

Title	On Lambek torsion theories. III
Author(s)	Hoshino, Mitsuo
Citation	Osaka Journal of Mathematics. 1995, 32(2), p. 521-531
Version Type	VoR
URL	https://doi.org/10.18910/10943
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON LAMBEK TORSION THEORIES, III

MITSUO HOSHINO

(Received September, 1993)

In this note, developing our previous work [8] with S. Takashima, we will characterize rings R for which every finitely generated submodule of the injective envelope $E(_R R)$ is torsionless. Those characterizations would yield recent results of Gómez Pardo and Guil Asensio [6, Theorems 1.5 and 2.2]. Also, we will provide a necessary and sufficient condition for an extension ring Q of a ring R to be a quasi-Frobenius maximal two-sided quotient ring of R .

Throughout this note, R stands for an associative ring with identity, modules are unitary modules, and torsion theories are Lambek torsion theories. Sometimes, we consider right R -modules as left R^{op} -modules, where R^{op} denotes the opposite ring of R , and we use the notation ${}_R X$ (resp. X_R) to stress that the module X considered is a left (resp. right) R -module. We denote by $\text{Mod } R$ the category of left R -modules and by $()^*$ both the R -dual functors. For a module X , we denote by $E(X)$ its injective envelope and by $\varepsilon_X: X \rightarrow X^{**}$ the usual evaluation map. A module X is called torsionless (resp. reflexive) if ε_X is a monomorphism (resp. an isomorphism). For an $X \in \text{Mod } R$, we denote by $\tau(X)$ its Lambek torsion submodule. Namely, $\tau(X)$ is a submodule of X such that $\text{Hom}_R(\tau(X), E(_R R)) = 0$ and $X / \tau(X)$ is cogenerated by $E(_R R)$. A module X is called torsion (resp. torsionfree) if $\tau(X) = X$ (resp. $\tau(X) = 0$). A submodule Y of a module X is called a dense (resp. closed) submodule if X / Y is torsion (resp. torsionfree).

Here we recall some definitions. Let Y be a submodule of a module X . Then X is called a rational extension of Y if $\text{Hom}_R(X / Y, E(X)) = 0$. Let Q be an extension ring of R , i.e., Q is a ring containing R as a subring with common identity. Then Q is called a left (resp. right) quotient ring of R if ${}_R Q$ (resp. Q_R) is a rational extension of ${}_R R$ (resp. R_R). A left quotient ring Q of R is called a maximal left quotient ring of R if $E(_R Q) / Q$ is torsionfree. As an extension ring of R , a maximal left quotient ring of R is isomorphic to the biendomorphism ring of $E(_R R)$ (see, e.g., Lambek [10] for details). An extension ring Q of R is called a maximal two-sided quotient ring of R if it is both a maximal left quotient ring of R and a maximal right quotient ring of R . A ring homomorphism $R \rightarrow Q$ is called a left (resp. right) flat epimorphism if the induced functor ${}_R Q \otimes_{R^{\text{op}}}$ (resp. $- \otimes_R Q_R$) is a localization functor of $\text{Mod } R$ (resp. $\text{Mod } R^{\text{op}}$),

i.e., Q_R (resp. ${}_RQ$) is flat and $Q \otimes_R Q \simeq Q$ canonically (see, e.g., Silver [17], Lazard [11] and Popescu and Spircu [15] for details). A module X is called τ -finitely generated if it contains a finitely generated dense submodule. A finitely generated module X is called τ -finitely presented (resp. τ -coherent) if for every epimorphism (resp. homomorphism) $\pi: Y \rightarrow X$ with Y finitely generated, $\text{Ker } \pi$ is τ -finitely generated. A module X is called τ -noetherian (resp. τ -artinian) if it satisfies the ascending (resp. descending) chain condition on closed submodules. Finally, a ring R is called left (resp. right) τ -noetherian if ${}_R R$ (resp. R_R) is τ -noetherian, left (resp. right) τ -artinian if ${}_R R$ (resp. R_R) is τ -artinian, and left (resp. right) τ -coherent if ${}_R R$ (resp. R_R) is τ -coherent.

1. τ -absolutely pure and τ -semicompact rings. In this section, we characterize rings R for which every finitely generated submodule of $E({}_R R)$ is torsionless.

Lemma 1.1 (Hoshino [7, Theorem A]). *For a ring R the following are equivalent.*

- (a) $\tau(X) = \text{Ker } \varepsilon_X$ for every finitely presented $X \in \text{Mod } R$.
- (a)^{op} $\tau(M) = \text{Ker } \varepsilon_M$ for every finitely presented $M \in \text{Mod } R^{\text{op}}$.

