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In this note, developing our previous work [8] with S. Takashima, we will
characterize rings R for which every finitely generated submodule of the injective
envelope E(xR) is torsionless. Those characterizations would yield recent results
of Gomez Pardo and Guil Asensio [6, Theorems 1.5 and 2.2]. Also, we will
provide a necessary and sufficient condition for an extension ring Q of a ring R
to be a quasi-Frobenius maximal two-sided quotient ring of R.

Throughout this note, R stands for an associative ring with identity, modules
are unitary modules, and torsion theories are Lambek torsion theories. Sometimes,
we consider right R-modules as left R°’-modules, where R°P denotes the opposite ring
of R, and we use the notation gX (resp. Xy) to stress that the module X considered
is a left (resp. right) R-module. We denote by Mod R the category of left
R-modules and by ( )* both the R-dual functors. For a module X, we denote by
E(X) its injective envelope and by ex: X — X** the usual evaluation map. A
module X is called torsionless (resp. reflexive) if ey is a monomorphism (resp. an
isomorphism). For an XeMod R, we denote by t(X) its Lambek torsion
submodule. Namely, t(X) is a submodule of X such that Homg(z(X),E(zxR))=0
and X /t(X) is cogenerated by E(gR). A module X is called torsion (resp. torsionfree)
if 1(X)=X (resp. 1(X)=0). A submodule Y of a module X is called a dense
(resp. closed) submodule if X /Y is torsion (resp. torsionfree).

Here we recall some definitions. Let Y be a submodule of a module X. Then
X is called a rational extension of Y if Homg(X /Y, E(X))=0. Let Q be an
extension ring of R, ie, Q is a ring containing R as a subring with common
identity. Then Q is called a left (resp. right) quotient ring of R if zQ (resp. Qp) is
a rational extension of zR (resp. Rg). A left quotient ring Q of R is called a maximal
left quotient ring of R if E(zQ)/Q is torsionfree. As an extension ring of R, a
maximal left quotient ring of R is isomorphic to the biendomorphism ring of
E(zR) (see, e.g., Lambek [10] for details). An extension ring Q of R is called
a maximal two-sided quotient ring of R if it is both a maximal left quotient
ring of R and a maximal right quotient ring of R. A ring homomorphism
R— Q is called a left (resp. right) flat epimorphism if the induced functor
rO®g- (resp. -®rQr) is a localization functor of Mod R (resp. Mod R°P),
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ie., Og (resp. Q) is flat and Q® xQ =~ Q canonically (see, e.g., Silver [17], Lazard
[11] and Popescu and Spircu [15] for details). A module X is called t-finitely
generated if it contains a finitely generated dense submodule. A finitely generated
module X is called t-finitely presented (resp. t-coherent) if for every epimorphism
(resp. homomorphism) =:Y — X with Y finitely generated, Ker n is t-finitely
generated. A module X is called t-noetherian (resp. t-artinian) if it satisfies the
ascending (resp. descending) chain condition on closed submodules. Finally, a
ring R is called left (resp. right) t-noetherian if R (resp. Rg) is t-noetherian, left
(resp. right) t-artinian if zR (resp. Rg) is rt-artinian, and left (resp. right)
t-coherent if RR (resp. Ry) is t-coherent.

1. t-absolutely pure and r-semicompact rings. In this section, we characterize
rings R for which every finitely generated submodule of E(zR) is torsionless.

Lemma 1.1 (Hoshino [7, Theorem A]). For a ring R the following are
equivalent.

(a) tw(X)=Ker ¢y for every finitely presented Xe Mod R.
(a)°® t(M)=XKer ¢y, for every finitely presented M e Mod R°®.

Following [8], we call a ring R t-absolutely pure if it satisfies the equivalent
conditions in Lemma 1.1. We call a homomorphism n: X — Y a t-epimorphism
if Cok 7 is torsion. Then we call a module X t-semicompact if for every inverse
system of t-epimorphisms {n;:X — Y,},.o with each Y, torsionless, the induced
homomorphism limzn,: X —limY, is a t-epimorphism. Finally, we call a ring
R left (resp. right) z-semicompact if xR (resp. Rg) is t-semicompact.

