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1. Introduction

Thurston’s hyperbolic Dehn surgery theorem [11], [12] asserts that if a knot
in the 3-sphere 3 is hyperbolic (i.e., 3 − admits a complete hyperbolic struc-
ture of finite volume), then all but finitely many Dehn surgeries on yield hyper-
bolic 3-manifolds. By anexceptional surgeryon a hyperbolic knot we mean a nontriv-
ial Dehn surgery producing a non-hyperbolic manifold. Refer to [3], [6] for a survey
on Dehn surgery on knots. We empirically know that ‘most’ knots are hyperbolic and
‘most’ hyperbolic knots have no exceptional surgeries. In this paper, we demonstrate
the abundance of hyperbolic knots with no exceptional surgeries by showing that every
knot is ‘close’ to infinitely many such hyperbolic knots in terms of crossing change.

We regard that two knots are the same if they are isotopic in3. For a knot
in 3, let ( ) be the set of knots each of which is obtained by changing at most
crossings in a diagram of .

Theorem 1.1. For every knot in 3, 1( ) contains infinitely many hyper-
bolic knots each of which has no exceptional surgeries. In particular, an arbitrary
knot can be deformed into a hyperbolic knot with no exceptional surgeries by a single
crossing change.

In Section 3, we raise some questions on the distribution of hyperbolic knots (with
no exceptional surgeries).

2. Proofs

A (2-string) tangle is a pair ( ) where is a 3-ball and is a pair of disjoint
arcs properly embedded in . We call ( ) atrivial tangle if there is a homeomor-
phism from ( ) to ( × { }× ), where is a disk containing and in its
interior. A tangle ( ) is said to beatoroidal if − int ( ) contains no incompress-
ible tori. A tangle ( ) is said to be∂-irreducible if − int ( ) is ∂-irreducible.
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Let be a knot in 3. Suppose that is a 2-sphere meeting transversely
in four points and separating3 into two 3-balls 1 and 2. Then ( ∩ ) are
tangles, and we say that is decomposed into the union of two tangles ( ∩ ),
where = 1, 2.

Proposition 2.1. Every knot in 3 is decomposed into the union of a trivial
tangle and an atoroidal, ∂-irreducible tangle.

Proof. This follows from Myers [8, Theorem 1.1]. Take an arc in 3 such that
∩ = ∂ , and ′ = ∩ ( ) is a properly embedded arc in ( ) =3 − int ( );

then ( )−int ( ′) ∼= 3−int ( ∪ ). By [8, Theorem 1.1] we can choose so that
3 − int ( ∪ ) is ∂-irreducible and contains no incompressible tori. Let us choose

a small regular neighborhood1 of in 3 so that ( 1 1 ∩ ) is a trivial tangle.
The 2-sphere∂ 1 decomposes into the union of the trivial tangle (1 1∩ ) and
the tangle ( 2 2 ∩ ) where 2 = 3 − int 1. Since 3 − int ( ∪ ) = 2 −
int ( 2 ∩ ), ( 2 2∩ ) is an atoroidal,∂-irreducible tangle.

Proof of Theorem 1.1. By Proposition 2.1, is decomposed intothe union of
a trivial tangle ( 1 1∩ ) and an atoroidal,∂-irreducible tangle ( 2 2∩ ). Isotope
the trivial tangle ( 1 1∩ ) fixing its boundary as in Fig. 1.

Let be the knot obtained from by changing a crossing of as described
in Fig. 2.

The tangle ( 1 1∩ ) is changed to (1 1∩ ). Soma [10, Lemma 3] proved
that ( 1 1 ∩ ) is a nontrivial atoroidal tangle. It follows that is decomposed
into the union of the atoroidal,∂-irreducible tangle ( 2 2 ∩ ) = ( 2 2 ∩ ) and
a nontrivial atoroidal tangle (1 1 ∩ ). Applying [14, Theorem 3.3], we see that
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all nontrivial Dehn surgeries on produce hyperbolic, Hakenmanifolds. Since every
non-hyperbolic knot yields non-hyperbolic manifolds after infinitely many Dehn surg-
eries, is a hyperbolic knot.

It remains to show that{ } ∈Z contains infinitely many distinct knots. Note that
is obtained from 0 by twisting times along the disk in Fig. 3.

CLAIM 2.2. The circle∂ does not bound a disk ′ in 3 which intersects 0

in at most one point.
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Proof. Since the algebraic intersection number of0 and is zero, it is suffi-
cient to show that there is no disk ′ satisfying ∂ ′ = ∂ and ′ ∩ 0 = ∅. Sup-
pose for a contradiction that we had such a disk′. Let be an obvious annulus
in 1− 1∩ 0 connecting∂ and an essential simple loop in∂ 1− int ( 1∩ 0).
Then the existence of a (possibly singular) disk∪ ′ would imply the compressibil-
ity of = ∂ 1− int ( 1 ∩ 0) in ( 0). This is a contradiction.

By applying [5, Theorem 3.2] we see that{ } ∈Z consists of infinitely many
distinct knots. This completes the proof of Theorem 1.1.

REMARKS. (1) In Theorem 1.1 we can choose a crossing change of so that
the resulting hyperbolic knot is concordant to and has the same Alexander invariant
as . In fact, by [9, Lemma 3.3] the crossing change given in theproof of Theo-
rem 1.1 does not change knot concordance class and Alexanderinvariant.
(2) Kawauchi [4] proved that 1( ) contains infinitely many hyperbolic knots as
an application of the imitation theory. In [4, Theorem 3.1],let ′′ be the knot ob-
tained from by nugatory crossing change (so that∼= ′′), then Theorem 3.1(1),
(2) implies that an imitation ∗ of is a hyperbolic knot and obtained from by
a single crossing change.

3. Questions

On the distribution of hyperbolic knots in the knot table, Adams [1] conjectures
that the proportion of hyperbolic knots among all prime knots with minimal crossing
number less than approaches 1 as→ ∞. For any knot projection of cross-
ings, we can obtain 2 knot diagrams by indicating over-underrelation at each cross-
ing point in . Weeks [13] asks if “under reasonable conditions” most knot diagrams
obtained from a given knot projection represent hyperbolicknots; we paraphrase this
question as follows.

Question 1. Let ( ) be the proportion of diagrams representing hyperbolic
knots among all the knot diagrams obtained from a knot projection . Let D be
the set of knot projections in 2 of crossings such that if is a simple closed
curve in 2 meeting transversely in two non-crossing points, then a component
of − is an embedded arc in2. We denote by ( ) the proportion of knot pro-
jections ∈ D satisfying ( )> . Then for each with 0< < 1, does ( )
approach 1 as →∞?

On the distribution of hyperbolic knots with no exceptionalsurgeries we raise
the following questions.
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Question 2. (1) Is there a hyperbolic knot such that each hyperbolic knot
in 1( ) has no exceptional surgeries?
(2) If is a trivial knot, then 1( ) contains hyperbolic, twist knots, each admit-
ting exceptional surgeries [2]. Is there a nontrivial knot such that 1( ) contains
infinitely many hyperbolic knots with exceptional surgeries?
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