Following [8], we call a ring R τ -absolutely pure if it satisfies the equivalent conditions in Lemma 1.1. We call a homomorphism $\pi: X \rightarrow Y$ a τ -epimorphism if $\text{Cok } \pi$ is torsion. Then we call a module X τ -semicompact if for every inverse system of τ -epimorphisms $\{\pi_\lambda: X \rightarrow Y_\lambda\}_{\lambda \in \Lambda}$ with each Y_λ torsionless, the induced homomorphism $\varprojlim \pi_\lambda: X \rightarrow \varprojlim Y_\lambda$ is a τ -epimorphism. Finally, we call a ring R left (resp. right) τ -semicompact if ${}_R R$ (resp. R_R) is τ -semicompact.

REMARKS. (1) The τ -semicompactness is just the R -linear compactness, in the sense of Gómez Pardo [5], relative to Lambek torsion theory.

(2) Let $\text{Mod } R/\tau$ denote the quotient category of $\text{Mod } R$ over the full subcategory $\text{Ker}(\text{Hom}_R(-, E({}_R R)))$. Assume that the image of ${}_R R$ in $\text{Mod } R/\tau$ is linearly compact in the sense of Gómez Pardo [5]. Then R is left τ -semicompact.

Theorem 1.2. *For a ring R the following are equivalent.*

- (a) *Every finitely generated submodule of $E({}_R R)$ is torsionless.*
- (b) $\tau(X) = \text{Ker } \varepsilon_X$ for every finitely generated $X \in \text{Mod } R$.
- (c) $\text{Ext}_R^1(X, R)$ is torsion for every finitely generated $X \in \text{Mod } R$.
- (d) R is τ -absolutely pure and right τ -semicompact.

Proof. (a) \Leftrightarrow (b). See Hoshino [7, Lemma 5].

(b) \Rightarrow (c). This is due essentially to Otake [14, Lemma 2.3]. Let $0 \rightarrow Y \rightarrow F \rightarrow X \rightarrow 0$ be an exact sequence in $\text{Mod } R$ with F finitely generated free

and let $\pi: Y^* \rightarrow \text{Ext}_R^1(X, R)$ denote the canonical epimorphism. Let $h \in Y^*$ and form a push-out diagram:

$$\begin{array}{ccccccc} 0 & \rightarrow & Y & \rightarrow & F & \rightarrow & X \rightarrow 0 \\ & & \downarrow h & & \downarrow & & \parallel \\ 0 & \rightarrow & R & \xrightarrow{\phi} & Z & \rightarrow & X \rightarrow 0. \end{array}$$

Since Z is finitely generated, $\text{Ker } \varepsilon_Z$ is torsion. Thus $\phi^{**} \circ \varepsilon_R = \varepsilon_Z \circ \phi$ is monic, so is ϕ^{**} . Hence $(\text{Cok } \phi^*)^* \simeq \text{Ker } \phi^{**} = 0$. Since $\pi(h)R_R$ is an epimorphic image of $\text{Cok } \phi^*$, $(\pi(h)R_R)^* = 0$ and thus $\text{Ext}_R^1(X, R)$ is torsion.

(c) \Rightarrow (b). Let $X \in \text{Mod } R$ be finitely generated. Let Y be a submodule of $\text{Ker } \varepsilon_X$ and let $j: Y \rightarrow X$ denote the inclusion. Then $j^* = 0$ and Y^* embeds in $\text{Ext}_R^1(X/Y, R)$. Thus Y^* is torsion, so that $Y^* = 0$. Hence $\text{Ker } \varepsilon_X$ is torsion and $\tau(X) = \text{Ker } \varepsilon_X$.

(c) \Leftrightarrow (d). This is easily deduced from [8, Lemma 2.7].

REMARK. The equivalence (a) \Leftrightarrow (d) of Theorem 1.2 would yield a result of Gómez Pardo and Guil Asensio [6, Theorem 2.2].

Corollary 1.3 (cf. Sumioka [20, Theorem 1]). *Let R be left perfect. Then the following are equivalent.*

- (a) *Every finitely generated submodule of $E(R)$ is torsionless.*
- (b) *R contains a faithful and injective left ideal.*

Proof. (a) \Rightarrow (b). By Storrer [18] R contains an idempotent e with ReR a minimal dense right ideal. It is obvious that ${}_RRe$ is faithful. Since by Theorem 1.2 $\text{Ext}_R^1(X, Re) \simeq \text{Ext}_R^1(X, R) \otimes_R Re = 0$ for every finitely generated $X \in \text{Mod } R$, ${}_RRe$ is injective.

