

Title	On Lambek torsion theories. III
Author(s)	Hoshino, Mitsuo
Citation	Osaka Journal of Mathematics. 1995, 32(2), p. 521–531
Version Type	VoR
URL	https://doi.org/10.18910/10943
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Hoshino, M. Osaka J. Math. **32** (1995), 521–531

ON LAMBEK TORSION THEORIES, III

MITSUO HOSHINO

(Received September, 1993)

In this note, developing our previous work [8] with S. Takashima, we will characterize rings R for which every finitely generated submodule of the injective envelope $E(_RR)$ is torsionless. Those characterizations would yield recent results of Gómez Pardo and Guil Asensio [6, Theorems 1.5 and 2.2]. Also, we will provide a necessary and sufficient condition for an extension ring Q of a ring R to be a quasi-Frobenius maximal two-sided quotient ring of R.

Throughout this note, R stands for an associative ring with identity, modules are unitary modules, and torsion theories are Lambek torsion theories. Sometimes, we consider right R-modules as left R^{op} -modules, where R^{op} denotes the opposite ring of R, and we use the notation $_{R}X$ (resp. X_{R}) to stress that the module X considered is a left (resp. right) R-module. We denote by Mod R the category of left R-modules and by ()* both the R-dual functors. For a module X, we denote by E(X) its injective envelope and by $\varepsilon_{X}: X \to X^{**}$ the usual evaluation map. A module X is called torsionless (resp. reflexive) if ε_{X} is a monomorphism (resp. an isomorphism). For an $X \in Mod R$, we denote by $\tau(X)$ its Lambek torsion submodule. Namely, $\tau(X)$ is a submodule of X such that $Hom_{R}(\tau(X), E(_{R}R)) = 0$ and $X/\tau(X)$ is cogenerated by $E(_{R}R)$. A module X is called torsion (resp. torsionfree) if $\tau(X) = X$ (resp. $\tau(X) = 0$). A submodule Y of a module X is called a dense (resp. closed) submodule if X/Y is torsion (resp. torsionfree).

Here we recall some definitions. Let Y be a submodule of a module X. Then X is called a rational extension of Y if $\operatorname{Hom}_R(X/Y, E(X)) = 0$. Let Q be an extension ring of R, i.e., Q is a ring containing R as a subring with common identity. Then Q is called a left (resp. right) quotient ring of R if $_RQ$ (resp. Q_R) is a rational extension of $_RR$ (resp. R_R). A left quotient ring Q of R is called a maximal left quotient ring of R if $E(_RQ)/Q$ is torsionfree. As an extension ring of R, a maximal left quotient ring of R is isomorphic to the biendomorphism ring of $E(_RR)$ (see, e.g., Lambek [10] for details). An extension ring Q of R is called a maximal two-sided quotient ring of R if it is both a maximal left quotient ring of R and a maximal right quotient ring of R. A ring homomorphism $R \to Q$ is called a left (resp. right) flat epimorphism if the induced functor $_RQ\otimes_{R^-}$ (resp. $-\otimes_RQ_R$) is a localization functor of Mod R (resp. Mod R^{op}),

i.e., Q_R (resp. $_RQ$) is flat and $Q \otimes_R Q \simeq Q$ canonically (see, e.g., Silver [17], Lazard [11] and Popescu and Spircu [15] for details). A module X is called τ -finitely generated if it contains a finitely generated dense submodule. A finitely generated module X is called τ -finitely presented (resp. τ -coherent) if for every epimorphism (resp. homomorphism) $\pi: Y \to X$ with Y finitely generated, Ker π is τ -finitely generated. A module X is called τ -noetherian (resp. τ -artinian) if it satisfies the ascending (resp. descending) chain condition on closed submodules. Finally, a ring R is called left (resp. right) τ -noetherian if $_RR$ (resp. R_R) is τ -noetherian, left (resp. right) τ -artinian if $_RR$ (resp. R_R) is τ -artinian, and left (resp. right) τ -coherent if $_RR$ (resp. R_R) is τ -coherent.

1. τ -absolutely pure and τ -semicompact rings. In this section, we characterize rings R for which every finitely generated submodule of $E(_RR)$ is torsionless.

Lemma 1.1 (Hoshino [7, Theorem A]). For a ring R the following are equivalent.

(a) $\tau(X) = \text{Ker } \varepsilon_X \text{ for every finitely presented } X \in \text{Mod } R.$

(a)^{op} $\tau(M) = \text{Ker } \varepsilon_M$ for every finitely presented $M \in \text{Mod } R^{\text{op}}$.

