the sar-
comere and the sliding-filament theory. The present study is evidently use-
ful to engineers interested in the neuromuscular control system and in the
design of an orthotic system that utilizes paralyzed skeletal muscles. In
fact, the proposed model is extended to investigation of the neuromuscular

control system in Part II.

5.2 VISCOELASTIC MODEL
a) Modeling

In order to understand how the muscle system works in the fully dynamic
sense and to obtain the required quantitative data on mechanical internal
system variables, different mechanical experiments such as isovelocity length-
ening and step change in load were made on the resting and contracting
muscles. The model illustrated in Fig. 5.1 is postulated as the simplest
and adequate one to explain those experimental results, which is the complete
model elaborated by asseﬁbling the two partial models in the resting and ac-
tive muscles. The model consists of the elastic components (SECl and PECl)
and the viscous one (VCl) in the resting state, and the force generator (FG),
the elastic component (SECZ) and the viscous-like component (VCZ) in the con-
tracting state. It comprises also the elastic element (SECt) corresponding

to the tendon. The features of the model are as follows.

i) Mechanical properties of the resting muscle can be exhibited by passive

elements such as tendon, membrane, sarcoplasma and connective tissue.

Examing the responses of the resting muscle to ramp-wise increase of
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Fig. 5.1 Mechanical model of skeletal muscle. SEC, series elastic
component; PEC, parallel elastic component; VC, viscous component;

FG, force generator. P, P PZ’ tension; X{s b4 extension of SEC;

1’ 2?

X, shortening of muscle.

the muscle length, it is indicated at section 3.2 that the muscle dynam-
ics can be described by the three-component model in Fig. 5.1 (SECl,
PECl and VCl).

Because linkages between actin and myosin filaments are produced in the
contracting state, additional elements should be introduced. According
to Hill (1938361949b§8and Jewell and Wilkie (l958)fzcontracting muscle
has been divided into two components; a nonlinear series elastic and a
contractile one obeying hyperbolic force-velocity relation. On the other
hand, according to Bahler (l968)i0the contractile component consists of
two components, a force generator and a velocity-dependent (viscous-like)
component which explains the nonlinear property of the force-velocity
curve. Thus, the similar mechanical model in Fig. 5.1 which consists of
FG, VC2 and SEC2 is chosen for the contracting muscle. The mass of

muscle has minor effects on muscle dynamics and may be neglected.

Quantitative estimations

Each characteristics of the components was determined by the input-

output relations between change in length and in tension of muscle which were

obtained from various kinds of mechanical experiments. Since possible length
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TABLE V-1

MecHANICAL PARAMETERS OF THE MuscLE

PEC1 Ep = 0.21 Po/Lo
SECt Et = 100.¢ Po/Lo
SEG, E] = 1.3 Po/Lo

3 4~ 2
SEC E, = {2.96 + 51.8 Xt 1.9 x 10 X, ) Po/Lo
Ve B, = 0.014 Po/(Lo/sec)

Ve

2 F(P +a
8 :._f_sL____l. a/P =0.25, b=0.9 L /sec, ( vx0)
2 Ps {(v+b)
F (P +a'
3 2#__.)__ a'/P =0.4, b'=0.85 L /sec,{ vg0)
2 ! o o
Po(b -v )

change of the intact muscle is less than about 10 7 of Lo’ characteristics of
each component were measured within this limit of variation in length. Measured
viscous and elastic constants are shown in Table V-1. They were estimated as
follows.

Dynamic chracteristics exhibited by the resting muscle were approximately

linear ones, and described by the transfer function (Akazawa, Fujii and Kasai,

1969)%*:
Pl(s) . Ko (1 + TZS)
X(s) (1+T;8) (5.1)
K=E E /(E + = =
o~ E1 By /( 1 Ep) s Tl Bl/(El+Ep), TZ Bl/ Ep (5.2)
where Pl = tension on muscle at the resting state,
X = shortening of muscle,

El = elastic constant of SECl,

Ep = elastic constant of PECl,

B1 = yiscous constant of VCl,

K = constant,

T T, = ti
10 Ty time constants.



- 97 -

Equation (5.1) was programmed on an analog computer. The constants KO, Tl and

T2 were chosen so that the model responses might give a good fit te the experi-

mental data of the resting muscles at ramp stretching as shown in Fig. 5.3.

Then, the elastic constants E1 and Ep and the viscous constant Bl were auto-

matically estimated from Eq. (5.2). The results are given in Table V-1.

The load-extension relation of the series elastic component SEC2 is ob-
tained from the relation between the applied load and the instantaneous short-
ening immediately after the quick release of an active muscle (see section
3.3). The obtained load-extension curve of SEC2 did not obey Hook's law. The

curve in Fig. 3.8 b is expressed by the equation;

fs(XZ) =E_  x

2 72
_ A 4 A2
) E2 = (2.96 + 51.8 X, + 1.9 x 10 X, ) PO/L0 (5.3)
where x2 = extension of SECZ’
IS . . A_
X, = normalized extension of SECZ, x2 = XZ/Lo’
fs(XZ) = force across SECZ’ function of Xy
E2 = elastic coefficient of SEC2,
PO = maximum tension developed at the length LO,
LO = standard length of muscle.

The load-extension curve of isolated tendons was nearly straight. The
same tension as PO was obtained when the tendon was stretched about 1 % of LO;
namely the elastic constant of the tendon Et in this preparation is about 100.0
P /L .

o' "o

The viscous-like force of the contracting muscle might be developed in

the force-generating-machine which accounts for the sliding of the filaments.

Thus the viscous-like component VC_, is nothing but the velocity-dependent ele-

2
ment in the contractile component. From this, the relation between
viscous-like force and velocity can be determined from the load-velocity

relation of the contracting muscle. The load-velocity relation of shortening

muscles at various contractile forces has been already determined in section
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36
3.5 and Hill's (1938) hyperbolic equation is generalized:

@+AE@+Db) =b (F+ A (v 2 0) (5.4)

A

a (F/P )
o
v=x,+X

where P = tension on muscle,

velocity of the contractile component,
36

a, b = dynamic constants of Hill's (1938) equation,

v

F = contractile force generated in FG.
The dynamic constants were a/PO=0.25 and b=0.9 Lo/sec. Note that PO is the
maximum value of the contractile force F and that P is not the exerting force
but the load (tension) of muscle. Namely, the viscous-like force is expressed
by F-P (Mashima, Akazawa, Kushima and Fujii, 1972;? From Eq. (5.4), vis—

cous coefficient B, is expressed as a function of v and F:

2
F =F-P (5.5)
= 32 v
B2 =F (PO + a)/PO (v + b) (5.6)
where
Fv = viscous-like force in VCZ’
B2 = viscous—-like coefficient of VCz.

The load-velocity relation of the lengthening muscle has been also deter-

mined as a hyperbolic equation:

(P+2F -AY(v-b") =b' (F+A") (v20) (5.7)

A’

a' (F/Po)

where a', b!

1]

dynamic constants.
The constants were a'/P6=0.4 and b'= 0.85 Lo/sec. Then, viscous-like

constant of the lengthening muscle becomes

B, = F (PO + a')/ P ' - v) (5.8)
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The remarkable point on the relation is that the viscous constant is a hyper-~
bolic function of the velocity and that it increases linearly with an increase
1

in the contractile force. The dynamic constant a during lengthening is

about 1.6 times larger than a during shortening.

N e l

1 O
N V!

X % @ o

SECI R C+

£.%)

)
[N lZAR
- SEG E

Fig. 5.2 Blockdiagram of the mechanical model programmed on an

analog computer.

c) Equation of motions
For the convenience of simulation, Egs. (5.5), (5.6) and (5.8) are

rewritten as

FV =F fb(v)

]

fb(v) (®_ + a) v/ P (v+b) (v20) (5.9)

(PO + a') v/Po ' - v) (v20)

Then, due to Eg? El’ the dynamic equations of the model in Fig. 5.1 are

simplified as

= +
P =P +P,

17 B ,
(-X - %) (5.10)
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Py

Py

fs(xz)

F-F fb(X + XZ)

The blockdiagram programmed on an analog computer is shown in Fig. 5.2.

5,3 SIMULATED RESULTS

In the previous studies (Akazawa et al., 19693 l970a? 19705), it has
been ascertained through simulation procedures that the model interprets not
only our experimental results but also the results of vibration experiment
by Buchthal and Kaiser (1944;(;nd quick stretch experiment by Hill (1949b;ﬁ
It was shown qualitatively that the dynamic properties of the muscle during
contraction were different from those at rest and wvary with contractile
activity. In this section, by simulating the responses of the resting and
contracting muscles (frog semitendinosus muscle) to isovelocity stretching,
it is shown quantitatively that in what way the nonlinear characteristics of
the mechanical components affect the contraction and in what fashion the-
mechanical properties of the muscle vary with the degree of contractile

activity. Validity of the proposed model is also examined.

g 0 T T T T v
0.5 N
E ]'0 Fig. 5.3 Tension change (lower
[ a
< 1.5 trace) of the resting muscle in-
&
—
Ll

creased by ramp-wise stretch (up-
per trace)., Solid line, experimen-—

tal result; dashed line, simulated

)

-~ result. a, speed of stretching
was 64 mm/sec, stretched amount was

2.1 mm; b, 24 mm/sec, 1.3 mm; c,

TENSION

18 mm/sec, 0.9 mm. Frog semitendi-
nosus muscle, PO=8.5 gwt , L0=ll mm,

10 °c.
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a) Responses of the unstimulated muscle

Time courses during linear elongation of the resting muscle are shown
in Fig. 5.3, solid line. 1In these experiments the muscle was stretched by a
small amount at certain constant velocities, using a velocity controller,
then maintained at the stretched length. Upper traces in Fig. 5.3 show length
changes and lower traces (solid lines) show the resulted tension changes.
The results of computer simulation are shown with broken lines in Fig. 5.3.
On the simulations, F=0 and the values of El’ Ep and Bl in Table V-1 were

used. The simulated curves show close agreement with the physiological data.

ELONGATION (mm)
ELONGATION (mm)
-
-

0.6

S 0.4 CEX

- <1

=

g ozl 502

v - [re}

S L L L L L L f ) L )

0 100 200 300 0 100
{msec) {msec)

(a) (b)

Fig. 5.4 Elongation of muscle length (upper trace) and tension change
(lower) in the resting muscle after sudden loading; (a) load =0.3 g,
(b) 0.1 g. Solid line, experimental result; broken line, simulated

curve. Frog semitendinosus muscle, PO=8.4 gwt, Lo=ll mm, 10 °C.

Responses of the resting muscle to sudden loading are simulated. Solid curves
in Fig. 5.4 show the elongation of muscle length and tension changes which
occured when the force on the muscle was step-wisely increased from zero to
the fixed load. The loads 0.3 g and 0.1 g were applied on the experiments
in Fig. 5.4. Dashed lines show the simulated results on a computer where
the lowere traces in Fig. 5.4 were employed as the time course of the load Pl'

The simulated curves are in a good agreement with the physiological results.
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b) Responses of the contracting muscle

The muscle exerting a certain force was lengthened by a certain small
amount (less than 10 7 of LO) giving ramp stretch at various speeds by means
of the velocity controller, and the tension and length changes were recorded
simultaneously. One of the results is shown in Fig. 5.5 (a). Then, the ex-~
erting force of the muscle was changed and the lengthening experiment was re-
peated. When the muscle was immersed in 14-18 mM KCl-Ringer's solution and
stimulated with alternating current (100-500 Hz), the exerting isometric
force of the muscle was easily maintained at a desired level by adjusting the
intensity of the current (Mashima and Tsuchuya, 1968;? One of the results is
shown in Fig. 5.5 (b). DNote that the more the contractile force was exerted,
the larger the tension was increased by stretching.

Dashed lines in Fig. 5.5 show the simulated results on a computer, where
time courses of upper traces in the figure were used as those of muscle elon-
gation -X, steady isometric tension as the contractile force F and the dynamic
constants in Table V-1 were used. In order to simulate these muscle responses,
time course of the contractile force F which are masked by the filtering
effect of viscous and elastic properties must be identified. The contractile
force coincides with the isometric steady tension because no change in both
tension and muscle length occured in this case; v=0 when dX/dt=0 and dP/dt=0,
thus we have F=P from Eq. (5.4). Dynamic properties of the contractile com-
ponent would be scarcely affecfed by the small amount of stretch less than 10
% of LO, so that time courses of the contractile force during and after stretch-
ing can be considered to be approximately the same as those of isometric
force. Simulated results obtained from this assumption showed close agreement

with the experimental ones.

It was, however, noticed that simulated curve was always below the experi-
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Fig. 5.5 Simulation of tension responses to stretching the muscle ex-
erting the steady isometric force. Top trace, elongation of muscle
length; middle trace, solid line, experimental tension change,
dashed line, simulated curve; bottom trace, AC stimulation.

(a)Effect of stretch at various speed on the tension of the muscle.
Contractile force before the stretch was maintained at 0.75 PO by
stimulating with AC (500 Hz) in 18 mM KCl-Ringer's solution. Speed
of stretch; A, 32.9 mm/sec; B, 21.0 mm/sec; C, 12.9 mm/sec. PO=4.65 g,
LO=lO mm, 10 °C.

(b) Effect of stretch on the muscle exerting various contractile forces.
Contractile force was varied by stimulating with AC (500 Hz) in 14 mM
KCl-Ringer's solution; A, 1.0 PO; B, 0.75 PO; C, 0.4 PO; D, 0.16 PO.
Speed of stretch was about 4.0 mm/sec. PO=5.3 g, Lo=l4 mm, 10 °C.
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mental curve at late stress relaxation phase after the stretch. Further, the
ratio of the difference (offset) Pe between experimental and simulated ten-
sion to the amount of stretch Xe was'roughly proportional to the contractile
force. For example, Pe/Xe =7.8 PO/L0 at F=1.0 PO; 5.5 PO/L0 at F=0.75 Po;
3.8 PO/LO at F=0.4 PO. This fact implies that the higher tension after
stretch is not an error nor artifact but some activation by the stretch in
the contractile component.

While responses of the muscle exerting the steady contractile force (dF/
dt = 0) were simulated later, dynamics of the muscle during transient phase
(dF/dt # 0) are analyzed here. Solid lines in Fig. 5.6 show the experimental
results illustrating tension responses to ramp stretching at different instants
after stimulus. The muscle was stretched at the constant speed by the small
and nearly the same amount (0.3 mm), and maintained at the stretched length.
The contraction was isometric until the stretch was applied. Curve P in Fig.
5.6 1is the isometric temsion curve measured when stretching was not applied.
A supramaximal square pulse was applied on the experiment in Fig. 5.6 (a).

In Fig. 5.6 (b), the muscle was stimulated in excess potassium Ringer's solu-
tion by alternating current (300 Hz), whose intensity was increased linearly
in order to increase the contractile force slowly.

Dashed lines in Fig. 5.6 (a) and (b) show the tension responses simulated in
the same manner as Fig. 5.5. On these simulations, however, curves F were
determined from the analytical method described in the later chapter IV or

by Mashima and Kushima (1971;20r Akazawa et al. (l97l)f The simulated curves
were well compatible with the experimental results. The tension responses to
stretching were not the same, in spite of the nearly same mechanical input X
and were dependent on the instant of stretching. Thus this fact showed appa-
rently the nonlinear property of the contracting muscle; variation of the prop-
erties with time after the stimulation. It was also indicated through the

simulation that these nonlinear mechanical properties in the contracting muscle
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Fig. 5.6 Simulation of tension responses to stretching the contracting
muscle at different instants after the onset of stimulation.
Solid line, experimental result; dashed line, simulated curve. P,
isometric tension; F, exerting contractile force. Top trace, elon-
gaéion of muscle length; middle trace, tension; bottom trace, stimula-
tion.
(a) Single square pulse was applied to the muscle. A, speed of stretch
=24 mm/sec, length change =0.26 mm; b, 24 mm/sec, 0.3 mm; c, 16
mm/sec, 0.3 mm; d, 29 mm/sec, 0.26 mm. Frog semitendinosus muscle;
PO=7.4 g, LO=12 mm, 10 °C.
(b) Alternating current (300 Hz) whose intensity was increased grad-
ually was applied. a, speed of stretch =7.5 mm/sec; b, 8.5 mm/sec;
¢, 2.9 mm/sec; d, 6.0 mm/sec; e, 10.0 mm/sec; £, 10.0 mm/sec; g, 6.7

mm/sec. Frog semitendinosus muscle, PO=6.3 g, Lo=ll mm, 10 °C.
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came from the nonlinearity of VCZ’ especially the dependence of the wviscous

coefficient upon the contractile force, rather than SEC2.

5.4 DISCUSSION
a) Modeling

According to Bahler (l968)i0the mammalian skeletal muscle is modeled as
a nonlinear force generator, bridged by a viscous-like element obeying hyper-
bolic force-velocity relations, in series with a nonlinear series elastic
element. We also haye developed the same viscous elastic model based on the
results obtained from the frog skeletal muscle. Since the study of Hill (19
38)i6the force-velocity relation has been explained as a property of the con-
tractile component, so that the classical visoelastic theory of muscle contrac-
tion introduced by Gasser and Hill (1924)33Levin and Wyman (l927§7has been
abandoned. When the viscoelastic model of muscle is proposed again, it may
give an uncommon impression to most of the physiologists. Though the theory
seems to turn back to the early thirties, this new viscoelastic model is based
on the recent electron microscope and X-ray diffraction findings of the ultra-
structure of muscle fiberé (H. E. Huxley, l957t7l969§0 and on the sliding-

N

filament theory (A. F. Huxley, 1957;5Gordon et al. l966;i g0 that the model
is quite different in such meanings from the classical one in which muscle
was thought to be the viscoelastic system as a whole. The simulated results
obtained from the model closely resembled the experimental data from the frog
skeletal muscle; that is, this fact means that this new viscoelastic model
can explain the mechanical properties of muscular contraction quantitatively
with sufficient accuracy, and the following usefulness can be also proposed.

Since the model is applicable to the muscle-limb system in the neuro-

muscular control system, it can be analyzed quantitatively how effectively the

mechanical properties of muscular contraction and the nonlinear properties of
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elastic and viscou-like components work on the system. These analyses may
indicate important suggestions not only in developing artificial muscles
or artificial limbs but alsc in synthesizing an external control system of

85
human extremities as pointed out by Vodovnik et al. (1971).

b) Structural correspondence of the model to the microstructure

Taking account of the microstructure of the muscle fiber and the sliding-
filament theory, a viscoelastic model with distributed parameters illustrated
in Fig. 5.7 can be proposed as one being equivalent to the lump parameter
model in Fig. 5.1. The correspondence between each component and structure
is assumed as follows. SECt is the elastic part of tendon and Z-lines. SECP,
PECl and VCl are the elastic and viscous elements in sarcomeres, such as sur-
face membrane, surrounding connective tissue and sarcoplasma. Since its plas=-
ticity in resting muscles is attributed to the absence of cross-bridges be-
tween the two set of filaments, the mechanical properties are explained sim—
ply by these elements.

FG would correspond to a sliding~force generator at the sites of myofil-
ament overlap in the sliding-filament theory in the contracting state. VC2
is the viscous-like component developed in the contracting muscle and the
viscous-like force is explained as the velocity- and force-dependent tension
loss which is probably a certain sliding-loss dissipated during sliding move-
ments or molecular interactions at the active cross-bridges. As pointed out

. 59
by Mashima, Akazawa, Kushima and Fujii (1972), the linear relation Eq. (5.9)
between the viscous—like force and the contractile force can be explained
under the assumption that both of them are proportional to the number of active
cross-bridges. If we consider simply, SECa would correspond to the elastic

element due to the active cross-bridges or due to the inactive parts of the

thick and thin filaments where both filaments do not overlap each other.
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Fig. 5.7 Illustration showing the correspondence of each mechanical com-
ponent of the model to the microstructure of sarcomere. A, thin fila-

ment ; M, thick filament; T, tendon; Z, Z-line.

This scheme seems to correspond most closely with the electron-microscopic
47

evidence (H. E. Huxley, 1957) and the sliding-filament theory (A. F. Huxley,
4

l957;uzordon et al., 1966;. But it is difficult to say explicitly the struc-

tural correspondence in the present study. Though many attempts have been.

made to determine the structural correspondence of the series elastic compo-

21
nent to the muscle fiber (Civan and Podolsky, 1966; A. F. Huxley and Simmons,

46 32
>

1971; Galey, 1969) different conclusions are expressed. Any way, identifi-

cation of the series elastic component is an important and interesting problem

left in the future.

¢) Simulation

As shown in Fig. 5.2, muscle system was expressed as two inputs (X and F)
—one output (P) system and two inputs were treated as independent omnes
without interactions. Of course, there is a difinite relation between the
contractile force and muscle length as determined by Gordon et al. (l966;?

We also obtained the relation from the frog semitendinosus muscle in isometric

contractions in chapter III (Fig. 3.2). Since the simulations were done on
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the muscle contraction at the length near Lo and within the variation less
than 10 7 of LO, it was assumed, considering the relation in Fig. 3.2, that
the contractile force F was not affected by a small amount of length change
even in the transient phase (dF/dt ¥ 0) as well as in the steady state (dF/dt
= 0). That is, as shown in the simulation of stretch experiments of Figs. 5.5
and 5.6, time course of the contractile force F(t) estimated in the
isometric contraction was used as that during and after the stretching. Al-
though the simulated results showed slight differences such as offset tension,
they closely resembled the principal parts of the experimental results obtain-
ed from the muscle. This fact implies that the proposed model is valid and
that it can be used sufficiently to analyze the intrinsic mechanical property
of muscle contraction.

Following discussion may be done on mechanical phenomena which were not
explained by the model. Namely the simulated tension curves in the stretch
experiment came always below the experimental tension curves as seen in Figs.
5.5 and 5.6, whereas no such difference was seen in the resting muscle as éeen
in Fig. 5.3. This offset tension was found to be in proportion to the elon-
gation of the muscle length and to the contractile force before stretching.
Therefore, those offset tensions would not be resulted from the inactive
parallel elastic component (see the resting tension curve in Fig. 3.2), but
from the active tension of the contractile component. They, however, could
not be interpreted by the relation between the steady contractile force and
muscle length in Fig. 3.2, because the muscle was stretched by a small amount
from Lo' As pointed out by Abbott and Aubert (1952)1 and R;egg et al.(l970)j2
an activation of contractile linkages caused by stretching may account for
this tension development after the stretch. As simple a model as possible
was intended to construct in the present study because of great importance to

simulation. However, if the model is allowed to be more complex, in order to
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interpret this tension development, it may be necessary to introduce another
intrinsic parallel elasticity of the conmtractile machine, although the phys-
iological meaning of this elasticity in the sliding-filament theory is not
yet known. In any case, further research on the dynamic relation between
the contractile force and length change must be done in relation to the

sliding-filament mechanism.

5.5 concLus1ON

1. A mechanical model of a skeletal muscle was developed, based on the
physiological results obtained from the bundle preparation of frog semi~-
tendinosus muscle at 10 °C. The model consists of a force generator, viscous
and elastic components of the resting and contracting states.

2. Responses of the unstimulated muscle to ramp stretch and to step change
in load were simulated on an analog computer. Simulated curves showed close
coincidence with the experimental results obtained from the muscle. |

3. Responses to isovelocity lengthening of the muscles generating steady
contractile force and changing contractile force were simulated. A close
agreement exists between the simulated results and the experimental ones.

4. Mechanical properties of the contracting muscle vary with time after
the stimulation and with the exerting force. Simulation studies indicate
that those nonlinear muscle dynamics are mainly due to the nonlinear proper-—
ty of the viscous—like component,

5. Physiological meaning of each component of the model are discussed

with reference to the microstructure of sarcomere and the sliding—-filament

theory.



CHAPTER VI

MATHEMATICAL MODEL OF THE CONTRACTILE MECHANISM OF MUSCLE

6.1 INTRODUCTION

| Muscular contraction has been extensively studied from the disciplines
of physiology, biochemistry, thermodynamics, anatomy and so on. During the
last decade, there have been significant advancements of knowledge about the
molecular mechanism of muscle contraction and the ultrastructure of muscle
cell. For example, the ultrastructure of sarcomere have been clearly re-
vealed by electron-microscopic observations (H. E. Huxley, 196448, 1967;g

and X-ray diffraction recordings (Hanson and Lowey, 1963;? the molecular
mechanism of actin-myosin-ATP system, by Szent—Gygrgyi (1951)79 and Tonomura
(1972)%%; the excitation-contraction coupling and the role of Ca ion, by
Sandow (1952)75 and Ebashi and Endo (1968;8; the sliding-filament theory

by A. F. Huxley (1957;5 and H. E. Huxley (1957;? In spite of these sig-
nificant advances, no comprehensive theory has been yet proposed which satis-
factorily explains the molecular events involed in the mechano-chemical pro-
cess of muscle contraction. It is thus ardently desired to develop a
completely unified model, i.e., to explain how each of the subsystem at the
molecular level cooperatively works during contraction, and consequently
how the muscle behaves as a whole.

In fact{ several kinds of macroscopic models have been proposed (
Wilikie, 19SOBZ Pringle, 19606? Bahler, 19681§. These models are indeed use-
ful in understanding the mechanical behaviors of muscle as a whole, because
of plain and simple representation of the model, although they give no deep-
er insight into the mechano-chemical process of the contractile machinery.
More recently, in order to investigate analytically the mechanism of contrac-
tion at the molecular level, many different kinds of microscopic models have

been proposed in parallel with the establishment of the sliding-filament

- 111 -
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45 26 86
theory (A. F. Huxley, 1957 ; Deshcherevskii, 1968 ; Volkenstein, 1969 ;

Chaplain and Frommelt, 197123. However, none of these models goes beyond
qualitative explanation of steady state behaviors exhibited by muscles.

A model which is capable of explaining the contractile mechanism at the tran-
sient phase as well as at the steady state, has been eagerly desired.

The purpose of the present chapter is to interpret not only macroscopic
features(force development, shortening, force-velocity relation, energy lib-
eration and heat production) but also microscopic ones (sliding movements
of myofilaments, kinetic behaviors of the actin-myosin-ATP system, and re-
leasing or uptaking of Ca ion). Much effort is devoted to develop a new
model of the contractile machinery, i.e. to develop a single theory includ-
ing the modern concepts of the sliding-filament mechanism, the molecular
mechanism of the actin-myosin-ATP system and the excitation-contraction
coupling. After then, not only the force-velocity, load-energy liberation
and load-heat production relations are explained by the model but also
transient responses of isometric and isotonic contractions in the frog
semitendinosus muscles are simulated on a digital computer. In these pro-
cesses, all the parameters of the model are determined quantitatively, and
dynamic characteristics of the muscle contraction are explicated quanti-

tatively.

6.2 OUTLINE OF THE MECHANISM OF MUSCULAR CONTRACTION

The contractile mechanism, being described in detail in chapter II, is
outlined ﬂere emphasizing those needed for mathematical modeling of it. The
process of contraction is schematically illustrated in Fig. 2.3. A stimulus
is conveyed to sarcoplasmic reticulum (SR), which in turn brings about re-
lease of Ca ion from SR, followed by binding of Ca ion to contractile pro-

teins in actin filaments, When concentration of inner Ca ion exceeds a thresh-
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Fig. 6.1 Schematic diagram of the molecular mechanism of muscle
contraciion. Ki (i=1,2,3 4), rate constant; ng (i=1,2,3,4),

numbers of the active centers at each state i).

old, the reaction of actin-myosin-ATP system is activated. Consequently,
thin filaments slide past into thick filaments, by which a muscle generates
force or does shorten.

Binding of Ca ion to troponin (Ca ion-receptive cite) causes some
interaction between actin and myosin , which immediately results in the for-

mation of cross-bridges linking between active centers %) of thin filaments

and myosin heads. The cross-bridges, moving cyclically as though they were
pulling on an oar, make a thin filament slide past into thick filaments.
So long as the stimulation continues, cyclical making and breaking of the
cross-bridges last, and relaxation begins to occur as Ca ion is uptaken

from troponin by sarcoplasmic reticulum.

%) An active center is defined as a site of a thin filament onto which a

myosin head is able to attach.
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The molecular mechanism of contraction is illustrated schematically in
Fig. 6.1; state R) is the resting state; state 1) is activation of an active
center, resulted from binding of Ca ion to troponin; state 2) is a state of
developing an active contractile force through formation of a cross-bridge;
state 3) is at the very instant of breaking the cross-bridge; state 4) is
under complete dissociation of the cross-bridge. Note that the state 2) is
a force-generating phase and otherwise is a free phase. The transition from
the state 4) to 1) occurs when Ca ion is bound to a corresponding troponin,
and that from 4) to R) occurs when the troponin has no Ca ion, and besides
that from 1) to R) occurs with uptaking the bound Ca ion from the state 1).
To sum up, a fundamental process of contraction is the cyclic reaction 1)—
2)~>3)-4)-+1), while the relaxaxion accompanies the reaction from 1) to

R) or from 4) to R).

6.3 DEVELOPMENT OF THE MODEL

The two—-component model in Fig. 6.2 is adopted as a mechanical model
and most of organized effort is devoted to develop a model of the contrac-
tile component. The contfactile component is modeled, based on the excita-
tion-contraction coupling and the molecular mechanism of contraction in-
volving the reaction process of actin-myosin-ATP system and the sliding-

filament mechanism.

a) Equation of the two-component model

The equation of an external loading system is

A

MX=P-Mg, (6.1)

M = 0.28 + 0.01 3 (6.2)
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where P = tension on muscle,

X

shortening of muscle,

gy = acceleration of gravity (980 cm/secz),

ﬁ = equivalent mass of the load-isotonic lever system
(see Appendix A ),

Pe = load applied to the isotonic lever.