(b) \Rightarrow (a). Obvious.

Corollary 1.4. *Let R be τ -absolutely pure, left and right τ -semicomplete. Then both $\text{Ker } \varepsilon_X$ and $\text{Cok } \varepsilon_X$ are torsion for every finitely generated $X \in \text{Mod } R$.*

Proof. Let $X \in \text{Mod } R$ be finitely generated. By Theorem 1.2 $\text{Ker } \varepsilon_X$ is torsion. We know from the argument of Jans [9, Theorem 1.1] that $\text{Cok } \varepsilon_X \simeq \text{Ext}_R^1(M, R)$ with $M \in \text{Mod } R^{\text{op}}$ finitely generated. Thus again by Theorem 1.2 $\text{Cok } \varepsilon_X$ is torsion.

REMARK. Assume that R is a maximal left quotient ring of itself, i. e., $E(R)/R$ is torsionfree. Then $\text{Ext}_R^1(X, Y) = 0$ for all torsion $X \in \text{Mod } R$ and reflexive

$Y \in \text{Mod } R$. Thus Corollary 1.4 would yield a result of Gómez Pardo and Guil Asensio [6, Theorem 1.5].

Corollary 1.5. *Let R be τ -absolutely pure and left τ -semicomplete. Then every finitely generated $X \in \text{Mod } R$ is τ -semicomplete.*

Proof. Let $X \in \text{Mod } R$ be finitely generated. Since every factor module of a τ -semicomplete module is τ -semicomplete, we may assume that X is free. Then the argument of [8, Lemma 2.7] applies.

2. Flat epimorphic extension rings. Throughout this section, Q stands for an extension ring of R .

The following lemmas seem to be known (cf. Silver [7], Lazard [11], Popescu and Spircu [15], Morita [13] and so on). However, for the benefit of the reader, we include proofs.

Lemma 2.1. *The following are equivalent.*

- (1) *The inclusion $R \rightarrow Q$ is a left flat epimorphism.*
- (2) *$Q \otimes_R X = 0$ for every submodule X of ${}_RQ/R$.*

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). Let $\pi: Q \otimes_R Q \rightarrow Q$ denote the multiplication map. Then ${}_\varrho \text{Ker } \pi \simeq {}_\varrho Q \otimes_R (Q/R) = 0$. Next, let $F_1 \rightarrow F_0 \rightarrow X \rightarrow 0$ be an exact sequence in $\text{Mod } R$ with each F_i finitely generated free and put $Y = \text{Im}(F_1 \rightarrow F_0)$. We have a sequence of embeddings $\text{Tor}_1^R(Q, X) \subset \text{Tor}_1^R(Q/R, X) \subset (Q/R) \otimes_R Y$. Let us form a pull-back diagram:

$$\begin{array}{ccc} (Q/R) \otimes_R F_1 & \twoheadrightarrow & (Q/R) \otimes_R Y \\ \uparrow & & \uparrow \\ Z & \twoheadrightarrow & \text{Tor}_1^R(Q, X). \end{array}$$

Since $(Q/R) \otimes_R F_1$ is isomorphic to a finite direct sum of copies of ${}_RQ/R$, it follows by induction that $Q \otimes_R Z = 0$. Thus, since $Q \otimes_R Q \simeq Q$ canonically, $\text{Tor}_1^R(Q, X) \simeq Q \otimes_R \text{Tor}_1^R(Q, X) = 0$.

Lemma 2.2. *The following are equivalent.*

- (1) *Q is a left quotient ring of R .*
- (2) (a) *${}_\varrho Q \otimes_R (Q/R)$ is torsion.*
- (b) *${}_\varrho \text{Tor}_1^R(Q, X)$ is torsion for every $X \in \text{Mod } R$.*

Proof. Note that $\text{Hom}_Q(Q \otimes_R (Q/R), E({}_\varrho Q)) \simeq \text{Hom}_R(Q/R, \text{Hom}_Q({}_\varrho Q_R, E({}_\varrho Q)))$,

and that $\text{Hom}_Q(\text{Tor}_1^R(Q, X), E(Q)) \simeq \text{Ext}_R^1(X, \text{Hom}_Q(Q, E(Q)))$ for every $X \in \text{Mod } R$.

(1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). It follows that ${}_R\text{Hom}_Q(Q, E(Q))$ is injective. Thus $E(Q)$ embeds in $\text{Hom}_Q(Q, E(Q))$. It then follows that $\text{Hom}_R(Q/R, E(Q)) = 0$.