ReMARKS. (1) The t-semicompactness is just the R-linear compactness, in the
sense of Gomez Pardo [5], relative to Lambek torsion theory.

(2) Let Mod R/t denote the quotient category of Mod R over the full
subcategory Ker(Hompg(-, E(gR))). Assume that the image of xR in Mod R/t is
linearly compact in the sense of Gomez Pardo [5]. Then R is left z-semicompact.

Theorem 1.2. For a ring R the following are equivalent.

(a) Every finitely generated submodule of E(gxR) is torsionless.
(b) t(X)=Ker &y for every finitely generated Xe Mod R.

(c) Extk(X,R) is torsion for every finitely generated X e Mod R.
(d) R is t-absolutely pure and right t-semicompact.

Proof. (a)<>(b). See Hoshino [7, Lemma 5].
(b)=>(c). This is due essentially to Ohtake [14, Lemma 2.3]. Let
0—- Y- F— X—0 be an exact sequence in Mod R with F finitely generated free
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and let 7:Y*— Exty(X,R) denote the canonical epimorphism. Let he Y* and
form a push-out diagram:

05 Y-F-X-0
"ol
0-RL5Z-5X-0.

Since Z is finitely generated, Ker ¢, is torsion. Thus ¢**oegg=¢,0¢ is monic,
so is ¢**. Hence (Cok¢*)* ~Kergp**=0. Since n(h)Ry is an epimorphic image
of Cok¢*, (n(h)Rg)*=0 and thus Ext}(X,R) is torsion.

(c)=(b). Let XeMod R be finitely generated. Let Y be a submodule of
Ker ¢x and let j: Y — X denote the inclusion. Then j*=0 and Y* embeds in
Extk(X/Y,R). Thus Y* is torsion, so that Y*=0. Hence Ker ¢, is torsion and
7(X)=Ker &y. ‘

(c)<>(d). This is easily deduced from [8, Lemma 2.7].

ReMARK. The equivalence (a)<>(d) of Theorem 1.2 would yield a result of
Gomez Pardo and Guil Asensio [6, Theorem 2.2].

Corollary 1.3 (cf. Sumioka [20, Theorem 1]). Let R be left perfect. Then
the following are equivalent.

(a) Every finitely generated submodule of E(xR) is torsionless.
(b) R contains a faithful and injective left ideal.

Proof. (a)=>(b). By Storrer [18] R contains an idempotent ¢ with ReR a
minimal dense right ideal. It is obvious that gRe is faithful. Since by Theorem
1.2 Exti(X,Re)~Exti(X,R)®zRe=0 for every finitely generated XeMod R, gRe
is injective.

(b)=(a). Obvious.

Corollary 1.4. Let R be t-absolutely pure, left and right t-semicompact. Then
both Ker ¢4 and Cok ¢y are torsion for every finitely generated XeMod R.

Proof. Let XeMod R be finitely generated. By Theorem 1.2 Ker ¢y is
torsion. We know from the argument of Jans [9, Theorem 1.1] that
Cok ey ~Exth(M,R) with M e Mod R°® finitely generated. Thus again by Theorem
1.2 Cok &4 is torsion.

REMARK. Assume that R is a maximal left quotient ring of itself, i. e., E(zR)/ R
is torsionfree. Then Extki(X,Y)=0 for all torsion XeMod R and reflexive
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YeMod R. Thus Corollary 1.4 would yield a result of Gomez Pardo and Guil
Asensio [6, Theorem 1.5].

Corollary 1.5. Let R be t-absolutely pure and left t-semicompact. Then every
finitely generated XeMod R is 1-semicompact.

Proof. Let XeMod R be finitely generated. Since every factor module of a
t-semicompact module is t-semicompact, we may assume that X is free. Then the
argument of [8, Lemma 2.7] applies.