The kinetic equation of the muscle is

P =E, (x - X) (6.4)

where m = mass of the muscle,

x = shortening of the contractile component (CC),

I
1]

a force generated in CC,

52}
1]

2 elastic coefficient of SEC.

Note that we make an approximation mX = 0, because of its minor effects

on the dynamic characteristics of muscle contraction. The muscle length is
L= -X (6.5)

where £ = initial length of muscle,
o)

2 length of muscle.

It is assumed that a single cross-bridge develops a proper constant
force £ accompanying a force loss fv which depends on the velocity of
sliding. Thus, the net force produced by a single cross-~bridge is f—fv.
Denoting the number of cross~bridges developing forces (working cross-bridges)
by n,, we may express the total force Fa generated in the contractile com-

ponent as

Fa = n, (f - fv) (6.6)
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Fig. 6.2 Mechanical two-component model, consisting of the contractile

component (CC) and the series elastic component (SEC). M, thick
filament; A, thin filament; f and fv, contractile force and force-
loss of a unit cross-bridge (force-generator); x, shortening of CC;

X, shortening of muscle.

For simplicity, fv is assumed to be directly proportional to the velocity of

3 . .
sliding movement x:

£, ={8 % xZ0) (6.7)
B'x (x <0)
where B’ B' =constants of proportionality.

b) Model of the excitation-contraction coupling

This section is to express the number of the active centers capable of
forming cross-bridges between myofilaments , as a function of muscle length
and inner Ca ion concenﬁration. For convenience' sake, following symbols

are employed for the active center;

Ag = active center with Ca ion; the site is activated by the reaction
of Ca ion-~troponin-tropomyosin complex which results from binding

of Ca ion to troponin,
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A = active center without Ca ion; Ag is transformed to A; when Ca ion
is uptaken from Ag . Reversely, A; is transformed to Ag when Ca

ion binds to A; ( Ca ion itself attaches to As~).
N* = number of A: in the overlap region of thin and thick filaments.

A: is considered to be distributed uniformly along the whole length of
thin filaments, so that N¥* is directly proportional to the length of the

overlap region; namely,

N* = Fg(l) Fc(ca) (6.8)

where Fz(ﬂ) = length of the overlap region of myofilaments, function
of muscle length, g,
Fc(ca) = number of Ag per unit length of thin filaments; function
of «ca,

ca = inner calcium ion concentration.

Then, we get

Y - 3 (6.9)
N* = Fc(ca) F,Q,(’Q) + Fc(ca)FR(Q/)
dF (ca) , .
=S __ ca FZ(Q) + Fc(ca)FQ(Q)
dca

In the present chapter, length change of the muscle is within a limit of 10 %
of L0 around Lo’ where the second term in the right hand side of Eq. (6.9)
is considerably smaller than the first term. Hence,

- dF (ca) .

N© = ca FQ(R)
dca

(6.10)

We denote by Cr the rate at which Ca ion is released from sarcoplasmic
reticulum (SR) , and by éu the rate at which Ca ion is wuptaken by Sr.

L]
Then, the rate of change in inner Ca ion concentration, ca, is expressed as

ca = ¢ -c¢ (6.11)
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Substituting Eq. (6.11) into Eq. (6.10),

dF (ca) |, dF (ca) ,
N* =—S ¢ F () - c ¢ F,Q,('Q) (6.12)
r 2 u
deca dca
On the other hand, we can write
I:]* = I:I -~ N (6.13)
r u
where &r ( &u ) = rate of increase ( decrease ) in the number of Ag in

the ovelap region which results from releasing ( uptaking ) of

Ca iomn.

Comparing Eq. (6.12) and Eq. (6.13), finally we get

dFC(ca)

r T
dca
(6.14)
. dF (ca) ]
N =-—SC__ & F (L
u u 2
dca

While above investigations are concerned with the muscle length greater
than Lo’ they may be applied to the length less than LO. As shown in Fig.
3.2, an active tension is decreased with decreasing length of the muscle
from LO. This relationship is assumed to originate from a decrease in

numbers of the active centers Ag actually participating in contraction.

c) Model of the molecular mechanism of muscular contraction

A model of the contractile mechanism is developed with introducing
the concept of the sliding filament mechanism into the mechano-chemical
process of contraction in Fig. 6.1. We take five assumptions here.
[1] Binding of Ca ion to troponin and releasing of bound-Ca ion from tro—

ponin are not affected by reactions of the actin-myosin-ATP system.
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Both binding and releasing take place uniformly over a whole length of
myofilaments and without time lag (dissociation constant Kc)'

[2] All the active centers A: and A; at the states 2) and 3) are trans-
formed to the state 4).

[3] A single cycle of the reaction 1)—=2) »3) +4) accompanies with splitting
of one molecule of ATP.

[4] The rate constants K,, K, and X, are constant where K, is the rate

1’ 73 4 1

constant at the transition from the state 1) to 2), K3 is that from

3) to 4) and K, is that from 4) to 1) or from 4) to R).

4
[5] The rate constant of the reaction from the state 2) to 3), KZ’ is in-

creased directly in proportional to the velocity of sliding X1

K, =(0_+ @, x (x20) (6.15)

v

o - o' x (x < 0)

where ao = constant,
0y ( ul') = constant of proportionality during shortening (length-

ening).

Above assumptions correspond to the molecular mechanism schematically
illustrated in Fig. 6.3. The arrows =P show the dissociation reactions
based on the assumption [1] and the arrows —> show the kinetic reaction
process of the actin-myosin-ATP system.

Then, following symbols are employed:
R .
N~ = number of active centers at the state R),

ni, ng, né, nz = pumbers of A: at the states 1), 2), 3) and 4), res-
pectively,
nI, n;, n;, nZ = numbers of A; at the states 1), 2), 3) and 4), res-—

pectively.
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The assumption [1] is expressed mathematically as follows. The rate of
change in numbers of the active centers changing from the state R) to 1)

is expressed as &r NR/(NR 4+ N ). Similarly the rate of change in numbers

2)
TS T T T T T T 7
| CaZ+ |
i |
! |
Il |

|
" = |
| A < Al
| |
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Fig. 6.3 Illustration of the molecular mechanism of contractile process,
based on the assumption {1]. The arrow ——> indicates the chemical
reaction of the actin-myosin-ATP contractile system ; individual rate

constants of the reaction are K K, and K, . The arrow )

10 K0 Ky 4

indicates the dissociation reaction between Ca ion and Ca ion re-
ceptive sites of the actin filaments; dissociation constant is Kc'
The state R) is the resting state; 1) binding of released Ca ion to
troponin; 2) formation of cross-bridge ( developing an acitve force
and sliding a thin filament) : 3) at the very instant of breaking

the cross-bridge; 4) complete dissociation of the cross-bridge.
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of the active centers which are chang:ng from As_ to AS* within the same

states are N ng/(NR”+ N ), (5=2,3,4). Here N is
N =n.+n.+n, (6.16)

We take n; = 0, because A; at the state 1) is quite the same as the state
R). TFurther , the rate of change in numbers of the active centers which

: . - R . *
are changing from AS* to AS within the same states are Nu n, / N*

E}

(3=1,2,3,4), where N* is

*4 ¥+ 0* + 0 (6.17)

% =
N¥ =mny +mny+ny+n,

The assumption [5] about K2 is one of the characteristic feature of
the proposed model. This assumption is based on following consideration.
Cross-bridges are probably broken down (dissociated) when the bridges have
finished sliding thin filaments by a certain relative displacement
(a stroke). If so, the cross-bridges may be transformed more rapidly
from the state 2) to 3) as the velocity of sliding of myofilaments is
increased. Hence, the rate of change in the numbers of active centers
changing from the state 2) to 3), i.e., the rate constant K2 must be in-

creased with an increase in velocity of sliding, as expressed by Eq. (6.15).

As for Ag , above explanations lead to the following equations:

i NR . . n
. %
n = N + K, n - K. n - N
1 T xR o4+ N 4 T4 171 U
. . nE ‘ ng
n§ =N + Kl ni - K2 n¥* - Nu
xR o4 n- N*
. ) 0y . 0} (6.18)
af = N 3 + K, n} - Ky ook - N,
TNR 4N N*
n;, . n*
T M 4 * * 4
n = N + K, n - K, n - N
4 T NR - N- 3 3 4 4 u N



The left hand side of the first equation of Eq. (6.18), h*
rate of change in ny

indicate the rates of its decreases.

.
concerning n

%
2

.
,1'1*

3

*

- L)
and n¥%.

4
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7o indicates the

The first and second terms of the right hand side

Similar are the differential equations

In addition, the differential equations concerning A; are

% -
s - . nz . n2
By 7 Nu - K2 n2 - Nr -
N* NR + N
* —
| - - "3
n, = N + K, n, - K, n, -N (6.19)
3 U g 2 72 3 73 r WR 4 N-
* —
a, = & n4 + K. n., - K, n, - & n4
4 u % 3 3 4 T4 T R 4+ N

Then we define the total numbers

of the active centers at the states

1), 2), 3) and 4) as Ny, My, N, and n,, respectively. As a result, we
can write
%
np T M
L -
n, = n n
2 2 2 (6.20)
= n,. + n.
T T
na = n4 n
From Egs. (6.18)-(6.20), we can also represent the equation for n,
i
. . NR + K * X {q nl
n, = N n, - ng = N —r
- 1 %
1 r NR + N 4 4 1 YN
- - _ K
ny = Kpomy 2 "2 (6.21)
n3 = Kz n2 - K3 n3
a, =K, n., - K, n
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Action potential

}

Sarcoplasmic Reticulum

ér Cu

Subsystem I
Egs. (6.1‘&) ’
(6.53)-(6.54)

Nr Nu

Subsystem II
Table VI-1
Eqs. (6.15), ‘%W

(6.18)-(6.20)

i)

Subsystem III

Egqs. (6.1)-(6.7), |-
(6.52)

e

v’
Tension Muscle length

Fig. 6.4 Organization of the total model of muscle contraction.
Subsystem I, excitation-contraction coupling; subsystem II, actin-
myosin—-ATP contractile system; subsystem III, two-component model

and external loading system.

d) Development of the total model

Finally, a mathematical model of muscle contraction is constructed by
synthesizing the above three subsystem models expressed in sections a), b)
and c). The organization of the model is schematically shown in Fig. 6.4
with representing the number of the equation. The subsystem I corresponds
to the excitation-contraction coupling, the subsystem IT to the molecular

mechanism of actin-myosin-ATP system and the subsystem III to the mechanical
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Fig. 6.5 Mathematical model of muscle contraction programmed on a

computer.
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system involving-SEC and external loading. As shown in Fig. 6.4, the con-
tractile system of muscle itself furnishes feedback mechanisms, i.e., ¢

and velocity x turn back to the subsystems I and II. In particular,

it is of obvious interest that the contractile reaction is regulated by

the velocity of shortening and lengthening x. For deeper understanding,

a whole diagram which is equivalent to the diagram of Fig. 6.4 is also

shown in Fig. 6.5. Inputs to the whole system are ér and éu s 1.4,

the rate of releasing Ca ion from sarcoplasmic reticulum and that of uptaking
Ca ion, respectively, and outputs are tension on the muscle ‘P and short-

ening of the muscle X.

6.4 SIMULATION OF STATIC CHRACTERISTICS

In this section, the force-load-velocity, load-energy liberation and
load-heat production relations are simulated together by means of the pro—‘
posed model. By comparing them with the physiological results obtained
in chapter IIT, validity of the model is ensured and all the parameters
involved are also estimated quantitatively.
a) Preliminary consideration of the steady state characteristics

On the steady state, numbers of the active centers, Dy, 0,, 0 and n

3 4

do not change with time, so that the equation (6.21) becomes

0 = Koy = Kymy

= - 6.22
0 K,n, K n, , ( )
0 = K3n3 - Kan4

N=n, +n,+n,+n (6.23)
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and substituting Eq. (6.22) into Eq. (6.23), we get

N K K2
= — (i=1,2,3,4) (6.24)

i
(K + Kz) Ki
/K = 1/K; + 1/1<3 + 1/K4 -~ (6.25)

Because KZ is dependent on velocity v (see Eq. (6.15)), n, (i=1, 2, 3, 4)

does vary with v. The relation between n, and v is shown in Fig. 6.6. As

velocity of shortening or lengthening is increased, n, is decreased but

nys n3 and n4 are increased. It is an important aspect that the number of

cross—bridges developing an active force, n,, is decreased with an increase

in velocity v.

[e]
o
0

NUMBER of ACTIVE CENTER / N

LENGTHENING SHORTENING
VELOCITY (Lo/sec)

Fig. 6.6 Relation between velocity and number of each active center

(0, n,, ng, m,). The parameter values in Table VI-1 are employed.

b) The force-load-velocity relation

At the steady state when a muscle continues to shorten with a steady
velocity v against a fixed load P, the velocity v is equal to that of the

contractile component ( v=§=i), and x=X=0 then Fa— P=0. Putting the
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equations (6.6),. (6.7), (6.15) and (6.24) into the relation Fa- P=0,

Fa = nz(f ~ fv) (6.6)

fV = Bv (6.7)

K2 = o + a; v "(6.15)
N K

n, = ————— (6.24)
(K + K,)

then we can obtain the load (P) - velocity (v) relation during shortening:

v (—— + P) = ¢ - P) (6.26)

Equation (6.26) is quite equivalent to the experimental equation Eq. (3.19)

obtained in chapter III:
v (A +P)=Db (F-P) (6.27)
A=a( F/PO)
where F = contractile force in CC,
a = heat constant of Hill's hyperbolic equation,
b = dynamic constant of Hill's equation,

Po = maximum tension developed at LO.

Consequently, following relations hold among the parameters:

N K B N K B K+ a
p=——— , a=—— b -
aq aq 1
(6,28)

N K £ N K- f
F = —m—m . Po=—o.._._

XK + uo K + O

o

where NO = value of N, when the muscle is developing the maximum

force, P
(8]
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36
Note that the force-velocity relation introduced by Hill (1938)

v{(a+P)=">bb( Po - P ) (6.29)
is a special case of Eq. (6.27) at F = PO
The same procedure is applied to the lengthening muscle. Substituting
the following equations into the relation Fa =P,
F = nn,(f - £) (6.6)
a 2 v
-8 v 6.7
v
_ o (6.15)
K2 = OLO OLlV
N K (6.24)
Ilz =
(K + Kz)
then we can obtain
K + o N K £
N 1
G__EJ;_ - P) = - ° ¢ T o P) (6.30)
o] o
1 1 o

Equation (6.30) is also equivalent to the force-load-velocity relation of

lengthening muscles (see Eq. (3.23) in chapter III):

v (2F+A"-P)=Db" (F-P)

(6.31)
A' = a' (F/Pp_ )
0
Consequently, we immediately find
N K g
1
A" + 2F __NKB' , a' + 2p =2
0(,1" [¢) Obl)
(6.32)
., Ktrog N K £ N £
b' = o s, F = ’PO=
1 K+OLO K + o

A common maximum velocity Vo at which a muscle is capable of short-

ening at P = 0 is of obvious interest. Introducing P=0 into Eq. (6.26),
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we get

f
v = 'E—' (6.33)

This result means that the maximum velocity is dependent only on the
property of single cross-bridges , and thus that it would not vary with
length of muscle, On the other hand, Gordon et al. (1966)3uobserved that
shortening velocities of single fibers obtained at very light loads, which
would closely approach the maximum velocity, were approximately identical
at various muscle lengths greater than Lo. This evidence would support

Eq. (6.33), or the proposed model.

¢) Load-energy liberation and load-heat production relations
Energy of a muscle ( E ), supplied by splitting of ATP, is converted
to work (W) and heat ( H ). There are two distinct kinds of heat ,

37
shortening heat)HS, and maintenance heat Hm,(Hill, 1949 a).

2

E=W+H=W+H +H
s m
. . . . (6.34)
E=W+ H + H
s m

Work done per unit time, W , is given by the product of load P and
velocity wv:

W=Pwv (6.35)

Substituting the load-velocity relation Eq. (6.29) into Eq. (6.35), we
get the relation between P and W:
b P (PO - P)

W= (6.36)
P + a

Shortening heat is assumed to be closely associated with the force

loss fv’ so that the heat produced per unit time HS may be expressed as
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B =1 sa. £ ax =
it

= n, f v (6.37)

v

Substituting Egs. (6.7), (6.15), (6.24), (6.26),and (6.28) into Eq. (6.37),

.
we obtain the relation between P and HS:

ab (p - P)2
H = 0
S

(6.38)
(PO + a)(P + a)

u0
Hill and Woledge (1962) found values for the rate of maintenance heat

production ﬁm about equal to the product of a and bj

Hm =ab » (6.39)

From Eqs. (6.36)-(6.39), finally we obtain

b P
=—————{P +2 (P +a) -P (6.40)
o] O

As seen from FEqs. (6.38) and (6.40), both the rate of shortening heat ﬁs

and that of energy liberation ﬁ can be calculated against load P, by

introducing the values of a and b. Experimentally, P-E and P—ﬁs relations

were measured from the thermodynamical experiments on frog sartorius muscles
41

at 0 °C by Hill (1964). The physiological result is shown with solid line

-1
in Fig. 6.7. Because the dynamic coanstants, a/PO=O.25 and b/LO=0.325 sec
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were also evaluated on the same preparation by Hill, those values are put

into Eqs. (6.38) and (6.40), and é and ﬁs are calculated against various

values of P. Calculated results are shown with broken line in Fig. 6.7.

As a whole, the relation obtained from the model, although slight difference

is seen, seems to show the same feature as obtained from the sartorius

muscle; namely, E and HS are decreased with an increase in load.

028 r
0-24
020
£
o
& o016
wl
|.-—
<
@ 012
>-
o
x
w 0.08
=z
w
004
0 i 1 i \\‘J“~—
0 02 04 06 08 LO

LOAD PIP

Fig. 6.7 Steady state relation between load P and rate of energy libe-
ration E, and between load and rate of shortening heat production ﬁs
Solid line, physiological result obtained from frog sartorius muscle

41

at 10 °C (Hill, 1964); broken line, the relations obtained from the

model; Voo maximum shortening velocity.
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On the other hand, the energy liberation rate, E, can be expressed
in terms of the energy of ATP hydrolysis. It is assumed in the present work
that one molecule ATP is hydrolyéed during single cycles of the contractile
reaction 1)+ 2)» 3)> 4)., It is not fully clarified where nor when ATP
splitting takes place, although the stage is presumably at the reaction from
the state 2) to 3) or that from the state 3) to 4). So two cases are con-
sidered here. As a result, both cases are identical at the steady,state.

That is, if ATP splitting occurs at the reaction from 2) to 3), the

energy rate, E, can be written as

fea ]

a K2 n, (6.41)

where e, = free energy exerted by hydrolysis of one molecule of ATP.

If it occurs at the reaction from 3) to &),

E=e_ Kyn, (6.42)

As seen from Eq. (6.24), Kzn2 is equal to K, n, at the steady state so that

33

both equations are quite identical.

E = e, K2 n, = e, K3 ng (6.43)

Putting Egs. (6.15), (6.24), (6.26) and (6.28) into Eq. (6.43), we get

2
é ) eaNOK /ulb_ o (PO + a) + K Po
. - P (6.44),
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Because Eqs. (6.40) and (6.44) have to be equal, we immediately find

e, NO Kz
b P =
o ul b
(6.45),
a e (P + a) + K Po
Po + ——(PO + a) =
PO K

d) Determination of the parameters
In this section, all the parameters introduced into the model are
determined, by using the relations of Eqs. (6.28), (6.32) and (6.45) be-

sides the physiological results.

i) The parameters of the molecular mechanism model

Equations (6.28) and (6.45) can lead to the following relations:
K = + =
(1 a/PO) b PQ/ ea N o a K/ P,
o = (K + ao)/ b ., B = a al/ KN (6.46),
£ =
(K + do) Po/ K NO

It is clear that the parameters K, o> @ f and B can be easily calculated

l’

when the values of Po’ No’ e Lo, a and b are together given.

First, the dynamic constants a and b have been already evaluated (see
section 3.5)

a/PO = 0.25, b/L = 0.9 sec T (6.47)
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TABLE  VI-1

ESTIMATED PARAMETERS OF THE MOLECULAR
MECHANISM OF CONTRACTION

SHORTENING LENGTHENING
K 86 /sec K 86 /sec
ap 21 /sec ag 21 /sec
ay 120 /L0 al 130 /LO
f 125 PO/NO f 1.25 PO/NO
8 0.35 Posec/Ly | B ] 3.43 Pysec/L

1/K=1/K{+1/Kz+1/K,

51
Second, following values described by H. E. Huxley and Hanson (1960)

are employed.

3.0 ngt/cm2 cross section,

P =
o
Lo = 1.1 p / half sarcomere (6.48).
13 2 .
No = 0.55 x 10 /1.1 u half sarcomere/cm” cross section

Third, the energy e, is calculated. The energy supplied by ATP split-
82
ting is about 11 Kcal /Mol (Tonomura, 1972), so that the energy supplied by

one molecule of ATP , e is

e, = 11.0 KCal/no = 7.7 x10 13 ergs

where o = Avogadoro's number , 6.03 = 1023 /Mol.
Then, 1.0 erg is normalized by PO, L0 and No’

1.0 erg = 1.7 x 1010

PO.LO/NO
and consequently we obtain

e =1.3x107% P .L /N (6.49).
.0 [e] [e]

a

Finally, the values in Table VI-1 are obtained by substituting Egs.

(6.47)-(6.49) into Eq. (6.46).
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The same procedure is applied to the lengthening muscle. The relation
concerning K, f and oy is the same as expressed in Eq. (6.46). The con-

stants dl' and B' are derived from Eq. (6.32);

K + o (a’ + 2P ) «.'
o) = B = ol 1 (6.50)

N_ K
o

The dynamic constants a' and b' of the lengthening muscle have been al-

ready determined as (see section 3.5)
a'/P_= 0.4, b'/L_ = 0.85 sec”t (6.51).

By putting these dynamic constants and the obtained values of ao, K, PO

and No into Eq. (6.50), we can obtain the values of a.' and B' 1in Table

1
Vi~l. As seen from Table VI-1l, remarkable difference between the parameters
of lengthening muscles and those of shortening ones is found in the constants

of proportionality concerning the force loss, fv; namely, B' 1is about

ten times greater than B.

ii) The elastic coefficient of the series elastic component
The load-extension relation of the series elastic component (SEC) has
been determined at section 3.4. The relation is adopted here. The elastic

coefficient E2 is expressed as

2 "2 (6.52)
_ A , L)
E2 (2.96 + 5.18 X, + 1.9 x 10 X, ) PO/Lo
A
where X, = extension of SEC, X, = (x -~ X)/LO.

iii) Estimation of Fc(ca) and Fz(l)

The function of Fc(ca) is determined, based on the physiological data
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1.0
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~
[a
= 0.5
o
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=
[N}
l,_

I - i -
0 6 5 4

Ca ION CONCENTRATION  pCa

Fig. 6.8 Relation between Ca ion concentration and active tension.
Open circle, experimental result obtained from the skinned fibers
(see Fig. 2.5 curve A; Ebashi and Endo, 1968); broken line, the
relation obtained from Eq. (6.53).

showing the relation between Ca ion concentration (ca) and active ten-
sion ( Pact) at a fixed length ,i.e., Fg(2) is constant. Solid line in
Fig. 6.8 shows the relation obtained by Ebashi and Endo (1968). It may be
assumed that the value of ca is lO—6 Mol at the resting state and l()_4

Mol at the tetanic contraction. Because the steady active tension is direct-

ly proportional to N#¥*, we can obtain the following relation by applying

the curve fitting technique to Fig. 6.8:

1 cr
F,C1- - )
1 + K ca? F
C co
Fc(ca) = 7 (6.53)
cr
L -5
co

1 -
where KC = 3.0 x 10 0~ Mol 2, dissociation constant,
- _1n—6
FCr = the value of Fc(ca) at ca=10 Mol,
Fco = the value of Fc(ca) at ca=10—4 Mol,

F /F = 0.03.
cr COo
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The relation of Eq. (6.53) is shown in Fig. 6.8, broken line.

On the other hand, it has been already described that Fz(z) represent-
ing the intrinsic length of overlap region of myofilaments corresponds to
ﬁhe tetanic active tension depending on the length of muscle (see section
6.3 b)). The steady active tension developed by tetanic stimuli is directly
proportional to Fz(g) because Fc(ca) is considered to be constant Fco’ 50
that the active tension-length relation in Fig. 3.2,curve S is applied here.
The relation has been also confirmed on the bundle preparation of frog

semitendinosus muscle as shown in Fig. 3.2, curve A. Hence, we get

0 1(1.74 ¢ 2/ )

-1.5 g/L_ + 2.01 ;(1.07 < gL, < 1.74)
Fo(2) 1 5(0.95 & L/ < 1.07)

_ ) (6.54)

Foo 1.02 #/L_ + 0.0385(0.8 £ 2/1L_ < 0.95)

4,62 /L + 2.37 5(0.61 S 2/L < 0.8)

0 5 ( g/1, < 0.61)

¥ =

0 FE(LO)

6.5 SIMULATION OF THE TRANSIENT CHARACTERISTICS

In this section, transient characteristics of muscle contraction in-
volving time courses of tension development, shortening , energy liberation
and heat production, are simulated on a digital computer with using the
model and the parameters estimated in the former section 6.4. And further,
time courses of release and uptake of Ca ion are estimated. Through these
simulations, dynamic behaviors of the contractile mechanism and inter-

actions among the internal subsystems are examined.
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a) Dynamic behaviors of the model

Most of the parameters have been determined quantitatively in the
former section. In order to simulate transient responses of muscle
contraction, values of additional parameters such as Kl’ K3 and K4’ and
time course of the rate of releasing of Ca ion , ér(t), and that of up-
taking, &u(t),are needed. It is pity that those values and the time courses
of them have never been observed nor determined experimentally in vivo.
Therefore, in order to make preliminaty estimations of the unknown para-
meters and to comprehend how the model does behave with varying those para—
meters, simulation experimetns of isometric twitch contractions were made
on a digital computer.
1° K3 and K4 were choosen
on the simulations with satisfying the relations 1/K = 1/Kl + 1/K3 + 1/K4

First, various values of the parameters K

-1
and K = 86 sec (see Table VI-1). Second, time courses of the rates of

releasing and uptaking of Ca ion, i.e., &f(t) and &u(t) which are produced

*)

by a single stimulus are taken as follows ’:

= <
¢, = 0 (t = 0)
. -t
c e” T, (t > 0)
T 2 ‘
r
. < (6.55)
€y = 0 (t = to)
-ty
CE;t_Q e— T_ (t >t )
T 2 v
u

where Tr (Tu) = time constant of releasing (uptaking) of Ca ion,

C = constant
tO = time delay. , from the onset of stimulation to the beginning
of uptaking of Ca ion.
*) . c c
O_Z,[Cr(t)] = 7 s OZ [ec (£)] = e_toS
(1 + T _s) v (1 + T s)?
u
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Fig. 6.9 Behaviors of the model for isometric twitch. Solid line, tension

curve; broken line, time course of inmer Ca ion concentration, ca(t).
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As represented in Eq. (6.53), inner Ca ion concentration, ca, is taken to
be lO—6 Mol at the resting state (t = 0). Time course of inner Ca ion con-

centration, ca(t), is thus expressed as

ca(t) = 107° + f(t) (¢ - ¢, at (6.56)

Third, initial conditions are represented as follows. The muscle is
wholly relaxed before onset of stimulation, so that we can write ni =0,
(i = 1. 2. 3. 4), n; =0, (i=2, 3, 4) and x = 0 at t = 0. During the
isometric contraétion, the muscle is fixed at the standard length, Lo’ on
our experiments, i.e., X=0 and § = LO at t=0.

After these preparatory considerations, then, simulation experiments ts
were made on a digital computer with varying the above parameters , Tr’ T ,

u

C, t_, K, K

o and K4 over a wide range. Typical results obtained from the

3

simulation experiments are shown in Fig. 6.9. As expected from the figure,

the simulation study can lead to following conclusions.

i) Isometric peak tension of twitch contraction, Pmax’ is dependent

on both Kl and maximum value of inner Ca ion concentration, camax’

and it is independent of other parameters.

ii) P is increased with an increase in K and/or in ca .

max 1 max
iii) The instant of attaining P , t , 1s only dependent on the time

max pmax
of ca s b . The time t becomes earlier as the time
max camax pmax
t is earlier.
camax

iv) As shown in the physiological result (see Fig. 6.10), Pmax is about at
70 msec( t = 70 msec). In order to satisfy this, t has to
pmax camax
be about 30 msec.

v) When the value of Kl is fixed, icsometric twitch tension curves

are not affected by changing the values of K3 nor K4.
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b) Simulation of isometric contraction

Solid line in Fig. 6.10 show an isometric twitch tension curve obtained
from the bundle preparation of frog semitendinosus muscle fibers at 10 °C.
On the basis of above preliminary simulations, following parameter values
are taken to-account for the twitch contraction in Fig. 6.10; namely, C=

5

4.0 x 10~ Mol, T = 25 msec, T = 25.5 msec, t = 5 msec, K ;= 190 sec'l, K, =

1” 3

310 sec—l and K4= 310 sec—l. The response obtained with these values is
shown with broken line in Fig. 6.10. The tension curve obtained from the
model closely agrees with that obtained from the frog muscle. In this simu-
lation, camaX reaches about 4.2 «x lO_6 Mol and the time, tcamax’ is round

30 msec after the onset of stimulus. It is evident that the time closely
coincides with the instant when the rate of tenmsion development, dP/dt, is
about maximum. Note that the result is in a good agreement with the ex-
perimental evidence demonstrated by Ashley and Ridgway (1970)8(see Fig. 2.6).
Time courses of nz(t), n;(t), (i=1, 2, 3, 4), N?t) and N(t) which are
obtained from the simulation are also illustrated in Fig. 6.10. It is very
interesting that during the relaxation phase (in particular, after about

100 msec from the onset of stimulation), N* is remarkably less than N—;

that is, greater parts of working active centers remain the state of A; (

active centers have no Ca ion) in the phase.

c) Simulation of isotonic contraction

S01id lines in Fig. 6.11 show tension and shortening curves in an iso~
tonic twitch contraction which were obtained from the frog semitendinosus
muscle at 10 °C. After-load was 1.5 g (0.23 PO) in curve a , and 2.5 g (
0.4 PO) in curve b. Initial length was LO in the both experiments.