Following [8], we call a ring R τ -absolutely pure if it satisfies the equivalent conditions in Lemma 1.1. We call a homomorphism $\pi: X \to Y$ a τ -epimorphism if Cok π is torsion. Then we call a module X τ -semicompact if for every inverse system of τ -epimorphisms $\{\pi_{\lambda}: X \to Y_{\lambda}\}_{\lambda \in \Lambda}$ with each Y_{λ} torsionless, the induced homomorphism $\lim_{t \to \infty} \pi_{\lambda}: X \to \lim_{t \to \infty} Y_{\lambda}$ is a τ -epimorphism. Finally, we call a ring R left (resp. right) τ -semicompact if $_{R}R$ (resp. R_{R}) is τ -semicompact.

REMARKS. (1) The τ -semicompactness is just the *R*-linear compactness, in the sense of Gómez Pardo [5], relative to Lambek torsion theory.

(2) Let Mod R/τ denote the quotient category of Mod R over the full subcategory Ker(Hom_R(-, $E(_RR)$)). Assume that the image of $_RR$ in Mod R/τ is linearly compact in the sense of Gómez Pardo [5]. Then R is left τ -semicompact.

Theorem 1.2. For a ring R the following are equivalent.

(a) Every finitely generated submodule of E(RR) is torsionless.

(b) $\tau(X) = \text{Ker } \varepsilon_X$ for every finitely generated $X \in \text{Mod } R$.

(c) $\operatorname{Ext}_{R}^{1}(X,R)$ is torsion for every finitely generated $X \in \operatorname{Mod} R$.

(d) R is τ -absolutely pure and right τ -semicompact.

Proof. (a) \Leftrightarrow (b). See Hoshino [7, Lemma 5].

(b) \Rightarrow (c). This is due essentially to Ohtake [14, Lemma 2.3]. Let $0 \rightarrow Y \rightarrow F \rightarrow X \rightarrow 0$ be an exact sequence in Mod R with F finitely generated free

and let $\pi: Y^* \to \operatorname{Ext}^1_R(X, R)$ denote the canonical epimorphism. Let $h \in Y^*$ and form a push-out diagram:

$$0 \to Y \to F \to X \to 0$$
$${}^{h} \downarrow \qquad \parallel$$
$$0 \to R \stackrel{\phi}{\to} Z \to X \to 0.$$

Since Z is finitely generated, Ker ε_Z is torsion. Thus $\phi^{**} \circ \varepsilon_R = \varepsilon_Z \circ \phi$ is monic, so is ϕ^{**} . Hence $(\operatorname{Cok}\phi^*)^* \simeq \operatorname{Ker}\phi^{**} = 0$. Since $\pi(h)R_R$ is an epimorphic image of $\operatorname{Cok}\phi^*$, $(\pi(h)R_R)^* = 0$ and thus $\operatorname{Ext}_R^1(X,R)$ is torsion.

(c) \Rightarrow (b). Let $X \in Mod R$ be finitely generated. Let Y be a submodule of Ker ε_X and let $j: Y \to X$ denote the inclusion. Then $j^*=0$ and Y^* embeds in $Ext_R^1(X/Y, R)$. Thus Y^* is torsion, so that $Y^*=0$. Hence Ker ε_X is torsion and $\tau(X) = Ker \varepsilon_X$.

(c) \Leftrightarrow (d). This is easily deduced from [8, Lemma 2.7].

REMARK. The equivalence (a) \Leftrightarrow (d) of Theorem 1.2 would yield a result of Gómez Pardo and Guil Asensio [6, Theorem 2.2].

Corollary 1.3 (cf. Sumioka [20, Theorem 1]). Let R be left perfect. Then the following are equivalent.

(a) Every finitely generated submodule of E(R) is torsionless.

(b) R contains a faithful and injective left ideal.

Proof. (a) \Rightarrow (b). By Storrer [18] *R* contains an idempotent *e* with *ReR* a minimal dense right ideal. It is obvious that _R*Re* is faithful. Since by Theorem 1.2 Ext¹_R(*X*,*Re*) \simeq Ext¹_R(*X*,*R*) $\otimes_R Re = 0$ for every finitely generated $X \in \text{Mod } R$, _R*Re* is injective.

(b) \Rightarrow (a). Obvious.