The next lemma generalizes results of Cateforis [2, Proposition 2.2] and Masaike [12, Proposition 3] (cf. also Morita [13, Theorem 7.2]).

Lemma 2.3. *The following are equivalent.*

- (1) *The inclusion $R \rightarrow Q$ is a left flat epimorphism.*
- (2) (a) *Q is a left quotient ring of R .*
 (b) ${}_Q Q \otimes_R X$ is torsionfree for every submodule X of ${}_R Q$.

Proof. (1) \Rightarrow (2). By Lemma 2.2 (a) follows. It is obvious that (b) holds.

(2) \Rightarrow (1). Let Y be a submodule of ${}_R Q/R$. Since ${}_R Y$ is torsion, so is ${}_Q Q \otimes_R Y$. Next, let us form a pull-back diagram:

$$\begin{array}{ccccccc} 0 & \rightarrow & R & \xrightarrow{j} & Q & \rightarrow & Q/R \rightarrow 0 \\ & & \parallel & \uparrow & \uparrow & & \\ & & 0 & \rightarrow & R & \xrightarrow{\phi} & X \rightarrow Y \rightarrow 0, \end{array}$$

where $j: R \rightarrow Q$ is an inclusion. Since ${}_Q Q \otimes_R j$ is a split monomorphism, so is ${}_Q Q \otimes_R \phi$. Thus ${}_Q Q \otimes_R Y$ is torsionfree, so that ${}_Q Q \otimes_R Y = 0$. By Lemma 2.1 the assertion follows.

Lemma 2.4. *The following are equivalent.*

- (1) (a) *Q is a maximal left quotient ring of R .*
 (b) $E(Q)$ is an injective cogenerator in $\text{Mod } Q$.
- (2) (a) ${}_R Q/R$ is torsion.
 (b) $Q \otimes_R X = 0$ for every torsion $X \in \text{Mod } R$.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). By Lemma 2.1 the inclusion $R \rightarrow Q$ is a left flat epimorphism. Thus by Lemma 2.2 Q is a left quotient ring of R . Next, let $X \in \text{Mod } Q$ be torsion. Then ${}_R X$ is torsion and thus ${}_Q X \simeq {}_Q Q \otimes_R X = 0$. Hence $E(Q)$ is an injective cogenerator in $\text{Mod } Q$, so that Q is a maximal left quotient ring of R .

3. Flatness of the injective envelope. Throughout this section, Q stands for a left quotient ring of R .

Lemma 3.1. *Let R be left τ -noetherian and let $X \in \text{Mod } R$ be flat. Then ${}_Q Q \otimes_R X$ is torsionfree.*

Proof. Let I be a dense left ideal of R . By Faith [4, Proposition 3.1] I contains a finitely generated subideal J with I/J torsion. Then R/J is finitely presented torsion, so that $\text{Hom}_R(R/J, Q \otimes_R X) \simeq \text{Hom}_R(R/J, Q) \otimes_R X = 0$. Thus $\text{Hom}_R(R/I, Q \otimes_R X) = 0$. Hence ${}_R Q \otimes_R X$ is torsionfree, so is ${}_Q Q \otimes_R X$.

Corollary 3.2. *Let R be left τ -noetherian. Let $n \geq 1$ and let $X \in \text{Mod } R$ with $\text{weak dim}_R X \leq n$. Then $\text{Tor}_n^R(Q, X) = 0$.*

Proof. Let $\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow X \rightarrow 0$ be an exact sequence in $\text{Mod } R$ with each F_i free and put $Y = \text{Cok}(F_{n+1} \rightarrow F_n)$. Then Y is flat and thus by Lemma 3.1 ${}_Q Q \otimes_R Y$ is torsionfree. On the other hand, by Lemma 2.2 ${}_Q \text{Tor}_n^R(Q, X)$ is torsion. It follows that $\text{Tor}_n^R(Q, X) = 0$.

Lemma 3.3. *Let $X \in \text{Mod } Q$ with ${}_Q Q \otimes_R X$ torsionfree. Then ${}_Q Q \otimes_R X \simeq {}_Q X$ canonically.*

Proof. Let $\pi: Q \otimes_R X \rightarrow X$ denote the canonical epimorphism. Then ${}_R \text{Ker } \pi \simeq {}_R(Q/R) \otimes_R X$ is torsion, so is ${}_Q \text{Ker } \pi$. It follows that $\text{Ker } \pi = 0$.