2. Flat epimorphic extension rings. Throughout this section, Q stands for

an extension ring of R.
The following lemmas seem to be known (cf. Silver [7], Lazard [11], Popescu
and Spircu [15], Morita [13] and so on). However, for the benefit of the reader,

we include proofs.

Lemma 2.1. The following are equivalent.

(1) The inclusion R — Q is a left flat epimorphism.
(2) Q®rX =0 for every submodule X of rQ/R.

Proof. (1)=(2). Obvious.

(2)=(1). Let n:Q®zQ — Q denote the multiplication map. Then yKer n
~o0Q®r(Q@/R)=0. Next, let F; - F,— X —0 be an exact sequence in Mod R
with each F; finitely generated free and put Y=Im(F, - F,). We have a sequence
of embeddings Tor{(Q,X) c TorXQ/R,X) 5 (Q/R)®rY. Let us form a pull-back
diagram:

(Q/R®rF, > (Q/RRrY

U v
zZ —» TorX(0, X).

Since (Q/ R)® xF, is isomorphic to a finite direct sum of copies of RQ/ R, it follows
by induction that Q®zZ=0. Thus, since Q®zQ~Q canonically, Tor{(Q,X)
~ Q®gTor{(Q,X)=0.

Lemma 2.2. The following are equivalent.

(1) Q is a left quotient ring of R.
(2) (a) oOQ®&(Q/R) is torsion.
(b) oTor{(Q,X) is torsion for every Xe Mod R.

Proof. Note that Homy(Q®(Q/ R), E(,Q)) ~Homg(Q/ R, Homy(, O, E(5Q))),
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and that Homy(Tor{(Q, X), E(,Q)) ~ Ext (X, Homy(o O, E(,0))) for every X e Mod R.
(1)=(2). Obvious.
(2)=(1). It follows that kHom(,Qg, E(,Q)) is injective. Thus E(xQ) embeds
in Homy(oQOr, E(oQ)). It then follows that Homg(Q/ R, E(Q))=0.

The next lemma generalizes results of Cateforis [2, Proposition 2.2] and
Masaike [12, Proposition 3] (cf. also Morita [13, Theorem 7.2]).

Lemma 2.3. The following are equivalent.
(1) The inclusion R — Q is a left flat epimorphism.
(2) (a) Q is a left quotient ring of R.
(b) oQ®RrX is torsionfree for every submodule X of Q.

Proof. (1)=(2). By Lemma 2.2 (a) follows. It is obvious that (b) holds.
(2)=(1). Let Y be a submodule of fQ/R. Since Y is torsion, so is
0Q®rY. Next, let us form a pull-back diagram:

0>R5>0-0/R=0
I v v

0-RLX> Y -0,

where j:R— Q is an inclusion. Since ,Q®pj is a split monomorphism, so is
00®r¢. Thus ,QR®Y is torsionfree, so that Q®zY=0. By Lemma 2.1 the
assertion follows.

Lemma 2.4. The following are equivalent.
(1) (a) Q is a maximal left quotient ring of R.
(b) E(oQ) is an injective cogenerator in Mod Q.

(2) (a) RQ/R is torsion.
(b) Q®rX=0 for every torsion XeMod R.

Proof. (1)=(2). Obvious.

(2)=>(1). By Lemma 2.1 the inclusion R — Q is a left flat epimorphism. Thus
by Lemma 2.2 Q is a left quotient ring of R. Next, let Xe Mod Q be torsion. Then
rX is torsion and thus , X~ ,0® g X=0. Hence E(,Q) is an injective cogenerator in
Mod Q, so that Q is a maximal left quotient ring of R.

3. Flatness of the injective envelope. Throughout this section, Q stands for
a left quotient ring of R.
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Lemma 3.1. Let R be left t-noetherian and let Xe Mod R be flat. Then
0@ X is torsionfree.

