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In most cases a multiplicative partially ordered system satisfies the ditributive
law: a(bUc)=ab U ac (e.g. a lo-semigroup of the ideals in a ring, lo-semigroups
of the normal subgroups of a group, etc.). But there are more general examples
of multiplicative systems in each of which a weak distributive law: a(bUc)=
abUac U (ab)c is satisfied. The purpose of the present paper is to develop
the theory of normal chain and regular union of a partially ordered groupoid
satisfying the weak distributive law.

In §1 we define a lattice ordered groupoid with some conditions and define
normal elements and a normal closure in this system and give their properties.
In §2 we treat a classification of our system M and show that the classified
system also satisfies the same conditions for M. In §3 we define a normal chain
in our system and give some results of the chain. In §4 we consider the
modularity of our system and give an extension of direct union, called a regular
union, and study some results of the union. In §5 we show that the results of
the preceding sections are applicable to the family of subgroups of a group and
that of the ideals in commutative ring, and list the applied results.

The author is grateful to Professor K. Murata for his many valuable advices.

1. Definitions and elementary properties

Let M be a non-void set with the following five conditions (M1~MS5).

M1. M is a commutative groupoid,

M2. M is a complete (upper and lower) lattice,

M3. ab<ayb for all a, be M,

M4. a(bUc)=abyacU (ab)c, if be<b or be<c.

An element b of M is said to be normal with respect to a, or shortly a-normal,
if ba<b. For the greatest element e of M, an e-normal element of M is simply
said to be normal. We shall denote by N and N, the set of all normal elements
of M and that of all a-normal elements of M respectively.

M5. (ab)c<(bc)a U (ca)b holds for normal elements a, b and c.
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ExampLes. (1) Let® be a set consisting of subgroups of a group G.
Then & satisfies the above conditions M1, --- , M5 under the commutator-
product and the set-inclusion®. In this case normal subgroups of G are
normal elements of .

(2) The set R consisting of the subrings of a commutative ring R satisfies
the above five conditions under the module-product and the set-inclusion.
In this case the multiplication is associative, and every ideal is evidently normal.

We shall list some elementary properties of M.

Proposition 1. (1) a<b implies ac<bc for all ce M.
(2) (ab)b<ab for all a, b M.
(3) NCEN, for every a of M.
(4) a(bUc)=abUac, if a is normal and b is c-normal.
(5) ab<anb holds for a, b N.
(6) N is closed under the join, meet and multiplication.

Proof. For (1), since ab<aUb=>b (by M3), by using M4 we have bc=
(aUb)e=acUbcU(ac)h=>ac. For (2), since bb<b U b=>b, by using M4 we have
ab=a(bU b)=ab U ab | (ab)b=ab U (ab)b, and hence ab>(ab)b. For (3), let b
be any element of N, then b>be>ba (by (1)), hence we have b N,. For (4),
since @ is normal, we have ab<a (by (3)). Hence (ab)c<ac. Therefore we
obtain a(bUc)=abUac U (ab)c=abUac. (5) is obvious. For (6), let a and b
be any two elements of N. Then we have e(aUb)=eaUeb<aUb. HenceaUbd
€N. Since e(aNb)<ea<a and similarly e(aN b)<b, we have e(aNb)<aNb.
HenceanbeN. By using 5 we have e(ab)<(ea)bU (eb)a<abUab=ab. Hence
abeN.

DerFINITION 1. The greatest lower bound of the set {x|x>a, xe<x} is
called a normal closure of a, and is denoted by a.
The normal closure has the following properties.

Proposition 2. (1) g is normal, (2) a<a, (3) a<b implies a<b, (4) a=a,
(5) aUb=a ub, (6) ab<ab.

Proof. For (1), @ae=(inf {x|x>a, xe < x})e < inf {xe|x>a, xe<x} <
inf {x|x>a, xe<x}=a. (2), (3) and (4) are obvious. For (5), since aUb is
normal (by Proposition 1 (6)), we have aUb=aub and hence aUb<aUb
=aUb. On the other hand, since a Ub>a and aUb>b, we have aUb>a Ub.
Hence we obtain a Ub=aUb. For (6), Since ab is normal (by Proposition 1
(6)), we have ab<ab=ab.

Lemma 1. aUab is b-normal for all a, be M.