Proposition 3.4. *Let R be left τ -noetherian. Then every $X \in \text{Mod } Q$ with ${}_R X$ flat is flat. In particular, $E(Q)$ is flat whenever $E(R)$ is.*

Proof. Let $X \in \text{Mod } Q$ with ${}_R X$ flat. Then by Lemmas 3.1 and 3.3 ${}_Q Q \otimes_R X \simeq {}_Q X$ canonically. Since both $-\otimes_Q Q_R$ and $-\otimes_R X$ are exact, so is $-\otimes_Q X$.

Proposition 3.5. *For a ring R the following are equivalent.*

- (1) *Arbitrary direct products of copies of $E(R)$ are flat.*
- (2) *R is τ -absolutely pure and right τ -coherent.*

Proof. (1) \Rightarrow (2). By Hoshino and Takashima [8, Lemma 1.4] R is τ -absolutely pure. Next, let $0 \rightarrow M \rightarrow F \rightarrow R$ be an exact sequence in $\text{Mod } R^{\text{op}}$ with F finitely generated free. By Colby and Rutter [3, Theorem 1.3] M contains a finitely generated submodule N with $(M/N) \otimes_R E(R) = 0$. It suffices to show that M/N is torsion. For an $L \in \text{Mod } R^{\text{op}}$, there exists a natural homomorphism

$$\theta_L: L \otimes_R E(R) \rightarrow \text{Hom}_R(L^*, E(R))$$

such that $\theta_L(x \otimes y)(\alpha) = \alpha(x)y$ for $x \in L$, $y \in E(R)$ and $\alpha \in L^*$. Now, let L be a cyclic submodule of M/N and let $\pi: R \rightarrow L$ be epic in $\text{Mod } R^{\text{op}}$. Since $\theta_L \circ (\pi \otimes_R E(R))$

$=\text{Hom}_R(\pi^*, E_{(R}R)) \circ \theta_R$ is epic, so is θ_L . Note that $L \otimes_R E_{(R}R) = 0$. Thus $\text{Hom}_R(L^*, E_{(R}R)) = 0$ and hence $L^* = 0$. It follows that M/N is torsion.

(2) \Rightarrow (1). See Hoshino and Takashima [8, Proposition 1.6].

4. Quasi-Frobenius quotient rings. In this section, we provide a necessary and sufficient condition for an extension ring Q of R to be a quasi-Frobenius maximal two-sided quotient ring of R .

Lemma 4.1. *Let R be left τ -noetherian and let Q be a maximal left quotient ring of R . Assume that $\text{weak dim }_R Q \leq 1$. Then the inclusion $R \rightarrow Q$ is a ring epimorphism.*

Proof. We claim that $(Q/R) \otimes_R Q = 0$. Let I be a dense left ideal of R . By Faith [4, Proposition 3.1] I contains a finitely generated subideal J with I/J torsion. Note that J is also a dense left ideal of R . It follows that $(Q/R)_R$ is an epimorphic image of the direct sum $\bigoplus \text{Hom}_R(R/J, Q/R)_R$, where J runs over all finitely generated dense left ideals of R . Let J be a finitely generated dense left ideal of R . Since $\text{Hom}_R(R/J, Q/R)_R \cong \text{Ext}_R^1(R/J, R)$, we have only to show that $\text{Ext}_R^1(R/J, R) \otimes_R Q = 0$. For an $X \in \text{Mod } R$, there exists a natural homomorphism

$$\delta_X: X^* \otimes_R Q \rightarrow \text{Hom}_R(X, Q)$$

such that $\delta_X(\alpha \otimes q)(x) = \alpha(x)q$ for $\alpha \in X^*$, $q \in Q$ and $x \in X$. As we remarked in [8], there exists an epimorphism $\pi: X \rightarrow J$ with X finitely presented and $\text{Ker } \pi$ torsion. Note that by Auslander [1, Proposition 7.1] δ_X is monic. Since π^* is an isomorphism, $\text{Hom}_R(\pi, Q) \circ \delta_J = \delta_X \circ (\pi^* \otimes_R Q)$ is monic, so is δ_J . Next, let $j: J \rightarrow R$ denote the inclusion. Since $\text{Hom}_R(j, Q)$ is an isomorphism, so is $\text{Hom}_R(j, Q) \circ \delta_R = \delta_J \circ (j^* \otimes_R Q)$. Thus δ_J is epic. Hence δ_J is an isomorphism, so is $j^* \otimes_R Q$. It follows that $\text{Ext}_R^1(R/J, R) \otimes_R Q \cong \text{Cok}(j^* \otimes_R Q) = 0$.

In case $Q = R$, the next theorem is due to Faith [4, Corollary 5.4].