Corollary 1.4. Let R be τ -absolutely pure, left and right τ -semicompact. Then both Ker ε_X and Cok ε_X are torsion for every finitely generated $X \in Mod R$.

Proof. Let $X \in Mod R$ be finitely generated. By Theorem 1.2 Ker ε_X is torsion. We know from the argument of Jans [9, Theorem 1.1] that $\operatorname{Cok} \varepsilon_X \simeq \operatorname{Ext}^1_R(M, R)$ with $M \in \operatorname{Mod} R^{\operatorname{op}}$ finitely generated. Thus again by Theorem 1.2 Cok ε_X is torsion.

REMARK. Assume that R is a maximal left quotient ring of itself, i. e., E(R)/R is torsionfree. Then $\operatorname{Ext}_{R}^{1}(X,Y)=0$ for all torsion $X \in \operatorname{Mod} R$ and reflexive

 $Y \in Mod R$. Thus Corollary 1.4 would yield a result of Gómez Pardo and Guil Asensio [6, Theorem 1.5].

Corollary 1.5. Let R be τ -absolutely pure and left τ -semicompact. Then every finitely generated $X \in Mod R$ is τ -semicompact.

Proof. Let $X \in Mod R$ be finitely generated. Since every factor module of a τ -semicompact module is τ -semicompact, we may assume that X is free. Then the argument of [8, Lemma 2.7] applies.

2. Flat epimorphic extension rings. Throughout this section, Q stands for an extension ring of R.

The following lemmas seem to be known (cf. Silver [7], Lazard [11], Popescu and Spircu [15], Morita [13] and so on). However, for the benefit of the reader, we include proofs.

Lemma 2.1. The following are equivalent.

(1) The inclusion $R \rightarrow Q$ is a left flat epimorphism.

(2) $Q \otimes_{\mathbb{R}} X = 0$ for every submodule X of $_{\mathbb{R}}Q/\mathbb{R}$.

Proof. (1) \Rightarrow (2). Obvious.

 $(2) \Rightarrow (1)$. Let $\pi: Q \otimes_R Q \to Q$ denote the multiplication map. Then $_Q \text{Ker } \pi \simeq_Q Q \otimes_R (Q/R) = 0$. Next, let $F_1 \to F_0 \to X \to 0$ be an exact sequence in Mod R with each F_i finitely generated free and put $Y = \text{Im}(F_1 \to F_0)$. We have a sequence of embeddings $\text{Tor}_1^R(Q,X) \subseteq \text{Tor}_1^R(Q/R,X) \subseteq (Q/R) \otimes_R Y$. Let us form a pull-back diagram:

$$(Q/R) \otimes_R F_1 \twoheadrightarrow (Q/R) \otimes_R Y$$

$$\forall \qquad \forall$$

$$Z \qquad \twoheadrightarrow \operatorname{Tor}_1^R(Q,X).$$

Since $(Q/R) \otimes_R F_1$ is isomorphic to a finite direct sum of copies of ${}_RQ/R$, it follows by induction that $Q \otimes_R Z = 0$. Thus, since $Q \otimes_R Q \simeq Q$ canonically, $\operatorname{Tor}_1^R(Q,X) \simeq Q \otimes_R \operatorname{Tor}_1^R(Q,X) = 0$.

Lemma 2.2. The following are equivalent.

- (1) Q is a left quotient ring of R.
- (2) (a) ${}_{Q}Q \otimes_{R}(Q/R)$ is torsion. (b) ${}_{O}\text{Tor}^{R}_{1}(Q,X)$ is torsion for every $X \in \text{Mod } R$.

Proof. Note that $\operatorname{Hom}_{O}(Q \otimes_{R}(Q/R), E(_{O}Q)) \simeq \operatorname{Hom}_{R}(Q/R, \operatorname{Hom}_{O}(_{O}Q_{R}, E(_{O}Q))))$

and that $\operatorname{Hom}_{Q}(\operatorname{Tor}_{1}^{R}(Q, X), E(Q)) \simeq \operatorname{Ext}_{R}^{1}(X, \operatorname{Hom}_{Q}(Q_{R}, E(Q)))$ for every $X \in \operatorname{Mod} R$. (1) \Rightarrow (2). Obvious.

 $(2) \Rightarrow (1)$. It follows that $_{R}\text{Hom}_{Q}(_{Q}Q_{R}, E(_{Q}Q))$ is injective. Thus $E(_{R}Q)$ embeds in $\text{Hom}_{Q}(_{Q}Q_{R}, E(_{Q}Q))$. It then follows that $\text{Hom}_{R}(Q/R, E(_{R}Q)) = 0$.