1) See§5 of this paper,
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Proof. By Proposition 1 (2) a(ab)<ab, and hence we have b(aU ab)=
ba U b(ab) U (ab)(ab)=ab<aU ab.

Theorem 1. If aUb=e, then ab is normal.

Proof. By Lemma 1 b(aUab)<aUab, and hence we have (ab)e=
(ab)(a U b)=(ab)(a U abU b)=(ab)((a U ab)Ub)=(ab)(aU ab) U (ab)bU((ab)(aU ab))b.
Since a(ab)< ab, by using M4 we have (ab) (a U ab)=a(ab) U (ab)(ab) U ((ab)a)(ab)
<abUab | (ab)(ab)=ab, and hence ((ab)(aUab))b<(ab)b<ab. Therefore we
obtain (ab)e< ab.

Theorem 2. a=aU ae for any ac M.

Proof. Since a<a and ae<de<a, we have @d>aJae. On the other
hand, by Lemma 1 a U ae is normal. By the definition of the normal closure we
have a<aae. Therefore we obtain @=a | ae.

Corollary 3. If aUb=e, then a=a\J ab.

Proof. By Theorem 2 and M4 we have @d=aUae=aUa(aUb)=
aUa((aUab)Ub)=aUa(aUab)UabU (a(aU ab))b. Since a(ab)<ab, we have
a(aU ab)=aa U a(ab) U (aa)(ab)<aUab. Since aU ab is b-normal (by Lemma 1),
we have (a(aU abd))b<(aUab)p<aUab. Hence a<aUab. On the other hand,
since a=aUae we have @a>aJab. Therefore we obtain @=a| ab.

Corollary 4. If aUb=e, a>n and an<n, then nU ab is normal.
Proof. Since e and ab are normal, we have

e(nU ab) = enJ e(ab) (by Proposition 1 (3))

<(aUbnUab = (aU(abUb))nUab

= an(abUb)n U (an)(ab U b) U ab (by M4)
<nU(abUbnUn(abUb)Uab (because an<n)
=nU(abUbnUab = nU (ab)nUbn U ((ab)n)bU ab (by M4)
= nUab (because ((ab)n)b< (ab)b<ab and nb< ab) .

Hence n U ab is normal.

2. A classification of M

Let a be an arbitrary fixed element of N. We now define an equivalence
relation of M by putting u~wv(a), if u Ua=va, where u, veM. Itis easily
verified that this relation is stable for the join and the multiplication. That is,
~(a) is a congruence relation with respect to the join and the multiplication,
which is called an a-congruence relation of M. The a-congruence class containing
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an element % is denoted by K,(x). The join and the multiplication of the classes
are defined by K,(u)U K,(v)=K,(«Uv) and K,(u)K,(v)=K,(uv) respectively.
Then the set M/a of the classes forms a partially ordered groupoid with the
following properties. (1) K,(u)=K,(a) if and only if u<a. (2) K,(u)<K,(v)
if and only if u<vUa. In particular, u < v implies K, () < K,(v). (3) K,(e)
and K,(a) are the greatest element and least element of M/a, respectively.

Lemma 2. (1) ‘Wip {Ka(xw)} = K,,(S:tp {xm}) .
@) inf (Ko} = Kulin {5, Ua))

Proof. (1) isobvious. For (2), put b=inf{x,Ua}. Then,since b<x,Ua

for all ¢, we have K,(b)<K,(x,) (by (2) of the properties of M/a). Suppose
that K,(c) is any lower bound of the set {K,(x,)}. Then, we have K,(c)
<K,(x,) for all «, hence ¢<x,Ua (again by the property (2) of M/a). From
this, we have cgigf {x,Ua}=b. Thus K,(c)<K,(). That is, K,(b) is the

greatest lower bound of the set {K,(x,)}.
Theorem 5. M]/a satisfies the conditions M1~MS5.»

Proof. It is evident that M/a satisfies M1, M2, M3 and M4. For M5, we
begin by showing that, if K,(«) is normal in M/a then uUa is normal in M.
Let K,(#) be normal, then we have Ka((uUa)e):Ka(uUa)K,,(e):Ka(u)Ka(e)
<K,(u). Hence we obtain (xUa)e<uUa. Let K,(u), K,(v) and K,(w) be

normal, we have
(Ka(#)K4(0))Ko(w) = (Ka(u U a)K,(v U a))K,(w U a)
= K (U a)(vUa))(w U a))
<K, ((wUa)wUa)(vUa)U((vUa)wUa)(mUa)  (by M5)
= (Ka(#)Ka(w))K o(v) U (Ko(2) K o()) K o(w) -
Lemma 3. K, (b)=K(b) for all b M.
Proof. Since K,(b) is normal, we have mgm:]@(l—)). On the
other hand, put K,(0)=K,(c) then K,(b)<K,(c), and hence b<cUa. Since

K,(c) is normal in M/a, cJa is normal in M. Hence we have b<cUa.
Therefore we obtain K,(0) <K, (c Ua)=K(c)=K,(b).