Theorem 4.2. *For an extension ring Q of R the following are equivalent.*

- (1) Q is a quasi-Frobenius maximal two-sided quotient ring of R .
- (2) (a) R is left τ -noetherian.
- (b) ${}_R Q/R$ is torsion.
- (c) Q_R is injective.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). For an $X \in \text{Mod } R$, there exists a natural homomorphism

$$\theta_X: Q \otimes_R X \rightarrow \text{Hom}_R(X^*, Q)$$

such that $\theta_X(q \otimes x)(\alpha) = q\alpha(x)$ for $q \in Q$, $x \in X$ and $\alpha \in X^*$. Since Q_R is injective, θ_X is an isomorphism for every finitely presented $X \in \text{Mod } R$. Let I be a dense left ideal of R . By Faith [4, Proposition 3.1] I contains a finitely generated subideal J with I/J torsion. Then R/J is finitely presented torsion, so that $Q \otimes_R (R/J) \simeq \text{Hom}_R((R/J)^*, Q) = 0$. Thus $Q \otimes_R (R/I) = 0$. It follows that $Q \otimes_R X = 0$ for every torsion $X \in \text{Mod } R$. Hence by Lemma 2.4, Q is a maximal left quotient ring of R , and $E(Q)$ is an injective cogenerator in $\text{Mod } Q$. Thus by Lemma 2.1 Q_R is flat as well as injective, so that $E(R_R)$ is flat. Hence by Hoshino and Takashima [8, Proposition 1.7] and Masaike [12, Proposition 2] Q is a right quotient ring of R . It follows that Q is a right selfinjective maximal right quotient ring of R . On the other hand, since R is left τ -noetherian, so is Q . Thus Q is left noetherian. Hence by Faith [4, Theorem 2.1] Q is quasi-Frobenius.

Corollary 4.3. *Let R be left and right noetherian and let Q be a maximal left quotient ring of R . Then the following are equivalent.*

- (1) Q is a quasi-Frobenius maximal two-sided quotient ring of R .
- (2) ${}_RQ$ is flat and $\text{inj dim } {}_RQ \leq 1$.

Proof. (1) \Rightarrow (2). By Lemma 2.3 ${}_RQ$ is flat. Also, ${}_RQ$ is injective by Lambek [10, § 5].

(2) \Rightarrow (1). By Lemmas 4.1 and 2.2 Q is a right quotient ring of R . Next, we claim that ${}_RQ$ is injective. Since

$$\begin{aligned} \text{Tor}_2^R(E(R_R), X) &\simeq \text{Hom}_R(\text{Ext}_R^2(X, R), E(R_R)) \\ &\simeq \text{Hom}_R(\text{Ext}_R^2(X, R), \text{Hom}_Q({}_RQ_Q, E(Q_Q))) \\ &\simeq \text{Hom}_Q(\text{Ext}_R^2(X, R) \otimes_R Q, E(Q_Q)) \\ &\simeq \text{Hom}_Q(\text{Ext}_R^2(X, Q), E(Q_Q)) \\ &= 0 \end{aligned}$$

for every finitely generated $X \in \text{Mod } R$, we have $\text{weak dim } E(R_R) \leq 1$. Thus by Hoshino [7, Propositions F and C] every finitely generated submodule of $E(R_R)$ is torsionless. Let $X \in \text{Mod } R$ be finitely generated. Since by Theorem 1.2 $X/\tau(X)$ is torsionless, there exists an exact sequence $0 \rightarrow X/\tau(X) \rightarrow F \rightarrow Y \rightarrow 0$ in $\text{Mod } R$ with F free. Thus $\text{Ext}_R^i(X, Q) \simeq \text{Ext}_R^i(X/\tau(X), Q) \simeq \text{Ext}_R^i(Y, Q) = 0$. Hence ${}_RQ$ is injective and by Theorem 4.2 the assertion follows.

REMARK. Let R be left noetherian and let $X \in \text{Mod } R$ be flat. Then $\text{Ext}_R^i(Y, R) \otimes_R X \simeq \text{Ext}_R^i(Y, X)$ for all $i \geq 0$ and finitely generated $Y \in \text{Mod } R$, so that $\text{inj dim } {}_R X \leq \text{inj dim } {}_R R$. Thus, together with Lemma 2.3, Corollary 4.3 would

yield a result of Sato [16, Theorem].

5. Appendix. Throughout this section, Q stands for an extension ring of R . We make some remarks on submodules of Q_R .

The argument of Sumioka [19, Proposition 6] suggests the following lemma.