The next lemma generalizes results of Cateforis [2, Proposition 2.2] and Masaike [12, Proposition 3] (cf. also Morita [13, Theorem 7.2]).

Lemma 2.3. The following are equivalent.

- (1) The inclusion $R \rightarrow Q$ is a left flat epimorphism.
- (2) (a) Q is a left quotient ring of R.
 - (b) ${}_{O}Q \otimes_{R} X$ is torsionfree for every submodule X of ${}_{R}Q$.

Proof. (1) \Rightarrow (2). By Lemma 2.2 (a) follows. It is obvious that (b) holds.

 $(2) \Rightarrow (1)$. Let Y be a submodule of ${}_{R}Q/R$. Since ${}_{R}Y$ is torsion, so is ${}_{O}Q \otimes_{R}Y$. Next, let us form a pull-back diagram:

$$0 \to R \xrightarrow{\phi} Q \to Q / R \to 0$$
$$\parallel \quad \mho \quad \mho$$
$$0 \to R \xrightarrow{\phi} X \to \quad Y \to 0,$$

where $j: R \to Q$ is an inclusion. Since ${}_{Q}Q \otimes_{R} j$ is a split monomorphism, so is ${}_{Q}Q \otimes_{R} \phi$. Thus ${}_{Q}Q \otimes_{R} Y$ is torsionfree, so that $Q \otimes_{R} Y = 0$. By Lemma 2.1 the assertion follows.

Lemma 2.4. The following are equivalent.

- (1) (a) Q is a maximal left quotient ring of R.
 (b) E(QQ) is an injective cogenerator in Mod Q.
- (2) (a) $_{R}Q/R$ is torsion. (b) $Q \otimes_{R} X = 0$ for every torsion $X \in Mod R$.

Proof. $(1) \Rightarrow (2)$. Obvious.

 $(2) \Rightarrow (1)$. By Lemma 2.1 the inclusion $R \to Q$ is a left flat epimorphism. Thus by Lemma 2.2 Q is a left quotient ring of R. Next, let $X \in Mod Q$ be torsion. Then $_RX$ is torsion and thus $_QX \simeq _QQ \otimes _RX = 0$. Hence $E(_QQ)$ is an injective cogenerator in Mod Q, so that Q is a maximal left quotient ring of R.

3. Flatness of the injective envelope. Throughout this section, Q stands for a left quotient ring of R.

Lemma 3.1. Let R be left τ -noetherian and let $X \in \text{Mod } R$ be flat. Then ${}_{O}Q \otimes_{\mathbb{R}} X$ is torsionfree.

Proof. Let *I* be a dense left ideal of *R*. By Faith [4, Proposition 3.1] *I* contains a finitely generated subideal *J* with I/J torsion. Then R/J is finitely presented torsion, so that $\operatorname{Hom}_{R}(R/J, Q \otimes_{R} X) \simeq \operatorname{Hom}_{R}(R/J, Q) \otimes_{R} X = 0$. Thus $\operatorname{Hom}_{R}(R/I, Q \otimes_{R} X) = 0$. Hence $_{R}Q \otimes_{R} X$ is torsionfree, so is $_{O}Q \otimes_{R} X$.

Corollary 3.2. Let R be left τ -noetherian. Let $n \ge 1$ and let $X \in \text{Mod } R$ with weak dim_R $X \le n$. Then $\text{Tor}_n^R(Q, X) = 0$.

Proof. Let $\dots \to F_1 \to F_0 \to X \to 0$ be an exact sequence in Mod R with each F_i free and put $Y = \operatorname{Cok}(F_{n+1} \to F_n)$. Then Y is flat and thus by Lemma 3.1 ${}_{Q}Q \otimes_{R} Y$ is torsionfree. On the other hand, by Lemma 2.2 ${}_{Q}\operatorname{Tor}_{n}^{R}(Q, X)$ is torsion. It follows that $\operatorname{Tor}_{n}^{R}(Q, X) = 0$.

Lemma 3.3. Let $X \in \text{Mod } Q$ with ${}_{Q}Q \otimes_{R} X$ torsionfree. Then ${}_{Q}Q \otimes_{R} X \simeq_{Q} X$ canonically.

Proof. Let $\pi: Q \otimes_R X \to X$ denote the canonical epimorphism. Then _RKer $\pi \simeq_R(Q/R) \otimes_R X$ is torsion, so is _oKer π . It follows that Ker $\pi = 0$.