ReEMARK. It can be proved that if M is a modular lattice then so is M/a.

Theorem 6. If a\yb=e, then ab=ab.

2) The normality and the normal closure of elements of M/a are similarly defined as M.
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Proof. By Corollary 3, we have Kz5(@b)= Kz5(@)Kz3(b) = Kzz(aU ab)
K25(b U ab) = Kg5(a)Kz5(b) = Kz5(ab), and hence @b<ab (because Kg;(ab)=
Kz5(ab) is the least element in M/ab). On the other hand, by Proposition 2
(6) we have ab< ab.

Theorem 7. If L”Ja,.=e, then Ua,a,= Ua,a, (r=1,2,-,n;5=1,
2, -, m). - m =

Proof. First we show that &,(a,U--- Ua,)< Ua,a,. By Theorem 6,
r;‘:s

we have @,(a,U - Ua,)=a,(a,U - Ua,)=a,(a,U- Ua,). Put a,U--Ua,=b,
then we have

a1(a2 U bz) = al(az U (azbz @] bz))
=a,a,U al(azbz U bz) U (alaz)(azbz U bz) (by M4)
<a,a,U a(a,b, Ub,) U(aa,)(a,b, Ub,)

=a,a,U a,(a,b,) U a,b, U (a,(ab,))b,< aya,Uab,Uab, .

Hence we have a,(a,Ub,)<a,a,U a,b,Uab,=a,a,Ua,b,Uab,. Let us assume

that a,(a,U - Ua,)= U a,a;U( L’_ejcfb—k), where b, =ag,,U -+ Ua,. Since
rs i=1

r=1,8=1
k k+1

- k k
a; bk = 'L=J1ai (ak +1 U bk+1) < .l;Jl(ai Ak 1y U a; blz—f-l U aka bk+1): _glai Apyy U ~-L_—)1 a; bk +19

1

iC =

- k+1 +
we have a,(a,U-+Ua,)= D a, asU(kUIa,- br.,). Putting k=n—1 we have
s i=1

r=1,5=1

a,(a,U - Ua,)< U a,a,. Similarly we obtain @@ U - U&_,U&;, U Ua,)
r:.:s

" r=1,5=1
< rUs a,as. Since gsérds:dl(az ye- Ud”) U Udi(dz U« Udi—l Ua; . UJ-- U
r=1,s=1

a,)uU-ua,a,U-Ua,.), we obtain Ua&,a,< Ua,a,. On the other hand, by
r4s r:.;s

using Proposition 2(6) we have Ua,a,> Ua,a,.
’:‘:S r;t;s

3. Normal chain

In this and the next sections, we shall assume that ao=o for any element a
of M and the least element o of M and that (sup X)n=sup(Xn) for any subset
X of N and any element # of N.

DerINITION 2. The chain {a©®, a®, ---, @™, a™, ---} with a®=a and
a™=a" Ve is called a minimal normal chain of a determind by e (shortly a-e-
chain). The chain {af, a U1 ... [ al"1 g "1 ...} with al’=a and al"l=al"""lq
is called an a-a-chain.

The following properties are immediate.

(1) @™ is normal and @™ >a™*"® for every whole number 7,



308 T. Sarro

(2) a1 is a-normal and a1 >a!**'1 for every whole number #.
Theorem 8. (U a;)®= U a;* for any ac M.
i=1 i=1

Proof. By Prdposition 2 (5) (iglai)m):-igl;i:i—glidi=iglai(0)' Hence the
theorem holds for p=0. Let us assume that the theorem holds for p=~k—1.
Then we have (Q a;)“”:(_[j) a;)“"”e:(i_} af’"")e:f_)l(a,-(k"%)=£Jla,-("). This
completes the pr(l)(:lf. B - - ,

Theorem 9. e ["1a<a® for any ac M.