These isotonic twitches are simulated with applying the model and the
same parameter values as used in the simulation of isometric twitch of Fig.

6.10. The responses obtained in such a way are shown in Fig. 6.11, with
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Simulation of isometric twitch contraction

Solid line, experimental result ontained from the bundle preparation

of frog semitendinosus muscle at 10 °C; Po=6.0 gwt

, L =13 mm.
o
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Mol, Kl=l90 sec-1l and K3=K =310'sec_l
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Fig. 6.11 Simulation of isotonic twitch contraction. Solid line,
physiological result obtained from thevbundle preparation of the
frog semitendinosus muscle at 10 °C; PO=6.0 gwt, Lo=l3 mm; curve
a, after-load was 1.5 g (0.23 PO); curve b, 2.4 g (0.4 PO). Broken
line, response of the model; Tr=25 msec, Tu=25.5 msec, t0=5 msec,

= -1 =K = -1
Kl 190 sec™+, K3 K4 310 sec™+.
broken line. Both shortening and tension curves obtained from the model show
close agreements with those from the frog muscle. It is of obvious interest
that the number of force-generating cross-bridges, Do which are working

against heavier load (curve b) is greater than that agéinst lighter load
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(curve a). This feature would evidently imply an excellent function of the
contractile mechanism of muscle; i.e., the muscle generates greater force

against heavier load and smaller force against lighter load.

d) Energy liberation and heat production during twitch

Both energy and heat produced during the period from the beginning of
stimulus (t=0) to tm are calculated where tm is the time when maximum
shortening of isotonic twitch is achieved. It is assumed here, similar to
section 6.4, that one molecule of ATP is hydrolyzed during single cycles of
the contractile reaction, 1)»2)—>3)-4) in Fig. 6.3. However, it is not
clear whether the hydrolysis occurs at the stage of reaction from 2) to 3)

or from 3) to 4), so that we examine two cases.

Case (1): ATP hydrolysis takes place at the reaction from 2) to 3).

Case (2): ATP hydrolysis takes place at the reaction from 3) to 4),.

The rate of energy>liberation of case (1), E and that of case (2), éz, are

l’
El = e, KZ n, (6.50)
E, = ez Ky n4 (6.58)
Total energy liberatedlduring the period from t=0 to t=tm is

tm .
case (1): El = IO El dt

c (6.59)
case (2): E. =/ 0 g dt

2 0 2

On the other hand, work done, W, is expressed as the product of load, P,

and maximum shortening attained at t=t , X H
m max

W=PZX (6.60)

max
On the assumption that the shortening heat, HS, is produced with force-loss,

we can write
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tm .
H =
S fo Hs dt (6.61)
H =
s T By fov (6.37)

Activation heat,.Ha, and total heat, H, can not be expressed directly
but they can be estimated by employing the above calculated values of E,

Hs and W. That is, activation heat, Ha’ is obtained by

Case (1): Hal = E1 - HS - W
(6.62)
Case (2): Ha2 = E2 - HS -W
Further, total heat, H, is given by
Case (1): Hl = El - W
(6.63)
Case (2): H2 = E2 - W

We made computer simulations for isotonic twitches against various
after-loads in the same way as described in the above section c¢), and

calculated W, E E H H, and H, with employing Eqs. (6.57)-

1’ 72 g’ Hal’ HaZ’ 1 2
(6.63). Calculated results are shown in Fig. 6.12 (A). As seen in the
figure; E

is slightly greater than E In either case, total

1 2°
energy liberated ( El or E2 ) and the shortening heat HS were decreased
with increasing load. But activation heat, Ha’ was gradually dincreased

with an increase in load. Total heat ( Hl or H2) decreased steeply at
lighter load with an increase in load, while it tended to decrease graduallly
at greater load. For comparison, Fig. 6.12 (B) is given which is the ex-
perimental result obtained from frog sartorius and toad semi-membrainosus
muscle at 0 °C (Hill, 1949a)?7 As seen from Fig. 12 (A) and (B), the re-—
lations obtained from the model give the same features as actually observed
on the muscles, although quantitative comparison can not be made satisfac-

torily because of differences of the preparations. and the experimental con-

ditions between (A) and (B).
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Fig. 6.12 Overall energy balance during twitch, plotted against the
load. E, total energy; Hl, total heat for case (1) ; H2, total heat

for case (2); Hs’ shortening heat; H activation heat for case (1);

al’

Ha2’ activation heat for case (2); W, work.
(A) Simulated result obtained from the model; (B) experimental

result obtained from frog sartorius(open circle, open triangle) and
semi-membrainosus muscle (closed circle) by Hill (19493)?7

13
The figure (B) is redrawn from Bendall (1969).

6.6 DISCUSSION

The present study has an important significance in building the single
unified theory of muscle contraction by synthesizing recent findings such
as minute observations of the ultrastructure of muscle fiber, biochemical
speculations about the contractile process at the molecular level, and phys-
iological data on mechanical and thermodynamical properties of muscle con- 7
traction. Hitherto, éuch an approach has tended towards qualitative investi-
gations all along, but the present work does take a quantitative and
dynamical view of the muscle contraction. In such an investigation is one
of the characteristics features of the present work. Serious difficulties

have been encountered in building the model because several matters have not



- 147 -

TABLE VI-2

COMPARISON OF THE ESTIMATED VALUES oF RELATIVE DISPLACEMENT AND SLIDING FORCE

P N
JLC £ Estimation W Ea n °
° dyne /cmz
A dyne ergs ergs % on? T.1i 0
Huxley (1960) 120 | ] | ] J
Davies (1963) 100 | 3x1077| & _=W/f ne, 7x1071 2 44 2x10° 6.5x10" 7
f=1=0/uo
Deshcherevskii 100 | 3x1077| & =w/¢ 3x107° 3x10° 5.0x10%2
(1968) £=P /N,
Volkenstein 4.6x1077 £=P /N l Ix10° 6.5%1012
(1968) .
Chaplain (1971)] 127 ’ [ | [ |
Tonomura et al. 100 3x10°7 % =W/t ne, 6x10~ 1% 50
(1972)
This thesis 92 16.7x10° 7 L.=1/0, a1=120/L0 3x10° 5.5%10 7
£=1.257 /L L =1.1u
o [v] o

n =efficiency of transformation from chemical to mechanical one

been fully established by biochemical nor by physiological studies. Never-
theless, by introducing reasonable and probable assumptions, all the static
and dynamic characteristics of muscle contraction could be satisfactorily
accounted for.

‘In this place, we try to examine three following problems of particular
interest and of significance with making reference to the proposed model.
i) How- far cross-bridges can make thin filaments slide past in single cycles
of the contractile reaction? That is, how long is the relative displacement
(the stroke) of cross—bridges?
ii) How does the interaction of Ca ion ocecur with the contractile system,
actin-myosin—-ATP system?
iii) In what stage or when does the hydrolysis of ATP take place ? Hoﬁ many

molecules of ATP are hydrolyzed in single cycles of the contractile reaction?

a) Relative displacement of cross-bridges
The mean relative displacement of cross—bridges,lc,can be estimated by

' 26
applying the same technique as proposed by Deshcherevskii (1968). Namely,
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according to Deshcherevskii, a mean value of conformational tramnsformation

of the molecule of myosin,equal to the interval in which the cross-bridge

develops an active force, is given as Rc:l/ul . As given in Table VI-1,
the wvalue of oy has been estimated as a1=120 Lo”l. Consequently, the rela-
tive displacement during shortening becomes

L= l/@l = LO/120 =92 A (6.64)

where Lo= 1.1 u/half sarcomere.

Similarly, a relative displacement during lengthening, QC', is calculated

by applying al'=130 Lo—l (see Table VI-1).

o

' = ' = =
g, = 1l/a;' =L /130 = 85 A (6.65)

As shown in Fig. 2.2, a pitch of the myosin head is about 429 g and
that of F~éctin is about 355 Z , and thus the difference is 74 Z . The re-
lative displacement of cross-bridges would be associated with the difference
of both pitches, and it is interesting that the estimated values, £c=92 2_
and RC' = 85 Z s are in the same order.

On the other hand, many workers have suggested, performing different
kinds of calculations, that maximum value of the relative displacement of the
cross-bridges is about 100 2, as shown in Table VI-2. Our result was
also in the same order. Seeing that the problem as to how the cross-—

bridges move and slide past thin filaments remains unaccounted for at all,

it would be an important future subject to observe % or ZC' experimentally.
c

b) Alternative model I: Interaction of Ca ion with the contractile machinery
In the present work, we assumed that binding or uptaking of Ca ion from
Ca-receptive cites is independent of contractile processes of the actin-
myosin-ATP system, and introduced the concept of Az and A; with respect
to active centers of thin filaments. However, following assumtions [a ] and

[ b'] would also be possible and actually suggested by some workers.
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Fig. 6.13 Schematic illustration of the mechanism of muscle contraction
(A), ‘assumption [al]; (B), assumption [b]. The arrow—> shows the
chemical reaction of actin-myosin-ATP contractile system , the rate
constant of which is Ki , (id= 1, 2, 3, 4). The arrow==) shows the
dissociation reaction associated with binding and uptaking of Ca ion;

a dissociation constant of which is Kc'

Assumptidn [a]: When Ca ion is uptaken from troponin, cross-bridges dissoci-
ate from thin filaments, and the corresponding active centers
are immediately returned to the resting state.

Assumption [b]: Binding-Ca ion is uptaken only from the states 1) and 4), and

then the active centers are returned to the resting state.

In order to examine the possibility of their assumptions, an isometric twitch
contraction is simulated with using them. The simulated results, later shown,
lead to the conclusion that both assumtions can not explain the experimental
findings demonstrated by Ashley and Ridgway (1970)? about the time courses of
Ca ion concentrateon. Namely, the conclusive remark is that our assumption

[1] (see section 6.3 c)) is most probable as regards the interaction of Ca ion
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with the contractile machinery.
i) Mathematical formulation
Assumption [a]
The molecular mechanism of contraction is schematically shown in Fig.
6.13 (A).' The state A; is not necessary to be considered under this assump-

tion at all. The kinetic equation for this case is

hfi = N_ + K;n} - Kjn¥ - ﬁuni /N*
h; = Klni - Kzn; - ﬁung/N*
. % % * 4ok gk (6.66)
ny = R,nj = K3n3 - Nun3/N
ﬁz = K3n§ - K,np - ﬁunZ/N*
Assumption [b]
The molecular mechanism of contraction is shown in Fig. 6.13 (B). The
kinetic equation for this case is
;ﬁi = ﬁr + KAnZ - Kln"; - f\lun”i/(n’i‘ + nj)
hg = Klni - Kzng
ng = K2n§ - K3n§ (6'67)
hz = K3n§ - Kyny - &unZ/(ni + nZ)
ii) Simulated results
Solid line 4in Fig. 6.14 is the isometric twitch tension curve ob-

tained from the bundle preparation of frog semitendinosus muscle at 10 °C.
Now we simulate this twitch contraction with applying above equations (6.66)
and (6.67) and compare them with the physiological result. It should be
noted that the steady state characteristics of muscle obtained from both

assumptions, [a] and [b], are quite the same as obtained from the assumption
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Fig. 6.14 Simulation of isometric twitch. Solid line, isometric twitch
tension curve obtained from the bundle preparation of frog semi-
tendinosus muscle,<P0=6.0 gwt, Lo=l3 mm, 10 °C. Broken line,
responses of the model; P, isometric tension curve; ca, inner Ca ion

concentration: . (A), response obtained from the assumption [a],

K. =K_=K,6 =258 sec—l, T =27.5 msec, T =35 msec, t =5 msec, C=4.0 x 10_5
173 7% r u o)

Mol; (3), response obtained from the assumption [b], €=3.2 x lO_5

Mol, other parameters are identical to (A).

[1]. Consequently, the parameter values in Table VI-1 can be employed.

Eq. (6.66) is employed for the assumption [a] instead of Eq. (6.18),
while other relations used in the simulation are the same as expressed at
sections 6.4 and 6.5. The parameters concerning Eq. (6.55) ,i.e., the rates
of Ca ion-releasing and of Ca ion-uptaking, are choosen so that the response
of the model could closelyagree with the experimental tension curve. Namely,
we took the parameter values given in Fig. 6.14. Fig. 6.14 (A) shows the
response of the model obtained by using the assumption [a] and the
parameter values. Close agreement was obtained between the experimental
tension curve (solid line) and the simulated one (broken line). However,
as seen from the figure, the peak of inner Ca ion concentration was nearly
at tﬁe time when the peak tension was attained, énd it is not at the time

of maximum of dP/dt. Namely, the assumption [a] could not by any possibility
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8
explain the experimental result demonstrated by Ashley and Ridgway (1970).

Of course, we varied the values of above parameters ( Ki, Tr’ Tu’ tO , C) to
a wide extent but failed to account for Ashley's results.

As to the assumption [b], similar simulation experiments were made. The
simulated result is shownwith broken line in Fig. 6.14 (B), where the para-

meter values of Ki, T , Tu’ t0 and C are given. As seen from the figure, the

r

assumption [b] can not explain Ashley's findings neither.

c¢) Alternative model II .: ATP splitting

According to A. F. Huxley (1957;5and Davies (1963§f it was assumed in
the present work that one molecule of ATP is hydrolyzed in single cycles of
the contractile reaction, 1)-»2)—»>3)->4) in Fig. 6.3. On the other hand,
according to the molecular mechanism model proposed by Tonomura (1972§z(see
Fig. 2.8), it may be also probable to assume that two molecules of ATP are
splitted in the single cycles. Although the model proposed in the present
study would be enough to be as a basic one, it is also of interest and of
significance in offering a clue for further studies to examine the concept
of splitting of two molecules of AfP. Here we term the'concept of splitting
of one molecule of ATP case [1lATP], and that of two molecules case [2ATP].
The parameter values are estimated for the concept of case [2ATP] and then
they are compared with those for case [1ATP]. The procedure for case [2ATP]
is similar to that described in section 6.4. c) where case [1ATP] is
treated.

It is assumed that one molecule of ATP is hydrolyzed at the reaction

of changing from the state 2) to 3) and the other one molecule of ATP at

the reaction from 3) to 4). Namely, we get the rate of energy liberation as

E = n, K2 e + n, K3 e, (6.68)

Substituting Eqs. (6.24), (6.26) and (6.28) into Eq. (6.68), we can get
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TABLE VI-3

Parameters estimated from the assumption that two molecules

of ATP are splitting in single cycles of the contractile

reaction.
SHORTENING LENGTHENING
K 43 /sec K 43 /sec
0o 11 /sec O 11 /sec
o 60 /Lg o) 63 /1,
f 1.25 PO/NO f 1.25 PO/NO
8 0.35 Posec/Ly |8 3.43 Posec/Ly

2
2
e, NOK /ul b aO(PO + a) + K PO

- P (6.69)
PO + a K
Because the rate of energy dissipation represented by Eq. (6.40), W+ ﬁs

+ Hm, has to be equal to Eq. (6.69), the following relations can be ob-

tained:

! _ 2
b PO = 2 e, NOK /ul b

(6.70)
B+ ae, + a)/P = {a (r) +a) + KB J/K

Consequently, from Eqs. (6.28), (6.32) and (6.70), following relations are

obtained:

K= (1 +a/P )b P/ 2eyg N, = (K+a) P /KRN

= = - v oo '
a = a K/ Po s Oy (K + uo)/ b, og (K + uo)/ b

- L ' \
B = a al/ NOK , B oy (a' + ZPO)/ NOK

(6.71)

Putting the values of a, b, Po’ No’ LO and e, in Egs. (6.47)-(6.51), finally

we get the parameters for case [2ATP] given in Table.VI-3. Comparing them
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with those of case [1ATP] given in Table VI-1, we may conclude as follows.

i) Force generated by single cross-bridges, f, and constants concerning the
force-loss, B and B' are identical with each other.

ii) The rate constants of K, s ul,and al' of case [2ATP] are half the
values of case [1ATP].

iii) Relative displacements of cross-birdges for case [2ATP] are

2 = = 1 60 = 184 A
o l/ocl 0/ (6.72)

170 A

i

QC' = l/ul' = LO/ 63
These values are also half the values obtained from case [1ATP], as seen
from comparison of Eq. (6.72) with Eq. (6.64)-(6.65).

Indeed , it is pity that we can not conclude whether case [1ATP] or
case [2ATP] is true , from these calculations. But, as expected from these
comparisons, to measure the relative displacement of cross~bridges is of
great significance and would give an important clue for the problem of stages
of ATP splitting. Further studies such as electron microscopic observations
in vivo or X-ray diffraction recordings, would be necessary to determine the

relative displacements.

d) Force-loss of the mﬁscle contraction

A velocity~dependent force-loss of cross-bridges is assumed to be pro-
duced in the state 2) in the present work (see Eq. (6.7)), while it was
assumed to be in the state 3) by Deshcherevskii (1968). Considering sliding
movements of the cross-bridges in the viscous sarcoplasma some one would
presume such a viscous force as being dependent on the velocity of sliding,
or would introduce a force-loss (friction-like force) generated by some what
relative movements on the attachments between myosin heads and thin filaments.
This view corresponds to our assumption. On the other hand, somewhat force

loss is presumably developed when cross-bridges dissociate from thin fila-
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ments. This view seems to correspond to Deshcherevskii’s. The force-loss

of contraction would be undoubtedly due to the molecular movements of myo-
filaments, but it is now difficult and rather impossible to conclude what
the nature of the force~loss is nor by what mechanisms the loss is produced.
This problem is certéinly associated with the energy conversion of muscle con~
traction. At any rate, further study of the mechanism of energy conversion

is strongly required.

6.7 CONCLUSION

A mathematical model of muscle contraction was developed, which could
account for various mechanical and thermodynamical properties of contraction,
and molecular events of the mechano-chemical coupling and excitation-
contraction coupling in the fully dynamic sense,

1. The two-component model consisting of the contractile component (CC)
and the series elastic component (SEC) was adopted as a mechanical model.

The CC was modeled, based on the microstructure of muscle fiber, the mole-
cular mechanism of actin-myosin-ATP system, the sliding-filament mechanism
and the excitation-contraction coupling involving regulation of Ca ion.

2. A leading nonlinear characteristic of the CC model was an increase
in the rate constant K2 produced by increasing velocity of sliding movements
(see Eq. (6.15)).

3. The force-load-velocity relation, load-energy liberation relation
and . rad-heat production relation were accounted for by the model.

4. All the parameters involved in the model (rate constants, dissoci-~
ation constant, force generated by single cross-bridges, etc.) were deter-
mined quantitatively by using the physiological data obtained in chapter III.

5. 1Isometric twitch contraction was simulated on a digital computer

by the model, and close agreements were shown between the responses of the
g
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model and the experimental curves of tension and inner Ca-ion concentration.

6. Isotonic twitches against various loads were also simulated on a
digital computer. Tension and shortening curves obtained from the model
showed close coincidence with those from the frog semitendinosus muscle.

7. ‘A mean value of the relative displacement of cross-bridges was
estimated to be about 92 Z during shortening and about 85 2 during length-
ening.

8. Following problems are discussed ; 1) regulation of the reaction
of actin-myosin-ATP system by Ca ion; ii) number of molecules of ATP which

are hydrolyzed during single contractile reaction.



CHAPTER VII
CONCLUSION

Both dynamic behaviors of the contractile mechanism and mechanical
properties of the muscle contraction were explicated by means of simulation
studies on a computer and physiological experiments made on the bundle
preparations dissected from frog semitendinosus muscle at 10 fC. Every
possible effort was devoted to develop the unified model of muscle contrac-
tion. An outline of the obtained results is given here, since details of
them are represented in the section of conclusion of each chapter.

1. Mechanical properties of the resting and contracting muscles were
determined quantitatively by the physiological recordings (chapter III).

i) Viscous and elastic properties of'the resting muscles were deter-

mined (Table III-2).

ii) The load-extension relation of the series elastic component of the
contracting muscles was determined. The series elasticity was
expressed as a function of extension by Eq. (3.3).

iii) Transient respomnses to the isotonic quick releases were simulated
on a digital computer using the model, and the experimental load-
extension relation , Eq. (3.3), was confirmed (section 3.4).

iv) The force-load—-velocity relations of the contracting muscle during
shortening and lengthening were determined (Eqs. (3.19) and (3.20)).
The viscou-like force was expressed as a function of force and
velocity by arranging the force-load-velocity equations(Eqs. (3.18)

and (3.22)).

2. The time courses of the active state were estimated by mathematical
analyses based on the three-component mechanical model comnsisting of the
force generator, the viscous-like and series elastic components (sections

4.3 and 4.4). The analytical curves were compared with the experimental

- 157 -
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ones estimated by quick release or stretch in the bundle preparation (sec~—
tion 4.6). The analytical active state curve agreed approximately with the
experimental curve, when the amount of release or stretch was less than 2 7%

of the standard length.

3. A mechanical model consisting of force generator, viscous and elastic
components under the resting and contracting states was developed, based on
the results obtained in chapters IIL and IV (section 5.2). Dynamic character-
istics of muscle contraction were explained quantitatively in terms of the
model (section 5.3). Correspondence of the model to the microstructure and

to the sliding-filament theory was represented (section 5.4).

4., A mathematical model of the contractile component was developed,
based on the actin-myosin-ATP reaction system, the sliding-filament theory
and the excitation-contraction coupling (section 6.3). A total model of_
the muscle contraction was developed by introducing the contractile com-
ponent model into the two-component model consisting of the series elastic
and contractile components.

i) All the parameters of the contractile component model were deter-

mined quantitatively by employing the physiological data obtained in
chapter IIT (section 6.4).

ii) The model accounted for the force-load-velocity, load-energy
liberation and load-heat production relations.(section 6.4).

ii1) Transient responses of isometric and isotonic twitches were simu-
lated on a digital computer., The simulated results showed close
agreements with the physiological data obtained from frog semiﬁendi—

nosus muscle (section 6.5).
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iv) Time courses of the rate of releasing of Ca ion and that of up-
taking, and those of inner Ca ion concentration were estimated (
section 6.5).

v) It was shown that, when heavier load was applied, number of the
force~developing cross-bridges was increased and less energy was
liberated.

vi) Mean values of the relative displacement of cross-bridges in single

o

cycles of the contractile reaction were estimated to be 92 A during

=]
shortening and 85 A during lengthening (section 6.6).
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APPENDIX A EQUIVALENT MASS

Geometric diagram of the lever system employed in the physiological
experiments is shown in Fig. A-l. Denoting by I the moment of inertia of
the isotonic lever and by T the torque exerted round the pivot, we get the
kinetic equation for the isotonic lever system:

I8 =T =P r cos@

where 6 = angle of the isotonic lever from the vertical axis,

s}
i

lengh of the disotonic lever from the pivot to the tip,

ae]
It

tension on muscle.

) ]
RCA 5734
[
[ e
} ) ) isometric
roqi lever
i
-0
|
I
|
N

Fig. A-1 Schematic drawing of the employed lever system.
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n
Because 9 is sufficiently small, then cos 6 = 1.0
18 =Pr

r0 X

Al

where X = displacement of the isotonic lever on the horizontal axis;
X is nearly equal to the shortening of muscle.
Hence,
P=(1/t2) X
On the other hand, the kinetic equation of muscle is
A e
P=MX
where ﬁ = equivalent mass consisting of the isotonic lever and an applie
load.
Namely. we can obtain
ﬁ = I/r2
Dimensions of the isotonic lever are r= 7cm, r= 0.7 em (length from the

pivot to the point of hunging a load), and the mass of the lever = 400 mg

Thus, we get

it

"2
13.7 + 0.49 P_ (g.cu )

A
M

[

0.28 + 0.01 P (g)

where Pe = applied load (g).
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CHAPTER I
INTRODUCTION

Recently, developments of prostheses, artificial limbs, manipulators
and robots have extensively proceeded with advances of electronics, control
theory and Biomechanisms. But these studies have left various significant
problems to be solved. In particular, it has been urgently required to
develop adequate control systems which are capable of controlling satisfac—
torily several actuating mechanisms in the artificial 1imbs. In view of
the fact that existing control systems designed by engineers are entirely
far the biological control system in respect to performance and stability,
it is obviously significant to clarify magnificient functions of the motor
control system from the view-point of enginnering.

The motor control system is provided with several neuromuscular re-
flexes at the spinal cord level that play dominant roles in the regulation
of both posture and movement. One of the most important of them is undoubtf
edly the stretch reflex consisting of muscle spindles~» alpha motoneurons —»
muscles. The reflex is thought to fulfill the role of the feedback system
which controls length of the muscle, and thus to function in maintaining
the posture. Another reflex consisting of Golgi tendon organs —-alpha
motoneurons — muscles must apparently function in tension control as well as
in safety mechanism which protects a muscle from overloads and consequent
damage. It is of interest that the position and velocity sensitivities of
nmuscle spindles are regulated by gamma efferent signals descending from
higher nervous centers. Any automatic control instruments made by engineers
have never furnished such an active Ffunction. To sum up, capability of
highly functional and complex control of movement would be originated from
the multiple and hierachical innervations between local control loops and
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higher nervous centers.

In general, the motor system has been studied in the disciplines of
physiology, neurophysiology, biology and biophysics. Consequently functions
of the individual physiological components have been made clear in detail, and
the essential anatomy has been established. But it has been felt that only
a beginning has been made in understanding how the motor control system
works in fhe fully dynamic'sense. As commonly believed, simulation study

"analysis by synthesis' would be useful for dynamic

based 6n the concept of

analyses of the system.
In fact, there are many different kinds of simulation studies that

attempt to elucidate the mechanism of the motor system. For example, Houk
28 51

(1966), and Mains and Soechting (1971) have studied the stretch reflex in

normal human subjects, applying a force disturbance input to the system.

63 6L
Young and his co-workers (Young, 1969; Young et al. 1964) and McRuer et al.
51
(1968) have identified dynamic characteristics of the human operator and
32

proposed the models. Further, Houk et al. (1970) have investigated the
length and force feedback of cat's soleus muscles form the point of view
of control theory. In addition to them, various kinds of quantitative

approaches involving frquency analysis, stability analysis and others have

. 58 33
been executed (Vickers, 1968; Ishida and Umetani, 1972; Hatakeyama et al.

26

1972). All these models, however, are not satisfactory because of fragmentary

explanations of specified phenomena, although they have furnished us with

useful informations in understanding the motor system. Furthermore, most

of them have been involved in constructing simple quasi-linear models without

regarding the nonlinear features provided in muscle spindles and muscles.
Serious problems to be settled definitely are summarized as follows:

how do we employ our muscle spindles in the control of movement and posture,

and why do we need this potent and highly differential gamma-spindle

apparatus? What are the tasks of the tendon organs? The principal objects
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‘of the‘present study are indeed to explicate these problems from an entirely
new angle. A strong endeavor is made to explain the functional roles of
muscle spindles and a gamma efferent system, and to clarify the mechanism of
how higher nervous centers govern the several spinal reflexes.

Organization of Part II is cited below. Note that the investigations
in chapters III, IV-and V deal with soleus muscles of cat, and those in chapter

VI with a human forearm motor system.

Chapter II gives an abridged description of the neuromuscular control
system.

In chapter III, a mathematical model of muscle spindle is developed,
based .on physiological and anatomical data obtained from cat soleus. The
model represents the responses of primary and secondary endings as a non-
linear function of muscle length and frequency of fusimotor stimulation.

In chapter IV, a mathematical model of the stretch reflex of cat soleus
muscle is developed. Responses of the model obtained from analog simulations
are compared with the physiological data, and in the process the effects of
fusimotor fibers on the stretch reflex are accounted for.

In chapter V,a mathematical model of the antagonistic neuromuscular
control system at the spinal cord level is developed, based on the results
obtained in c¢hapters III and IV. The model consists of a pair of agonist and
antagonist muscles, limb-load mechanical system, muscle spindles (GIla, GII
afferent fibers), Golgi tendon organs ( GIb afferent fibers) , alpha and
gamma efferent pathways. The mechanisms of postural control, temnsion control
and velocity control are examined.

In chapter VI, a mathematical model of a human forearm motor system is
developed. The voluntary movements of intact human subjects and the responses
of.eleCtrically stimulated muscles are simulated on an analog computer.

Chapter VII summarizes major findings and conclusions and also includes

some discussions for further researches.