Proposition 3.4. Let R be left τ -noetherian. Then every $X \in \text{Mod } Q$ with $_{R}X$ flat is flat. In particular, $E(_{Q}Q)$ is flat whenever $E(_{R}R)$ is.

Proof. Let $X \in Mod Q$ with $_{R}X$ flat. Then by Lemmas 3.1 and 3.3 $_{O}Q \otimes_{R}X \simeq_{O}X$ canonically. Since both $- \otimes_{Q}Q_{R}$ and $- \otimes_{R}X$ are exact, so is $- \otimes_{Q}X$.

Proposition 3.5. For a ring R the following are equivalent.

(1) Arbitrary direct products of copies of E(R) are flat.

(2) R is τ -absolutely pure and right τ -coherent.

Proof. (1) \Rightarrow (2). By Hoshino and Takashima [8, Lemma 1.4] R is τ -absolutely pure. Next, let $0 \rightarrow M \rightarrow F \rightarrow R$ be an exact sequence in Mod $R^{\circ p}$ with F finitely generated free. By Colby and Rutter [3, Theorem 1.3] M contains a finitely generated submodule N with $(M/N) \otimes_R E(R) = 0$. It suffices to show that M/N is torision. For an $L \in Mod R^{\circ p}$, there exists a natural homomorphism

$$\theta_L: L \otimes_R E(R) \to \operatorname{Hom}_R(L^*, E(R))$$

such that $\theta_L(x \otimes y)(\alpha) = \alpha(x)y$ for $x \in L$, $y \in E({}_RR)$ and $\alpha \in L^*$. Now, let L be a cyclic submodule of M/N and let $\pi: R \to L$ be epic in Mod R^{op} . Since $\theta_L \circ (\pi \otimes_R E({}_RR))$

= Hom_R($\pi^*, E(_R R)$) $\circ \theta_R$ is epic, so is θ_L . Note that $L \otimes_R E(_R R) = 0$. Thus Hom_R($L^*, E(_R R)$) = 0 and hence $L^* = 0$. It follows that M/N is torsion. (2) \Rightarrow (1). See Hoshino and Takashima [8, Proposition 1.6].

4. Quasi-Frobenius qoutient rings. In this section, we provide a necessary

4. Quasi-Frobenius quatient rings. In this section, we provide a necessary and sufficient condition for an extension ring Q of R to be a quasi-Frobenius maximal two-sided quatient ring of R.

Lemma 4.1. Let R be left τ -noetherian and let Q be a maximal left quotient ring of R. Assume that weak dim ${}_{R}Q \leq 1$. Then the inclusion $R \rightarrow Q$ is a ring epimorphism.

Proof. We claim that $(Q/R) \otimes_R Q = 0$. Let *I* be a dense left ideal of *R*. By Faith [4, Proposition 3.1] *I* contains a finitely generated subideal *J* with I/Jtorsion. Note that *J* is also a dense left ideal of *R*. It follows that $(Q/R)_R$ is an epimorphic image of the direct sum $\oplus \operatorname{Hom}_R(R/J,Q/R)_R$, where *J* runs over all finitely generated dense left ideals of *R*. Let *J* be a finitely generated dense left ideal of *R*. Since $\operatorname{Hom}_R(R/J,Q/R)_R \simeq \operatorname{Ext}_R^1(R/J,R)$, we have only to show that $\operatorname{Ext}_R^1(R/J,R) \otimes_R Q = 0$. For an $X \in \operatorname{Mod} R$, there exists a natural homomorphism

$$\delta_X : X^* \otimes_R Q \to \operatorname{Hom}_R(X, Q)$$

such that $\delta_X(\alpha \otimes q)(x) = \alpha(x)q$ for $\alpha \in X^*$, $q \in Q$ and $x \in X$. As we remarked in [8], there exists an epimorphism $\pi: X \to J$ with X finitely presented and Ker π torsion. Note that by Auslander [1, Proposition 7.1] δ_X is monic. Since π^* is an isomorphism, $\operatorname{Hom}_R(\pi, Q) \circ \delta_J = \delta_X \circ (\pi^* \otimes_R Q)$ is monic, so is δ_J . Next, let $j: J \to R$ denote the inclusion. Since $\operatorname{Hom}_R(j,Q)$ is an isomorphism, so is $\operatorname{Hom}_R(j,Q) \circ \delta_R$ $= \delta_J \circ (j^* \otimes_R Q)$. Thus δ_J is epic. Hence δ_J is an isomorphism, so is $j^* \otimes_R Q$. It follows that $\operatorname{Ext}^1_R(R/J, R) \otimes_R Q \simeq \operatorname{Cok}(j^* \otimes_R Q) = 0$.