Proof. If p=1, this is trivial. Let us now assume that this holds for
p=k—1. Then we have

e g < (el*e)g
< (ea)et* 21 (ael* e (by M5)
< a®elk~21 | gk~ (by the assumption)

<(@a®)*E P yaP=a®ya® = a® .
This completes the proof.
Theorem 10. If iglaize, then ('gsa,as)“’)z(’gsd,Ezs)(”.
Proof. This is easily verified by the induction on p.

DEerFINITION 3. The least upper bound of the set {x|xe=0, x& N} is called
an annihilator of e. A chain o0=¢,<¢, <¢,<--<¢,< -+ is called an upper normal
chain, if ¢, is normal and K, (c,,) is an annihilator of K, (e) in M/c, for every
whole number 7.

Lemma 4. Let a be an annihilator of e. Then the equality ae=o holds.

Proof. Since a is normal (by the definition of the annihilator), ae=
(sup {x| xe=0, x= N})e=sup {xe} =0 (by the assumption of this section).

Theorem 11. Let 0=¢,<¢,<¢, <+ <c, <+ be an upper normal chain.
Then (c,) =0, and if a™=o for some ac M then a<c,.

Proof. We show that ¢*<c¢, ,. Since K, (c,) is an annihilator of

K., (e), we have K, (ciV)=K,, (c,e)=K,, (c.)K., (e)=K,, (c,_,). Hence
we obtain ¢’<c, ,. Let us assume that ¢ V<c, p,,. Then we have
P =ct Pe<cP1<c,_r. Therefore we obtain ¢{”<c¢,=o if k=n.

For the second part of the theorem, we show that ¢,>a™ ®. By the

assumption @”’=a" Ve=o0, we have K, (a" V)K,(e)=K,(0). Since K,(c,)
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is an annihilator of K, (e), by the definition of the annihilator we have K, (c,)
>K, (a*™). This shows that ¢,>¢,Ua®™ ", and hence ¢,>a™ . Let us
assume that c,_,>a® *™. Then, since a® *¥"=¢"®e¢ we have K,, (ck_,)
>K,, (a*®)K, (). Since K,, (cz)is an annihilator of K,, (e), we have
K,, (cx)=K,,_ (a" ™). Hence c,=czUcs_,>a™®. Putting k=n, we obtain
¢,=>a=a>a, as desired.

DErFINITION 4. An element a is said to be nilpotent if a "1=o0 for some
positive integer #. An element a is said to be semi-nilpotent if there exists a finite
chain a=a¢,>a,>a,> - >a,=o0 with a;_,a;_,>a; (=1, 2, --+ , n).

Proposition 3. (1) If a is nilpotent, then a is semi-nilpotent.
(2) If e is nilpotent, then a is nilpotent for all ac M and K,(e) is nilpotent
in M|b for allbe N.

Proof. (1) If a is nilpotent, then a=al1>al"1> ... >a"=0 and
aligli=1< gqali"1=¢ql1, Therefore a is semi-nilpotent.
(2) Since al1<ell and (K,(e))l1=K (el?1), this is obvious.

Theorem 12. If e(=0) is nilpotent, then the annihilator of e is not o.

Proof. Suppose that el"=o for some positive integer n. Then ell=0
and el'"1+0 for some 7 (1<i<n). Since el le=elil=0, eli"'1 precedes the
annihilator of e.

4. Regular unions

In this section we shall assume the following condition.
M6. If b<aUc and ac<a or ac<c, then b<(aN(bUc))U(cN(aUb)) for
a, b, ceM.

Lemma 5. If aUc=bUc, aNc=bN¢, a<b and ac<a, then a=b.

Proof. Since b<aUc and ac<a, by M6 we have b<(aN(dUc))U(cN
(aUb)=(aN(aUc))U(cNb)=aU(aNc)=a. Hence we obtain a=b.

Lemma 6. If a and c are b-normal and a<c, then a|J(bNc)=(aUb)Nec.

Proof. Put a’=aU((bNc), b'=(aUb)Nc and ¢’=>b. Then, since a(bNc)
<ab<a, by M4 we have a’c’=(aU(bNc))b=abUb(bNc)U(ab)(bNc). Since
a and b ¢ are b-normal, ab<a and b(bN ¢)<bN ¢, and we have a(bN c)<abN ac
<aNec. Therefore a’'c’<ayU(®BNec)U(aNc)=aU((dNc)=a’. And we have
a'Uc'=b"Uc’, a’Nc’=b'N¢’ and a’<b’. Hence by using Lemma 5, we
obtain a’=b".