Lemma 5.1. *The following are equivalent.*

- (1) Q is a left quotient ring of R .
- (2) (a) ${}_RQ/R$ is torsion.
- (b) $R \cap I \neq 0$ for every nonzero two-sided ideal I of Q .

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). Put ${}_Q E = \text{Hom}_R({}_R Q, E({}_R R))$. Then ${}_R E \simeq E({}_R R)$ canonically, so that the composite of ring homomorphisms $\text{End}(E({}_R R)) \rightarrow \text{End}({}_Q E) \rightarrow \text{End}({}_R E)$ is an isomorphism. Thus $\text{End}({}_Q E) = \text{End}({}_R E)$ and hence $\text{Biend}({}_Q E) = \text{Biend}({}_R E)$. Let $\phi: Q \rightarrow \text{Biend}({}_Q E)$ denote the canonical ring homomorphism. Since ${}_R E$ is faithful, $R \cap \text{Ker } \phi = 0$ and thus $\text{Ker } \phi = 0$. Since $\text{Biend}({}_R E)$ is a maximal left quotient ring of R , the assertion follows.

Lemma 5.2 (cf. Masaike [12, Proposition 2]). *Assume that Q is a right quotient ring of R . Let M be a submodule of Q_R containing R and put $I = \{a \in R \mid aM \subset R\}$. Then M is torsionless if and only if $({}_R R/I)^* = 0$.*

Proof. Let $j: R_R \rightarrow M_R$ denote the inclusion. Then j is an essential monomorphism, so that $\text{Ker } \varepsilon_M = 0$ if and only if $\text{Ker } j^{**} = 0$. It suffices to show that $\text{Ker } j^{**} \simeq ({}_R R/I)^*$. Identify $(R_R)^*$ with ${}_R R$. We claim that $\text{Im } j^* = I$. It is obvious that $I \subset \text{Im } j^*$. Conversely, let $h \in M^*$. Since $E(Q_Q)_R \simeq E(R_R)$ is injective, h extends to some $\phi: Q_R \rightarrow E(Q_Q)_R$. It is easy to see that ϕ is Q -linear. Thus $h(1)x = \phi(1)x = \phi(x) = h(x) \in R$ for all $x \in M$ and hence $j^*(h) = h(1) \in I$.

For an $M \in \text{Mod } R^{\text{op}}$, there exists a natural homomorphism

$$\eta_M: M \rightarrow \text{Hom}_Q(\text{Hom}_R(M, Q), Q)$$

such that $\eta_M(x)(\alpha) = \alpha(x)$ for $x \in M$ and $\alpha \in \text{Hom}_R(M, Q)$, and for an $X \in \text{Mod } R$ there exists a natural homomorphism

$$\zeta_X: X^* \rightarrow \text{Hom}_Q(Q \otimes_R X, Q)$$

such that $\zeta_X(\alpha)(q \otimes x) = q\alpha(x)$ for $\alpha \in X^*$, $q \in Q$ and $x \in X$. Also, for $L, M \in \text{Mod } R^{\text{op}}$ there exists a natural homomorphism

$$\delta_{L,M}: L \otimes_R M^* \rightarrow \text{Hom}_R(M, L)$$

such that $\delta_{L,M}(x \otimes \alpha)(y) = x\alpha(y)$ for $x \in L$, $\alpha \in M^*$ and $y \in M$.

For each $M \in \text{Mod } R^{\text{op}}$, we have a commutative diagram:

$$\begin{array}{ccc} M & \xrightarrow{\eta_M} & \text{Hom}_Q(\text{Hom}_R(M, Q), Q) \\ \varepsilon_M \downarrow & & \downarrow \text{Hom}_Q(\delta_{Q,M}, Q) \\ M^{**} & \xrightarrow{\zeta_{M^*}} & \text{Hom}_Q(Q \otimes_R M^*, Q) \end{array}$$

which yields the following lemma.

Lemma 5.3. *Let $M \in \text{Mod } R^{\text{op}}$. Assume that both η_M and $\text{Hom}_Q(\delta_{Q,M}, Q)$ are monic. Then M is torsionless.*

Also, for each $M \in \text{Mod } R^{\text{op}}$, we have a commutative diagram with exact rows:

$$\begin{array}{ccccccc} R \otimes_R M^* & \rightarrow & Q \otimes_R M^* & \rightarrow & (Q/R) \otimes_R M^* & \rightarrow 0 \\ \delta_{R,M} \downarrow & & \downarrow \delta_{Q,M} & & \downarrow \delta_{Q/R,M} & & \\ 0 \rightarrow \text{Hom}_R(M, R) & \rightarrow & \text{Hom}_R(M, Q) & \rightarrow & \text{Hom}_R(M, Q/R). & & \end{array}$$

Note that, in case M is finitely generated, $\text{Hom}_R(M, Q/R)$ embeds in a direct sum of copies of ${}_RQ/R$. Thus Snake lemma yields the following two lemmas.