In case Q = R, the next theorem is due to Faith [4, Corollary 5.4].

Theorem 4.2. For an extension ring Q of R the following are equivalent. (1) Q is a quasi-Frobenius maximal two-sided quotient ring of R.

- (2) (a) R is left τ -noetherian.
 - (b) $_{R}Q/R$ is torsion.
 - (c) Q_R is injective.

Proof. (1) \Rightarrow (2). Obvious. (2) \Rightarrow (1). For an $X \in Mod R$, there exists a natural homomorphism M. HOSHINO

$$\theta_X: Q \otimes_R X \to \operatorname{Hom}_R(X^*, Q)$$

such that $\theta_X(q \otimes x)(\alpha) = q\alpha(x)$ for $q \in Q$, $x \in X$ and $\alpha \in X^*$. Since Q_R is injective, θ_X is an isomorphism for every finitely presented $X \in Mod R$. Let *I* be a dense left ideal of *R*. By Faith [4, Proposition 3.1] *I* contains a finitely generated subideal *J* with I/J torsion. Then R/J is finitely presented torsion, so that $Q \otimes_R (R/J)$ $\simeq Hom_R((R/J)^*, Q) = 0$. Thus $Q \otimes_R (R/I) = 0$. It follows that $Q \otimes_R X = 0$ for every torsion $X \in Mod R$. Hence by Lemma 2.4, *Q* is a maximal left quotient ring of *R*, and E(QQ) is an injective cogenerator in Mod *Q*. Thus by Lemma 2.1 Q_R is flat as well as injective, so that $E(R_R)$ is flat. Hence by Hoshino and Takashima [8, Proposition 1.7] and Masaike [12, Proposition 2] *Q* is a right quotient ring of *R*. It follows that *Q* is a right selfinjective maximal right quotient ring of *R*. On the other hand, since *R* is left τ -noetherian, so is *Q*. Thus *Q* is left noetherian. Hence by Faith [4, Theorem 2.1] *Q* is quasi-Frobenius.

Corollary 4.3. Let R be left and right noetherian and let Q be a maximal left quotient ring of R. Then the following are equivalent.

(1) Q is a quasi-Frobenius maximal two-sided quotient ring of R.

(2) $_{R}Q$ is flat and inj dim $_{R}Q \leq 1$.

Proof. (1) \Rightarrow (2). By Lemma 2.3 _RQ is flat. Also, _RQ is injective by Lambek [10, §5].

 $(2) \Rightarrow (1)$. By Lemmas 4.1 and 2.2 Q is a right quotient ring of R. Next, we claim that ${}_{R}Q$ is injective. Since

$$\operatorname{Tor}_{2}^{R}(E(R_{R}), X) \simeq \operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{2}(X, R), E(R_{R}))$$
$$\simeq \operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{2}(X, R), \operatorname{Hom}_{Q}(_{R}Q_{Q}, E(Q_{Q})))$$
$$\simeq \operatorname{Hom}_{Q}(\operatorname{Ext}_{R}^{2}(X, R) \otimes_{R}Q, E(Q_{Q}))$$
$$\simeq \operatorname{Hom}_{Q}(\operatorname{Ext}_{R}^{2}(X, Q), E(Q_{Q}))$$
$$= 0$$

for every finitely generated $X \in Mod R$, we have weak dim $E(R_R) \leq 1$. Thus by Hoshino [7, Propositions F and C] every finitely generated submodule of E(RR) is torsionless. Let $X \in Mod R$ be finitely generated. Since by Theorem 1.2 $X/\tau(X)$ is torsionless, there exists an exact sequence $0 \to X/\tau(X) \to F \to Y \to 0$ in Mod R with F free. Thus $\operatorname{Ext}^1_R(X,Q) \simeq \operatorname{Ext}^1_R(X/\tau(X),Q) \simeq \operatorname{Ext}^2_R(Y,Q) = 0$. Hence $_RQ$ is injective and by Theorem 4.2 the assertion follows.