DEFINITION 5. A finite number of elements a,, a,, -+, a, of M is said to be
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normally independent, if a;N (a,U--- Ua;_ Ua;,, U+ Ua,)=o for i=1, 2,---, n.

DEFINITION 6. An element b is called a regular union of a., a,,-++, a,, and is
denoted by b=a, U ®a,y®--- yPa,, if b=a,Ja,U -+ Ua, and if a,, a, -, a,
are normally independent.

An element b is called a k-th nilpotent union of a,, a,, -+, a,, and is denoted
by b=al U(k)a2 U(k)... U (k)am if b=al U(R)a2 U®... U(R)an and if (rgsd’ds)(k)zo
but (rtjgsd,ds)("'” %o (r, s=1, 2,---, n). In particular, O-th nilpotent union is
called a direct union.

An element b is called a free union of a,a,, - ,a,, and is denoted by
b=a,UPa, - UPa,, if b=a,URa,®... ®yq, and if (Ua,a,)™=+0
and (,l;ésd’ ds)("”é(rgsd,ds)('”'l) for every whole number . a

Lemma 7. Ud&,d,<a,U - Ua;_,Ua;, U+ Ua, (r,s=1,2, - ,n) for
eachi (1<i<n).

Proof. Since a@,a;<a, and a,a,<a,Ua,, we have Ua,d,=a,a;U--U
Y*S
a;,a; Ua;n,a;U--Ua,au( U aa,)<aU--Ua&_,Uad.U-Ua,=

r4s

aU--Ua; ., Uai,U--Ua, 7

Lemma 8. If the elements a,, a, -+ ,a, are normally independent and
a;>c; (1=1, 2, -+, n), then c,, ¢, -+ , ¢, are normally independent.

Proof. ¢;N(c, U U U U Uc,)<a;N(a U Ua;y Uiy U
Ua,)=o0.

Lemma 9. If the elements a,, a,, ---,a, are normally independent and
c< :er_' a,, then K (a,), K (a,),-+, K.(a,) are normally independent, where cE N.

Proof. We have
K@) (K@) U UK (s YUK ) U+ UK.(a,)
= K(a;) N (K (@) U+ UK (@) UK (@) U UK (a,))
(by Proposition 2 (5) and Lemma 3)
= K,((a;Uc)N (@ U+ U&_ Ua;, U Ua,Uc))  (by Lemma 2)
= K((¢;Uc)N(a, U+ Ua;;Uai, U Ua,)) (by Lemma 7)
= K (cU(a;N(a,U--Ua;_;Ua;,, U+ Ua,))) (by Lemma 6)
= K(cUo) = K/(o).

Theorem 13. If U®a,—b, ¢;<a; (i=1,2,,n) and Uc;,=d, then

" R o
U Cizd.

i=1
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Proof. 'This is obvious by Lemma 8.

Theorem 14. If )®a,=b and t< Ua,a,, then \) ®Kx(a;)=Kz(b).
s i=1

i=1

Proof. This is obvious by Lemma 9.
Theorem 15. Ifa U“®b=c and a is normal, then a \U “b=-e and b is normal.

Proof. Since ab<aNb=aNb=o, we have aU©@b=e. And we have
be<b(aUb)=abUbbU (ab)b<b (because ab=0). Hence b is normal.

i=1 i

Theorem 16. If L’J‘F’a,-zb, then Q“"’(K(rgsa,as)m(a,-)):K(’ y a,a;)*(b).

Proof. Put c=(U2,a)®. Then, by Theorem 14 ig(R)(Kc(a;)):Kc(b).
And we have (UK. (@) K. (@)*= (- (Y K@) K@K, () K. () =
K(((+(Uaa)e)-)e)=K(a,0:)=K.0), but we have (UK (@)K (a))* >
ch((r%Jsd,ds)(’“)):t: K(c). This completes the proof.

Corollary 17. If (®a=b, then UK y aa,(@)=K y aa(®)

i=1

Proof. This is obvious by Theorem 16.
Theorem 18. If aU®b=e and a= L"Ja,-, then (U a@,a,)?=(Uaas)®
i=1 7S rs
for p>k—1, where ai=a; U a;a (1=1, 2, -+ , n).