Proof. Let I be a dense left ideal of R. By Faith [4, Proposition 3.1 7
contains a finitely generated subideal J with I/J torsion. Then R/J is finitely
presented torsion, so that Homg(R/J,Q®gX)~Homg(R/J,Q)®rX=0. Thus
Homg(R/I,Q®X)=0. Hence Q®zX is torsionfree, so is ,O®gX.

Corollary 3.2. Let R be left t-noetherian. Let n=1 and let Xe Mod R with
weak dimgX<n. Then TorX(Q,X)=0.

Proof. Let --- - F; —» F,—» X — 0 be an exact sequence in Mod R with each
F; free and put Y=Cok(F,,; > F,). Then Y is flat and thus by Lemma 3.1
00® Y is torsionfree. On the other hand, by Lemma 2.2 ,TorR(Q, X) is torsion. It
follows that TorX(Q,X)=0.

Lemma 3.3. Let XeMod Q with ,Q®gX torsionfree. Then Q@ gX~yX
canonically.

Proof. Let n: Q®zX — X denote the canonical epimorphism. Then gKer =
~p(Q/R)@grX is torsion, so is oKer n. It follows that Ker 7=0.

Proposition 3.4. Let R be left t-noetherian. Then every Xe Mod Q with gX
fat is flat. In particular, E(,Q) is flat whenever E(xR) is.

Proof. Let XeMod Q with gX flat. Then by Lemmas 3.1 and 3.3
0Q®rX =~ X canonically. Since both -®,0x and -®@rX are exact, so is -®X.

Proposition 3.5. For a ring R the following are equivalent.

(1) Arbitrary direct products of copies of E(gxR) are flat.
(2) R is t-absolutely pure and right t-coherent.

Proof. (1)=(2). By Hoshino and Takashima [8, Lemma 1.4] R is t-absolutely
pure. Next, let 0 > M — F — R be an exact sequence in Mod R°® with F finitely
generated free. By Colby and Rutter [3, Theorem 1.3] M contains a finitely
generated submodule N with (M / N)® zE(rR)=0. It suffices to show that M /N is
torision. For an LeMod R, there exists a natural homomorphism

0,: LQRE(rR) - Homg(L* E(rR))

such that 0,(x®@y)«)=o(x)y for xe L, ye E(zxR) and ae L* Now, let L be a cyclic
submodule of M /N and let n: R — L be epic in Mod R°®. Since 0, o (n® zE(zR))
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=Hompg(n* E(zR))o0g is epic, so is 60;. Note that L®zE(zxR)=0. Thus
Homg(L* E(xR))=0 and hence L*=0. It follows that M /N is torsion.
(2)=(1). See Hoshino and Takashima [8, Proposition 1.6].

4. Quasi-Frobenius qoutient rings. In this section, we provide a necessary
and sufficient condition for an extension ring Q of R to be a quasi-Frobenius
maximal two-sided qoutient ring of R.

Lemma 4.1. Let R be left t-noetherian and let Q be a maximal left quotient
ring of R. Assume that weak dim RQ=<1. Then the inclusion R— Q is a ring
epimorphism.

Proof. We claim that (Q/R)®r0=0. Let I be a dense left ideal of R. By
Faith [4, Proposition 3.1] I contains a finitely generated subideal J with I/J
torsion. Note that J is also a dense left ideal of R. It follows that (Q/R)g is
an epimorphic image of the direct sum @Homg(R/J,Q/R)g, where J runs over
all finitely generated dense left ideals of R. Let J be a finitely generated
dense left ideal of R. Since Homg(R/J,Q/R)g~Extk(R/J,R), we have only to
show that Exti(R/J,R)®xQ=0. For an XeMod R, there exists a natural
homomorphism

Ox: X*®rQ — Homg(X,Q)

such that dx(a®q)x)=a(x)q for ce X* ge Q and xe X. As we remarked in [8],
there exists an epimorphism n:X—J with X finitely presented and Ker n
torsion. Note that by Auslander [1, Proposition 7.1] d5 is monic. Since n* is
an isomorphism, Homg(n, Q) 0§, =0y o (t*® Q) is monic, so is ;. Next,letj:J— R
denote the inclusion. Since Homg(j,Q) is an isomorphism, so is Homg(j, Q)< o
=0;°(j*®¢0Q). Thus J, is epic. Hence §, is an isomorphism, so is j*® 0. It
follows that Exti(R/J,R)® rQ =~ Cok(j*® z0)=0.