CHAPTER 11

MOTOR CONTROL SYSTEM: REVIEW

2.1 GENERAL
The principal anatomical pathways of a neuromuscular control system are
outlined schematically in Fig. 2.lfg The figure shows some of the pathways
over which the spinal reflex signals are transmitted. The physiological com-
20
ponents of the motor system may fall into four major categories;
(1) muscle, which is a unidirectional force generating device,
(2) sensory organs, which are transducers that monitor system performance,
(3) neurons, which are processors that transform sensory signals into positive
commands to muscles,
(4) nerve fibers, which are the transmission lines of the nervous system.
Efferent signals proceed from the spinal cord to the muscle and its receptors
(muscle spindles) via the ventral spinal root. There are at least two
types of efferent paths; the alpha efferent fibers which innervate the or—-
dinary extrafusal muscle fibers, and the gamma efferent fibers which inner-

vate the intrafusal muscle fibers of the muscle spindles. The afferent

paths carrying signals from the muscle receptors enter the spinal cord via

Cutaneous
and joint
receptors

Afferent
Spinal fibers
cord

Dorsal root

Muscle

Interneuron Spindle

fibers

excitatory synapse
inhibitory synapse
receptor

motor endplate

IT?T

34
Fig. 2.1 Musculospinal reflex pathways (redrawn from Jones, 1969).
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the dorsal roots. These afferent fibers arise in the spindles and Golgi
%
tendon organs of the muscle,. ) Thus, alpha motoneuron (spinal ventral horn
cell) receives a consequence of signals coming from both higher nervous
*%

centers and from sensory receptors >, and muscle fibers, innervated by

alpha motoneuron, work together to provide fine control of limb movements.

2,2 SKELETAL MUSCLE

A skeletal muscle consists of many extrafusal muscle fibers which are
innervated by alpha motoneurons, and the fibers aré-attached onto the relevantr
bone through tendons. The contractile process of muscle is schematically
illustrated in Fig. 2.2 (details of structures and functions of a striated

muscle were described in chapter II of part 1). Neural excitation produces

Active Contractile Force Tension

|
} |
Neural) Contractile / Viscoelasticity]| | Shortening
—
SignalE Membrane Machinery | F of Muscle P Load X
. |
; t Fai |
b — e Muscler—————— — e — !

Fig. 2.2 Process of muscle contraction

a series of mechano-chemical reactions and in turn develops an active con-
tractile force. The active force is a function of neural signals ( pulse
frequency) and length of muscle , and the force is transmitted to the exter-
nal mechanical loading system via filtering effects of muscle viscoelasticity.
That is, force and shortening of the muscle are decided by firing rates of
the alpha nerve fibers and viscous elastic properties of the muscle, besides

the external loéding.

*) The dorsal roots also contains afferent fibers from receptors located in
the joints, in adjacent tissue and in cutaneous layers. However, there is

little quantitative knowledge of how they subserve the overall system.

**) The Renshaw cell feedback loop is not consideréd iﬁ the present study.
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2.3 MUSCLE PROPRIOCEPTORS
a) Muscle spindle

Muscle spindle, located in parallel with the e%trafusal muscle fibers,
is an adjustable stretch receptor which detects length pf muscle and rate of
its change. According to the recent anatomical and physiological findings
( Granit, l970)i3following features may be outlined. A simplified sche-
matic view of a spindle is shown in Fig. 2.3 (Matthews, 1964)4.9
i) There are two types of intrafusal fibers; nuclear bag fibers and nuclear

chain fibers.

ii) There are two types of afferent sensory endings; primary endings and

secondary endings, which are associated with the group Ia (GIa) and group

IT (GII) afferent fibers, respectively.

iii) There are two functionally separated types of efferent innervation to

the spindle; dynamic gamma (fusimotor) fibers (Yl) and static gamma

fibers (Yz). Upon stimulation, dynamic gamma fibers significantly increase

the dynamic responses (velocity sensitivity) of primary endings. Static
gamma fibers increase the static responses (position sensitivity) of

primary and secondary endings.

Group 1l
aofferent,

Nuclear-bag fibre

Nuclear-chain fibre

s=pevrEole ] 1) W SIoMNG I YAz E)
Primary ‘ending Secondary ending

Fig. 2.3 Simplified picture of the mammalian muscle spindle (from
49

Matthews, 1964).

Namely, the pulse frequency of GIa or GII afferent fibers is a function

of at least two independent quantities; efferent pulse frequency of gamma
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fibers besides length and velocity of the muscle. It should be noted that
position and velocity sensitivities of the spindle receptors are regulated

by gamma efferent fibers.

b) Golgi tendon organs
Golgi tendon organs, located in the muscel tendons, are mechanoreceptors
sensitive to a total tension on muscle because they are placed in series with

it. Afferent nerve fibers from the organs are termed group Ib fibers (GIb).

The tendon organs are very sensitive to the tension produced by active con-
traction of the muscle, while many tendon orgauns have a rather high threshold

29 31
to passive stretch (Houk, 1967; Houk and Simon, 1967).

2.4 NERVE FIBERS AND ALPHA MOTONEURON

It is generally acknowledged that the particular form of a nerve pulse
has no meaning to the nervous system. Rather, the position of the pulse ip
time contains all the information that is transmitted along nerve fibers.
Thus, we consider only the flow of instantaneous pulse frequency through
nerve fibers and neurons.

Time delays due to transmission along nerve fibers are directly pro-
portional to the length of the fiber and inversely proportional to the dia-
meter of the fiber*>. Assuming the fiber length between the spinal cord and

the soleus to be about 0.5 m, the corresponding time delay along each

nerve fiber (alpha, gamma, GIla, GIb, GII) can be calculated. The delay is,

*y 1,0 Y in diameter is about 6 m/sec of the condicnion velocity. Alpha
efferent fibers, 10-20U in diameter, conduct at a velocity of 50-80 m/sec (
cat soleus); gamma efferents, 2-8U in diameter, 15-50 m/sec of the conduction
velocity; GIla and GIb afferent fibers , 10-201 in diameter, conduct

at a velocity of 60-120 m/sec; GII afferent fibers, 4-12 U in diameter,

20,24
30-72 m/sec of the conduction velocity.
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however, about several miliseconds at most, so that its effect is neglected
in the present study.

Alpha motoneurons in the spinal cord may be recognized as an element
transmitting somewhat of a replica of the algebraic sum of its excitatory
and inhibitory inputs, subject to the following modifications; (i) synaptic
delay of less than 1.0 msec, (ii) attenuator factor, which is somewhat de-
pendent on the past history of inputs, e.g., post—tetanic potensiation,

adaptation, fatigue, etc. , (iii) threshold.

2.5 EFFECTS OF MUSCLE RECEPTORS ON THE MOTONEURONS

The monosynaptic spinal reflex (stretch reflex) consists of a two-neuron
arc; Gla afferent fibers from the spindle receptors synapse directly on the
alpha motoneurons. Other pathways associated with the several spinal
reflexes include one or more interneurons. The interneurons receiveng
synapses from GIla and GIb fibers have been termed -fi and ;§ interneurons.

( Eccles, Eccles and Lundberg, l960§5Jones, l969§? The interneurons whose
effect upon the alpha motoneurons is excitatory are termed the fgi or Eﬁi

interneurons, and those inhibitory are termed the AI or BI interneurons.

Effects of three kinds of afferent fibers upon the alpha motoneurons are
outlined below.

i) Gla fibers synapse directly on their motoneurons (homonymous), and also
on those synergetic muscles (heteronymous). In addition, GIa fibers
synapse on the AT interneurons of the antagonists. Reciprocal inner-
vation thus occurs at the spinal cord level.

ii) GIb fibers from -Golgi tendon organs produce inhibitory effect on homo-
nymous and heteromymous alpha motoneurons, these pathways being via BI
interneurons. In addition, GIb fibers produce excitatory effect on the

alpha motoneurons of the antagonistic muscles via BE interneurons.
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inbibitory synapse
excitatory synapse
receptor

motor end-plate

AT T

Flexors

Fig. 2.4 Information-flow diagram of myotatic unit (redrawn from
4

3
Jones (1969)).

iii)Spindle group II1 afferent fibers conduct more slowly and through a poly~-
synaptic connection, but information on the effects of GILII fibers upon
alpha motoneurons are rather meagre. GII fibers are drawn in Fig. 2.4
without any spinal or central termination because of lack of knowledge
about their terminations. A current view on the reflex action of the GII
is that they produce excitation of flexor motoneurones with inhibition
of extensor motoneurones. However, Matthews (1969)50 has pointed
out that the electrical stimulation of extensor GII afferent fibers
may occasionally give extensor fascilitation with inhibition of flexors.
Further, it was suggested by R. M. Eccles and Lundberg (1959)11hat there
might be "two alternative pathways from group II afferents onto flexor

1"

motoneurons, one excitatory and one inhibitory" and with "some sort of

reciprocal linkage" between them. To sum up, there would be the possi-
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bility of at least four reflex patterns associated with GII fibers;
namely, flexor reflex pattern, autogenetic inhibition, autogenetic
excitation and reciprocal innervation. Thus, the interneurons which
mediate the reflex effects of spindle GII activity are seen to occupy a

crucial position. This problem is investigated in chapter V.

7.6 ORGANIZATION OF THE NEUROMUSCULAR SYSTEM

The several flexor and extensor muscles, associated receptors,. their
afferent and efferent neural pathways to the motoneurons and their inter-

connections within the spinal cord all form a fundamental operational unit

of muscles (myotatic nunit). The schematic blockdiagram of the myotatic
Flexor Afpha
Central Control of Motoneurone
the Alpha Motoneurone . Flexar
Zaetl
A
Golgi
Spindie
Gamma

Motoneurone|

Central
Control of the + N
T-Motoneurone Losd - Limb ¢ Position

Extensor [ {+ is Flexion}

Alpha =

{Motoneurone

Extensor
—
Central Control
of the Afpha
M
ne
Golgi
Spindle
Gamma
Matoneurone
+ + +

Central
Control ot the
T-Motonaurone

Fig. 2.5 Blockdiagram of neuromuscular control system (redrawn from
Vodovnik (1971)).°"



- 179 -

unit is represented in Fig. 2.5, by identifying the role of each physio-
logical component in carrying out the spinal reflex. There are two funda-
mental feedback loops (spinal reflex arc ) associated with the spindle
aﬁd Golgi tendon organs.

The stretch reflex arc consisting of spindle group Ia afferents —>
alpha motoneurons —» muscle has been interpreted as feedback system which
controls muscle length. ©Note that the spindle receptor fulfills the func-
tions of feedback transducer, comparator and controller with adjustable
sensitivities. Another reflex arc, Golgi tendon organs-» alpha motoneurons-»
muscle, is a feedback system which regulates muscle tension.

The control loop contains two reference command inputs from higher
nervous centers, alpha and gamma efferent pathways. It has been commonly
believed that gamma efferent input functions essentially as a position-
command signal, at least for smooth, continuous movements. The second
input, alpha efferent command signal produces a rapid response because of
fast conduction velocity and few synapses. It is thought by most re-
searchers that this alpha command input is normally employed for rapid
voluntary motions, especially those of the skilled task and the avoidance

reflex.



CHAPTER III

A MATHEMATICAL MODEL OF MUSCLE SPINDLE OF CAT SOLEUS MUSCLE

3.1 INTRODUCTION ,
u9

Itf a recent review, Matthews (1964) has pointed out that in many muscles
of the cét the total number of spindle nerve fibers, including both efferent
and afferent, is considerably greater than the number of the ordinary alpha
motor nerve fibers which supply the extrafusal muscle fibers. This fact
strongly suggests that the muscle spindle is the key organ in the regulation
of muscle contraction and that it plays a dominant vrole in the control of
both posture and movement. While a large quantity of physiological data
about the mammalian muscle spindles has been accumulated by extensive studies
(Matthews, 196:; Lennerstrand, l96§; Granit, l970;? precise functions of the
receptors are still far from being understood. Further, many quantitative

approaches, invelvong mathematical descriptions and the formulation of models

of the spindle,have been attempted by'many workers, but most of them have

been rather meagre. Earlier approaches have been concerned with simple
28 51
linear models of the lead-lag filter type(Houk, 1966; Toyama, 1966; McRuer

51 21 55
et al., 1968; Gottlieb et al., 1969; Rudjord, 1970). Recently, in order to

account for the nonlinear effects of fusimotor stimulation on the dynamic
characteristics of musele spindles, more elaborated models have been

12 22
developed by Crowe (1968), Gottlieb et al. (1970) and Angers and Delisle

6
(1971) , but these models are not sc satisfactory.

The purpose of the present chapter is to develop a mathematical model
which can account for behavioral characteristics exhibited by mammalian muscle
spindles. A special attension is paid to the nonlinear properties of the
receptors, such as the éffects of fusimotor stimulations on the position and
velocity sensitivities. The model consisting of three distinct subcomponents,
i.e., a mechanical filter, a mechano-electric transducer and an encoder,

is developed, based on physiological and anatomical findings. The system

- 180 -
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parameters concerning primary and secondary endings are determined quantita-
tively by simulating the transient and steady state responses of the endings.
All the simulation experiments in the present work are made on an analog
computer, to account for the exisking physiological data obtained from the

muscle spindles of cat soleus.

3.2 STRUCTURE AND FUNCTION OF MUSCLE SPINDLE

a) General

A simplified schematic view of a mammalian muscle spindle is shown in
Fig. 2.3, and outline of the receptor is expressed at section 2.3. The
nuclear bag fibers have a central region with few myofibrils, which is joined
in series either side to the striated contractile tissue. The nuclear
chain fibers are striated along their entire length with nuclei evenly dis-
tributed. The primary endings have axon branches wound around the central
part of the nuclear bag fibers and alsoiaround the nuclear chain fibers. '
The large majority of the secondary endings are found on the nuclear chain
fibers, with a minority on nuclear bag fibers. ‘The response of these endings
to muscle stretch is an increase in firing rate not only to signal the magni-
tude of stretch (static response), but also to signal the rate of change of
stretch (dynamic response). As for the two functionally separated fusimotor
fibers, although the details of spindle innervation by way of the fusimotor

23 24 u9 .

system is much dispute, it may be considered that the bag fibers receive
dynamic fusimotor fibers, and the chain fibers receive static fusimotor
fibers. )

It is well known that there are three main transformations that occur
as the spindle changes muscle length into afferent nerve pulses. Fig. 3.1
shows the illustration of transformations involved in the processes from the

mechanical and neuronal stimulations to the responses in the form  of

afferent spikes. A mechanical filter refers to the process by which muscle
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Fig. 3.1 Blockdiagram to illustrate three distinct kinds of trans-

formation in mammalian muscle spindle.

length is converted into mechanical distortion of nerve endings. A mechano-
electric transducer represents the biochemical process by which distortion
of nerve endings is converted into continuous generator potential, An en-
coder represents the membrane breakdown process by which generator potential
is encoded into discharge rate of afferent pulses. Dynamic characteristics
in the responses of spindle receptors may be accounted for by a cascade

combination of these three transformations.

b) Static and dynamic properties of muscle spindles

We shall present a summary of the data now available concerning the
static and dynamic properties of the muscle spindles. According to the
physiological literature, we use following terms of convenience; position
sensitivity, dynamic index, velocity sensitivity and bias.(Lennerstrand,

39 13 22 18
1968; Crowe and Matthews, 1964a; Gottlieb et al., 1970; Eldred et al., 1953).
While the terms refer to steady state behaviors after transients have died
out, they seem to characterize the transfer properties of spindle receptors.

In fact, as described in the following section in detail, the transfer pro-

perties of muscle spindles to mechanical input are expressed by the first

order transfer function.
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Fig. 3.2 Effects of fusimotor stimulation on the position sensitivities
of primary (A, B, C) and secondary endings (D). A, the effect of
dynamic fusimotor stimulation on the relation between the frequency
of discharge of a primary ending and the extension applied to the
cat soleus muscle. B, the effect of static fusimotor stimulation on
the discharge rate-extension relation. C, D, the average effect on
the position sensitivity of varying the frequency of stimulation of
combined coarse ventral root filaments. Figure A, from Crowe and

13 1
Matthews (1964a); B, C, D, from Brown, Lawrence and Matthews (1969).

where KX represents the static gain of the system, i.e., position sensitivity,
A i A
TX represents a convenient description of the velocity sensitivity, and T
is the lag time constant.
i)' Position sensitivity

The steady state firing rates of the primary and secondary endings

increase approximately linearly with the length of muscle. The slope of the
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Fig. 3.3 The effect of varying the frequency of fusimotor stimulation
on the size of the ' dynamic index' of a primary ending found for
particular velocities of stretching. A, stimulation of dynamic fusi-
motor fiber; B, stimulation of static fiber. (redrawn from Crowe
and Matthews (1964&)).13

best straight line which can be fitted to the graph of discharge frequency

against length may be defined as the position sensitivity of the ending. It

has been confirmed that the position sensitivity of primary endings is in-
creased both by stimulation of dynamic fusimotor fibers and by stimulation
of static fibers, while the position sensitivity of secondary endings is

increased only by static fusimotor stimulation. These effects are illus-

trated in Fig. 3.2.

ii) Velocity sensitivity and dynamic index

The velocity sensitivity is a measure of the dynamic component of the

afferent outputs which is proporticnal to the velocity of muscle

stretch. The sensitivity has been studied experimentally by measuring the

13
dynamic index of the ramp response (Crowe and Matthews, 1964a). The dynamic

index is defined as the difference between the frequency of firing of the

ending just before the end of the dynamic phase of ramp stretching and

that occuring at the final length 0.5 sec after completion of the dynamic

phase of stretching. Since this quantity should increase in direct propor-
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TABLE TIII-1

EFFECTS OF FUSIMOTOR STIMULATIONS AND VELOCITY OF STRETCHING oN POSITION AND
VELOCITY SENSITIVITIES AND BiAS OF SPINDLE AFFERENTS

Dynamic fiber Static fiber 1 Increase in
stimulation stimulation [ velocity

Primary ending
Position sensitivity increase increase no effect

decrease

Velocity sensitivity increase slight decrease
Bias increase increase
Lag time constant no effect no effect

no effect

decrease

Secondary ending
Position sensitivity no effect increase
Velocity sensitivity no effect no effect
Bias no effect increase

effect no effect

no effect
decrease

o &

no effect
Lag time constant n

a

decrease

tion to the velocity of applied stretch for the linear system, the velocity
sensitivity may be defined as the slope of the relation between the dynamic
index and the velocity ( Appendix C ).

Fig. 3.3 shows the effect of fusimotor stimulation on the dynamic index
of a primary ending obtained by Crowe and Matthews (1964a;? Stimulation of
dynamic fusimotor fibers causes a considerable increase in dynamic index,
but stimulation of static fusimotor fibers causes a slight decrease in it.
This fact means that the velocity sensitivity of primary endings is increased
by dynamic fusimotor stimulation, but slightly decreased by static one,

On the other hand, the velocity sensitivity of gecondary endings is independ=-
ent of the fusimotor stimulations. Note that the sensitivities of the end-
ings, including both primary and secondary, are decreased by increésihg ve-
locity, because the dynamic index~velocity curves of both endings appear to

be convex upwards for the lower velocity of stretching.

iii) Bias
At a steady muscle length, the firing rate of spindle endings is en-

hanced by fusimotor stimulation, and it is approximately a linear function
9
of ‘the stimulation rate of either fusimotor fiber type (Bessou et al, 1968).

The term ' bias' represents the tonic component of the spindle output that is

independent of stretch; therefore, the bias corresponds to the y-intercept
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Fig. 3.4 The effect on the frequency of discharge of a primary ending,
with the muscle at a constant length, of stimulating a static fusi-
motor fiver ( @ ) and a dynamic fusimotor fiber ( o ), at various

7
frequencies. (From Matthews, 1962)

on the steady state relation between muscle length and discharge frequency.
Fig. 3.4 shows the effect of varying the frequency of fusimotor stimulations

upon the discharge frequency of a primary ending.

iv) Lag time constant

In addition to the nonlinear effects caused by fusimotor stimulations;
we can find other nonlinear features caused by mechanical stimulus. One of
them is, as described in item ii), the decrease in velocity sensitivity
caused by increasing velocity of stretching. Another significant one is
concerned with the lag time constant, %. Estimating the responses of endings
to ramp stretching, we can find that the endings begin to discharge more
repidly in the rising phase of discharging, and to decay faster in the fall-
ing phase as the velocity of stretch is increased ( e.g., Fig. 3.9). These

A

facts mean that the lag time constant, T, may be decreased with an increase

in velocity of stretching.

Thie nonlinear effects described above are summarized in Table III-1.
Note that the primary ending afferent is influenced by stimulation of both

dynamic and static fusimotor fibers and that the secondary afferent is in-
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fluenced almost solely by the static fibers. An explanation of the mechanism
of different effects produced by fusimotor fibers upon the endings may be
obtained by way of differences in the viscoelastic properties of the intra-
fﬁsal fiber. Further, the velocity-—dependences of lag time constant and
velocity sensiticity may be exﬁlained together. This is discussed in section

3.5.

3.3 DEVELOPMENT OF THE MODEL

a) Mechanical filter

We have already developed a mathematical model of the skeletal muscle,
as expressed in the part I of the present thesis. The model consists of a
force generator and viscous and elastic components. The model is considered

to be also applicable to the intrafusal fibers of spindle receptors. In fact,

two kinds of intrafusal fibers, nuclear bag fibers and nuclear chain fibers,
are considered to have contractile regions in series with noncontractile
regions. The contractile region may ‘be expressed by three-component model
consisting of force generator, viscous and parallel elastic components. The
noncontractile region may be represented only by a purely elastic component,
since the viscosity of this portion may be assumed to be considerably smaller
than that of contractile portion. Consequently, we propose a lumped para—
meter model shown in Fig. 3.5. The upper half of the figure corresponds to
the nuclear bag fibers, and the lower half to the nuclear chain fibers acting
in zarallel with the bag fibers. Note that the noncontractile region is
assumed to correspond to the sensory portion in which afferent fibers termi-

nate. Namely, both the extension of spring E, of the nuclear bag fiber and

1

that of spring E, of the chain fiber cause the primary ending to discharge,

3

and that the extension of spring E, of t:» nuclear chain fiber cause the

4

secondary ending to discharge.
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Fig. 3.5 Model of mechanical filter of mammalian muscle spindle

The mechanical filter in Fig.3.5 leads to the following equations.

= -— - + .
El %) E2 (XS Xl) + Dl (XS xl) Fd (3.1)
E3 Xy = E4 ( X, = X4 ) (3.2)
. .
E3x3=E5(Xs—x2)+D2(XS—x2)+FS (3.3)
where El, EZ’ EB’ E4, E5 = springvconstants,
Dl’ D2 = viscous constants,
Fd ( FS ) = contractile force of nuclear bag ( chain ) fiber pro-

duced by stimulation of dynamic (static) gamma fiber,
XS = extengion of the muscle spindle,

x, = extensions.

12 %90 %3

Then it is reckoned that the extension applied to the whole muscle produces

an identical pattern of extension of the spindle;

X =vX (3.4

!

where X = extension of the whole muscle,

<
[}

constant.

b)  Mechano-electric transducer
We shall simply assume that the conversion of distortion of nerve end-

ings into generator potentials is linear process, i.e., the generator poten-
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tial is proportional to the extension of sensory part. It is assumed, simi-
6

larly to Angers and Delisle (1971), that the generator potential of the

primary ending is proportional to a weighted sum of extension taken on both

sensory parts of nuclear bag fiber, E., and chain fiber, E

1 3°

Pgl = Cl Xl + c3 x3 (3.5)

where Pgl: generator potential of primary ending,

c, = constants,

€1 ©3

Similarly, the generator potential of the secondary ending is assumed to be

proportional to the extension of the sensory part of nuclear chain fiber, E

4;
P, = - .
o2 N ( Xy = Xg ) (3.6)
where sz = generator potential of secondary ending,
c4 = constant.
c) Encoder
An encoder corresponds to the process by which generator potential is
37

converted into discharge rate of afferent spikes. According to Katz (1950),
the frquency of afferent spikes has been found, within physiological operat-—
ing limits, to be directly proportional to the receptor potential. Thus,
the frequency of spikes generated in the afferent nerve of primary ending

may be given by

= P + .
R r, ol RO (3.7)
where R = discharge rate of afferent spikes of the primary ending,
Ro = spontaneous discharge‘rate,
rl = constant.

Similarly, the frequency of spikes of secondary endings is written as

Q=1 P + Q (3.8)
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where Q = discharge rate of afferent spikes of secondary endings,

]

Q

spontaneous discharge rate,
o}

r constant.

2

d) Transfer function of the muscle spindle

Taking the Laplace transform of Eqs. (3.1)-(3.8), we obtain (see Appendix B):

TX s Kd Ks
R(s) = R+ (K + —————) X(s) + ————T (s) + ———~FS(S) (3.9
© 1+ 1+ T.s 1+T.s
1 d s
TX' s K '
Q(s) = Q  + (K '+ ) X(s) + —_L._Fs(s) (3.10)
1+T, s 1 +Ts
3 s
where Fd = frequency of stimulation of dynamic gamma fibers,
I' = frequency of stimulation of static gamma fibers.

s

Equations (3.9) and (3.10) give the total change in frequency of afferent
spikes of the primary and secondary endings, as a function of both changes in
muscle length and in stimulation frequencies of static and dynamic gamma fibers.

As illustrated in Table ITI-1, both the position sensitivities KX and Kx'

and the velocity sensitivity TX are changed by fusimotor stimulations, so

that these properties have to be introduced into the parameters. On the basis
of the physiological data in Fig. 3.2, the position sensitivities of primary

and secondary endings may be expressed as

KX =a + a; Fd + a, Ts (3.11)

| - ' ' o :
KX a, + a, ‘Fs (3.12)

RS SR ROV SIS

d

o _ -1
I =L I (s)/ L+ 1)}

where a a a a ' and a,' are constants.
o’ "1 T2° %o 2
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As shown in Fig. 3.3, the dynamic index is an approximately linear func-
tion of the frequency of dynamic fusimotor stimulation. Consequently, the ve-

locity sensitivity of primary endings may be written as

TX = bO + bl Td (3.13)

Because the sensitivity 'I'x is decreased by increasing velocity as shown in
Table III-1, the parameters bO and bl should depend on velocity. On the other
hand, the velocity sensitivity of secondary endings, TX’, is independent of

fusimotor stimulation.

e) Simulation of the model

The equations (3.9)-(3.13) are simulated on an analog computer. The
blockdiagram of the model is shown in Fig. 3.6. Because of the large number
of parameters involved in the equations, we proceed systematically in the‘

simulation of the model. First, estimating appropriate steady-state responses,

1+ Ts T d Ry
a Y

>< ' ! %
a, he i‘—”R
+
X : >< by Joh
'('*‘T]S
bD
1 K
T — S
s 1+7Tss
: Qo
>< a2 »
K! +
s + —> Q
al +
2 +
(a")-
i o/
I @
T+T3s 2

Fig. 3.6 Blockdiagram of the model simulated on an analog computer.
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we identify the static gains such as a,s 215 a,, ao', az', Kd and KS. Then,
simulating the transient responses, we identify the dynamic parameters such as
lag time constant and velocity semsitivities, bo’ bl' Finally, we accumulate
all the estimated parameters obtained from the simulations, and then calculate
the mean value for each parameter after all, because considerable differences
are found between the estimated parameter values of different endings, even
within the same muscle.

When the velocity of stretching is varying with time, the velocity-depend-
ent parameters, bo, bl’ Tl and T3 have to be altered with time according to
change in velocity. Such a simulation procedure, however, is quite difficult,

so that these parameters are simply assumed to be unaltered with time in the

following simulations.

3.4 RESULTS
a) Responses of primary endings

Fig. 3.7 shows the effects of changing the length of the muscle on the
response of a primary ending to stimulation of a dynamic fusimotor fiber.
Figures a and b are the responses of the ending to stretching the muscle by
6 mm at 5 mm/sec in the presence (b) and absence (a) of fusimotor stimulation
at 90 stim/sec. Figures ¢ and d are the responses of the same ending to fusi-—
motor stimulation (90 stim/sec) applied after the muscle was stretched by 2 mm
(¢) and by 6 mm (d) at 10 mm/sec. Periods of fusimotor stimulation are shown
by thick bars at the middle and length changes (ramp stretch) at the bottom.
Spots represent the physiological results redrawn from the literature (Crowe

13

and Matthews, 1964a); in the physiological recordings, a direct display of the
instantaneous frequency of discharge is given by the spot of a cathode ray
tube. For all the frequencygram presented in this chapter, except Fig. 3.11,
physiological results are similarly represented by spots.

Values of the system parameters are estimated individually from eacﬁ

physiological record in Fig. 3.7, and then their mean values are calculated.



~ 193 -

300 a
en
25200
R
0~
2a
w E
£ 100 |
3
0 L L L
]
= 6
3z ¢ £
= E =
o= 2 - 2 _
d 0 D A L A
0 1 2 3 4 5
sec
200 200
_ 7] d
=5 5
QoW
zo 2k ¥ .
2 4100 £ 100
(i = ht . . Dty
g . :
0 0 1 1 L i J
STIM, -
z
S s 6
=
a— 4 E 4
SE =
ZE 2
i} Il 1 1 | |
Z o0 ¢
0 1 2 3 4 5

Fig. 3.7 The effect of changing the length of the muscle on the response of a
primary ending to stimulation of a dynamic fusimotor fiber. Records,
a, b: Response of ending to stretching the muscle by 6 mm at 5 mm/sec
in the presence (b) and absence (a) of fusimotor stimulation.
Records, ¢ and d: Response of the same ending to stimulation applied
after the muscle was stretched by 2 mm (¢) or by 6 mm (d) at 10 mm/sec.
Frequency of fusimotor stimulation in all records was 90 stim/sec.
Spot, experimental result redrawn from Crowe and Matthews (l964a)1.3
Solid 1line, response of the model obtained with the parameters in Table
I11-2.