Proof. By Corollary 4 ajUab is normal and a; <afUab, and hence
we have @;<da;Uab. By using Proposition 1 (4) and M4, we have Ua,a,<
r:t:s

,Es((d"l U ab)(@3 U ab)) :,:LFJS (@7 U ab)as U (a; U ab)(ab)) :rzlth (@rasUas(ab) U (a@ras)(ab)
U (@ U ab)(ab)) < 'gs(d?d? U (ab)e) = (’gsd‘id‘}) U(ab)e. By using Theorem 8, we
have (U aras)® < (Ua,a)> < (U araz U (ab)e)” = (U @ra)® U ((ab)e)® =
(’gsdﬁd‘})(’” U (ab)“’*":('tisdﬂd‘:)‘” (because (ab)®=o0). This completes the
proof.

Theorem 19. If ,ka) a=e, then &)\ 2,a,)=o.

Proof. By using Theorem 9, we have e[""l(r:LhJsd,ds)g(’gsd,ds)('”:o.

Theorem 20. If aU ®b=e, then a*b=o0

Proof. We shall show that al?1p<(ab)®. Since ab=ab (by Theorem 6),
we have @V0=ab=ab=(ab)®. Let us assume that al?"1p<(ab)?">. Then
we have
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atelp — (ad[p—ll)g
< (ab)at*~1y (al? ~1b)a (by using M5)

< (@b)et?~1 (@b)® e (by the assumption)
< (@b)® U (ab)® (by Theorem 9)
= (ab)®.

Putting p=Fk, we obtain @*1p < (ab)*=o.

5. Applications

(1) Application to groups

Let G be any group and let 4,, 4,, -+ , A, be a finite number of subgroups
of G. The following notations will be used:
[4,, 4,]; the commutator subgroup of A4, and 4,,
{4,, 4,, -+, A,}; the subgroup which is generated by 4,, 4,, -+, 4,,
A, ; the normal subgroup which is generated by 4,,
{[4,, A4,]}; the subgroup which is generated by all commutator subgroups
[4,, 4] r£s, 7, s=1, 2, -+, n,

P

— e

A{?; the commutator subgroup [[-++[[4,, G], G], -], G],
P

———
AL#Y; the commutator subgroup [[--:[[4,, 4], 4], -+-], 4.],
A, N\ A,; the intersection of A4, and A4,.

Lemma 10. Let A, B and C be any subgroups of a group G. Then A, B
and C have the following properties:

(1) [4, BI=[B, 4],

() [4, BIS{4, B},

(3) If [B, CICB, then [4, {B, C}1={[4, B], [4, C], [[4, B], CJ},

4) If A, B and C are normal subgroups of G, then [[A, B], C1<[[B, C]4]
[[C, A]B],

(5) If BS{4, C} and [A, C]< A, then BC{AN{B, C}, C N{4, B}}.

Proof. 'The proofs of (1) and (4) are well-known. For (3), since [B, C]< B,
for any elements b= B and c= C there exists an element 4’ B such that be=cb’.
Therefore the generator of the commutator subgroup [{B, C}, A] can be
represented in the form [bc, a], where ac 4, b= B, ceC. And we have [bc, a]
=[b, a][[b, a], c][c, a]. Hence [bc, a] belongs to {[B, 4], [C, 4], [[B, 4], C]}.
Thus [{B, C}, A]<{[B, 4], [C, 4], [[B, 4], C]}. On the other hand, we have
[[b, a], c]=[a, b] [bc, a] [a, c], hence [[b, a], c] belongs to [{B, C}, A]. The
generator of the commutator subgroup [[B, 4], C] can be represented in the form
[u, u, -+ u,,, c], where u; are of the form [b;, a;], ;€ 4, b,eB (i=1, 2, -+ , m).
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Since [w,tt, Uy, Cl=(Uythy 1) "¢ Uty ++* U= (Uy Uy +14,,,) " € UsCCT U+ U C
where w,u,-+-u,, and ¢ ‘u;c belong to [{B, C}, 4], [u,u,"--u,,, c] belongs to
[{B, C}, 4], and hence [[B, 4], C1<[{B, C}, A]. Therefore we obtain
[{B, C}, A]={[B, 4], [C, 4], [[B, 4], C]}. For (5), let b be any element
of B. Then there exist two elements ac 4 and ¢=C such that b=ac. Since
a=bc™! and ¢=a"'b, we have ac AN{B, C}, ccC A{4, B}. Thus b belongs
to {AN{B, C}, CA{4, B}}. Hence we have BC{AA{B, C}, C N{4, B}}.
(2) is obvious.