Lemma 5.4. *Assume that ${}_RQ/R$ is torsion. Then both ${}_R\text{Ker } \delta_{Q,M}$ and ${}_R\text{Cok } \delta_{Q,M}$ are torsion for every finitely generated $M \in \text{Mod } R^{\text{op}}$.*

Lemma 5.5. *Assume that the inclusion $R \rightarrow Q$ is a left flat epimorphism. Then $\delta_{Q,M} \simeq {}_QQ \otimes_R \delta_{Q,M}$ is an isomorphism for every finitely generated $M \in \text{Mod } R^{\text{op}}$.*

We are now in a position to formulate results of Masaike [12] as follows.

Proposition 5.6 (Masaike [12]). *For an extension ring Q of R the following hold.*

- (1) *If Q is a left quotient ring of R , every finitely generated submodule of Q_R is torsionless.*
- (2) *If the inclusion $R \rightarrow Q$ is a left flat epimorphism, every finitely generated submodule of Q_R embeds in a free module.*
- (3) *Assume that Q is a right quotient ring of R . Then Q is a left quotient ring of R if and only if every finitely generated submodule of Q_R is torsionless.*

Proof. (1) By Lemmas 5.3 and 5.4.

- (2) By Lemma 5.5.
- (3) By Lemmas 5.1 and 5.2.

References

- [1] M. Auslander: *Coherent functors*, Proc. Conf. Cat. Algebra, 189–231, Springer, Berlin 1966.
- [2] V.C. Cateforis: *Two-sided semisimple maximal quotient rings*, Trans. Amer. Math. Soc. **149** (1970), 339–349.
- [3] R.R. Colby and E.A. Rutter, Jr.: *Π -flat and Π -projective modules*, Arch. Math. **22** (1971), 246–251.
- [4] C. Faith: *Rings with ascending condition on annihilators*, Nagoya Math. J. **27** (1966), 179–191.
- [5] J.L. Gómez Pardo: *Counterinjective modules and duality*, J. Pure and Appl. Algebra **61** (1989), 165–179.
- [6] J.L. Gómez Pardo and P.A. Guil Asensio: *Morita dualities associated with R -dual functors*, J. Pure and Appl. Algebra **93** (1994), 179–194.
- [7] M. Hoshino: *On Lambek torsion theories*, Osaka J. Math. **29** (1992), 447–453.
- [8] M. Hoshino and S. Takashima: *On Lambek torsion theories II*, Osaka J. Math. **31** (1994), 729–746.
- [9] J.P. Jans: *Duality in noetherian rings*, Proc. Amer. Math. Soc. **12** (1961), 829–835.
- [10] J. Lambek: *On Utumi's ring of quotients*, Canad. J. Math. **15** (1963), 363–370.
- [11] D. Lazard: *Epimorphismes plats d'anneaux*, C. R. Acad. Sci. Paris **266** (1968), 314–316.
- [12] K. Masaike: *On quotient rings and torsionless modules*, Sci. Rep. Tokyo Kyoiku Daigaku A**11** (1971), 26–30.
- [13] K. Morita: *Localization in categories of modules I*, Math. Z. **114** (1970), 121–144.
- [14] K. Ohtake: *A generalization of Morita duality by Localizations*, preprint
- [15] N. Popescu and T. Spircu: *Sur les epimorphismes plats d'anneaux*, C. R. Acad. Sci. Paris **268** (1969), 376–379.
- [16] H. Sato: *On localizations of a 1-Gorenstein ring*, Sci. Rep. Tokyo Kyoiku Daigaku A**13** (1977), 188–193.
- [17] L. Silver: *Noncommutative localizations and applications*, J. Algebra **7** (1976), 44–76.
- [18] H.H. Storrer: *Rings of quotients of perfect rings*, Math. Z. **122** (1971), 151–165.
- [19] T. Sumioka: *On finite dimensional QF-3' rings*, Proceedings of 10th Symposium on Ring Theory, 79–105, Okayama Univ., Okayama, Japan 1978.
- [20] T. Sumioka: *On QF-3 and 1-Gorenstein rings*, Osaka J. Math. **16** (1979), 395–403.

Institute of Mathematics
 University of Tsukuba
 Ibaraki, 305
 Japan