TABLE I11-2

PARAMETERS ESTIMATED FROM SIMULATION of Filg. 3.7

Experimental condition' Estimated parameters

. X v | Ry { 3, 2, b, A | 14
Tgure | oy | mm/sec stim/sec |imp/sec |im i [ i i | P i
i [ foec tnersec dnpsec | Inglsec —/—‘,’L‘,L”ZSE; Torsse | | stthveee |

_ stim/sec stim/sec | i

a_ls | 5 | o | 230 Is55 | | 6.7 | l0.3 | [

b |6 l'g | 90 l12.0 56 loost [(en | 033 o4 | 0.3 1 0.3
c o2 [ 10 ' 90 | teo 159 1oz 158 i [0.05 [ 037 1o0.13

d 16 I 10 I 90 [ 12 4.9 10025 1 4,4 I ] 032 [ 037 0.3
Mean Value {Number of Measurements} | 16.0{4}| 5.5(4) | 0.033{3} | ! | | 0.37(3} | 0.13(3)
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The results are given in Table III-2 and the simulated responses obtained by
the model with the values are shown with solid lines in Fig. 3.7. The model
response shows a close agreement with the physiological result. As seen from
comparison between a and b, the response of the ending under dynamic fusi-
motor stimulation undergoes more increase in the firing rate than under no
fusimotor stimulation. This is due to the increase in position and velocity
sensitivities.

Fig. 3.8 shows the effects of stimulating a static fusimotor fiber on
the responses of primary endings. Values of the system parameters are esti-
mated similarly from the physiological data.*)The result is given in Table III-
3, and the model responses obtained with the values are shown in Fig. 3.8 with
solid lines. As seen in the figure, the responses under static fusimotor stimu-
lation are greater than those under no stimulation. These effects are evi-
dently due to the increase in position sensitivity caused by the static fusi-
motor stimulation, but the strength of the effects produced on the various
endings differs considerably. These features are shown numerically in Tabie
I11-3,

The ekperimental data in Fig. 3.9 are pertinent for examining the
effects on the lag time constant and on the velocity sensitivity. Fig. 3.9
shows the responses of a single primary ending to stretching the muscle by 6
mm at various velocities 5, 30, 70 mm/sec. Records a, b and ¢ are the re-
sponses of the ending in the absence of fusimotor stimulation, records d, e
and f the responses during stimulating a static fusimotor fiber at 70 stim/
sec, and records g, h and i the responses during stimulating a dynamic fusi-
metor fiber at 70 stim/sec. The period of stimulation is shown by the thick

bar beneath each record? and the stretch at the bottom.

*) The time scale in Fig. 3.8 differs between the dynamic phase of stretching
and the static phase; the recording speed during the dynamic phase was in-
creased 1linearly with the velocity of stretching in order to permit better
observation of the behavior of the spindle endings. The same recording is

seen in Fig. 3.9 and Fig. 3.10.
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Fig. 3.8 The effect on three different primary endings (a, b, c), of stim-
lating the same single static fusimotor fiber. The muscle was stretched

by 6 mm at 30 mm/sec in the presence (a c ) and absence (al, b

2’ 1’
c ) of fu51motor stimulation at 135 stlm/sec. Spot experimental result
obtalned by Crowe and Matthews (l964b), solid line, simulated result

obtained with the parameters in Table III-3.

TABLE ITI-3

PARAMETERS OF THREE DIFFERENT ENDINGS ESTIMATED FROM SIMULATION OF Fie. 3.8

Ty Ro a, a, b, T, Kg Ts
Figure stim/sec imp/sec immg/ Sec immy sec me%%% sec Z'L'Em(??ic sec
stim/sec 1
a, [ o 20 | 42 | 2.0 | 0.013 | |
a, RES 2.0 | 4.2 0.006 | 2.4 |04 | 0.44 ] 0.05
b, T 0 10.0 7.9 8.2 | 0.2 | |
b, 135 10.0 7.9 0.13 | 2.0 | 0.1 | o032 | 005
c, I o 13.0 12.0 | 35 | o2
c, [RES 13.0 12.0 | 9.02 | 2.0 | 0.1 0.13 | 0.05
Mean Value {Number of Measurements}] 8.0{6} | 7.9{6} | 0.05(3} | 2.7{6} | 0.12{6} | 0.3(3y | 0.05{3}

Amount of stretch, X = 6 mm; velocity, v = 30 mm/sec;
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Fig. 3.9 The contrasting effects of stimulating the two kinds of fusi-
motor fibers on the responses of a single primary ending to stretching
the muscle at various velocities. Records, a, b, c: The responses of
the ending in the absence of fusimotor stimulation on stretching the
muscle by 6 mm at 5, 30 and 70 mm/sec. Records, d, e, £: The responses
to similar stretch applied, with stimulating a static fusimotor fiber
at 70 stim/sec; period of stimulation is shown by bar beneath each
record., Records, g, h, i: The responses under stimulating a dynamic
fusimotor fiber at 70 stim/sec.(Note different frequency scale for i).
Spot, physiological result of frequencygram redrawn from Crowe and
Matthews (l964a)1.3 Solid line, response of the model obtained from the

parameter values given in Table III-4.

Values of the parameters are estimated from the physiological data and
their mean values are calculated. The mean value for each parameter is only
given in Table III~-4, and the responses of the model obtained with the values
(before averaged) are shown in Fig. 3.8 with solid lines. As seen in Table
I1I-4, the parameters bO and b1 concerning the velocity sensitivity are de-
creased with an increase in velocity. This is due to the fact that the dynamic
index in Fig. 3.9 has not enhanced in proportion to velocity of stretching.

Similarly, the lag time constant, T is smaller at the higher velocities,

l,
which corresponds to the behavior —— the discharge rate has risen and fallen

more rapidly as velocity is increased.
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TABLE III-4

ESTIMATED PARAMETERS OF THE PRIMARY ENDINGS

= ‘ ;
R 2 a a, K4 T4 Ks T v by b, T,
Figgre‘zn Reference imp/:ec \mp/:ec imp/;ec imp/sec imp/sec sec imp/sec sec mm/sec imp/sec ‘ imp/sec i sec
g:?se;auer T —m m stim/sec stim/sec mm/sec ! rm_\7sec
stim/sec stim/sec { stim/sec
fig. 3.2 (a),Fig.9 [12.001} 6.1(4) 0.017{8} 0.26(2} :
Fig. 3.2 (c).Fig.1 [22.2{2} 3.9(8} 0.032(24) 0.51716) '
Fig. 3.2 (c).Fig.6 3.2018} 0.107(18} |
Fig. 3.3 (a),Fig.4 5.0 78007 0.18fa} |
. 30.0 1.901) 0.085(4) |
| 100.0 §  1.3{1} ; 0.016{4} |
Fig. 3.4 (d).Fig.5 [23.2(2} 0.81(6} 0.94(7} ! ':
Fig. 3.7 {a).Fig.8 |16.0{4} 5.5{4} 0.033(3} 0.37(3} 0.13(2} 5.0 6.7011 | 0.33013 ! 0.3572)
10.0 5.102) | i 0.09{2F
Fig. 3.8 (b).,Fig.3 |8.0{6} 7.9(3} 0.05(3} 0.3(3) 0.05{3} 30.0 2.7(6) | | 0.1216)
Fig. 3.9 {a),Fig.2 |13.3(9} 7.2(6) -0.016{3}] 0.0{3) 0.52{3} 0.1(3) 0.98(3) 0.1{3} 5.0 4.9z | 0.8 0.07(3}
30.0 1.742) | 0.047(1} | 0.018{3}
70.0 1.2{2) . 0.02101} | 0.0{3}
Fig. 3.10 | (b),Fig.10 [13.0(1} 5.5{2} 0.07(2} 0.0{1} 0.29{2} 0.79(2} 10.0 5.002} 6.05(2} 0.05/4}
Fig. 3.11 {e),Fig.11 {16.011} 5.0(1} a,+a,=0.13(2} Kg+Kg=1.82(2} 2.9 15.0(1} 0.31¢2} 2.0(3)
Fig. 3.4 | (c),Fig.7 1.3(3) 0.07(2) 5.0 3.60(3) } 0.6513)
(a),Fig.6 |7.0{4} 5.6(1) 0.0(3} 0.8(31 0.05{3} 30.0 3.3(4) 0.05{4}
(a),Fig.7 |17.0{2} [45.6{4} 0.08{2} 0.42(2} 0.17{2) 5.0 5.30} | 0.1401} 0.13(2}
. 50.0 2101 | 0.03(1} 0.03(2}
(e),Fig.13 |19.0{1} 2.1{11 a,+a, 0.083{5} Kg+Ks=1.4(5) 28 17207 0.19(5} 0.5(6)
(b},Fig.2 |7.0{6} 6.4(3} 0.13(3} 0.59(3) 30.0 28713} 0.08(3} 0.035(6)
Mean value 12.5 1.68 0.0415 0.055 0.535 0.128 0.74 0.067
b, = 1.2 +4.3 e 007
Standard deviation 7.8 2.1 0.062 0.042 0.154 0.027 0.25 0.023 o = 1t .
B b, = 0.015 + 0.1 7008V 1 p_ 36 ¢°0.35v
Number of measurements| 739} (58} 211 54} 21} 7} {24} 191 L7 0. .
T, = 1.8 e-0.048v + 0,93 0.0V

13
Referenc (a) Crowe and Matthews (1964a); (b) Cr?Ye and Matthews

e:
14
(196422; (¢) Brown, Lawrence and Mattg%ws (1969); (d) Matthews

(1962); (e) Harvey and Matthews (1961).

It is of significance to compare the effects of stimulating, separately
and in combination, a static fusimotor fiber and a dynamic fusimotor fiber,
both of which influence the same primary ending. This is achieved in four
experiments. The spot in‘Fig. 3.10 show the frequencygram obtained from
separate and simultaneous stimulations of a static and a dynamic fusimotor
fiber, both at 70 stim/sec (Crowe and Matthews, l964b;? Values of the
parameters are estimated from the physiological data. Estimated values (mean
values) are given in Table II1I-4, and the simulated responses of the model
obtained with the values (before averaged) are shown in Fig. 3.10, solid
lines. Simultaneous stimulation of both fusimotor fibers together produce
a greater increase in discharge rate of the ending than stimulation of either.

alone. Note that the increase in discharge rate produced by the combined
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Fig. 3.10 The effects of stimulating, separately and together, a static
and a dynamic fusimotor fiber, both at 70 stim/sec. The muscle was
stretched by 6 mm at 10 mm/sec. Spot, experimental result of frequen-
cygram obtainedd by Crowe and Matthews (l964b){k Solid line, simulated
result obtained by using the values in Table III-4.
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Fig. 3.11 The effect of stimulating the fusimotor fibers at various
rates (0, 30, 100 stim/sec) on the response of primary ending to
stretching the muscle by 12.45 mm at 2.9 mm/sec. Open circle,

25
experimental result redrawn from Harvey and Matthews (1961). Broken

line, simulated result.

stimulation is approximately equal to the sum of the increase produced by
stimulating the two fusimotor fibers separately. Therefore, the principle of

superposition holds for the case of fusimotor stimulations.
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Open circle in Fig. 3.11 is the experimental result which shows the
effects of ventral stimulation at various frequencies on the response of a

25
primary ending to slow stretch (Harvey and Matthews, 1961). Stimulation of
ventral root filaments is considered to stimulate simultaneously correspond-

ing static and dynamic fusimotor fibers. The parameters estimated from the

physiological data are given in Table III-4, and the broken line in Fig. 3.11
shows the response of the model obtained with the values. It is shown that
increasing the frequency of stimulation produces an increase in the slope of
the discharge rate-~extension relation.

Additional physiological results are simulated . in the same manner as
mentioned above. Estimated values obtained from those siﬁulations are given
in Table ITII-4, while both physiological data and simulated responses are

not shown in this paper on account of space consideration.
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All the parameter values of the primary endings obtained by a series of
simulations are collectively put in order in Table IIT-4. The mean values

concerning the velocity-dependent parameters, bo’ b, and T

1 1’ and their

standard deviations (the root mean square value) are calculated as shown in
the lowest row of the table. As for the velocity-dependent parameters, calcu-
lation of the mean and root mean square values is made only on the particular
velocities such as 5, 10, 30 and 50 mm/sec. In Fig. 3.12, the mean value

is plotted against velocity with open circle, and the root mean square is given
with wvertical bar. Applying the curve fitting procedure to each curve, we

can express the relation with employing exponential function:

b, = 1.2+ 4.7 0057 v L5900V (3.14)
b, = 0.015 + 0.1 004V L35 0V (3.15)
T, = 1.8 048V g g9 o003V (3.16)

where v= velocity of stretching, mm/sec.
Then, the dynamic index can be calculated by introducing Egs. (3.14)

and (3.15) into the relation.
Dynamic index = ( bO + bl Td Y v

Solid line in Fig. 3.13 shows the experimental result which illustrates the
effect of dynamic fusimotor stimulation on the relation between velocity and
dynamic index, and broken line in the figure is the calculated curve of the
dynamic index in such a manner. A quantitative coincidence is seen between

physioloiical and simulated curves, while we have to notice a remarkable dif-

ference appeared only for the case at Td=lOO stim/sec.

b) Responses of the secondary endings
The same technique as employed for the primary endings is applied to

identify the parameters concerning the secondary endings, such as a ', a2',
o
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3.13 The effect of fusimotor stimulation on the relation between dynamic
index of a primary ending and velocity of stretching. Open circle,

13
experimental result redrawn from Crowe and Matthews (1964a). Broken line,

simulated curve.

Primary Secondary

Impulse Frequency
impulses/second

-l

mm

Elongation

3.14 The responses of primary and secondary endings to stretch —
ing by 6 mm at 5 mm/sec in the absence of fusimotor stimulation and
during stimulating several combined coarse ventral root filaments of -
static type. Spot, experimental result redrawn from Brown et al. (1969).

Solid line, simulated respomnse.
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Fig. 3.15 The responses of a secondary ending to an extension of 6. mm
at velocities ranging from 1.2 to lO(g mm/sec.  Spot, experimental
4

result redrawn from Matthews (1963). Solid line, simulated result.

TX', T3, Ks and Ts' Firstly, the parameters ao' and a2' are determined from

the static curve "statics" in Fig. 3.2 (d) that represents the relation

1

between K and Fs' Consequently, we obtain ao'=4.0 (imp/sec)/mm  and

a2' =0.083 (imp/sec)/mm/(stim/sec).

In turn, the transient responses of a secondary ending to triangular
stretching are simulated by means of the model. The physiological data re-
drawn from Brown et al. (1969;Iare shown in Fig. 3.14 with spots. The re-
sponse of a primary ending to similar stretching is also represented for com-
parison. Both the paraméters of the secondary and of the primary endings are
estimated from the physiological records. Estimated values for the parameters

are approximately identical between both endings; ao'=a =1.33 (imp/sec)/mm,

0
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a2’=a2=0.07 (imp/sec) /mm/ (stim/sec), Tx'=bo=3.6 (imp/sec)/ (mm/sec), KS'=O.44

(imp/sec)/(stim/sec), Ks=0.65 (imp/sec)/(stim/sec) and T1=T3=0.44 sec.

Simulated responses of the model obtained with these parameters are shown with

solid lines in Fig. 3.14.

Fig. 3.15 shows the responses of a secondary ending to phasic stretching

48
at various velocities ( Matthews, 1963). Parameters ao' T ' and T, are

> Tx 3
estimated from the physiological data, Estimated values are given in Table
III-5, and simulated responses of the model obtained with the values are shown
with solid lines din Fig. 3.15.

All the -estimated parameters of the secondary endings are summarized in

Table ITII-5, and the mean value is calculated for each parameter. Then, the

TABLE I1I-5

EsTIMATED PARAMETERS OF SECONDARY ENDINGS

Figure's Reference (Q a, a, Ké v Tx T,
number in : . : - s
. imp/sec imp/sec imp/sec imp/sec m/ sec imp/sec sec
this paper —mr— | Twm—_ | stin/sec “Torsec
stim/sec
Fig. 3.2 {c) Fig. 6 4.0{1} 0.083{4}
Fig. 3.14 | (¢) Fig. 7 1.33{3} 0.07{2} 0.44{2} 5 3.6{3} 0.44{3}
Fig. 3.15 £) Fig. 2| 43.0{7} 5.33{7} 1.2 8.0{1} 0.25{1}
R (f) Flg 5 2.801} 0.21{1}
15 2.0{1} 0.17{1}
30 1.8{1} 0.13{1}
50 1.4{1} 0.08{1}
75 1.401} 0.06{1}
100 1.4{1} 0.05{1}
Mean value 43.0 4.12 0.079 0.44 T4=0.76 + 7.7 €04V + 1.2 0-0.04y
1 6 2}
Number of measurements {7} l {11} ’ (6} l { T.-0.2 ¢0.0%V 4 0,05 ¢-0.003v

velocity—~dependent parameters are plotted against velocity in Fig, 3,16.

Curve c represents the velocity sensitivity — velocity relation, and curve

d the lag time constant — velocity relation. Furthermore, we identify the

velocity sensitivities of two additional secondary endings as a function of

velocity by calculating the dynamic index — velocity curves presented in
L8

the literature (Matthews, 1963). The results obtained are plotted in Fig.

3.16, curves a and b. Remarkable differences are found among three curves a,

b and c¢. Curve a seems to show an average feature of velocity sensitivity vs
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Fig. 3.16 The relations between velocity sensitivities and velocity,
obtained from three different secondary endings, a,b and c. Curve,
d, the relation between lag time constant of the secondary endings

and velocity of stretching.

velocity relation. Applying curve fitting procedures to curves a and d,

we can formulate the TX’ - v relation and the Tj - v relation as
T,y = 0.19 0036 v | g 05 ¢0-003 ¥ (3.17)
T =076 +7.7e 00 Y 41 e 0-04 v (3.18)

Both the velocity sensitivity and the lag time constant of the secondary end-
ings are decreased by increasing velocity in the same manner as the primary
endings represent, while quantitative differences are generally found

between both kinds of endings.
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3.5 DISCUSSION

A mathematical model of mammalian muscle spindle which consists of a
mechanical filter, a mechano-electric transducer and an encoder is developed,
based on the physiological and anatomical findings. Much knowledge about
structure of spindle gives a basis of construction of viscoelastic model of a
mechanical filter. Inadditionja large quantity éf experimental data on spindle
behavior that has been obtained from cat's soleus muscle by P. B. C. Matthews
and his coworkers, is quite available to our computer simulations; these data
motivate us to make the quantitative investigations involving construction of
mathematical model and estimation of system parameters. As a result we can
indicate that we have a quantitative agreement, with respect to transient and
steady-state features of the muscle spindles, between physiological and simula-
tion results. Further, it should be noted that our model can account for
the marked nonlinear properties of primary and secondary endings,e.g., varia-
tion of position and velocity sensitivities caused by stimulation of static
and dynamic fusimotor fibers.

49 12

As suggested by Matthews (1964) and Crowe (1968), variation of the
position and velocity sensitivities of spindle may be accounted for by way of
change in the viscous and elastic properties of the intrafusal fibers. The
following assumptions are introduced into the viscous and elastic properties
of intrafusal fibers, based on the knowledge about the mechanical properties
of the skeletal muscles.
1) Stimulation of the dynamic fusimotor fiber increases values of E_ and

2

Dl. The increase in D, is much greater than the increase in E

1 2°

2) Stimulation of the static fusimotor fiber produces an increase in E, but

5

a relatively small increase in D These assumptions 1) and 2) are the

9

12
same as described by Crowe (1968).

3) In addition, increasing velocity does cause an decrease in Dl and D2.

4) Other elastic constants , E., E, and E,, and parameters n, 7., N, and V
173 4 1,27 '3

all remain always constant.
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TABLE III-6

EFFECTS OF V1SCOELASTICITY OF THE INTRAFUSAL FIBERS ON THE POSITION AND VELOCITY SENSITIVITIES OF
THE PRIMARY AND SECONDARY ENDINGS

Nuciear bag fiber

Nuclear chain fiber

Primary ending

Secondary ending

elasticity | viscosity

elasticity | viscosity

position velocity

lag time
constant

position
sensitivity

velocity

lag time

sensitivity|constant

sensitivity}sensitivity
. . T
EZ D.l E5 DZ Kx Tx T Kx T‘ 3

stimulation of
dynamic fiber

slight

large !
arg increase

increase increase increase

increase

slight
decrease

Stimulation of
static fiber

slight

slight
decrease

slight
decrease

increase | increase increase increase

in
52?;5??; ! decrease decrease decrease decrease decrease decrease

It is later discussed that these assumptions are similar to the mechanical

properties exhibited by the skeletal muscle. Introducing the assumptions 1)

-4) into Eq. (A-9), we can obtain Table IILI-6. The result is in a good

agreement with what is actually observed in the responses of muscle spindle.
First, significant effects of fusimotor stimulation on the position and ve-
locity sensitivities, besides effects of velocity on the lag time constant
Additional nonlinear effects which are not

are inclusively accounted for.

emphasized in the simulation because of less significance and of slight non-

linearity are also explained. In Table III-6, velocity sensitivity of a

primary ending, Tx’ is decreased by stimulation of static fusimotor fibers,

13
which is in agreement with the feature in Fig. 3.3 (Crowe and Matthews, 1964a).

Further, Table III-6 shows a slight increase in the lag time constant, Tl,
caused by stimulation of dynamic fusimotor fibers. This effect is actually
observed on the spindle responses as shown in Fig. 3.7 and in Fig. 3.9;
stimulation of a dynamic fiber produces a response over the static part of
stretch which reaches a steady state rather more slowly than in the absence

of fusimotor gstimulation. Now, more satisfactory model may be obtained by

introducing these nonlinear properties into the model, although it becomes
consequently more complicated. These effects, however, are trifling and less
important in the puscle control system than the marked nonlinear effects. The

model proposed in the present study is considered being sufficient as a first

approximation.
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We have clarified the mechanical properties of the skeletal muscle fibers
of the frog by physiological recordings and by simulation studies on a computer
(see chapters III and V of Part I in this paper, or Akazawa et al., 19693 l971§.
The above-mentioned assumptions 1)-4) about the viscous and elastic properties
of the intrafusal fibers are introduced, based on the knowledge of skeletal
muscle fibers. Firstly, we can indicate that the parallel elasticities of the
nuclear chain and nuclear bag fibers, E2 and ES’ are enhanced by stimulating
dynamic and static fusimotor fibers. The following properties have to be
emphasized.: We have shown the existence of two kinds of the parallel
elastic components; one of them is a common passive one and the other is,
although physiological meaning of it can not be known, an active parallel
elastic one whose elasticity is increased in proportion to an increase in the
force generated in the contractile component. This fact means that the parallel
elasticity is increased by stimulation of alpha motor fibers. Another feature
is worthy to note. According to Rack and Westbury (1969;3 the slope of active
tension-extension curve of the cat soleus muscle is increased by stimulation
frequency of alpha motor fibers. This property may also correspond to an in-
crease in parallel elacticity phenomenologically. At any way, assuming that
the intrafusal fibers have the identical mechanical properties with the extra-
fusal fibers, parallel elasticities, E2 and ES’ are considered to be enhanced
by fusimotor stimulations. Other series elasticities, El’ E3 and E4, may be
independent of fusimotor stimulation , and may be approximately constant.

On the other hand, we have also identified two kinds of viscous components
in the skeletal muscle fibers. One of them is a passive viscous element which
may correspond to the viscosity of the resting state. The other is a viscous-
like element which represents the force-load-velocity relation of the contractile
component (see chapter IIT of Part I of this thesis, or Mashima et al., 1972)?2

Viscous coefficient of the passive viscous component is nearly comstant or slight-

ly decreased by an increase in velocity. Viscous-like coefficient of the viscous-
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like component is decreased by increasing velocity , but increased by an in-
crease in the force (active state) developed in the contractile component, i.e.
it is increased by stimulation of alpha motor fibers. Assuming that these
properties of viscosity of the extrafusal fibers are also provided in the intra-
fusal fibers, we can say that viscosities of the nuclear bag and chain fibers,

D and D

1 5> are increased by stimulating the dynamic and static fusimotor fibers,

respectively, Dbesides that both viscosities are decreased by increasing velocity.

3,6 CONCLUSION

1. A mathematical model of the mammalian muscle spindle which consists of
three distinct transformations, a mechanical filter, a méchano—electric trans-—
ducer and an encoder, is developed, based on anatomical and physiological data.

2. All the parameters were determined quantitatively, by simulating the
experimental results obtained from the spindle receptors of cat soleus muscle
by Matthews and his co~workers. ( See Table III-4 and Table III-5).

3. The simulated responses of the model showed close agreements with the
physiological results and accounted for the nonlinear effects of fusimotor
fibers on the responses of spindle receptors. The model explained following
nonlinear features.

i) Position sensitivity of the primary endings is increased approximately
in direct proportion to the frequency of stimulation of the static and
dynamic fusimotor fibers.

ii) Position sensitivity of the secondary endings is increased proportionally
with an increase in stimulation frequency of the static fibers.

iii) Velocity sensitivity of the primary endings dincreases in direct pro-
portion to the stimulation frequency of dynamic fusimotor fibers, while
the sensitivity of the secondary endings is independent of fusimotor

stimulations.
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iv) The senéitivities of primary and secondary endings are together de-
creased by increasing velocity of stretch.

v) The lag time constants in transfer functions of lead-lag filter type
for the primary and secondary endings are decreased as velocity of
stretch is increased.

4, It was discussed that the nonlinear properties above mentioned, i)~

v), could be accounted for by way of variations of the viscous and elastic pro-

perties of the intrafusal fibers, involving the nuclear bag and nuclear chain

fibers.



CHAPTER IV

ANALYSIS OF STRETCH REFLEX IN SOLEUS MUSCLE

4.1 INTRODUCTION

Among the fundamental motor reflexes that play a major role in the
muscular control of posture and movement, one of the most important is un-
doubtedly the stretch reflex. The purpose of the present chapter is to
clarify the dynamic characteristics of the stretch reflex and the functional
roles of each physiological component in its reflex, by means of analog simu-
lations. Firstly, mathematical models of the physiological components such
as muscle, muscle spindle and alpha motoneuron, are developed, based on the
existing data obtained from cat soleus muscles. Then, a mathematical model
of the stretch reflex is synthesized by connecting the ensemble of these
sub-component models according to the neurological priciples. Finally,
behaviors of the model are compared with existing physiological records,
and mechanism of the stretch reflex and the roles of the gamma system in the

reflex are made clear.

4,2 BRIEF REVIEW OF THE STRETCH REFLEX

Basic arc of the stretch reflex is a closed loop consisting of muscle
spindle = group Ia afferent fibers - alpha motoneurons - muscle. Since the
study of Liddell and Sherrington (1924§? most of the physiologists have
recorded the muscular force that is produced as a result of stretching the
muscle. That is, the change of muscle length is treated as input, and the
muscular force as output. The information-flow diagram for this situation is
illustrated schematically in Fig. 4.1.

A passive tension ié produced by stretching the muscle, due to the visco-
elasticity of passive elements such as the surface membrane, connective tissue

and tendons. When the muscle is elongated, the spindle units within the muscle

- 210 -
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respond to stretch by increasing the pulse frequencies in group Ja afferent
fibers, which in turn increase the efferent signals from the alpha motoneurons
to the muscle, and finally enhance the active contractile tension of muscle
(active tension). The sum of the passive tension and the active tension is

termed the total tension.

F-————~—— muscle ————————— -
elongation of muscle X

mechanical property

of resting state
Py passive

o motoneuron

i

|

|

t

{

I .
o f——— t + tension

|

[

)

|

|

t
command y d mechanical property 1
) [ [l i P total

signal ! 4! indl of contracting state + 1

| | | spindle P, | tension
L_____1 | receptor i

active tension

Y command signal /F Tt T T T T T -

Fig. 4.1 Schematic information-flow diagram of the stretch reflex

4,3 DEVELOPMENT OF THE MODEL
a) Muscle model

A mathematical model of the skeletal muscle has been already developed
in chapter V of Part I of this thesis. The model is applied here, and each
parameter of the mechanical elements ~ is identified from the physiological
data obtained from cat soleus muscles. Nonliqear mechaincal properties of
substantial importance are introduced into the model and otherwise are linear-

lized as much as possible. The mechanical model of muscle is shown in Fig.

4,2,
i) Equation of the model

The total tension is expressed as the sum of the passive tension Pl and

the active tension P2.

P=P + P (4.1)

where P total tension.
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The passive tension is produced by the passive viscoelastic resistance
of series elastic component (SECl), parallel elastic one (PECl) and viscous

one (VCl). The equation at the resting state is

PR
P, =K (X-x,)+3B,v
1 RN 1 1 1 (4.2)
v1 =X - Xl
X=X, - X ‘

where XM? muscle length,

X = extension of muscle,

Xo = standard length,

x = extension of SECl,

vy = velocity,

K1 = elastic constant of SECl,
Kp = elastic constant of PECl,
B1 = viscous constant of VCl.

Taking the Laplace transform of Eq. (4.2), we get

1+ 7:2 s
Pl(s) =K (X) X(s) (4.3)
©° 1+ 1, s
1
KO(X) = Kl Kp / ( Kl + Kp ), T = Bl !/ ( Kl + Kp ), Ty = Bl / Kp

Passive tension of cat soleus muscles 1increases exponentially with an in-
crease in extension as demonstrated by Matthews (19593?? This result means
that the elastic constants K1 and Kp are dependent on the muscle extension.
Thus, we express KO(X) as a function of extension of muscle length, X, while
the time constants 1 ‘and T, are assumed to be constant.