REMARK. Let R be left noetherian and let $X \in \text{Mod } R$ be flat. Then Ext_Rⁱ(Y,R) $\otimes_R X \simeq \text{Ext}_R^i(Y,X)$ for all $i \ge 0$ and finitely generated $Y \in \text{Mod } R$, so that inj dim $_R X \le \text{inj dim }_R R$. Thus, together with Lemma 2.3, Corollary 4.3 would yield a result of Sato [16, Theorem].

5. Appendix. Throughout this section, Q stands for an extension ring of R. We make some remarks on submodules of Q_R .

The argument of Sumioka [19, Proposition 6] suggests the following lemma.

Lemma 5.1. The following are equivalent.

(1) Q is a left quotient ring of R.

(2) (a) $_{R}Q/R$ is torsion.

(b) $R \cap I \neq 0$ for every nonzero two-sided ideal I of Q.

Proof. (1) \Rightarrow (2). Obvious.

 $(2) \Rightarrow (1)$. Put ${}_{Q}E = \operatorname{Hom}_{R}({}_{R}Q_{Q}, E({}_{R}R))$. Then ${}_{R}E \simeq E({}_{R}R)$ canonically, so that the composite of ring homomorphisms End $(E({}_{R}R)) \rightarrow \operatorname{End}({}_{Q}E) \rightarrow \operatorname{End}({}_{R}E)$ is an isomorphism. Thus End $({}_{Q}E) = \operatorname{End}({}_{R}E)$ and hence Biend $({}_{Q}E) = \operatorname{Biend}({}_{R}E)$. Let $\phi: Q \rightarrow \operatorname{Biend}({}_{Q}E)$ denote the canonical ring homomorphism. Since ${}_{R}E$ is faithful, $R \cap \operatorname{Ker} \phi = 0$ and thus $\operatorname{Ker} \phi = 0$. Since Biend $({}_{R}E)$ is a maximal left quotient ring of R, the assertion follows.

Lemma 5.2 (cf. Masaike [12, Proposition 2]). Assume that Q is a right quotient ring of R. Let M be a submodule of Q_R containing R and put $I = \{a \in R | aM \subset R\}$. Then M is torsionless if and only if $({}_RR/I)^* = 0$.

Proof. Let $j: R_R \to M_R$ denote the inclusion. Then j is an essential monomorphism, so that Ker $\varepsilon_M = 0$ if and only if Ker $j^{**}=0$. It suffices to show that Ker $j^{**}\simeq (_RR/I)^*$. Identify $(R_R)^*$ with $_RR$. We claim that Im $j^*=I$. It is obvious that $I \subset \text{Im } j^*$. Conversely, let $h \in M^*$. Since $E(Q_Q)_R \simeq E(R_R)$ is injective, h extends to some $\phi: Q_R \to E(Q_Q)_R$. It is easy to see that ϕ is Q-linear. Thus $h(1)x = \phi(1)x = \phi(x) = h(x) \in R$ for all $x \in M$ and hence $j^*(h) = h(1) \in I$.

For an $M \in Mod R^{op}$, there exists a natural homomorphism

 $\eta_M: M \to \operatorname{Hom}_O(\operatorname{Hom}_R(M, Q), Q)$

such that $\eta_M(x)(\alpha) = \alpha(x)$ for $x \in M$ and $\alpha \in \operatorname{Hom}_R(M,Q)$, and for an $X \in \operatorname{Mod} R$ there exists a natural homomorphism

$$\zeta_X: X^* \to \operatorname{Hom}_O(Q \otimes_R X, Q)$$

such that $\zeta_X(\alpha)(q \otimes x) = q\alpha(x)$ for $\alpha \in X^*$, $q \in Q$ and $x \in X$. Also, for L, $M \in Mod \mathbb{R}^{op}$ there exists a natural homomorphism

$$\delta_{L,M}: L \otimes_R M^* \to \operatorname{Hom}_R(M,L)$$

such that $\delta_{L,M}(x \otimes \alpha)(y) = x\alpha(y)$ for $x \in L$, $\alpha \in M^*$ and $y \in M$. For each $M \in Mod R^{op}$, we have a commutative diagram:

which yields the following lemma.

Lemma 5.3. Let $M \in \text{Mod } R^{\text{op}}$. Assume that both η_M and $\text{Hom}_Q(\delta_{Q,M}, Q)$ are monic. Then M is torsionless.