By Lemma 10, the results of the preceding sections are applicable to groups.
That is, the results in §§ 1 and 2 illustrate the properties of the subgroups (general
subgroups, normal subgroups, commutator subgroups, etc.) and factor-groups
of a group. The results in §§3 and 4 can be applied to the theory of solvable
groups and nilpotent groups and theory of direct products, free products, regular
products and k-th nilpotent products® of the subgroups.

We shall list briefly the applied results.

(1) If {4,, 4}=G, then [4,, 4,]=[4,, 4,]=[4,, A,].

(2) A=A[A, G] for any subgroup 4 of G.

(3) If {4, 4,}=G, then A,=A4,[4,, 4,].

(4) If{4,,4,}=G and N is a normal subgroup of A4, then N[4,, 4,] is a
normal subgroup of G.

( 5 ) If {AU Azy""An}:G’ then {[AT—A—S]}:{[AH As]}

(6) {4, 4y -, A 0 ={4AP, AP,...,AP}.

(7) [Gt71, A1 A for any subgroup A4 of G.

(8) If G—={A, A4}, then {[4,, A NP —{[A,, A

(9) Let Z=1cZcZ,c---CZ,C-- be an increasing central chain of G,
where 1 is a unit group. Then (Z,)™=1, and if 4“=1 for some subgroup
A of G then ACZ,.

(10) The center of any nilpotent group is not the unit group.

(11) If G is a regular product of its subgroups A and B, and A4 is a normal
subgroup of G, then G is a direct product of 4 and B, and B is a normal subgroup
of G.

(12) If G is a k-th nilpotent product of its subgroups 4 and B and
A={A,, A,, -+, 4,}, then {[4,, A,}?={[A2, A#]}?, where A{ are the normal
subgroups of 4 which are generated by 4; (:=1, 2, --- , n).

(13) If G is a k-th nilpotent product of its subgroups 4,, 4,, --+, 4,, then
[G¥, {[4,, A]}] is a unit group.

(14) If G is a k-th nilpotent product of its subgroups 4 and B, then [A!¥, B]
is a unit group.

The proofs are obvious by the following correspondences;

(3)7 Cf. 1.
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(1)« Theorems 1 and 6, (2)< Theorem 2, (3)<« Corollary 3,

(4) = Corollary 4, (5) < Theorem 7, (6)< Theorem 8§,

(7)< Theorem 9, (8) < Theorem 10, (9)< Theorem 11,

(10) & Theorem 12, (11) < Theorem 15, (12) < Theorem 18,
(13) & Theorem 19, (14) < Theorem 20.

(2) Applicaton to commutative rings

Let R be any commutative ring with or without unity quantity and let
A, A, -+, A, be a finite number of subrings of R. The following notations
will be used:

{4,, 4,, ---, A,}; the subring which is generated by 4,, 4,, --- , 4,,,
A, A,; the module-product of 4, and 4,,
A, ; the ideal in R which is generated by A4,,
m
A”=AA---A.

It is easily verified that the set R consisting of the subrings of a ring R
satisfies the conditions M1~MS5 in §1. Hence the results of the preceding
sections can be applied to the set R.

We shall list briefly the appied results.

(1) If {4, A} =R, then 4,4,—A,4,—A,A,

(2) A={4, AR} for any subring 4 of R.

(3) If {4, A}=R, then A,={d, A.A,}.

(4) If {4, A,})=R and B is an ideal of 4,, then {B, 4,4,} is an ideals in R.
(5) Let {4,4,} be a subring which is generated by all module-products
A, A, r=s, r,5=1,2, - ,n. If {4, 4,, -, A,}=R, then {4,4,}={A,A,}.
(6) {An Ay ey An}m:{AT’ Az, - Ax} _

(7) If {4, 4, -, A}=R, then {4,4}"={A4,A}", r&s,r,s=1,2,- ,n.

The proofs are obvious by the following correspondences;

(1)« Theorems 1 and 6, (2)< Theorem 2, (3)« Corollary 3,
(4) < Corollary 4, (5) < Theorem 7, (6)< Theorem 8,
(7)< Theorem 10.
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