The equations for the contracting muscle which consists of force gener-

ator (FG ), series elastic component (SECZ) and viscous-like component (VCZ)

are expressed as follows:
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Fig. 4.2 Model of muscle. SEC, PEC, elastic component; VC, viscous
component; FG, force generator; CC, contractile component; X, Xy >%ys

, active tension

)

extension; P, total tension; Pl’ passive tension; P2

P2 = K2 X2
P2 = F + B2 v2
v, = X - X, y (4.4)

F(P +a)
B 1= ° (v
PO (b - v, )

0)

F(P +a')
= © (v, >0)
P (b +v,)
o 2

where Po = maximum isometric tensiomn,
F = contractile force generated in FG,

extension of SEC

ol
i

x, =0 at F =0,

2 2’ 2
Vo, = velocity of CC,
B2 = viscous coefficient of VCZ’ function of F and Vo
K2 = elastic coefficient of SEC2,

a, a', b, b' = constants of the force-velocity relation.
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Slow velocity of stretching is treated in the present chapter, so that the

viscous coefficient, BZ’ is assumed to depend only on the contractile force.

B, = —B (4.5)

where Bo = yiscous constant of VC2 at F = Po. Then, the contractile force
developed in the force generator, F , is definitely dependent on discharge

rate of alpha motoneurons and the length of muscle. So we employ the follow-

ing transfer function:

1
F(s) = ———— F (s)
1+ 1 s A
o (4.6)
w =
Fyo= £ (A X))
where FA = function of A and XM’

A = firing frequency of alpha motoneuron,
T, = time constant.
ii) Quantitative determination of the parameters
According to the static relation between the passive tension and the

. L5
length of muscle ( Matthews, 1959a), we can get

3 X

K_(X) = 0.007 ( el ~1.0) / X (4.7)

where X, mm; KO(X), Kg/mm.

Analyzing tension responses to stretching cat soleus muscles at the resting
state (Matthews, 1959a)l:5 we estimate T = 0.5 sec and T, = 1.0 sec.

The parameters of the contracting muscle are determined, based on the
physiological data obtained by Rack and his co-workers (Rack and Westbury,
1969§quyce and Rack, 196935. While elasticity of the series elastic com~
ponent of the active muscle, K2, increases with an increase in load or in

extension, we assume the elasticity to be independent of tension and to

35
be 1.0 Kg/mm. As seen from the data ( Joyce and Rack, 1969), this value
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Tension
35 impulses/sec

15 impulseslsec"\

%

4 impulses/sec
~
-~
~

1 =Y !
50 ¢ 50 100
Lengthening Shortening

Velocity (mm/sec)

Fig. 4.3 Force—-velocity relation of cat soleus muscles. Circle ,
experimental result redrawn from Joyce and Rack({1969)3°stimulation
was through five channels at rates indicated on the figure.

Straight lines a, b, ¢ and d ; employed for the simulation,

corresponds with the series elasticity at half a maximum isometric tension.
The viscous constant Bo in Eq. (4.5) is estimated from the force-load-
velocity curves. Fig. 4.3 shows the relation obtained by Joyce and Rack (
l969§f which illustrates the effects of various frequencies of alpha efferent
fibers under the distributed stimulation of five channels.*) The stimu-
lation frequency more than 35 imp/sec may be regarded approximately as a
tetanic stimulation frequency, and consequently the maximum tetanic tension
P0 as about 2.1 Kg. For simplicity, we make an approximationsi.e. the hyper-
bolic force-velocity curves in Fig. 4.3 are expressed by the straight lines.
In this situation, the viscous constant BO may be taken to be a gradient of

the line a.

B = tan £ = 2.1/ 50.0

0.042 Kg/(mm/sec) (4.8)

*#) 1In order to gain a better understanding of the behavior of soleus muscles
under physiological conditions, Rack and his co-workers have employed a
new method of subdividing ventral roots and supplying stimulating pulses to
different groups of motor units in rotation; five different channels were

used in Figs. 4.3, 4.4 and 4.6 in the present paper.
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{ Kg )

Tension

Muscle length (mm)

i L L [ A |
150°  120° 90° 60° 30°
Angle of ankle

Fig. 4.4 Effects of muscle length and stimulation frequency on the

active tension. Open circle, experimental result redrawn from
L

Rack and Westbury (1969). Broken line, simulated result.

This value subsequently implies that the load-velocity curves at A=15.0, 7.0

and 4.0 imp/sec are approximated with the lines b, ¢ and 4 , respectively,

as shown in Fig. 4.3.

In turn, the function FA = f( A, XM ) and the time constant TO are

determined. Solid curves in Fig. 4.4 shows the steady state relation between

muscle length and active tension developed at various stimulation frequencies

Sk

of alpha efferent fibers ( Rack and Westbury, 1969). ( * , See the last page).

Applying curve fitting procedure to a series of curves, we can obtain the

following equation for £ (A, XM).

A
<
F, = {0 (£,50)
< <
£ (0f S1.4) @
2.1 —0.72 e 13 CE-LD £> 1.4)
) _0.134 ) )
£ =162 (1.0 - e Y( X, - 32.5) - 1.0

where dimensions of FA, XM and A are ({Kg], [mm] and [imp/sec], respectively.
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In addition, the time constant L 0.2 sec is estimated from the time courses

of isometric tension development. These results are summarized in Table IV-1,

TABLE 1IVv-1
Mechanical parameters of cat soleus muscle

K (0| Kg/m 0.007(""** _1.0)/x XXX, X =38.9 mm
Tl sec 0.5
Tz sec 1.0
P, Kg 2.1
K2 Kg/mm 1.0
Bo Kg/(mm/sec) 0.041
ro sec 0.2
FA Kg =0 (£,20)

£, (0<f 4¢1.4)

1.4 + 0.72(1.0-e1"5 Gal-8)y (e 51 4

where A
£m14.2¢1.0- €03 (x ~32.5)-1.0

X, XM=mm; A=imp/sec.

Y x| LGS

Fig. 4.5 Model of the cat soleus muscle simulated on an analog computer.

iii) Simulated results

Equations (4.1) - (4.9) are simulated on an analog computer. The block-
diagram is shown in Fig. 4.5. Firstly, the steady active temsion, P2, is
calculated against various values of stimulation frequency A and muscle

length XM. The result is shown with broken line in Fig. 4.4, which shows
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close agreement with the physiological result. Further, the responses of iso-
metric contraction at various muscle lengths to various frequencies of stimu-
lation are simulated with using the program in Fig. 4.5. The results are
shown with broken line in Fig. 4.6. The simulated results are in a good coin-

cidence with the isometric tension curve obtained from the cat soleus (solid

line in Fig. 4.6)

(A) 35 impulses/sec  (B) 10 impulses/sec (C) 5 impulses/sec

30°-5 mm

(¥g)

Tension

(sec) (sec)

Fig. 4.6 Solid line, experimental results redrawn from Rack et al.
5k

(1969); isometric temsion curve obtained from different stimulus rates

(distributed stimulation of five channels) at different muscle lengths.

Broken linej; simulated response.

b) Model of the muscle spindle

The mathematical model of muscle spindle has been developed in chapter TIII.

The model is applied here. The discharge rate in group Ia fibers from pri-

mary endings is expressed as a function of muscle length and frequency of gamma

motor stimulation. The transfer function is given as

. TX s Kd K
R(s) =R+ (K _+ ————) X(s) + ras) + — S T ()
1+ T, s 1+ T, s 1+717 s °
1 d s
o + o o = o
KX ao al Fd + a2 FS . Tx bo + bl Td s

e m I S (LT ), T =T () /(LT s

(4.10)
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where R = firing frequency of group Ia fibers,
Ro = spontaneous firing frequency,
Fd = frequency of stimulating dynamic gamma fibers,
FS = frequency of stimulating static gamma fibers.

Estimated value

Note that the parameters bo, b

and T

1

1

for each parameter is redrawn in Table IV-2 (see Table III-4).

are dependent on velocity of stretching,

and otherwise are constant.
TABLE 1IV-2
Parameters of the spindle group Ia afferent fibers
Ro 13.0 (imp/sec)
a 4.7 (imp/sec)/mm
a 0.04 (imp/sec) /mm/ (stim/sec)
a, 0.06 (imp/sec)/mm/ (stim/sec)
Kd 0.54 (imp/sec)/(stim/sec)
Td 0.13 (sec)
KS 0.74 (imp/sec)/(stim/sec)
Ts 0.07 (sec)
b, 1.2¢4.3 e 0-07Y (imp/sec)/ (mm/sec)
bl 0.015+ 0 _le—0.0lov +O.36e—0'35v (imp/sec)/(mm/sec) / (stim/sec)
T, 1.8¢70- 048V 15 g3¢70-03v (see)
v=mm/sec
c) Model of the alpha motoneuron

A significant property of firing of motoneurons within the primary

24

firing range is the algebraical summation of reflex stimuli ( Granit, 1970).

Thus, alpha motoneuron is expressed here as a simple analog element having

the functions of algebraical summation and threshold.

Namely, firing rate

of the alpha motoneuron, A, is a weighted sum of impulse frequencies of GIa

afferent fibrs, R, and those of the alpha efferent routes from higher

centers, Hu :
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(4.11)

< *)
0 (A=0)
|

Hu+AR (A>0)

where Ha = pulse frequency in alpha efferent route from higher centers,

A = attenuation factor, constant.

Central Nervous System

Muscle Spindle

Fig. 4.7 Model of the stretch reflex.

d) Model of the stretch reflex

A mathematical model of the stretch reflex concerning cat soleus
muscles can be developed by synthesizing the proposed models of muscle,
muscle spindle and alpha motoneuron, according to their anatomical con-
nections. The model is programed on an analog computer , by using Egs.

(4.1) - (4.11). The model is shown in a diagramatical form in Fig. 4.7.

*) The firing rate of alpha motoneuron, A, corresponds to the frequency of

distributed stimulation of five channels of motor units ( cf. Eq. (4.9)).
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4.4 SIMULATION RESULTS
a) The relation between reflex tension and extension

Solid 1line in Fig. 4.8 is a typical rocord of the physiological data to
show the stretch reflex in a soleus muscle of a decerebrate cat ( Matthews,

L5
1959a). The figure shows the increase in tension produced by extending the

)

x

c

(o]

K

=

@

2

I

§:,13.or

g 651»

< I a I I L i o
x 0 1 2 3 4 5 6 7 8 9

(sec)

Fig. 4.8 Simulation of the stretch reflex. Solid line, physiological
45
data redrawn from Matthews (1959a). Broken line, simulated response
of the model. Curve a, total tension produced by extending the soleus

muscle of a cat by 13 mm at 1.9 mm/sec;curve c, passive tension ;

curve b, simulated active tension.

soleus muscle by 13 mm at 1.9 mm/sec, the extension being increased linearly
with time. Curve a is the total tension recorded when the stretch reflex was
present, and curve ¢ the passive tension when the stretch reflex was completely
abolished ( nerve was completely anaesthetized with procaine). Broken line

in Fig. 4.8 is the response obtained from the model. The simulated result
shows close agreement with the experimental one. In the simulation, following
values were used besides Table IV-1 and Table IV-2. 1Initial length of muscle
béfore stretching was taken to be Xi=58.9 mm, spontaneous pulse frequency of
alpha motoneuron to be Ai= 0.9 imp/sec, AKX=O.15 (imp/sec) /mm, ATX=O.28 (imp/

sec)/(mm/sec) and Tl=0.69 sec.
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Of course, the amount of the active tension produced by the stretch reflex
could not be observed actually, so that it has been commonly determined by
subtracting the passive tension from the total tension. Conveniently, time
course of the active tension can be drawn directly by means of the computer
simulation. Curve b (broken line) in Fig. 4.8 shows the simulated response

of the active tension to the same stretching.

b) Effect of gamma activity on the stretch reflex

Influences of the activity of gamma motoneurons on the stretch reflex

by ue
have been investigated in detail by Matthews (1958, 1959b). A typical record

46
of the experimental results is shown in Fig. 4.9, with solid line. The

figure shows the total tension developed in the stretch reflex where the gamma

Tension

Extension

Fig. 4.9 Effects of the gamma activity on the stretch reflex.
Solid 1line, physiological result to show the effect on the stretch
reflex of selectively paralysing the gamma efferent nerve fibers with
procaine. Each record shows the total tension produced in cat soleus
by extending it by 15 mm at 1.5 mm/sec. Record a was obtained before
applying procaine; record e was obtained when the stretch reflex was
abolished by inhibition; records b, ¢, d were obtained when the nerve
had been exposed to procaine for 4.5, 6.5 and 10 min, respectively.

Broken line, simulated response of the model.
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efferent nerve fibers are paralysed selectively by the application of procaine
to the muscle nerves. It was confirmed that the procaine paralysed the
small gamma motor fibers before the large alpha motor fibers*). Record a was
obtained before applying the procaine, record e was obtained when the
stretch reflex was abolished completely by inhibition. Records b, c and d
were obtained when the nerves had been exposed procaine for 4.5, 6.5 and 10
minutes, respectively. The gamma efferent fibers were believed to be para-
lysed to some extent gradually with time. Denoting the firing rates of
gamma motonerurgns in the states a , b, ¢ and d by Fa’ Fb’ Fc and Td,

respectively, we may write the relations Ta > Fb > Fc > T and A=0 in

d’
the stage e. The responses of these stretch reflexes are simulated on an

analog computer with using the parameter values in Table IV-3. The simu-

lated results are shown in Fig. 4.9, with broken lines. The responses of the

model closely agree with the physiological data.
TABLE IV-3
AR A K AT X T,
imp/sec imp/sec imp/sec mt sec
P juivi mm/sec
a 1.45 0.15 0.28 60.2 0.69
b 1.13 0.11 0.22 60.2 0.69
c 0.91 0.09 0.75 60.2 0.69
d 0.73 0.07 0.13 60.2 0.69

*) The changes occured in the stretch reflex did mot occur abruptly, but
took about 5 minutes to develop. The first stage of paralysis during the
first 10 minutes exposure is unaccompanied by any change in the direct motor
résponses of soleus to stimulating its nerve central of the anaesthetized
region, and may be attributed to a selective paralysis of the gamma efferent

nerve fibers.
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Introducing the values in Table IV-3 into Eq. (4.10), we can estimate
the pulse frequency of gamma efferent fibers in each stage ; namely, we get
Ta=80 stim/sec, Tb=40 stim/sec, FC =20 stim/sec and Td=0 , by assuming that
frequencies of both dynamic fusimotor fibers and static. ones are identical (
Td = Fs ) and A= 0.01 (imp/sec)/(imp/sec). At the same time, we get a =

6.7 (imp/sec)/mm, a, +a, = 0.107 (imp/sec)/(stim/sec), bO

= 0.2 (imp/sec)/(mm/sec)/(stim/sec), 0.107 (Xi - X% + (KS + Kd)=

= 13.0 (imp/sec)/
(mm/sec), bl
0.9 (imp/sec)/(stim/sec) and A + 0.01 R = 0.73 imp/sec. These values

closely coincide with those which are estimated from the actual responses of

the muscle spindles in chapter III ( see Table IIV-2).

4.5 DISCUSSION

Since the pioneer work by Liddell and Sherrington (l924)t0most of the
physiologists have investigated the stretch reflex of single muscles, instead
of a pair of agonist and antagonist muscles. Especially, detailed examinq—
tion has been made on the soleus muscle of cat. Thus, the present simu-
lations of the model were attempted to explain the stretch reflex in the
cat soleusrmuscles, and then the obtained results are indicated to satisfac-
torily account for the dynamic characteristics of the reflex action and for
the functional roles of muscle, muscle spindle and gamma efferent fibers in
the reflex.

One of the difficulties encountered during the present simulations is
lack of knowledge concerning the dynamic characteristic of o motoneuron,
especially the attenuation ratio (A) by which the firing rate of group Ia
afferent fibers (R) is converted into that of o motoneurons (A ). We thus
assumed A= 0.01 (imp/sec)/(imp/sec). This value may be recognized as being
reasonable with the recent observation demonstrated by Araki (1972)2 although

the direct evidence cannot be obtained. Fig. 4.10 shows the discharge rate
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of a single motoneuron produced by stimulating gruop Ia nerve fibers at various
frequencies. The ratio X must correspond exactly with the slope of the curve,
A/ R. It is taken to be about 0.05 (imp/sec)/(stim/sec) at the lower stimu-

lation frequencies of R ( not exceeding about 100 stim/sec). In this place,

20 ~,
imp/sec

15}» o] (o

10

o Lt L ! | 1 ] | ] (I T
0 20 40 60 80 100 200 300
stim/sec

Fig. 4.10 The relation between discharge rate and stimulation frequency.
Ordinate, discharge rate of a single motoneuron at the resting membrane
potential; abscissa, frequency of stimulating the group la afferent

fibers ( redrawn from Araki (1972)).7

it has to be recalled that in the simulation, "A" is trated as the frequecy of
distributed stimulation in five different groups of motor units. Namely, it
is assumed in the simulation that all the motor units associated with the
soleus muscle are activated. Taking them into consideration, the value of

A = 0.01 must be moderate on our simulation while it is the one-fifth of the

ratio ( A= 0.05) of a single motoneuron estimated from Araki's result.

4,6 concLusION
1. A mathematical model of the stretch reflex was developed, based on
the physiological data obtained from cat soleus muscles. Dynamic character-
istics of the reflex and the functional roles of gamma activity were explained
quantitatively by analog simulations.
| 2. The model of muscle developed in chapter V of Part I, was applied here,
while the viscous and elastic characteristics were determined from the data

of cat soleus and active contractile force was expressed as a function of
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muscle length and pulse frequency of alpha motoneurons.

3. The model of muscle spindle in cat soleus muscle which was developed
in chapter IIT was applied here.

4. Alpha motoneuron was modeled as an analog element having the func-
tions of algebraical summation and threshold.

5. Total and passive tensions produced reflexly by stretching the soleus
were accounted for by the model. The response obtained from the model closely
coincided with that from the soleus muscle.

6. Decrease in the active reflex tension produced by reducing the act-
ivity of gamma efferent nerve fibers ( paralysing the gamma efferents by the

application of procaine) was explained quantitatively in terms of the model.



CHAPTER 'V

ANALYSIS OF NEUROMUSCULAR CONTROL SYSTEM

5.1 INTRODUCTION

There are, at least, three fundamental spinal reflexes via spindle GIa
and GII afferents and tendon GIb afferents, which play important roles in
the motor control. It is now well known that contraction of a muscle is
reflexly excited by responses of its spindle receptors to stretch and is
reflexly inhibited by responses of its Golgi tendon organs to contraction.
Nevertheless, the actual importance of each of these reflexes in the motor
control remains obscure because of the lack of an experimental approach
which is capable of estimating quantitatively their respective influences.
Indeed, no satisfactory explanation has been given to the problems of how
these fundamental reflexes work together each other and how higher nervous
centers govern them to perform a certain purposeful movement.

It has been often emphasized that an activity of gamma efferent nerve

. 23
fibers is of importance in regulating poture and movement (Granit, 1966,

l970§hMatthews, 1964;? For instance, the measuring of length for purposes

of the control becomes impossible in the absence of contributions from the
gamma system. Furthermore, the gamma system has a remarkable function ca-
pable of regulating the position and velocity sensitivities of spindle recep-
tors. However, the actual contribution of the activity of gamma efferents
has never been explained in the fully dynamic sense.

In the present chapter, a mathematical model of the neuromuscular con-
trol system at thg spinal level is developed. The anaiysis treats an un-
stable limb system consisting of flexor and extensor muscles, yhere
associated muscle spindles ( GIa and GII afferent fibers), Golgi tendon

organs ( GIb afferent fibers), alpha and gamma efferent routes are together

taken into consideration. All the parameters involved are determined, based

- 227 -
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on the physiological data obtained from cat soleus muscles. Analog simulations
are made to reveal the control mechanism of the motor system, especially

the roles of spindle receptors in the regulation of posture and velocity

of purposeful movements, and the roles of tendon organs in the regulation of
muscle tension. In addition, much effort is devoted not only to explaining

the functional role of gamma activities but also to uncovering the cooperative
actions of spinal reflexes and the supra-spinal control of them, i.e.,
selection of the spinal éubprograms of control.

It is assumed in the present study that the effect of spindle GII fibers
is quite opposite to the GIa afferent fibers, the feedback pathways of Gla
afferent fibers operate always and the pathways of GIb and GII fibers do
not operate always by a command from higher nervous centers. Therefore,
three possible cases are treated here; only GIla afferent fibers operate
(section 5.3), and either GIb or GII afferent fibers operate together with
GIa afferent fibers (gection 5.4). Under these considerations, postural con-

trol, tension control and velocity control are analysed.

SKELETON 1

Fig. 5.1 Kinetic model of muscle-limb system.

5.2 MATHEMATICAL MODEL
a) Muscle-limb system

The system is represented diagramatically in Fig. 5.1. It is assumed
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keleton 2 rotates round the ankle joint in the vertical plane
keleton 1 is fixed. The kinetic equation concerning the rotation
stem is
N
dze do - < <
T - Td = J]~———— + B, —— -~ M sin 8 (-n/2 =06 = 1/2)
€ de? 3 de
d Pf
(5.1)

d P

e

2M +m) g8

J

( Te ) = torque exerted by the flexor (extensor ) muscle,

disturbance torque,

( Pe ) = tension of the flexor (extensor ) muscle,

mass of the load,

moment of inertia consisting of the skeleton 2 (limb) and a load;
mass of the skeleton 2,

= viscous coefficient of rotation round the ankle joint,

lever arm,

half length of the skeleton 2 (see Fig. 5.1),

angle of joint (its increase indicates flexion of the limb),
loading torque.

the subscript "f" indicates flexor and "e" indicates extensor.

A mathematical model of the skeletal muscle was developed in chapter V

of Part I

generator,

of this thesis. The simplified model of it, consisting of a force

viscous—-like and series elastic components, is employed here.

Assuming that both flexor and extensor muscles are identical, we can get the

following

equations for the muscles.
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1
Pf = Ff - Bf vf
P =F -B v
e e e e
vf=d(d6/dt) + G(de/dt)
b (5.2)
vy =~ d (de / dt ) + G ( dPe / dt )
B, = B_F. / PO
B =B F /P
e o e o /
where Ff ( Fe ) = contractile force of the flexor (extensor) muscle,
Bo = viscous constant,

Bf ( Be ) = viscous coefficient of the flexor (extensor ); function

of the contractile force Ff ( Fe Ys

]
i

maximum contractile force,

v, ( v, ) = shortening velocity of the viscous component of flexor
(extensor),

G = compliance of the series elastic component of both muscles.

Then we assume that the contractile force, Ff or Fe, generated in the force

generator, 1is only as a function of pulse frequency of alpha motoneuron:

Ff(S)

|
b
Fh
—~
0
~

t (5.3

Fl8) =g 5 A

/

where Af ( Ae ) = pulse frequency of alpha motoneuron which innervates the

flexor ( extensor ) muscle,

Hh
It

constant,

T = time constant.
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b) Muscle spindle and Golgi tendon organ

A model of the muscle spindle of cat soleus muscle has been developed in
chapter III. The model is applied here. Impulse frequencies of GIa and GII
afferents are expressed as a function of muscle extension, X, and impulse

frequency of gamma fibers. The equations about Gla are

Txf s Kr b
R.(s) =R - (K _ +—22 )Y X(s) + —nu T _(s5)
£ °© xf 1+ 1s 1+ Tr s £
(5.4)
Txe s Kr
R(s) =R + (K +—=2o ) X(s) + T (s)
€ ° xe 1+ 1ts 1+t s e
T 7
and those about spindle GII afferent fibers are
N
bo s Kr
Q. (s) =Q - (K +——) X(s) + —=————— T _(s)
£ © xf 1+ 1Ts i+t s £
r (5.5)
b0 s Kr
Q () =Q + (K _ + ) X(s) + r (s)
€ ° xe L+ 1s 1+ Tr s €
X=4d 9o W
= 4]
KXf ao + a3 Ff
—_ o
Txf = bO + b3 Ff
-1
° -
I'e X T () /(l+'r]C s)}
(5.6)
K =a +a_ T°
xe [} 3 e
T =b +b, T °
xe o 3 e
o _ 1
Te —;;{re(s)/(1+rr s)}
J
where Rf ( Re ) = impulse frequency of GIa afferent fibers of muscle spindle

of the flexor ( extensor ) muscle,
Qf ( Qe ) = impulse frequency of spindle GIT afferent fibers of the
flexor ( extensor ) muscle,

Ro ( Q0 ) = spontaneous discharge frequency of GIla ( GIT ) afferents,
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Ff ( T ) = impulse frequency of gamma fibers to the flexor ( extensor )
e

muscle,
X = extension of the length of the extensor muscle, i.e. shortening of

the length of the flexor muscle,

b b, = constants,

a, a
o’ "3” "o’ 73

T, Tr = time constants.

Special attentions should be paid to the remarkable mnonlinear characteristics

expressed in Eq. (5.6), i.e., the position sensitivity, KXf or Kxe’ and

velocity sensitivity, ‘or Tee’ are together increased with increasing

Txf
gamma motor stimulations.
Recently, Houk and Simon (1967;1have examined in detail the properties
of Golgi tendon organs in cat soleus muscles. As a result, it is shown that
the sesitivity of the tendon organs is about 21~ 110 (imp/sec)/Kg and that

their thresholds are low, about 0.08 v 0.5 Kg, with respect to PO=2.0 Kg. Thus,

the property of the Golgi tendon organ may be written as

2
(0, =0)

i
=
a-!

U
f t £ (5.7

]
~
]

U (U 20)
e

e t e
where Uf ( Ue ) = impulse frequency of Golgi tendon GIb afferent fibers of
the flexor ( extensor ) muscle,

Kt = constant of proportionality.

c) Alpha motoneuron
An alpha motoneuron may be modeled basically as an analog element that
has the functions of algebraic summation and threshold. Namely, the output

frequency of alpha motoneuron can be represented as

= + - - -
Ap =Ho g P Ay Re = Ay Ro—e) QpFe, Q -8, U 45, U (5.8

=H + - - _
Ao TH e P Ry =2y Rpme  Q ey Qe =8y U, +5, U
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qu ( Hae ) = impulse frequency of alpha efferent route to the alpha
motoneuron of flexor (lextensor ) muscle,

s 8 i=1,2) = constants.
10 €40 85 (i=1,2)

Equations (5.1)-(5.8) are simulated on an analog computer. The blockdiagram
is shown in Fig. 5.2.

As mentioned in the introduction, it is assumed that sensory signals
conducting from the muscle receptor- afferents, GII and GIb, to alpha moto-

neurons are inhibited on the interneurons by way of command signals from CNS;

namely, we take e= &= 0 1in section 5.3, and ¢X 0, 8%0 in section 5.4, while

A ¥ 0 in all investigations.

e = o

1

A\

T
—_——— ]

L

)

Fig. 5.2 Model of the neuromuscular control system, simulated on

an analog computer.
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TABLE V-1

The parameters of the model determined from the cat soleus muscles

Po=0.4x10%dyn ay, =50.0pps/cm

Bo=0.8 x 107dyn{cm/sec) a3 =1.0pps/cm/pps

G =0.5%x10%m/dyn by =20,0pps/(cm/sec)
fa=0.2%x10"dyn/pps b3 =0.5pps/(cm/sec)/pps -
r, =0, 05sec K,=3.0pps/pps
B;=0.3x10"dyn-cm/(rad/sec) r, =0.lsec

d =1.25cm r =0.03sec

20 =15.0cm A =0.0lpps/pps

m =30.0g X =0.0ipps/pps

d) Determination of the parameters, and normalization
Most of the system parameters are refered from the results obtained in
chapters IIT and IV, and the other prameters are determined from the physio—

)

%
logical data of cat soleus muscle. The results are given in Table V-1. Since
these values would vary with each preparation and characteristics of extensor
muscles are scarcely known, we take the normalization. Normalizing the

equations (5.1) - (5.3) with the maximum torque d Po = Tmax’ and making an

v}
approximation of sin 8 = 6(2/7) , we get

a%ox de* . }
Te = T % = T % = Ik + B,* - Mx 8%
€ a2 3 gex
dg* dr *
Tk = FoF (1- - )
* %
dt dt (5.9)
dg* dr *
T*= F* (1+ - ==
e e
de* dt*
E3 = * *
Ff(S) Af(S)/(1+T0 s )

J

*) We take the value of Po of flexor and extensor muscles to be about 20 times
greate than the maximum force of cat soleus muscle (see chapter IV), and the

values of Bo’ G are calibrated according to the ratio, 20.
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F*(s) = A*(s) / (1+ 1 *s8)
e e o

-2 R
Me=T B M /Tmax
T =d P
max o

In Eq. (5.9), the Laplace transform variable "s" corresponds to the t*-domain
%

; namely, G(s)= Ioooe-slc g(t*) dt*, where G(s) is the Laplace transform of

g(t*), This is also applied to the following equations. Eqs. (5.4)-(5.8)

are normalized with the maximum values of impulse frequency of alpha moto-

neuron and gamma motoneuron, A and T , respectively.
max max

TABLE V-2

Normalization of the parameters

T* =T;/Tmz, Tmax=dP, Ar* =A;/Amax a* =aGP,/Amax =0.5
F*=F,/P, I'p¥ =07/ nax a5* =aGPol max/Amex =3.0
M* =28 /7T rmax Haor* =H oyl Amax bo* = b0Ps/ByAmsx =50
I* =1/G(dB.)* RX =Rp/Amax bs* =b3P°I" maz/BoAmax =37.5
Bs* =B,/d*B, =0.24 R*  =Ro/Amax=0 K*=K.mix/Amx =450
6% =0d/P,G =6.250 Q* =Q//Amax : K*=K1Tmsz/Amsx
t* =t/BG =25.0t Q*  =Qu/Amux=0 ™ =r/BG =0.75
r* =r/BG =125 Us* =Us/Amx o* =r,/BG =2.5
B =PG/d =0.18
Amax =200P8, max=300 PPS,
% g . K * .1
xf r
Rf*(s) = Ro* ¥ ( Kxf* + ) o*(s) + Tf*(s)
1+ 1% s 1+1*%s
*
bo * g Kr
* = * - * 4 * + *
Q*(e) = Q% 3 (K e* o*(s) Tg*(s)
1+ 1t* s 1+1t*s
K % = a3 % + % T _°% .
xf [} a3 £ (5.10)
* = * + b % °%
Txf bo 3 Tf
Pk = 2T HI x(e) /(14 T s))
£ £ T
A*=H *+ ) R*-2X R*-¢ o+ e * - 8§ U_* + & *
£ of 1 R 2 Re 1 % 2 & 1 Us 2 Ve J
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where 0 (A * <0)

f
<
x = * = *
Af Af (0 Af < 1.0)
>
1.0 ( Af* = 1.0)

Eq. (5.10) represents the equation associated with the flexor muscle, where
minus ( - ) of the compound sign ( ) 1is taken. The equation of the ex-
tensor muscle can be obtained from Eq. (5.10) by exchanging the subscripts
"f"  and "e'" with one another ( f »e, e > f ) and also by taking the plus
( + ) in compound signs. Normalized values are given in Table V-2, where we
assume Amax= 20 imp/sec. Fmax= 300 imp/sec, R0=Qo=0' These normalized values

are used in all the following simulations.

5.3 MECHANISM OF POSITION CONTROL

In this section we consider the case in which only GIa afferent fibers
are operating, and show that the impulse frequency of gamma fibers corresponds
to the reference in the position control mechanism, and besides examine the
contribution of gamma activity to the regulation of posture.

a) Analysis of steady state characteristics

We commence with the relation between limb position and output of each

physiological element at the steady state , i.e., d6/dt=0, dze/dt2=0, de/dt

=0, dTe/dt=0. Figure 5.3 illustrates the relations of R_%, Re*, T _* and

£ £
Te* to the angle, 6%, in two typical cases. That is, in Fig. 5.3 (A) the

efferent command signal is absent ( H *= H % = H % =0 ), while H #*=0.25
a af oe o

in Fig. (B). It is clear that in (A) both flexor and extensor muscles do not

operate at the same time over a whole range, -7/2 ] :W/Z, while both

It

muscles work simultaneously around 6=0 in (B).

Obviously, the limb ﬁosition can be fixed at an angle where both the
driving torque exerted by the muscles and the loading torque are identical.
The angle GR is defined as the reference position. The driving torque acting

on the lever (skeleton 2) is the difference between the torque exerted by the
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Fig. 5.3 The steady state relation between outputs of each physiological
components and angle of joint, (A) Ha*= 0 ; (B) Ha*=0'25'

flexor and that by the extensor muscle, i.e., Tf* - Te*. The loading torque

is expressed to be -M*0*. As graphically shown in Fig. 5.3, the reference

~

angle,eR, is obviously where the line of Tf*—Te* intersects that of -M*o%,
Note that Tf* and Te* are dependent on angle of joint and their dependences

can be regulated by the gamma efferent signals, I'_* and Fe*. That is, the

f

reference position eR* can be varied by changing the values of Ff* and Pe*.
In this place, we have to comnsider that the driving force at the angle

of eR is Tf* in the case of Fig. 5.3 (A) and it is Tf*—Te* in (B). It is

due to the property of threshold of the alpha motoneurons and spindles; namely,

Af*, Ae*, Re* and Rf* are non-negative. Therefore, two cases should be

treated.
. % = * = k=0 %
Case I: Te 0 or Tf 0 at © eR ,

Case II: T * > 0 and T_* > 0 at 6%=0_%*,
e £ R

Consequently, we get the following relations from Egs. (5.9) and (5.10).
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N
* x - * *
Case I: 6% = Hag® + Oy T Ay TR Ky
TR Mk dak (A, 4, ) Fagk (A, T EH A T *)
o] 1 2 3 1 £ 2 e
( - % =6.%8=0)
H * + (A, T % —x_ T_*) K*
GR* R ae 1 e 2 f r b (5.11)
~M* * + * * 4+ A *
Mx + a, ( Xl + AZ ) a3 ( AZ Tf 1 e )

( 0<exg= )

& - * X - * *
Haf Hae + ( Xl + AZ)( Ff 1"e ) Kr

Case II: 6_% =
~M* + + * 4 * * 4+ *
M ( kl Xz ){Za0 a3 ( Tf r )3

~~
|
ISE
nA
A
[STES
N

y
That is, the relation indicates that the reference position can be regulated
by the gamma efferent command signals, Ff* and Fe*, and also by the alpha
efferent signals, Huf* and Hue*' Fig. 5.4 (A) shows a graphical represen-
tation of Case II of Eq. (5.11); namely, each line in the figure shows the
relation between Ff* and Fe* for obtaining several reference positions such

as GR* =0, *v/2, *u/3, tn/6, against a fixed load ( M=1.0 Kg).

b) Conditions necessary for maintenance of stable posture

The condition necessary for the limb to be maintained at the desired
angle BR* (not to fall.down) is examined. TFor the purpose of holding the
skeleton 2 stably at SR*, a gradient of driving torque line, TF*—Te*’ to 6%

has to be greater tham that of the loading torque line, i.e. M*. TFor ex-

ample,its necessary condition of stability is satisfied in the case of
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Fig. 5.4 Steady state characteristics of 1illustrating the effects of
gamma stimulations. (A) The relation between Tf* and Fe*, necessary
for obtaining the various reference positoons; 9R= 0,*m/6, *m/3,
and +7/2. (B) Necessary conditions for the limb not to fall down
against various loads, M= 0.5, 1.0, 1.5 and 2.0 Kg. Stable region

is shown by shaped portion.

Fig. 5.3. The conditions of stability in the cases of I and II are

. % % % %
Case 1I: ao* ( Xl + AZ ) + a ( Al Tf + A Fe ) > M

3 2
(-7m/229%20)

a® (A + 4y ) +ak( A T k42, T %) > (5.12)
(020 Sq/2 )

. * * * * £3
Case II: ( Al + Az y{2 a + a ( Ff + Fe )} > M

A w

( -w/2 502 7/2)

)
The necessary conditions of stable control for the <Case II are shown with the
shaped upper right portions in Fig. 5.4 (B). Within the regions the liﬁb is
maintained at a certain angle subjected to Eq. (5.11). As a result it is
concluded that to enhance Tf* and/or Te* with anvincrease in load is

necessary for executing a stable postural control. This result is very inter-
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Fig. 5.5 Simulated response of postural control action to show the
transient response of flexing movement and response to disturbance

torque ( Td* ).
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Fig. 5.6 Simulated result to show the relation between Ha* and TR
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esting and worthy to be emphasized. For example, if the 'sensitivity of muscle
spindles is constant ( 33* = 0 ), the 1limb system should become unstable in
terms of falling down when an applied load is increased. Thus, the role of
gamma system that regulates the sensitivities of muscle spindles has an
important significance in maintaining a stable position, or in the postural

control of the mechanically unstable limb system.

c) Analysis of transient characteristics

Movements of flexing from 0= -m/2 to 6=0 and responses to disturbace
forces are gsimulated on an analog computer. A typical record of the simu-
lated results is shown in Fig. 5.5 where each waveform illustrates the time
course of individual physiological element. On the simulation, applied load

is taken to be 1.0 Kg, the values of alpha efferent command, Ha * amd Hu *

f e

are changed stepwisely from 0.0 to 0.25 at t=0, and similarly the values of
f* and Fe* from 0.0 to 1.0 at t=0. After the system reaches to a steady
state and 6=0, a disturbance torque is inflicted rectangularly. As shown in
the figure, the position control is carried out satisfactorily stable in the
dynamic sense even against the disturbance force.
The effects of H_ %, H *, Ff* and Fe* on the responses are examined

of ae

by repeating similar simulation experiments. Fig. 5.6 shows the effects of

acac

I3 1 i
0.55 5 T
I“
Fig. 5.7 Relation between I'* and oo obtained from the simulation

experiments for various loads at Hu*=0'25’ % =Tf*= Fe*.
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alpha efferent commands Ha* (= Haf* = Hae* ) on the velocity of flexion
movement in the rising phase from 0= -m/2 to 6=0. 1In this figure is shown
the relation between Ha* and TR (TR, time constant of the rising phase),
where [ * =T * =0 and H * =0 at t=0, at t>0 I _* =T % =1.0 and H *

f e o £ e o
is varied but time-invariant. Around Hu* = 0.25, the time constant TR gives
a minimum value. This is probably due to the following reasons. A flexion

~

velocity is not only determined by the net driving torque, T _ % - Te* + M*0*

f
which actually drives skeleton 2 but also by the viscous forces in the
muscles which tend to decrease the velocity of flexion. An increase in Hu*
leads toran increase in Tf* and Te* and also to an increase in the viscous
forces of the both muscles. Thus, a certain value of Ha* would exist at which
the velocity of flexion becomes maximum although an exact value can not be
obtained because of two complicatgd effects. The value tends to become Ha*
=0.25 under the condition of Fig. 5.6.

The effects of gamma efferent command signals, Ff* and Fe*, on the ve-
locity of flexing movements are examined. Same simulation experiments as
Fig. 5.5 were done, changing the gamma activities TI'* =Ff* = Fe* and
employing various values of applied load, M, and then the time constant
in the rising phase of flexion, TR’ was estimated. Fig. 5.7 shows the ob-
tained result of the relation between I'* and TR at various loads ranging
from 0.01 to 2.0 Kg. As seen from the figure, an increase in I'* leads to
the faster movement ( small value of TR) while increase in load, of course,
leads to the lower velocity (greater value of TR). The values of I'* neces-

sary enough to get T_ =1.2 sec is plotted against load in Fig. 5.8, which is

R
redrawn from Fig. 5.7. It is evident from the figure that the same value

of TR =1.2 sec , i.e., the same velocity of flexion movement, can be achieved

by increasing I'* in proportion to an increase in load.
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Fig. 5.8 The relation between M and I'* at TR=1.2 sec: open circle,

redrawn from Fig. 5.7.

d) Effect of alpha-gamma linkage
In the neural connections of motor system, there are several spinal
descending pathways from higher nervous centers which regulate the funtion

of myotatic wunit of the spinal cord level. In particular, the cerebellar

_ RST, reticulo-spinal tract

EVST

EVST, extra-vestibulo-spinal tract

,_" inhibitory neuron

EXTENSOR | FLEXOR

Fig. 5.9 Spinal descending pathways from cerebellum to a myotatic

unit at the spinal cord level (from Ito, 1972).

efferent pathways to the spinal cord are undoubtedly the most importants of

them. As shown in Fig. 5.9, impulses of the extra-vestibulo-spinal tract (

EVST) make the extensor muscle superior to the flexor muscle by activating

both the alpha and gamma motoneurons of the extensor (alpha-gamma linkage),
and by inhibiting those of the flexor, neural impulses of the reticulo-spinal

tract (RST) have opposite effects to EVST. The neuron link in Fig. 5.9

was simulated additionally to the circuit of Fig. 5.2 on an analog com-

puter; that is, the network was introduced into the central nervous system in



- 244 -

Fig. 5.2. Simulation experiments were made, with using the program. Now we
i *= d that of
denote the impulse frequency of the EVST by He ( He He/Amax ) and that o

the RST by H. ( Hf* = Hf/ A x ). Typical records of the simulated results

*
A
°
)

T

[*E]
-

9 (rad)

+<0, H*=0, H*=0 0 0 0 0

LR et Paal 0=r<t, H*=1, H/2=0 lé‘i—l{)‘* Ty
e | te<t, HF=1, H¥=1
*s 1.0
= L B
t=0 t=0
. 1.0[ l
= —l
t t
0 0.8sec o
LA ‘B

Fig., 5.10 Simulated result to show the effects of alpha-gamma linkage

on the postion control action. (A), instant of onset of the stimu-

lation of the RST, to, was earlier; (B) to was moderate; inserted

table, employed values; the neural connection in Fig. 5.9 was used.

are shown in Fig. 5.10. In the simulations, the EVST is activated step-
wisely at t=0,i.e., Hf* is changed from 0 to 1.0, and then the RST is
activated stepwisely also at t=to, i.e., He* is changed from 0 to 1.0 at
t=to, when the angle of the 1limb 6 draws near the desired angle 6R=O.

The records show rapid énd precise flexion movements. It seems that the
switching instant, to’ is set moderately in the case (B) of Fig. 5.10,
while the instant slightly earlier in (A). At any rate, on activating the

RST, the rapid flexion brought about by the stimulation of the EVST is
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slowed down, and consequently the limb approaches slowly to the desired angle.

5.4 MECHANISM OF TENSION AND VELOCITY CONTROLS

In this section we consider the case in which either GIb or GII afferent
pathway operates together with GIa afferents, and examine the mechanism of
tension control by means of GIb afferent feedback and that of velocity
control by means of GII afferent feedback.

a) Mechanism of tension control

As to a single muscle, a negative feedback system of tension control is
formed via Golgi tendon organs as shown in Fig. 2.5. Apparently, reference
input is given by the impulse frequency of alpha efferent routes and a
controlled output is the tension generated by the muscle. Fig. 5.11 1is the
simulated result to show the isometric tension response to stepwise input of
Hu*’ where the joint is fixed at a certain angle. Curve b is the response
in the presence of GIb feedback and curve a is in the absence of it.

When the GIb feedback pathway is acting, isometric tension is developed faster

0.50
%
W
o,
< 0.25
=
o
P
[72]
=z
a
H
0 i ] s
0 5 10 15 t*
L 1 o
0 0.2 0.4 0.6 sec

Fig. 5.11 Simulation result to show the effect of Golgi tendon GIb feed-
back on the tension development to step change in Ha*. Curve a, in the
absence of GIb feddback, 51=O, Ha*=0.5; curve b, in the presence of GIb
feedback, 61 KT* = 1.0, Ha* = 1.0.
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Fig. 5.12 Simulation result to show the effects of GIb feedback on
the responses to disturbance torque ( Td*). (A) In the absence of
GiIb feedback, 61 = 52 =0, Ha* =0.25; (B) in the presence of GIb
feedback, 61 KT* = 62 KT* =1.0, H§ =0.5; both cases, Gla feedback
afferents were operating, Te* =Ff*=l.0, M=1.0 Kg.

Further, the effects of simultaneous operation of GIb afferent feedback
pathways of both the flexor and extensor muscles are examined,i.e. 61#0,62#0
Here we denote by Pfo* and Peo*’ the tension of flexor and of extensor in
the absence of GIb feedback respectively, and by Pfl* and Pel*, the tension

of flexor and extensor in the presence of GIb feedback, respectively. as-

suming 61 KT* = 62 KT* = 1.0, we obtain

Pey

* *
(2 Pfo +P )Y/ 3

(5.13)

* % *
Pel €2 Peo + Pfoc ) /3

i Ko *= *= *= i
For example, if Pfo 0.9 and Peo 0, we get Pfl 0.6 and Pel 0.3. This

fact means that difference between the tension of flexor and that of extensor

is decreased by way of the effects of GIb feedback pathways and that the
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tensions of both ﬁuscles tend to become identical, i.e. to be averaged. This
effect of GIb on maintaining steady tension level is also demonstrated by
simulating transient responses to disturbance torque. One of the results
is shown in Fig. 5.12; namely, in (B), GIb pathways of both muecles are under
operation, and in (A) they are not acting at all, and in either case Gla
afferents do  work always. It is evidently shown that the steady tension
desired can be maintained by means of GIb feedback though it may be varied
slightly by the disturbance. The function of tendon organs is said to be
safety mechanism which prevents from damage of muscle by decreasing its
excessive stretch-reflex tension developed when a large external torque is
applied or when someone jumps down from high place. Simulated results in Fig
5.12 would imply this effect, namely, stretch reflex tension resulted from
the disturbance torque is much smaller in the presence of GIb feedback path-

way than in the absence of it.

b) Mechanism of velocity control

Functions of spindle group II afferent fibers are investigated for two
typical  cases , as shown in Fig. 5.13 (A) and (B). In the case (A), GII
feedback loops of the extensor and flexor muscles are operating. In the
case (B) only GII afferent pathway of the extensor muscle is operating; that
is, this neural connection corresponds to the flexor reflex pattern of
innervation. The neural connection of Fig. 5.13 (C) is quite the same
as (B). Note that in (A), (B) and (C), Gla afferent fibers of the flexor
and extensor muscles operate always. The steady state relations between
torques ( Tf* and Te*) and  angle are shown in the left half of the figure.
Note that Tf*(O) and Te*(O) express the torques of the flexor and the ex-
tensor muscle in the absense of GII afferent feedback, respectively, and
that Tf* and Te* are the respective torques in the presence of GII feed-
back. Corresponding neural connection of GII is shown in the right half

of the figure.
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Fig. 5.13 Effect of spindle group II afferent feedback on the steady

state relation between torques ( T,.*, flexor; Te*, extensor ) and

angle of the joint. - Only neural cﬁnnections of GII afferent fibers
are shown in the right half , and those of GIa are not drawn while
Gla feedback pathways operate always. (A) GII afferents of both

the flexor and extensor muscles operate; (B),(C);only GII afferents
of the extensor muscle operate. Note that the line of ( Tf*—Te* ) is

parallel with that of (-M*0%* ) in (C).

It is shown in Fig. (A) that the reflex tension developed by the GIa
afferent feedback is completely inhibited by GII afferent feedback pathways.
Consequently, the impulse frequencies of alpha efferent routes are conveyed
directly to the muscles via alpha motoneurons, on which spindle receptors
have no actual influences. Now consider the movements of skeleton 2 in the
horizontal plane, i.e. ﬁ=0. At the steady state, H

of

= A% =T %, go that the steady state velocity, w * = d 8%/dt*, can be
e e h

K o= Af* = Tf* and HOLe*

written as follows from Egqs. (5.9) and (5.10).

H f* - H *
k= O ae (5.14)

% 4 * 4+ B.%
Haf HUe Bj
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This equation means that in the horizontal movement, the velocity of flexion
or extension can be controlled only by the command signals of alpha efferent
routes from higher centers.
On the other hand, it is obvious that the loading torque associated with

a limb and aﬁ applied load is dependent on the angle of joint; for example,
the torque is maximum when the limb is at a horizontal position (6 =mn/2) and
it is zero when the limb is at a vertical position (6 =0). So we attempt
to explain the velocity control of flexion movements in the vertical plane,
by refering the roles of gamma activity and group II afferent feedback
pathways. We may begin with considering that the net torque of driving the
limb is equal to the difference between torque exerted by the muscles, T _*-

f

* - Te* + M* 9*%. Therefore,

~

Te*, and loading torque, ~M* 6%; namely, Tf
when the net torque is independent of the angle of joint and maintains
constant, the angular velocity of mevement can be kept constant. In the cases

(B) and (C) in Fig. 5.13, the torques exerted by the flexor and extensor

muscles are expressed as

* = * = * *
Te* = A¢ Hog™ A Re
(5.15).
T ®* = A *= H % _ ). R *
e e oe 1l7e
And further, if Ff* does satisfy the relation:
* * E3 = *
A ( a + a, Tf ) M% /2 y (5.16)
A= kl = AZ
we can write the net torque as
T#* -« T * +MtQ* = H % -H %+ 2 ) K *[_* (5.17).
£ e of ae T £

Cohsequently, we may show that the right hand of the equation is independent
of the angle of joint, 8. (See Fig. 5.13 (C)). 1In this situation, the steady

state velocity, wv*, is approximately given as
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H % - H %420 K%
wx = —of oe r (5.18).

A% + A % + B *%
e j

£
Because the relation

% * = % % .
Af7 + Ae Haf + Hae (5.19)

does hold ( see Eq. (5.15)), the denominator and the numerator are independ-

ent of the angle, 6. Finally the steady state velocity wv* is independent

1.0
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< 0.5

Nuh

f(rad
|
(=]
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Fig. 5.14 Simulated result to show the possibility of velocity control
of flexion movement. Neuronal connection, Fig. 5.13 (B); Ha* = 0.25,
M = 1.0 Kg, Tt*=0.34, these values satisfy the relation of Eq. (5.16).

Spindle GII afferent path, flexor reflex pattern; GIa afferent fibers

operate always.

of the angle of joint. This result means that a steady velocity can be
obtained by increasing Tf* linearly as an applied load is increased, and
that the desired steady velocity can be controlled by the impulse frequencies

o

of alpha efferent routes, Haf* and Hae“' These considerations were actually
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demonstrated on an analog computer. A typical record of the simulation re-
sults of velocity control is shown in Fig. 5.14. As seen from the figure,
the limb begins to flex slowly because of the inertia and other effects, and
then it reaches to and maintains nearly steady velocity.

As to the effects of group IT afferent feedback, following aspects may
be emphasized. As shown in Fig. 5.13 (A), torque Te*(O) developed by the
effects of GIa afferents is considerably large at ( < 6 < w/2 and is in-
creased with an increase in 8, and the extensor's torque tends to prevent the
1limb from flexing. On the other hand, in the presence of GII afferent feed-
back, the extensor muscle does scarcely operate over the whole angle, as
shown in Fig. 5.13 (B) and the action of the flexor is superior to the ex-
tensor. That is, GII afferent feedback of the extensor, inhibiting the ex-

tensor’'s activity, can make the limb flex more smoothly.

5.5 DISCUSSION

The present work proposed and investigated two problems of interest;
one problem is how and why the activity of gamma efferent fibers is employed
in the regulation of posture and movement, and the other is how higher
nervous centers control several spinal reflexes for - the purpose of certain
intended motions. The present study would be very significant in accounting
for the roles of gamma activity in the motor control in the dynamic sense.
Particularly, it is a very interesting result and worthy to be emphasized
that gamma activities need to be enhanced with an increase in load for the
purpose of maintaining the posture satisfactorily stable. Récently, Euler
(1966)19 has demonstrated the contribution of gamma activity to "load-compen-—
sation" in the respiratory control , through. direct recordings of spindle
afferents of the intercostal muscle; that is, the spindle activity is adjusted
to compensate for changes of load. The present work seems to explain the
concept of the "load-compensation' in the regulation of posture in such a

quantitative form as represented by Eq. (5.11).
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vGranit (1970§uhas specially emphasized that the most commonly observed
effects of gamma fibers on spindles in the modest range of normal movements
is undoubtedly their remarkable precise co-activation with the alpha activity,
and that the cerebellum controls a neural ‘switch directing excitation into
the alpha or gamma route. As shown in Fig. 5.10, simulating the neuron links
between the cerebellar efferents and the alpha and gamma motoneurons, we have
examined the role of alpha-gamma linkage in the postural control in terms of
the model and also demonstrated its usefulness. This investigation is quite
the beginning. Indeed, we are now going to attack this dynamic problem with
increasing vigor, considering the cerebellar circult elucidated by Eccles,
Ito and Szent;gothai (1967)16and applying the theory of learning control.
A preliminary work along the line has been already reported (Kajiyama et al.,
1973§? The study has dealt with the problem of postural control of multi-link
motor system, paying a special attention to the learning control function of
cerebellum.

It has been suggested that the velocity control in the extremities woﬁld
depend to some extent on information from joints and ligamints. The question
of whether the spindles also contribute something is required to be specu-
lated. In the present work, the possibility of velocity control has been
shown in the dynamic manner , by introducing the cooperative actions of spindle
group II afferents with group Ia afferents and together by considering the
effects of gamma activity. On the other hand, Phillips (l969;3also treated
an intended movement at an uniform velocity diagramatically with considering
the contributiong of gamma fibers, spindle GIa and GII fibers, but failed to
go beyond a diagramatical illustration. The present study is more significant
in accounting for the problem quantitatively. The velocity control is es-—
sentially associated with our ordinary intended movements, but the very out-
line has never been clarified by any physiological recordings, still less the

contribution of group II afferents. At any rate, further physiological and
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mathematical study which would lead to understanding of the actions of group
IT and group Ia afferent fibers is required in view of clarifying the mecha-

nism of velocity control.

5.6 CONCLUSION

1. A mathematical model of the neuromuscular control system consisting
of a pair of flexor and extensor muscles was developed, based on the physio-
logical data obtained from cat soleus muscles. In terms of an analog simu-
lation, control functions of the spinal reflexes of spindle GIa, spindle GII
and tendon GIb afferent fibers, were accounted for quantitatively.

2. Activities of gamma effernet fibers were shown to correspond to refer-
ence of 1limb position. The relation between impulse frequency of gamma
fibers, I', and desired angle of joint, GR, was represented.

3. Spindle group Ia fibers were shown to function as a PD controller in
the position control system, and their gains of proportionality and differenti-
ation are regulated by I'. The condition necessary for stable postural control
is to increase T in direct proportion to the increase in load.

4, Neural connections between myotaitc unit at the spinal cord and cere-
bellar efferent pathways were simulated, and usefulness of alpha-gamma
linkage in the postural control was demonstrated.

5. Tendon group Ib fibers were shown to function effectively in the
tension control of muscle.

6. The possibility of velocity control was shown by introducing syner-
getic action of GII afferent fibers with GIa fibers.

7. These simulations showed that ome of the spinal reflexes such as
position control, velocity control and tension control, could be selected by

supraspinal control to the interneurons mediating GIb and GII pathways.



CHAPTER VI

MATHEMATICAL MODEL OF HUMAN FOREARM MOTOR SYSTEM

6.1 INTRODUCTION

An analysis of the kinetic muscle-limb system, consisting of antagonistic
muscle pairs and limb-load element, is of significance in understanding how
skillfully the muscle system works and in providing a deeper insight into the
control structure of voluntary or reflex motions. The analysis will be also
useful in designing more satisfactory artificial 1imbs or in developing new
orthotic systems for the péralyzed extremities.

The present purpose is to clarify the dynamic characteristics of the
human forearm system, in particular, to investigate the mutually tangled effects
among th mechanical properties of muscle and the agonist-antagonist muscle
action. A mathematical model of the forearm muscle-limb system is developed,
based on the physiological and anatomical findings, paying a special attention
to the nonlinear dynamics of muscle contraction. The most important feature of
the model is variation in system parameters due to muscle tension. Dynamic pro-
perties of the system are revealed quantitatively by means of simulations on
an analog computer, and the behavior of the model is compared with the physio-

logical data obtained from the intact human subjects.

6.2 DEVELOPMENT OF A MODEL

a) Preliminary consideration

Before developing a model, it is necessary to determine which motion of the
forearm need to be analyzed, to investigate throughly whatever is known about
the forearm muscle-1limb syétem and then to see what additional assumptions and
approxamations should be reasonably be made. The motions studied here are
flexion and extension of the forearm about the elbow joint in the horizontal

- 254 -



- 255 ~

Humerus ‘ 3

Elbow joint™

f
T

M. triceps brachii

Fig. 6.1 Schematic drawing of muscle action in the forearm motor system.

plane, where the upper arm and human body are considered to be fixed. As seen
in Fig. 6.1, the flexion is caused by contractions of the flexor muscles and
extension by those of the extensor muscles. It is well known that biceps
brachii muscle, coracobrachii muscle and brachialis muscle act together as the
flexor muscle,and triceps brachii muscle and anconeus muscle act as the
extensor muscle. These muscles might be simply represented as a single
flexor and a single extensor muscle, respectively. Then, the forearm muscle-
limb system can be shown by a mechanical model in Fig. 6.2.

Basically, mechanical property of the skeletal muscle has been represented
by two-component model, consisting of the contractile component (CC) obeying

27
the force—-velocity relation and the series elastic component (SEC) (Hill, 1938;

Wilkie, l950;%Akazawa et al., 19695 1970: 1971;. Further, the CC may be sepa-
ratéd into two elements, the force generator (FG) and the viscous-like com—
ponent (VC), as shown in Fig. 6.2.(Details are mentioned in chapter V of part I
of the present thesis). The correspondence of the force-velocity relation of

the CC to the two components are explained as follows.

We have represented the force-load-velocity relation of the CC in a general-
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27
lized form of Hill's hyperbolic equation (1938):

(P +A)Y(v+Db)=Db (F +A) (6.1)
A=a(F/PO)

where P = load applied to the muscle (or tension on the muscle),

PO = maximum isometric tension,

F = contractile force generated in FG,
v = velocity of shortening of CC,
a, b = dynamic constants of Hill's hyperbolic equation.

e
Forearm

A
ll
VC, ;?
Extensor

Fig. 6.2 Model of the muscle limb-system.

Then, the equation (6.1) is written as

P=F-Bv

(6.2)
F (P +a)
o

PO (v+b)

where B = viscous coefficient of VC, function of v and F.

It is worthy to note that the viscous coefficient varies 1linearly with the con-
tractile force, and conseduently that the stimulation of alpha motor fibers in
effect controls damping effect as well as the contractile force.

The force-velocity and tension-compliance relation obtained from the

intact human subjects are shown in Fig. 6.3 and Fig. 6.4, respectively.
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Fig. 6.3 Force-velocity relation of human skeletal muscles.
(A) The relation of forearm flexor muscle during maximum contraction,
both force and velocity measured at the hand grip (from Wilkie (1950))6.2
(B) The relation of human calf muscle at four different levels of sub-
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maximal excitation (from Bigland and Lippold (1954)).
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Fig. 6.4 Tension-compliance curve of the forearm flexor, both tension

62
and compliance measured at the hand grip (from Wilkie (1950)).

Fig. 6.3 (A) shows the relation between forces of forearm flexor muscles and
steady state velocity of shortening, in which human subject was to perform
maximum contraction. Thus, the relation might represent the force-velocity
relation at F = PO. On the other hand, Fig. 6.3 (B) shows the effect of F
on the velocity redrawn from Bigland and Lippold (1954)1.O Four curves were ob-

tained from the calf muscle at four different levels of submaximal excitation,

i.e., at four different values of F less than Po. Typical physiological data
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of the tension-compliance relation obtained from the human flexor muscle of
upper arm are shown in Fig. 6.4 ( Wilkie, 1950)6.2 The compliance of SEC is not
constant but decrease as the muscle tension is increased.