In case Q=R, the next theorem is due to Faith [4, Corollary 5.4].

Theorem 4.2. For an extension ring Q of R the following are equivalent.
(1) Q is a quasi-Frobenius maximal two-sided quotient ring of R.
(2) (a) R is left t-noetherian.

(b) RQ/R is torsion.

(c) Qg is injective.

Proof. (1)=>(2). Obvious.
(2)=(1). For an XeMod R, there exists a natural homomorphism
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ex . Q®RX—) HOmR(X*, Q)

such that 0,(g®x)(®)=qx(x) for ge Q, xe X and ae X* Since Qf is injective, Oy
is an isomorphism for every finitely presented Xe Mod R. Let I be a dense left
ideal of R. By Faith [4, Proposition 3.1] I contains a finitely generated subideal
J with I/J torsion. Then R/J is finitely presented torsion, so that Q®z(R/J)
~Homg(R/J)*0)=0. Thus Q®x(R/I)=0. It follows that Q® X =0 for every
torsion Xe Mod R. Hence by Lemma 24, Q is a maximal left quotient ring of
R, and E(,Q) is an injective cogenerator in Mod Q. Thus by Lemma 2.1 Q is
flat as well as injective, so that E(RR) is flat. Hence by Hoshino and Takashima
[8, Proposition 1.7] and Masaike [12, Proposition 2] Q is a right quotient ring
of R. It follows that Q is a right selfinjective maximal right quotient ring of
R. On the other hand, since R is left t-noetherian, so is Q. Thus Q is left
noetherian. Hence by Faith [4, Theorem 2.1] Q is quasi-Frobenius.

Corollary 4.3. Let R be left and right noetherian and let Q be a maximal
left quotient ring of R. Then the following are equivalent.

(1) Q is a quasi-Frobenius maximal two-sided quotient ring of R.

(2) rQ is flat and inj dim RO L1,

Proof. (1)=(2). By Lemma 2.3 zQ is flat. Also, zQ is injective by Lambek

[10, §5].
(2)=>(1). By Lemmas 4.1 and 2.2 Q is a right quotient ring of R. Next,

we claim that zQ is injective. Since
Tor3(E(Rg), X) ~ Homg(ExtZ(X, R), E(Rg))
~ Homg(Ext}(X, R), Homy(z 0o, E(Qp)))
~Homy(ExtR(X, R)® r 0, E(Qo))
~ Homg(Extz(X, ), E(Qy))
=0
for every finitely generated Xe Mod R, we have weak dim E(Rg)<1. Thus by
Hoshino [7, Propositions F and C] every finitely generated submodule of
E(gR) is torsionless. Let XeMod R be finitely generated. Since by Theorem 1.2
X /t(X) is torsionless, there exists an exact sequence 0 - X /1(X) > F— Y -0 in

Mod R with Ffree. Thus Extk(X,0)~Extk(X/t(X),0)~Exti(Y,0)=0. Hence zQ
is injective and by Theorem 4.2 the assertion follows.

REMARK. Let R be left noetherian and let XeMod R be flat. Then
Extih(Y, R)® g X ~ Extk(Y, X) for all i=0 and finitely generated YeMod R, so that
inj dim pX'<inj dim zgR. Thus, together with Lemma 2.3, Corollary 4.3 would
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yield a result of Sato [16, Theorem].

5. Appendix. Throughout this section, Q stands for an extension ring of
R. We make some remarks on submodules of Qp.
The argument of Sumioka [19, Proposition 6] suggests the following lemma.

