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1. Introduction

Thurston’s hyperbolic Dehn surgery theorem [11], [12] asséhat if a knotK
in the 3-spheres® is hyperbolic (i.e.,S° — K admits a complete hyperbolic struc-
ture of finite volume), then all but finitely many Dehn surgsrion K yield hyper-
bolic 3-manifolds. By arexceptional surgeryn a hyperbolic knot we mean a nontriv-
ial Dehn surgery producing a non-hyperbolic manifold. Rete[3], [6] for a survey
on Dehn surgery on knots. We empirically know that ‘most’ tenare hyperbolic and
‘most’ hyperbolic knots have no exceptional surgeries.His fpaper, we demonstrate
the abundance of hyperbolic knots with no exceptional siggdyy showing that every
knot is ‘close’ to infinitely many such hyperbolic knots inriies of crossing change.
We regard that two knots are the same if they are isotopi§®inFor a knotK
in %, let B,(K) be the set of knots each of which is obtained by changinmostn
crossings in a diagram of

Theorem 1.1. For every knotk inS3, Bj(K) contains infinitely many hyper-
bolic knots each of which has no exceptional surgeries. Irtiqdar, an arbitrary
knot can be deformed into a hyperbolic knot with no exceptisurgeries by a single
crossing change.

In Section 3, we raise some questions on the distributionypetbolic knots (with
no exceptional surgeries).

2. Proofs

A (2-string) tangleis a pair B,t) whereB is a 3-ball and is a pair of disjoint
arcs properly embedded iB . We caB,¢ )tavial tangle if there is a homeomor-
phism from B,¢) to O x I,{x,y} x I), whereD is a disk containing and in its
interior. A tangle B, ) is said to batoroidal if B —int N(¢) contains no incompress-
ible tori. A tangle B, ) is said to bé-irreducible if B —int N(¢) is d-irreducible.
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Fig. 1.

Let K be a knot inS®. Suppose thatS is a 2-sphere meetikg transversely
in four points and separating® into two 3-balls B; and B,. Then (8;, B; N K) are
tangles, and we say th& is decomposed into the union of tagldéa B;, B; N K),
wherei =1, 2.

Proposition 2.1. Every knotK inS® is decomposed into the union of a trivial
tangle and an atoroidalo-irreducible tangle.

Proof. This follows from Myers [8, Theorem 1.1]. Take an ara Sf such that
cNK =0dc, andc’ =c N E(K) is a properly embedded arc i K( )$% — int N(K);
then E K }-int N(c') = $3—int N(KUc). By [8, Theorem 1.1] we can chooge so that
$% —intN(K U c¢) is 0-irreducible and contains no incompressible tori. Let usoste
a small regular neighborhooft; of ¢ in $° so that B1, B1 N K) is a trivial tangle.
The 2-sphereé)B; decomposeX into the union of the trivial tangk (B1 N K) and
the tangle B,, B, N K) where B, = §% — intB;. Since S — intN(K U¢) = By —
int N(B2N K), (B2, BN K) is an atoroidal 0-irreducible tangle. O

Proof of Theorem 1.1. By Proposition 2.K is decomposed th& union of
a trivial tangle B1, BN K) and an atoroidalg-irreducible tangle 8., BoNK). Isotope
the trivial tangle B1, B1 N K) fixing its boundary as in Fig. 1.

Let K, be the knot obtained fronk by changing a crossingkof  asritest
in Fig. 2.

The tangle 81, BN K) is changed to B;, B1NK,). Soma [10, Lemma 3] proved
that (B1, B1 N K,;) is a nontrivial atoroidal tangle. It follows thak,, is decoosed
into the union of the atoroidaly-irreducible tangle 82, B> N K,,) = (B2, BN K) and
a nontrivial atoroidal tangleRBi, B1 N K,). Applying [14, Theorem 3.3], we see that



CROSSING CHANGE AND EXCEPTIONAL DEHN SURGERY 775

crossing
change

n twist —> n twist

(Bl, Bj_ﬂK) (Bl, BlmKn)
Fig. 2.
n twist
“ along D
\
I
(B]_, BN Ko) (Bl, BN Kn)
Fig. 3.

all nontrivial Dehn surgeries oK, produce hyperbolic, Hakesnifolds. Since every
non-hyperbolic knot yields non-hyperbolic manifolds afiefinitely many Dehn surg-
eries, K, is a hyperbolic knot.

It remains to show thafK, },cz contains infinitely many distinct knots. Note that
K, is obtained fromKgy by twisting n times along the dislb in Fig. 3.

CLaM 2.2. The circledD does not bound a disl’ in S® which intersectsKg
in at most one point.
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Proof. Since the algebraic intersection numberkgf and D is zero, it is suffi-
cient to show that there is no disk’ satisfyingdD’ = 0D and D' N Ko = ). Sup-
pose for a contradiction that we had such a didk Let A be an obvious annulus
in By — B1N Ky connectingdD and an essential simple loop éB; — int N(B1 N Kp).
Then the existence of a (possibly singular) disk) D’ would imply the compressibil-
ity of F = 0B1 —intN(B1N Kp) in E(Kp). This is a contradiction. [l

By applying [5, Theorem 3.2] we see th&K,},cz consists of infinitely many
distinct knots. This completes the proof of Theorem 1.1. U

Remarks. (1) In Theorem 1.1 we can choose a crossing chang& of  so that
the resulting hyperbolic knot is concordant k0  and has tmeesAlexander invariant
as K . In fact, by [9, Lemma 3.3] the crossing change given in gheof of Theo-
rem 1.1 does not change knot concordance class and Alexan@deiant.
(2) Kawauchi [4] proved thatBi(K) contains infinitely many hyperbolic knots as
an application of the imitation theory. In [4, Theorem 3.1§t L” be the knot ob-
tained fromL by nugatory crossing change (so that L"), then Theorem 3.1(1),
(2) implies that an imitationL* of L is a hyperbolic knot and obtained frolh by
a single crossing change.

3. Questions

On the distribution of hyperbolic knots in the knot table, ahas [1] conjectures
that the proportion of hyperbolic knots among all prime knetith minimal crossing
number less tham approaches 1ms~ oco. For any knot projectionrG of  cross-
ings, we can obtain2 knot diagrams by indicating over-unééation at each cross-
ing point in G. Weeks [13] asks if “under reasonable condifomost knot diagrams
obtained from a given knot projection represent hyperbkiiots; we paraphrase this
question as follows.

Question 1. Let f(G) be the proportion of diagrams representing hypecboli
knots among all the knot diagrams obtained from a knot ptigiecG. Let D, be
the set of knot projectionss i5? of n crossings such that i€ is a simple closed
curve in S meeting G transversely in two non-crossing points, then a poorant
of G — C is an embedded arc i§%. We denote byg /{ n ) the proportion of knot pro-
jections G € D, satisfying f G )> r. Then for eachr with O< r < 1, doesg £, n )
approach 1 aa — oo?

On the distribution of hyperbolic knots with no exceptiorslrgeries we raise
the following questions.
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Question 2. (1) Is there a hyperbolic knoK  such that each hyperbolic knot

in B1(K) has no exceptional surgeries?

(2) If K is a trivial knot, thenB1(K) contains hyperbolic, twist knots, each admit-
ting exceptional surgeries [2]. Is there a nontrivial kot ucts that By(K) contains
infinitely many hyperbolic knots with exceptional surgsfie
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