Although several complicated nonlinear properties of muscle have been clari-
fied as mentioned above, dependence of viscous coefficient upom the contractile
force is considered . to play the most important role in the muscle motor system,
so that it seems to convenient to make the following assumtions in developing
the model.

(1) Viscous coefficient, B, is only as a function of the contractile force:
B=B (F/P ) (6.3)

where B0 is a viscous constant. This approximation is equivalent to linear-
lize the force-velocity curve as shown in Fig. 6.3 with a dashed line.
(2) Compliance of SEC, G, is assumed to be constant and independent of the
tension.
(3) Both flexor and extensor muscles have identical mechanical properties,
i.e., éo and G of both muscles are identical.

In addition, following assumptions are introduced, concerning the geometry
of the muscle-bone structure.
(4) Both muscles lie in the horizontal plane of the arm motion.

(5) The lever arms of both muscles are identical, d=d, =4d

1 27 and are in-

dependent of the elbow joint angle.

(6) Dependence of maximum force, PO, upon the elbow angle is neglected.

b) TFormulation of the equation of the system
The equations associated with the mechanical system in Fig. 6.2 are now

deduced. The equations with respect to the muscle itself are

(6.4)
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By =B, (Fy/P) (6.5)
BZ = Bo ( FZ/Po )
vy = d (d8/dt) + G (dPl/dt)
v, = —d (de/dt) + G ( dP2/dt) (6.6)
The kinetic equation for 1limb motion is
%0 do
Tl—T2+Td=I—— + B, —— (6.7)
ae2 I de
T =dP
L 1 (6.8)
T2 =d P2
where 6 = angle of elbow joint,
T1 ( T2 ) = torque exerted by flexor muscle (extensor muscle),

d = lever arm,

I = moment of inertia of limb and hand,

Bj = viscous constant about elbow joint,

Td = disturbance torque applied to the limb,

w = angular velocity, w=de/dt,

and subscripts 1 and 2, refer to flexor and extensor, respectively.

o=z ==~ FLEXOR-

Fa

(A) (B)
Fig. 6.5 Analog computer program of the model. (A), equations for (6.4)-

(6.8). (B), nondimensional equation for Eq. (6.11).
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Equations (6.4) - (6.8) can be simulated on an analog computer. The block-
diagram is shown in Fig. 6.5 (4).

Since the values of the system parameters obviously may vary individually
with human subjects, normalization is necessary so that the model may be ap-

plied generally. Following normalizations are made.

o, = F, /P, (Oéulél.O) 3
u2=F2/P0 (Ogocz—g—l.O)
b = T,/ ar (6.9)
¢2=T2/dPo
bg = Tg /AP

and 3

1p=e(d/Po)

tT=¢t (1.0/ B G)
o]

C =I(G/d2302)

!} (6.10)

2

c. =B, (1.0/a’B )
3 )

J

As a result, we can obtain the non-dimensional equations from Egqs. (6.4) -

(6.8):
dy do, 3
¢1=061(1——-- )
dt dt
dv ds
¢2=a2(1+__ 2) r(6.11)
dt dt
a%y ay
$, - o, + ¢, = C + C
1 2 d 1 drz 2 dr

/

The analog computer program of Eq. (6.11) is shown in Fig. 6.5 (B). The

inputs of the system are al and o, which are the normalized contractile

forces developed by the stimulations in the flexor and extensor muscles,
respectively, and the output the normalized angle of elbow joint, .
Note that ul and uz not only work as inputs but also bring about

variation in system parameters, in addition that the system is time-variant
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because « and o are as a function of time. Consider a simple case:

ul = constant,oc2 =2constant,¢d = 0. In this case, Eq. (6.11) becomes
d4¢ dSw dzw dy 1
A4 dT4 + A3 dT3 + A2 de + Al o =a; -9, L (6.12)
A4 = Cl oy % s A3= C2 ay o + Cl ( oy + a, )
A2 = Cl + C2 ( oy + a, Y + 2 4 ey s
A1 =C, + oy + e
J

The difference (a, - a_.) obviously acts as a net driving force to make the

1 2

arm move. The terms (o, + o, ) and

1 9 are included in the system

)
9 and Al’ so that the the dynamic property can be regu-

lated by those terms. Note that the term ( oy + a, ) dis an indication of

parameters A4, A3, A
the overall tension level.

¢) Quantitative determination of the parameters

The values of the parameters, I, d, PO, G, Bo and B, are calculated,
based on the physiological data obtained by Wilkie(lQSO)ngd Vodovnik et
al. (1967)?9 The values of force, velocity and compliance in Fig. 6.3 (A)
and Fig. 6.4 are measured directly at the hand grip, so that they have to
be calibrated to those of the corresponding muscle. The calibration can be
made in terms of lever ratio, n :

n = (lever arm)/(distance from elbow joint to hand grip)

4.5/32.0 = 0.14

(1) Momemt of inertia of arm and hand is taken to be 0.53 x 106 (g.cmz),
from Wilkie (1950).

(2) Lever arm is taken to be 4.5 cm from Wilkie, which is the equivalent

lever arm of biceps brachii muscle.
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(3) Maximum force at the hand grip is 19.6 x 106 dyne as shown in Fig. 6.3 (4)
Thus, PO at the muscle is taken to be 19.6 «x 106 /n = 1.4 x 108 dyne.

(4) Compliance is assumed to be 0.8 x lO—6 cm/dyne at the hand grip as seen

in Fig. 6.4, thus G is taken to be 0.8 x lO—6 x n2 = 1.57 « 10_8 cm/dyne.
(5) Viscous damping comstant during maximum contraction at the hand is assumed
to be tan £ in Fig. 6.3 (A), thus BO = tan &/n = 2.58 « 106 dyne/ (cm/sec)
at the muscle.

(6) According to Vodovnik et al. (1967), viscous damping constant about elbow
joint is 1.2 x 107 dyne.cm/(rad/sec), thus we use Bj=l.0 x lO7 dyne.cm/ {(rad/
sec) in the present chapter.

(7) The dimensionless parameters, T, ¥, Cl and 02 are obtained from above

values.

The estimated values are summarized in Table VI-1.

TABLE VI-1

Values of the system parameters estimated

I | 053x10% ([gem?) P18 2.0 [rad™']
d | 45 {cm] 7/t 25.0 [sec™!]
P, | 1.4 x 10 [dyne) (o} 0.25

G | 157 x 1078 [cm/dyne] C, 0.2

Bo | 2.58 x 10°  [dyne/(cm/sec)]

B; | LOx 107 {dyne.cm/(rad/sec)]

6.3 RESULTS

In this section, behaviors of the model are compared with the existing
physiological data obtained from the human subjects. Then various types of
motions are investigated to understand the dynamic properties of muscle-1imb
system in terms of the model. Furthermore, the behaviors of electrically

stimulated muscles are explained by the model , with changing the parameters.
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a) Simulation of isometric contraction
An isometric contraction of intact muscle is attained under the con-

dition ﬁhere corresponding limb is fixed. Solid line in Fig. 6.6 is an ex-

0 : L 1

0 0.1 0.2 0.3
(sec)

Fig. 6.6 Simulation of isometric contraction. Solid line, physiological
record obtained from the forearm flexor muscle ( from Wilkie, 1950).62

Broken line, response of the model.

62
perimental result redrawn from Wilkie (1950). In the experiment, maximal

endeavor to flex the elbow was made, so that the flexor muscle was considered
to generate the maximum contractile force. This contraction, therefore, may

be mathematically expressed as

dy /dt = 0, dzw /dr2 = 0, o.=0 (1< 0), ul=l.0 (> 0).

1
The isometric contraction 18 simulated on an analog computer using the para-
meters in Table VI-1. The simulated response is drawn with broken line in
Fig. 6,6. The response of the model shows the faster rise in temsion. It
is because compliance is assumed to be constant, viscous coefficient is

to be independent of velocity, and the contractile force is assumed to be

stepwise,

b) Simulation of voluntary movement

There are many types of possible purposeful movements such as withdrawal,
tracking and minimum-time movements. Here physiological records of the
ﬁinimum—time movements obtained by Vodovnik et al. (1966§0are simulated,

because they recorded both the elbow joint angle and the electromyograms of

biceps brachii and triceps brachii muscles simultaneously. The physiological
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data are shown in Fig. 6.7 (a) and (b). In the experiments, the initial and
final positions of the limb were specified, and the subject was to move his

limb from one position to the other in the possible shortest time.
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Fig. 6.7 Simulation of the minimum—-time movements.

(a), (b): experimental results redrawn from Vodovnik et al. (1966)6;0
top trace, EMG of biceps; middle, EMG of triceps; bottom, elbow
joint angle. (a'), (b'): solid line, simulated result of the move-

ments; broken line, physiological result redrawn from the figures (a)

and (b).

The difficulty encountered in achieving simulation of this motion arises in
estimating quantitaitvely the contractile force exerted by the muscle.
However, considering the fact that approximately linear relationship holds

38
between the envelop of EMG and the isometric tension (Kuroda et al., 1970;
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Suzuki and Suématsu, l968§ Vodovnik et al., 1966?? we take that the time
courses of the exerting forces, ul(t) and az(t), are those in Fig. 6.7 (a')
and (b') which are similar to the envelops of EMG. Solid line in Fig. 6.7
(a') and (b') show the responses of the model obtained by using the values in
Table VI-1. The simulated results show close agreements with the experimental

records (broken lines (a') and (b') redrawn from (a) and (b), respectively).

c) TForce-load-velocity relation of muscle-limb system

It is generally believed that the quick movements are achieved by alterna-
tive contractions of agonist and antagonist muscles (bang-bang mode), which
seems to be in agreement with the time-optimal control theory. However, in
the experimental data obtained, e.g., as seen in Fig. 6.7, there‘is a period
when both muscles are active simultaneously. It is thus necessary to examine
how the velocity of motion is regulated by the exerting forces of agonist and
antagonist muscles. Such investigations may give an important clue for solving
the time-optimal control problem of muscle motor system.

Fig. 6.8 (A) shows the responses of the model where the antagonist (ex-
tensor) being relaxed, the agonist (flexor) is activated with various stim-
ulus intensities. When the exerting force is larger, the velocity rises fast-
er and has a high steady state of velocity, although the responses become
resonant. In Fig. 6.8 (B), the difference in exerting forces of both muscles,

(al - az), is constant while the sum of both (a, + az) varies from 1.5 to

1
0.5. The velocity rises more slowly and has a lower steady state when the
sum is large (tension level is high). This is because. the viscous force
acting in the opposite direction of movement becomes larger as the sum ( oy +
a, ) is increased.

‘ In addition, the model behaviors of slowing down, stopping and reversing

are computed. One of the results is shown in Fig. 6.9. Until the switching

time (broken line), the antagonist muscle being relaxed , the limb continues
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Fig. 6.8 Simulation results to show the effects of contractile force upon

the velocity of movements. (A) The agonist is generating the contractile
2=O; b, ul=0.75,

u2=0; ¢ o 2=O; d, u1=0.25, u2=0. (B) Effect of tension level

(al + uz) on the velocity when the difference ( a

force, the antagonist being relaxed; curve a, oy =1.0, o
=0.5, a
- mz) is constant,

1

(ul—u2)=0.5; curve a, al=1.0, q2=0.5; b, 0.75, 0.25; ¢, 0.5, 0.0.

t/t= 40 msec, 60 = 0.49 rad, w0=12.l rad/sec.
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Fig. 6.9 Model responses of turning over from flexion to extension, holding
and braking the flexion by changing the contractile forces of flexor and
extensor muscles. curve a, a2'=0.25; curve b, 0.5; curve ¢, 0.75; curve d,

1.0; t/t =40 msec, 60=0.49 rad, wo=12.l rad/sec, ¢d=0.
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to flex at a constant speed by means of the agonist's contraction. Then, the
agonist is inhibited and the antagonist is, in turn, excited with a specific
stimulus strength according to motions. Each motion can not be performed
immediately af?er the switching instant due to the moment of inextia of limb
and to the lag time constant of muscle dynamics. We find in Fig. 6.9 c and
d, that it takes about 20 msec ( 7=0.5) from the switching time for the re-
versing motion to begin.

On the other hand, the relation between force and velocity in the steady

state ( d¢l/dT=0, d¢2/dr=0, dzw/dT2=O) is

p = (6.13)

dv/dt

o]
fl

That is, velocity of movement is increased when the difference in forces

(a, -

1 o, ) is increased but decreased when the sum of them (al + az) is in-

creased. Furthermore, Eq. (6.13) indicates that the relation between oy and

e, is linear when the velocity is constant. Solid line in Fig. 6.10 shows

this relation at p= *0.8, *0.6, 0.4, *0.2 and 0. The maximum velocity ,
e = 0.838 is obtained at o, =1.0 and a,=0.
max 1 2
For comparison, consider a linear system in which the viscous coefficient

n
is constant, independently of the contractile force, i.e., Bl=u1 BO, BZ=
L N n .
o BO, where o and o are constants. In this case, the steady state ve-

2 1 2

locity is

0L1 - 0(.2
p o= Py (6.14)
@ to, *C

The velocity is dependent on the difference (al —uz) only. The relation of

Eq. (6.14) is shown with broken lines in Fig. 6.10, in which ( El + 32) is



Fig. 6.10 The steady state relation between velocity ( p ) and force
(ocl
varies with @ or uz); broken line, linear model (viscous coefficient
is constant , see Eq. (6.14)).

and az). Solid line, the proposed model (viscous coefficient

taken to be 1.0 so as to obtain the same maximum velocity pmax=0.838 as
obtained from Eq. (6.13). While broken lines of the linear system are parallel
with each other, solid lines of the nonlinear model are dense near the origin.
This aspect may mean that the velocity of the movements can be regulated more
widely by smaller value of al and Uy

Furthermore, the responses of the model to the constant load-torque are
computed. A typical response to several values of the load-torque is shown
in Fig. 6.11. When the applied load is small, the velocity rises quickly and
has a high steady state value. The steady state relation between load-torque

is formulated as ~

p = (6.15)

While the load(force)-velocity relation of the intact human muscles is hyper-

bolic as shown in Fig. 6.3, the ¢d - p relation of the model becomes linear
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as expressed in FEq. (3.15), which is due to the linear approximation of the

force-velocity curve shown in Fig. 6.3 (A).
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Fig. 6.11 Responses of the model to show the effects of load-torque on
the velocity of movements. Curve a, applied load ¢d =0,75; b, 0.5;

c, 0.25; d, 0. 1In each case, a1=1.0, a,=0, t/1=40 msec, 60=0.49 rad,

2
m0=12.l rad/sec.

d) Response to disturbance torque

In order to examine the dynamic property of the muscle-limb system, the
responses to impulsive disturbance torque are investigated, paying special
attentions to the nonlinear effect ' of contractile force. Consider that  an
impulsive disturbance torque,¢d= A¢6(r), is applied to the 1limb at t=0 when
the forearm is maintained at a certain position, with the identical contrac-
tile forces being generated by both muscles, i.e., a= @y = o Transient
responses of the system to several values of o are shown in Fig. 6.12.
When the exerting force is large, the responses become more resonant and the
offiset error from the maintained position is smaller. This property is ex-
plained analytically as follows. When o is time-invariant, Laplace transform

of Eq. (3.11) yields the following relation.
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Angle 6/6(=)

0.5

>
Fe;
o
=] 0 —
v
>

wfw(0)

Fig. 6.12 Responses of the model to impulsive disturbance torque, ¢d=

A¢5(T), illustrating the effects of tension level such as tense (a),

moderate tense (b and ¢) and relaxed tension (d). Curve a, o = oy
= o, = 1.0; b, 0.5; ¢, 0.2; d, 0.1; t/1=40 msec, P(»)=2.656 A¢ R
p{0)=4.0 A¢

y(s) = p(s) / s

A 1+ as)
¢ (6.16)
p(s) = )

2
+
Cl o (s  +2¢ w s w )

damping ratio: [ = (Cl + C2 a)/ 2 JE; a ( c, + 2 o)

natural frequency: w = /( C2 +2a)/ C1 a

J

where ¥(s) and p(s) are the Laplace transforms of ¥ (T ) and o(1),

respectively. From the final value theorem, (1) at 1= is

A
Py = —2

C2 + 2

Therefore, both the damping ratio and the gain to disturbance decreases as o
increases. Thus if both muscles are generating large contractile forces, e.g.

if muscle tone is at clamping or tensing state, the system would be highly re—

sonant but the offset error would be small.
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6.4 DISCUSSION

Although the proposed model is not, in a sense, a complete one, since
neither the neural innervation in the spinal cord nor the central mervous
system is taken into account at all. This simulation, however, is useful
in developing an orthotic system with electrically stimulated muscle. In
genaral, patients with central or peripheral lesions of their motor pathways
are unable to perform useful movements with corresponding limb. In some cases,
required motions can be achieved by electrical stimulation of the motor points
of the muscle of interest. It 1s thus necessary to synthesize a control
device by which the corresponding limb moves similarly as when normally
innervated. An electrically stimulated muscle has, in itself, the similar
mechano-chemical contractile process and properties as normally activated
muscles, so that the model proposed here can be also applied to this kind of

muscle by varying the parameters of muscle in Table VI-1.

TORQUE (FT.LBS.)

st iml AN L )
—4’ ja0.02 o ’ " (sec)

Fig. 6.13 Simulation of the isometric contraction generated by elec-
trical stimulation at 50 Hz, Solid line, physiological record
obtained from Crochetiere, Vodovnik and Reswick (1967§§ curve a, 3-
pulse; b, 4-pulse; ¢, 5-pulse; d, tetanus; 1.0 [FT.LBS}= 13.5 «x 106

dyne.cm. Dashed line, simulated responses of the model.
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Fig. 6.14 Simulation of the flexion movement generated by electrical
stimulations of biceps and triceps of upper arm. (a) Experimental
60
record redrawn from Vodovnik et al. (1966). (b) Solid line,

simulated response of the model; broken line, experimental record

redrawn from figure (a).

According to the physiological data concerning the electrical stimulations
obtained by Vodovnik and his co-workers ( Vodovnik et al., 1966?019675?
Crochetiere et al., 19676§, we take following values for the wupper arm muscles
electrically stimulated; PO=9.4 x lO6 dyne, 1/G = 4.3 «x 10«6 cm/dyne, BO =

0.17 x 106 dyne/(cm/sec), Bj = 12.0 x lO6 dyne.cm.sec, d=4.5 cm, I = 0.9 x
10" g.cm” and time course of the contractile force F(t) is F(t) =
-1
;C { P /(1 +1 s)} , T =40 msec.
o e e

Solid lines in Fig. 6.13 show the typical respounses of isometric con~

traction of human biceps generated by electrical stimulation, where several

numbers of pulses (0.2 msec-pulse at 50 Hz) were applied (Crochetiere et al.
65 .

1966). Broken line is the simulated response obtained from the above values.

Fig. 6.14 (a) shows the flexion movement produced by the functional electrical

60
stimulation of biceps and triceps (Vodovnik et al., 1966), and solid line

in Fig. 6.14 (b) is the simulated response of the model obtained by using the
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above values of the parameters. As seen from Fig. 6.13 and Fig. 6.14, simu-
lated responses show close coincidence with the experimental responses obtained
from intact human subjects. Then, the orthotic system would be thus designed
by means of pertinent computer simulation studies of the proposed model, and
in- fact the work along the line proceeds now. This procedure is of signifi-
cance in making a preliminary experiment without applying actual electrical

stimulations to the patients.

6.5 CONCLUSION

A mathematical model of the muscle~limb system of the human forearm
was developed, based on the physiological and anatomical findings. Simula-
tion study on an analog computer was made to explain the dynamic properties
of the system and further to validate the proposed model. The results are
summarized as follows.

1. The contractile force of the muscle does not only act as driving
force but also leads to variation in‘system parameters.

2. All the parameters were identified from the experimental data ob-
tained from the intact human subjects.

3. Voluntary isometric and minimum-time movements were simulated by the
model, showing close agreements with the experimental responses.

4., Simulation study on an analog computer showed that when the exerting
force is large, the muscle-limb system becomes resonant, but the gain
decreases.

5.  The behaviors of electrically stimulated muscles, i.e., isometric

contraction and flexion movements, were explained by the model.



- CHAPTER VII
CONCLUSION

Mathematical models of muscle spindle, tendon organ, muscle, motoneuron
and muscle-limb-load system were developed individually, based on the physio-
logical data obtained from cat soleus muscles. Further, by synthesizing these
elements, a model of the stretch reflex and a total model of a neuromuscular
control system at the spinal level was developed. Control functions of the
system, and roles of the gamma system were clarified by simulations on an
analog computer. Additionally, mathematical model of a human forearm motor
system was developed. Essentially conclusive remarks are enumerated as

follows.

1. A mathematical model of the muscle spindle was developed, based on
physiological and anatomical findings (section 3.3). Discharge rates of the
primary and secondary endings were expressed as a function of muscle length,
stimulation frequency of dynamic gamma_fibers Fd and stimulation frequency
of static gamma fibers Iy All the parameters involved were determined
quantitatively from the physiological data (section 3.4 and 3.5). Important
properties revealed are éited below.

i) Position sensitivity of the primary endings is increased proportionally

with an increase in Fd or FS.

ii) Position sensitivity of the secondary endings is increased propor-
tionally with an increase in Fs'

iii) Velocity sensitivity of the primary endings is increased proportionally
with an increase in Fd, while velocity sensitivity of the secondary

endings is independent of T, and FS.

d
iv) Velocity sensitivities of both endings are decreased by increasing

velocity of muscle stretch.
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2. A mathematical model of the stretch reflex consisting of muscle
spindle (group la afferent fiber), alpha motoneuron and muscle, was
developed.

i) All the parameters were determined quantitatively, based on the

physiological data obtained from cat soleus muscles (section 4.3).

ii) The total tension, the active reflex tension and the passive
tension in cat soleus produced by stretching it were simulated
together on an analog computer. The responses of the model showed
close agreement with the physiological data (section 4.4).

iii) Responses of the stretch reflex observed when gamma efferent nerve
fibers were paralysed by procaine were simulated. The effect of
gamma activity on the stretch reflex was explained quantitatively

(section 4.4).

3. A mathematical model of the antagonistic neuromuscular control
system was developed, based on the results obtained in chapters III and VI
(section 5.3). The proposed system consists of a pair of skeletal muscles
(flexor and extensor), muscle spindles (GIa and GII fibers), tendon organs
( GIb fibers), alpha motoneurons, alpha and gamma efferent routes from higher
centers and limb-load system. Cooperative funcdtions of each organ and control
functions of the neuromuscular control system were made clear by analog
simulations of the model.

i) Impulse frequencies of the gamma efferent fibers, ', were shown to be

equivalent to reference signal of position (angle of the joint), 6.

The steady state relation between T and 6 was represented, involving

the effects of impulse frequency of alpha efferent fibers, Ha’
(section 5.3).

ii) It was indicated that, in order to maintain a stable postural con-~

trol or to perform fast movement, I needs to be increased with
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an increase in load (section 5.3 b), c)).

iii) The neuron links of spinal descending tracts from cerebellum (extra-
vestibulo-spinal tract and reticulo-spinal tract) were introduced into
the model, and usefulness of alpha-gamma linkage in the postural con-
trol wés revealed (section 5.3 d)).

iv) The spinal reflex arc via tendon organ group Ib fibers effectively
functions in controlling muscle tension (section 5.4).

v) It was shown that velocity control was possible when spindle GII
fibers act simultaneously with GIa fibers.

vi) Finally, it was suggested that the supra-spinal control to inter-—
neurons mediating the GIb and GII afferent pathways would lead to .
selecting one of the spinal reflexes such as postural control, ten-

sion control and velocity control.

4. A mathematical model of the muscle-limb system of a human forearm -
motor system was developed, based on physiological and anatomical findings.
i) A1l the parameters were identified from the experimental data ob-
tained from intact human subjects (section 6.2).

ii) Both voluntary isometric and minimum—time movements and the move-
ments generated by the contraction of electrically stimulated muscles
were simulated by the model. Simulated results showed close agree-
ment with the human data (section 6.3 and section 6.4).

iii) It was unfolded by simulations that the muscle-limb system became
resonant but the gain was decreased when the force exerted by a

muscle was large.

It is well known that cerebellum does play a very important role in the
motor control. So it is of obvious interest to reveal the functions of
cerebellum regulating the neuromuscular control system at the spinal level.

A few about it has been investigated in the present work (section 5.3).



- 277 -

With increasing vigor, we have set about this subject, paying special atten-
tions to the learning control functions of cerebellum.

There are eager needs to drive and control paralyzed extremities with
functionally electrical stimulations. It is evident that the present work
and the further study of cerebellum would be closely associated with the
development of such an orthotic system. In fact, a basic approach of design-
ing the control system is also proceeded in cooperation with the writer's

colleagues,; extending the findings obtained from the.present work and the

proposed algorithm of learning control , and further applying the pattern

recognition technique to EMG.
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APPENDIX B

Taking the Laplace transform of Eq. (3.1), we obtain the extension of

the spring E1 as

xl(S) =

XS(S) + F.(s) (a-1)

Similarly taking the Laplace transform of Egs. (3.2) and (3.3),

E5 + s D2 e4
xa(s) =e, Xs(s) + Fs(s) (A-2)
EC+E5+SD2 EC+E5+SD2
E5 + s D2 e3
xz(s) ~ x3(s) = e, X (s) + F (s) (A=3)
E +E_+sD, ° E +E_+s0D, °
c 5 2 c 5 2

e, = E4/(E3 + EA)’ e

4

3 = E3/(E3 + EA)’ EC = E3 E[‘/(E3 + E4)

From Eqs. (3.4)-(3.6), we can ger

X (s) = v X(s)
s

R(é) = x (s) + x.,(s) + R (A-4)

" * Ny *3
Q(s) = Ny {xz(S) - x3(S)} + QO

TZS Tas k2
R(s) = R + (kl + + ) X(s) + Fd(s)
1+ Tls 1+ T3s 1+ Tls
k
+ 3 F (s)
1+ T3s
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TSS k5
Q(s) = Q + ( K4 + ) X(s) + Fs(s) (A~-5)
° 1+ T,s 1+ T.s
3 3
n, E n, e, E
kl - v 172 + 2 45 )
VB YR Bt Eg
= = +
k, =Ny / ( B+ EZ)’ k3 n, e4/(EC ES) >
k4 =Vvn, e, ES/(EC + E5) . k5 =n,4 03/(}3C + ES),
B 2
Tl = Dll(E1 + Ez), T2 =vng El Dl/(El + EZ) )
- 2
T3 = D2/(EC + ES), T4 = vn, e, EC Dz/(EC + ES)

2
T_=v Ny ey EC DZ/(Ec + E5)

Following assumptions are introduced for simulation.

i) Tl = T3 for primary endings, (A-6)

ii) In the relation between the contractile forces of nuclear bag fibers and

nuclear chain fibers and the static and dynamic fusimotor stimulation,

F.(s) = G,(s) T',(s)
d d d (-7
Fs(s) = Gs(s) Fs(s)
And further,
{ k2/(l + Tl s) } Gd(s) = Kd/(l + 4 s)
{ k3/(1 + T, s) } Gs(s) = KS/(l + T s) (A-8)

il

{ kS/(l + T3 s) } Gs(s) KS'/(l + Ty s)
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Substituting Eqs. (A-6), (A-7) and (A-8) into Eq. (A-5), we obtain

T s Kd K
R(s) = R_+ ( K +—F—) X(s)+——————rd(s)+—s—-r (s)
° x 1+ T.s 1+ 1,8 1+1ts °
1 d s
T 's KR!
Qs) = + (K ' +~—"——) X(s) + —>—T (s)
1+ T,.s 14+ 1 s s
3 s
where
n, E n, e, B
KX = k1 = v ( 1 2 + 2 405 )
E1+E2 E+E5
' = =
KX k4 Vi, e3 E5 / (Ec + ES)
vn, E_ D vn, e E D
Tx - Tz + Ta - 17171 - + 2 4 ¢ 2
( El + EZ) ( EC + E5 )
T'=T=\)neED/(E+E)2
X 5 3 73 ¢ "2 c 5

(3.9

(3.10)

(A-9)



APPENDIX C

A ramp change in XS is defined as

Xs(t) =0 (t<0)
Xs(t) =vt (0 <t<ty ) , (A-10)
Xs(t) =X ( tg:tl)

where tl = the duration of dynamic stretching,

v = velocity of stretching.

The net length increase produced by the stretching , Xn’ is

X =vt
n 1

Taking the Laplace transform of Eq. (A-10), we get

v -t
— (1-e 1°) (A-11)

S

XS(S) =

Denoting the bias to be RO', then

T s
R(s) = ( K+ —2——) X(s) + R '(s) (A-12)
X (o]
1+T, s
1
' Kd K
R (s) =R+ ry(s) + S T (s)
1+ Td s 1+ Ts s s

Substituting Eq. (A-11) into Eq.(A-12), and then taking the inverse Laplace

transforms of them, we can get

- 1 E
R(t) = Ro (t30)
_ t/T1
R(t) = R vt + T (1l-e Y v o+ Ro' ( 0< t< tl) (A-13)
R(t) =k X +T e /71 ¢ M 1y v o+ R C t2 t))
X n X (o]

Since R(t) at t=t is R ', and R(t) at t=+e« is R '+ KX, we
1 e} o X n
obtain the position sensitivity to be Kx= ( R(=) - R(0))/ Xn' According to
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the definition of dynamic index, we may write

Dynamic index = R(tl +0.5) - R(tl)
-1 (1- 05Ty (1 Lt /T ) (A-14)
Taking t,>> T1 and 0.5 >> Tl for equation (A-13), we can obtain

. . f\)
Dynamic index = T v.
x