Lemma 5.1. The following are equivalent.
(1) Q is a left quotient ring of R.
(2) (a) RQ/R is torsion.
(b) Rn1#0 for every nonzero two-sided ideal I of Q.

Proof. (1)=(2). Obvious.

(2)=(1). Put 3E=Homg(rQg,E(rR)). Then rE=~FE(xR) canonically, so that
the composite of ring homomorphisms End (E(zxR)) —» End (,E) = End (3E) is an
isomorphism. Thus End (,E)=End (zE) and hence Biend (,E)=Biend (xE). Let
¢:Q — Biend (pE) denote the canonical ring homomorphism. Since RE is faithful,
RnKer ¢=0 and thus Ker ¢=0. Since Biend (zE) is a maximal left quotient
ring of R, the assertion follows.

Lemma 5.2 (cf. Masaike [12, Proposition 2]). Assume that Q is a right
quotient ring of R. Let M be a submodule of Qg containing R and put
I={aeRlaM < R}. Then M is torsionless if and only if (rR/I)*=0.

Proof. Let j:Rp— My denote the inclusion. Then j is an essential
monomorphism, so that Ker ¢,,=0 if and only if Ker j**=0. It suffices to show
that Ker j**~(xR/I)*. Identify (Rg)* with zR. We claim that Im j*=1. Tt is
obvious that 7 < Im j* Conversely, let he M* Since E(Qg)g~ E(Rp) is injective,
h extends to some ¢: Qg — E(Qp)g. It is easy to see that ¢ is Q-linear. Thus
h(D)x=¢p(1)x=¢p(x)=h(x)e R for all xe M and hence j*(h)=h(1)el.

For an M eMod R°P, there exists a natural homomorphism
Ny M — Homg(Homg(M, Q),0)

such that n,(x) (o) =a(x) for xe M and a e Homg(M,Q), and for an Xe Mod R there
exists a natural homomorphism

{x: X*—> Homy(Q®rX, Q)

such that {y(a)g®x)=qo(x) for e X* geQ and xe X. Also, for L, Me Mod R°®
there exists a natural homomorphism

Oy LQrM* —» Hompg(M,L)
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such that 6, ,(x®a)(y)=xo(y) for xe L, e M* and ye M.
For each M eMod R°®, we have a commutative diagram:

M Homy(Homg(M,Q),0)

le lHomQ(JQ,M,Q)

M*Y Homy(0®M*0)
which yields the following lemma.

Lemma 5.3. Let MeMod R. Assume that both 1y and Homy(6y p, Q) are
monic. Then M is torsionless.

Also, for each M e Mod R°P, we have a commutative diagram with exact rows:

R®rM* — Q®rM* — (Q/R)@rM* -0

JR'MlZ léQ,M lJQ/R,M

0 - Homg(M, R) > Homg(M, Q) » Homg(M,Q/ R).

Note that, in case M is finitely generated, Homg(M,Q/R) embeds in a direct sum
of copies of RQ/R. Thus Snake lemma yields the following two lemmas.

Lemma 54. Assume that rQ/R is torsion. Then both gKer d, ) and
rCOk 0y are torsion for every finitely generated M e Mod R°®.

Lemma 5.5. Assume that the inclusion R — Q is a left flat epimorphism. Then
Oo.m~oQ®Rrdg » is an isomorphism for every finitely generated M e Mod R°.

We are now in a position to formulate results of Masaike [12] as follows.

Proposition 5.6 (Masaike [12]). For an extension ring Q of R the following
hold.

(1) If Q is a left quotient ring of R, every finitely generated submodule of Qg
is torsionless.

(2) If the inclusion R — Q is a left flat epimorphism, every finitely generated
submodule of Qg embeds in a free module.

(3) Assume that Q is a right quotient ring of R. Then Q is a left quotient
ring of R if and only if every finitely generated submodule of Qy is torsionless.

Proof. (1) By Lemmas 5.3 and 5.4.
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(2) By Lemma 5.5.
(3) By Lemmas 5.1 and 5.2.
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