Also, for each $M \in Mod R^{op}$, we have a commutative diagram with exact rows:

$$R \otimes_{R} M^{*} \to Q \otimes_{R} M^{*} \to (Q/R) \otimes_{R} M^{*} \to 0$$

$$\delta_{R,M} \downarrow \qquad \qquad \qquad \downarrow^{\delta_{Q,M}} \qquad \qquad \qquad \downarrow^{\delta_{Q/R,M}}$$

$$0 \to \operatorname{Hom}_{R}(M,R) \to \operatorname{Hom}_{R}(M,Q) \to \operatorname{Hom}_{R}(M,Q/R).$$

Note that, in case M is finitely generated, $\operatorname{Hom}_{R}(M,Q/R)$ embeds in a direct sum of copies of $_{R}Q/R$. Thus Snake lemma yields the following two lemmas.

Lemma 5.4. Assume that $_{R}Q/R$ is torsion. Then both $_{R}\text{Ker }\delta_{Q,M}$ and $_{R}\text{Cok }\delta_{O,M}$ are torsion for every finitely generated $M \in \text{Mod } R^{\text{op}}$.

Lemma 5.5. Assume that the inclusion $R \to Q$ is a left flat epimorphism. Then $\delta_{Q,M} \simeq_Q Q \otimes_R \delta_{Q,M}$ is an isomorphism for every finitely generated $M \in \text{Mod } R^{\text{op}}$.

We are now in a position to formulate results of Masaike [12] as follows.

Proposition 5.6 (Masaike [12]). For an extension ring Q of R the following hold.

(1) If Q is a left quotient ring of R, every finitely generated submodule of Q_R is torsionless.

(2) If the inclusion $R \rightarrow Q$ is a left flat epimorphism, every finitely generated submodule of Q_R embeds in a free module.

(3) Assume that Q is a right quotient ring of R. Then Q is a left quotient ring of R if and only if every finitely generated submodule of Q_R is torsionless.

Proof. (1) By Lemmas 5.3 and 5.4.

530

(2) By Lemma 5.5.

(3) By Lemmas 5.1 and 5.2.

References

- [1] M. Auslander: Coherent functors, Proc. Conf. Cat. Algebra, 189-231, Springer, Berlin 1966.
- [2] V.C. Cateforis: Two-sided semisimple maximal quotient rings, Trans. Amer. Math. Soc. 149 (1970), 339-349.
- [3] R.R. Colby and E.A. Rutter, Jr.: II-flat and II-projective modules, Arch. Math. 22 (1971), 246-251.
- [4] C. Faith: Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.
- [5] J.L. Gómez Pardo: Counterinjective modules and duality, J. Pure and Appl. Algebra 61 (1989), 165-179.
- [6] J.L. Gómez Pardo and P.A. Guil Asensio: Morita dualities associated with R-dual functors, J. Pure and Appl. Algebra 93 (1994), 179-194.
- [7] M. Hoshino: On Lambek torsion theories, Osaka J. Math. 29 (1992), 447-453.
- [8] M. Hoshino and S. Takashima: On Lambek torsion theories II, Osaka J. Math. 31 (1994), 729-746.
- [9] J.P. Jans: Duality in noetherian rings, Proc. Amer. Math. Soc. 12 (1961), 829-835.
- [10] J. Lambek: On Utumi's ring of quotients, Canad. J. Math. 15 (1963), 363-370.
- [11] D. Lazard: Epimorphismes plats d'anneaux, C. R. Acad. Sci. Paris 266 (1968), 314-316.
- [12] K. Masaike: On quotient rings and torsionless modules, Sci. Rep. Tokyo Kyoiku Daigaku A11 (1971), 26-30.
- [13] K. Morita: Localization in categories of modules I, Math. Z. 114 (1970), 121-144.
- [14] K. Ohtake: A generalization of Morita duality by Localizations, preprint
- [15] N. Popescu and T. Spircu: Sur les epimorphismes plats d'anneaux, C. R. Acad. Sci. Paris 268 (1969), 376–379.
- [16] H. Sato: On localizations of a 1-Gorenstein ring, Sci. Rep. Tokyo Kyoiku Daigaku A13 (1977), 188-193.
- [17] L. Silver: Noncommutative localizations and applications, J. Algebra 7 (1976), 44-76.
- [18] H.H. Storrer: Rings of quotients of perfect rings, Math. Z. 122 (1971), 151-165.
- [19] T. Sumioka: On finite dimensional QF-3' rings, Proceedings of 10th Symposium on Ring Theory, 79-105, Okayama Univ., Okayama, Japan 1978.
- [20] T. Sumioka: On QF-3 and 1-Gorenstein rings, Osaka J. Math. 16 (1979), 395-403.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan