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0. Introduction

The main purpose of this paper is to prove the following:

Theorem. Let V be a non-singular irreducible 3-dimensional complete var-
iety endowed with an essentially effective regular action of the algebraic group
G=SL(2; C)XSL(2; C). Then V is isomorphic to one of the following five types
of wvarieties:

i) P¥C).

ii) The projective bundle Proj(Op(d)DOp(d)DOp(0)), dEZ, associated
with the vector bundle O p'(d)DOp(d)DOp(0) over P'(C).

iii) PYC)X PY(C)X K, where K is an arbitrary non-singular complete curve.

iv) The hyperquadric {(x:y:z:u:v)EPYC); xu—yz=2v%.

v) The projective bundle Proj(pr,*(Op(a))D pr*(Op(b))), a,bE Z, associat-
ed with the vector bundle pr*(Op(a))® pr*(Op(b)) over PYC)X PYC), where
pri: PY(C)X PY(C)—PYC) denotes the canonical projection to the i-th factor.

(See Theorem 4.1 for the corresponding G-actions and more details.)

The theorem above is, in some sense, regarded as a study of rational (or ruled)
algebraic threefolds from a group-theoretical viewpoint. This may be un-
derstood, if we observe the following fact:

Fact: Let V be a non-singular irreducible 2-dimensional complete variety
endowed with an essentially effective regular action of the algebraic group SL(2;C).
Then V is isomorphic to one of the following three types of varieties:

i) P¥C).
ll) Fn=PrOJ(0Pl(n)®0PX(O))’ n= la 27 o
iii) PYC)X K, where K is a non-singular complete curve.

Note that P*C), PY(C) X PC), F,(n>1) are, as is well-known, the relatively

*) Supported by an Earle C. Anthony Fellowhsip at the University of California, Berkeley
and by SFB 40 at the University of Bonn, B.R.D.
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minimal models of rational algebraic surfaces.

NoOTATIONS AND CONVENTIONS
(0.1) Z = the set of all integers,
Z .= the set of all positive integers,
C = the complex number field,
C*= the set of all non-zero complex numbers.

(0.2) All varieties and algebraic groups are defined over C.

(0.3) Assume that an algebraic group G acts on varieties V' and V' regularly.
A regular mapping f: V—V" is said to be G-equivariant, if the equality f(g-p)
=g- f(p) holds for every (g,p)€GXV.

(0.4) A closed subgroup of an algebraic group G is always understood to be an
algebraic subgroup of G, (“closed” means ‘“Zariski closed”).

(0.5) For every subgroup H of a group G, we denote by Ng(H) the normalizer
of Hin G.

(0.6) We denote by G,, a 1-dimensional algebraic torus, which is, as a complex
Lie group, the multiplicative group C*.

(0.7) An algebraic group G is said to act essentially effectively on a variety V'
if the group of the elements in G which act identically on ¥V is finite.

In concluding this introduction, I wish to thank all those people who en-
couraged me and gave me suggestions, and in particular Professors S. Kobayashi,
S.S. Roan, and I. Satake who helped me again and again during the preparation
of this paper.

Added in proof. After the completion of this work, we learned that several
related topics had been studied by Popov [3, 4] from a different viewpoint.

1. Basic theorems

In this section, we shall give two basic tools in handling non-homogeneous

algebraic group actions, (cf. (1.1.2) and (1.2.1)).

(1.1) Here, we briefly discuss the notion of ‘“dominant G-equivariant com-
pletion,” which plays a crucial role in our study of almost-homogeneous

SL(2;C)x SL(2;C)-actions.

DEeriniTION 1.1.1.  Let U be an irreducible variety on which a connected
linear algebraic group G acts regularly. Then a variety V with a regular G-
action is said to be a G-equivariant completion of U, if the following two conditions
are satisfied:

i) U is (embedded as) a G-invariant open dense subset of V.
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ii) ¥V is a complete variety.
A G-equivariant completion ¥ of U is said to be dominant if the following two
conditions are satisfied:

1) V is a normal variety.

ii) V—U is a disjoint union of (a finite number of) 1-codimensional G-
orbits in V.

We now quote the following:

Theorem 1.1.2 ([2; Corollary (1.1.3)]). Let U be an irreducible variety on
which a connected linear algebraic group G acts regularly. Assume that there ex-
ists a dominant G-equivariant completion V' of U. Then,

i) For any G-equivariant completion V of U, the identity mapping idy: U
(as a subset of V')—U(as a subset of V) extends to a G-equivariant birational sur-
Jjective regular map: V'—V.

i) In particular, any other dominant G-equivariant completion V"' of U is
G-equivariantly isomorphic to V', where the isomorphism between V' and V"' is
a canonical extension of the identity automorphism of U.

(1.2) We next consider algebraic group actions with equidimensional orbits.

Theorem 1.2.1. Let V be an n-dimensiona! irreducible complete normal var-
tety on which a connected linear algebraic group G acts regularly, satisfying the follow-
ing two conditions:

(1) All orbits in V have the same dimension r.

(2) There exists a finite subset {p;; 1=1,2,--,k} of V such that, for every
PEV, the isotropy subgroup G, of G at p is conjugate to some G,

Then we have:

(3) Gy Gy, ++s Gy, are all conjugate.

(4) The quotient V|G exists as an (n-r)-dimensional complete normal variety.

(5) V is G-equivariantly isomorphic to G|G, X V|G.

Proof of (1.2.1). Step 1: For simplicity, we set H;:=G,,, i=1, 2, -+, k,
and let V; be the fixed point set in V" of the H;-action, where H; acts on ¥ as a
subgroup of G. Then

(a) V= {peV; G,2H} .

On the other hand, by Closed Orbit Lemma (Borel [1; p.98]), the condition
(1) implies that every G-orbit in V¥ is a complete variety. Hence, for every
pev’,

b) G, = a parabolic subgroup of G

= N¢(G,) = a connected ((dim G)—r)-dimensional group.
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In particular, for i=1,2, -k,

(b)’ H; = Ng(H;) = a connected ((dim G)—r)-dimensional group.
Now, comparing (a) with (b) and (b)’, we obtain:

(a)’ Vi={peV;G,=H},

which enables us to define a regular mapping 7;: G/H; X V,—V by

(c) T(g-H;,p)=g-p, forevery(g-H;,p)=G/H;xXV;.

Note that:

(c-i): Image 7; = {p€V; G, is conjugate to H,.}.

(c-ii):  Image 7; is a closed subvariety of V. (Because G/H;XV; is a com-
plete variety.)

Step 2:  Proof of (3): In view of (c-i), we obtain:
(c-i): ¥V =[) Image, (cf. (2)),
(c-i)”:  For every 7, jE{1,2,--,k}, either Image 7,—=Image 7, or (Image 7,)

N (Image 7;)=¢ .
Therefore, (c-i)’, (c-i)”, (c-ii), and the irreducibility of ¥ imply

Image T, = Image Ty == eor = Image .=V,

and hence, by (c-i), the subgroups H,, H,,+:+,H, of G are all conjugate, and this
finishes the proof of (3).

Step 3: Proof of (4): First we consider the surjective regular mapping
Tye G/H]X V] g V-

Since (a)’ and (b)’ imply the injectivity of 7,, Zariski’s Main Theorem asserts
that:

(d) 7, is an (algebraic) isomorphism: G/H,X V,——V.
In particular, by the normality of ¥,
*) V is a normal variety.

Now, let pri: G/H X V;—V, denote the canonical projection to the second
factor. Then, in view of (c), we have:
(**) For every peV,, (prio71")"Y(p)=G- p=a single G-orbit.

Thus, by (¥) and (*¥*), (cf. Borel [1;p.179]), the quotient V/G exists as a normal
(n-r)-dimensional complete variety and is identified with V,. This finishes
the proof of (4).

Step 4: Proof of (5): Since V, is identified with V|G, noting that T,(g-
(¢'-H), p)=g+(¢'-p)=g+7i(g'-H, p) for all g=G and (g'-H, p)E G/H, X V, we
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can regard the isomorphism 7, in (d) as a G-equivariant isomorphism:

G/H,x V|G—=>V. 'This finishes the proof of (5), and hence that of Theorem
(1.2.1).

2. Closed subgroups of codimension <3 of the group SL(2;C)
X SL(2; C)

In this section, we shall make a rough classification of the closed subgroups
of codimension=<3 of the algebraic group SL(2;C)xSL(2;C).

NoraTioN. For any linear algebraic group G, the identity component of
G (resp. the dimension of a maximal torus of G) is denoted by G° (resp. rank

(G))-
DEerINITION 2.1. i) We define closed subgroups T and B of SL(2;C) by
T = {f=(fi) ESL(2; C); fa=fu=0},
B = {f = (f;))€SL2; C); fu =0} .
ii) We define closed subgroups D and D’ of SL(2;C)x SL(2;C) by
D = {(f, /)eSL(2; C)xSL(2;C); feSL(2;C)},
D' = {(f, £/)ESL(2; C)x SL(2; C); fE€SL(2; C)} -
iii) For each (a, b)) Z, X Z with a=b, we define a closed subgroup S(a;bd) of
SL(2;C)x SL(2;C) by
S(a; b) = {(g(r; u), g(s; v)); 1, s€C*, r* = ', u,vEC},
where g(r;u) and g(s;v) are matrices in SL(2;C) given by

g(r;u)=((r) 31) g<s;”>=(3 jl)

Remark 2.1.1. i) Note that T'=G,, (=1-dimensional algebraic torus).
And its normalizer in SL(2;C) is written in the form

Nsie:oT)=J-T,  where J= {((1) (1)) , ((1) _(1))} .

i) B is a Borel subgroup of SL(2;C), and hence
Nst.(z:c)(B) =B.

iii) In view of the equality Ng.¢; ¢yxsee: o)(D)=D’, we have:

D and D' are the only closed subgroups of SL(2;C)Xx SL(2;C) that have
the identity component D.
iv) Let (a,B)sZ,XZ be such that « =B and g.c.d(a, B)=1. Then
Nsi: oxsee: o(S(a; 8))=BX B, and one can immediately check that:
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S((m-at); (m+B)); m=1,2,++ are the only closed subgroups of SL(2;C)
X SL(2;C) that have the identity component S(a; 3).

In terms of the notation defined above, the main thing we want to prove
in this §2 is now summarized as follows:

Theorem 2.2. i) Any algebraic group automorphism of SL(2;C)x SL(2;C)
(which is, from now on, simply called “an automorphism of SL(2;C)x SL(2;C)”)
coincides, up to inner automorphisms, with one of the following:

(1) ddsie; oyxsez: o0 SL(2; C)x SL(2; C) — SL(2; C)x SL(2; C)
(f,8) = (/8>
(2) transposition o : SL(2; C)xX SL(2; C) — SL(2; C)xX SL(2; C)
(f,8) = (&f)-
ii) For any subgroups K, and K, of SL(2;C), we write:
K, xK,= {(k, k)eSL(2; C)x SL(2; C); kEK,, K'€K}} .
Then any g-codimensional (¢=1, 2) parabolic subgroup of SL(2;C)x SL(2;C)
is, by some automorphism of SL(2;C)x SL(2;C), mapped onto
(1) (In the case g=1): SL(2;C)XB.
(2) (In the case g=2): BXB.
iii) Any 3-codimensional closed subgroup of the algebraic group SL(2;C)x SL
(2;C) is mapped (isomorphically) onto one of the following by some automorphism
of SL(2;C)x SL(2;C):
BXT, Bx(J-T), D, D', SL(2; C)X(a finite subgroup of SL(2;C)),
S(a; b), where (a,b)E Z, X Z is such that a=b .
In order to prove Theorem (2.2), we first consider those closed subgroups of

SL(2;C)x SL(2;C) which have maximal rank (=2).

Proposition 2.3. i) Let G be a g-codimensional (=1, 2) parabolic subgroup
of the algebraic group SL(2;C)XSL(2;C). Assume that rank(G)=2. Then
G is, by some automorphism of SL(2;C)Xx SL(2;C), mapped onto

(1) (In the case g=1): SL(2;C)XB.

(2) (In the case g=2): BXB.
ii) Let G be a 3-codimensional closed subgroup of the algebraic group SL(2;C)
X SL(2;C). Assume that rank(G)=2. Then G is mapped onto one of the following
two groups by some automorphism of SL(2;C)x SL(2;C):

BxT,Bx(J-T).

Proof of (2.3). We fix a g-codimensional (¢=1,2,3) closed subgroup
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G<SL(2;C)x SL(2;C) of rank 2 with Lie algebra gCsl(2;C)Dsl(2;C). We
also fix a common maximal torus H of G and SL(2;C) X SL(2;C) with the cor-
responding Cartan subalgebra % of s/(2;C)Dsl(2;C). Then

s1(2; C)Dsl(2; C) = ht 31 Cee,,,
*)

g = h+ jgo C'egj .
where A= {a;;1=0,1,2,3} is the root system of sI(2;C)Ds/(2;C) relative to
h, and A’={,6’j;j=0,---,3—q} is an additively closed subset of 4, i.e., 8;
+By€ A" whenever 8,48y A. First, note the following two facts:

(a) Since the maximal tori in any linear algebraic group are all conjugate,
we may assume H=BXB. Therefore, denoting by E,, the 2X2 matrix with
the only non-zero element 1 in the (p,7)-th entry, we may put:

ewo = E12®0, ewl == 0®EIZ ewz = EZleBO, eaa == 0®E21 .

The corresponding roots a,a;, a,, @ in the Euclidean 2-space R? form a square
as shown in Figure 1.

Figure 1. @, <

as
(b) Let Aut(4) denote the set of all linear transformations of R? which
maps A={a;;7=0,1,2,3} onto itself. Then, for any ¢t Aut(4), there exists
an automorphism 7 of SL(2;C)Xx SL(2;C) such that the induced Lie algebra
automorphism 74 of s/(2;C)Psl(2;C) satisfies
Tx«(h) = h and T4(C-e,,) = C-ey,y fori=0,1,2,3.
In view of (*), (a), and (b) above, we now complete the proof of (2.3) as
follows:

Case (1): Let g=1 and G be a parabolic subgroup of SL(2;C)x SL(2;C).
Since A’ is an additively closed subset of 4 with 3 elements, it follows that
A'={t(a,), t(t)), t(crz)} for some ¢ Aut(4). Hence,

G(= G°) = 7(SL(2; C)x B) .

Case (2): Let g=2 and G be a parabolic subgroup of SL(2;C)x SL(2;C).
Since A’ is an additively closed subset of A4 with 2 elements, it follows that:
(2-1) either A" = {t(«,), t(atz)} for some t= Aut(4),

(2-ii)  or  A'= {t(a), )} for some tEAut(4).
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But, in the case of (2-i), g is not a parabolic subalgebra of sl/(2;C)Dsl(2;C).
Hence only (2-ii) can happen. Thus, one immediately obtains:
G(=G°)=71(BXB).

Case (3): Let ¢=3. (i.e., G is a 3-codimensional closed subgroup of the
algebraic group SL(2;C)x SL(2;C).) Then A’'={#(a,)} for some t& Aut(4).
Hence,

G*=T1(BxT).
Since N2 oy xsees 0(BX T)=Ns1; 0(B) X Nszo: o(T)=BX (J - T), (ct. (2.1.1)),
it finally follows that:

G = either 7(BXT) or 7(BX(J-T)).

Thus, the above three cases (1), (2) and (3) complete the proof of (2.3).
(24) Proof of Theorem 2.2

Here, we use the notation “u.dim.” For any linear algebraic group K, we
denote by #.dim(K) the common dimension of all maximal connected unipotent
subgroups of K.

Proof of 1). 1) is a standard fact.
Proof of ii). Since, in this case, G is a parabolic subgroup of SL(2;C)X

SL(2;C), the equality rank(G)=rank(SL(2;C)Xx SL(2;C))=2 holds. Hence,
i1) is straightforward from Proposition (2.3).

Proof of iii). Step 1: First, note that dim G’=dim G=3. Now, by
Chevalley decomposition, G° is expressible as
#) G*=H-U, HNU = {e}, (semi-direct product),
where H=a connected reductive closed subgroup of G°,

U=a connected unipotent normal closed subgroup of G°.
Since H satisfies

3—dim H+4u.dim(H) = dim U-+u.dim(H)=u.dim(G)
=u.dim(SL(2;C)X SL(2;C)) = 2,
H cannot be {e}. Therefore, from the inequality
1=rank(H) = rank(G)=<rank(SL(2;C) X SL(2;C)) = 2,
it follows that:

Case 1: either H is isomorphic to G,,,
Case2: or  H isisogenous to SL(2;C),
Case3: or  rank(H)=2.
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Step 2: (Case 1): In this case, by (#) above, G° is a connected solvable
subgroup of SL(2;C)x SL(2;C), and hence, for some s SL(2;C)x SL(2;C),
we have the inclusion s-G°-s7'CBXB. Therefore, without loss of generality,
we may assume that:

(4% G'CBXB.
Now, consider the following algebraic group homomorphism:

7: G(-BxB) - G,XG,

=&~ (&N (" m),

where g'=((g");;)€B(—~SL(2;C)) and g”"=((g");;)€B. Then, by the equality
rank(G°)=rank(H)=1, the image 7(G°) is a 1-dimensional torus subgroup of
G, xG,, ie., for some (a, B)EZ, X Z with a=g and g.c.d.(a, B)=1,

7(G°) = either {(#, t*); t€@G,} or {(# t"); t=@G,} .
Hence, in view of (##) above, we have:

S(et; B) Seither G° or o(G°), (cf. (iii) of (2.1)),
where o is the automorphism of SL(2;C)XSL(2;C) defined in i) of (2.2).
Comparing their dimensions, we immediately obtain:

S(at; B) = either G° or o(G°) (= (¢(G))").

Thus, by iv) of (2.1.1), either G or o(G) is written in the form S((m-ca);(m-3))
for some me Z,. This shows that, in Case 1, there exists an automorphism
of SL(2;C)x SL(2;C) which maps G onto

S(a; b) for some (a, b)) Z, X Z with a=b .

Step 3: (Case 2): In this case, dim H=3 (=dim G), and hence we have
the equality H=G°. Let v: SL(2;C)—H(=G") be the isogeny the existence of
which is the assumption of Case 2. Now, denoting by 7, (resp. ;) the cano-
nical projection: SL(2;C) X SL(2;C)—SL(2;C) to the first (resp. second) factor,
we define the following algebraic group homomorphisms:

b, 960 s SL(2; €) > SL2; €),

0, 30 o SL(2; €) — SL(2; C).

Note that G°= {(7:(s), 7x(s))ESL(2;C)x SL(2;C); s&€ SL(2;C)}. Since any
algebraic group homomorphism: SL(2;C)—SL(2;C) is either trivial or an inner
automorphism of SL(2;C), v, and 7, above are, up to inner automorphisms of
SL(2;C)x SL(2;C), given by

either 1) Y= idSL(Z ;o) Vo= triVial,

or 2) (Yl - triVial, 72 == idSL(ZiC) )
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or 3) m=1idsieier, Y2=1dsi:0 -

Hence G° is conjugate to either SL(2;C)X {e} or {e} XxSL(2;C) or D, (cf.
(ii) of (2.1)). Since o({e} X SL(2;C))=SL(2;C) X {e}, (cf. (i) of (2.2)), in view of
iii) of (2.1.1), we obtain:

In Case 2, there exists an automorphism of SL(2;C)XSL(2;C) which
maps G onto one of the following: SL(2;C)X (a finite subgroup of SL(2;C)),
D, D'.

Step 4: (Case 3): Since rank(H)=2, ii) of Proposition (2.3) immediately
implies that:

In Case 3, there exists an automorphism of SL(2;C)Xx SL(2;C) which
maps G onto either BX T or BX(J+T).

Thus, the last three steps finish the proof of iii) of (2.2), and hence we com-
pleted that of Theorem (2.2).

3. Examples of dominant SL(2;C)x SL(2;C)-equivariant comple-
tions

In this section, several examples of dominant SL(2;C)X SL(2;C)-equivar-
iant completions will be given for later purpose.

(3.1) Dominant equivariant completions of the homogeneous spaces SL(2;C)
X SL(2;C)[(BX T) and SL(2;C)X SL(2;C)/(BX(J-T))
(3.1.1) Actions of SL(2;C) on P(C)X P*(C) and P*C).
(i) First note that G=SL(2;C) acts on P*C) via the canonical homomor-
phism: SL(2;C)—PGL(2;C). In terms of this action, we can identify P(C)
with the homogeneous space SL(2;C)/B, (cf. (2.1)). Now, G=SL(2;C) acts on
P(C)x P(C) by

G=SL(2;C) x (P(C)xXP(C))— P(C)xXPYC)

&> () = (g+b, g-¢).

Let ¢'=((1:0), (0:1))PY(C) X P*(C) and let ¢"=((1:0), (1:0))= P*(C) X P}(C).
Then

G-q' = {(b, c)eP(C) X P(C); b=*c}
= an open dense orbit in P}(C) X P(C),
G-¢"= {(b, )€ P(C)x PY(C); b = ¢}
= a l-codimensional orbit in P}(C)x PY(C),
PYC)XPY(C) = (G-¢)U(G+¢").
Since the isotropy subgroup G of G at ¢’ is given by
(*) Gy=T, (cf. (2.1)),
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it follows that PY(C)Xx PYC) is a dominant SL(2;C)-equivariant completion
of the homogeneous space SL(2;C)/T.

(ii) Secondly, G=SL(2;C) acts on P*C) via the following algebraic group
homomorphism:
G = SL(2; C)— PGL(3;C)
r, £, rt
(r t) |—>( 2, ut, su
s 2rs, 2tu, ru-t-st/ .
Since the 2-sheeted ramified covering
f: PY(C)x P{(C)— P*C)
(% 9), (v: w) — (xv: yw: xw-+yv)
is G-equivariant in terms of the actions defined above, (cf. (i)), it immediately
follows that: '

G- f(¢') = f(G-¢q') = an open dense orbit in P*(C),
G- f(¢")= f(G-¢")= a 1-codimensional orbit in P¥C),
P*(C) = (G- flgNU(G- flg")-

Furthermore, the isotropy subgroup G of G at f(q’) is written as
G = {g€G; 8-’ f(flgN =J-T, (cf. (2.1.1)).

Thus, P*C) is a dominant SL(2;C)-equivariant completion of the homo-
geneous space SL(2;C)/J-T.

(3.1.2) ExampLE 1. We define an SL(2;C) X SL(2;C)-action on P'(C)X P'(C)
X PY(C) by
(SL(2;C)x SL(2;C)) X (P'(C) X P(C) X P'(C)) — (P'(C)x P{(C)x PY(C))
(2, 2), (e, b, ¢ = (h-a, g-b, g-c).
Since (SL(2;C) X SL(2;C))[(BXx T) = (SL(2;C)/B) X (SL(2;C)|T) = P} C) x (SL
(2;€)/T), and since PYC)XP'(C) is a dominant equivariant completion of
SL(2;C)|T, (cf. (i) of (3.1.1)), we immediately obtain:

P'(C)x PY(C) x P'(C) endowed with this action is a dominant SL(2;C)x SL
(2;C)-equivariant completion of the homogeneous space (SL(2;C)x SL(2;C))/
(BXT).

(3.1.3) ExampLE 2. We define an SL(2;C) X SL(2;C)-action on P'(C)X P*C)
by
(SL(2; C)x SL(2; C))x (P(C)x P*(C)) — P'(C)x P*C)
(h, 8, (a, b) —> (h-a, g-b),
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where SL(2;C) acts on P*C) as in (ii) of (3.1.1). Since (SL(2;C)x SL(2;C))/
(BX(J-T)=(SL(2;C)/B)x (SL(2;C)[] - T)=P"(C) X (SL(2;C)/] - T), and since
P*(C) is a dominant equivariant completion of SL(2;C)/] - T, (cf. (ii) of (3.1.1)),
we obtain:

P'(C)x P¥C) endowed with the action just above is 2 dominant SL(2;C)
X SL(2;C)-equivariant completion of the homogeneous space (SL(2;C) X SL(2;

C)[(BX(J-T)).
(3.2) Dominant equivariant completions of the homogeneous spaces SL(2;C)
X SL(2;C)[D and SL(2;C)x SL(2;C)/D’
(3.2.1) ExampLE 3. We define a non-singular hyperquadric W in P%C) by
W= {(x:y:2:u:9)e PYC); xu—yz=2v%} .
Now, G=SL(2;C)*x SL(2;C) acts on W by
SL(2;C)xSL(2;C) x W —» W
(A, k), (x:y:ziuio) > (x':y":2"u'10),
where h-(x z)-k“ = (x', z:) .
yu yu
Then, letting p=(1:0:0:1:1)& W and p'=(1:0:0:0:0)= W, we have:
G-p= {(x:y:2:u:0) W; v+0}
= an open dense orbit in W,
G-p'= {(x:y:2:u:0)€ W; v=0}
= a l-codimensional orbit in W,
W =(G-pu(G-p).

Furthermore, a computation shows that the isotropy subgroup of G at p is ex-
actly D. 'Thus,

the hyperquadric W with the above action is a dominant SL(2;C) X SL(2;C)-
equivariant completion of the homogeneous space SL(2;C)XxSL(2;C)/D.

(3.2.2) ExampLE 4. Note that G=SL(2;C) X SL(2;C) acts on P3C) by
SL(2;C)x SL(2;C) x P¥C) — PC)
(A, k), (x:y:ziu) > (x":y":2":0'),
where h-(x z)-k—l = (x,, z:) .
Ju yu
Then, letting ¢=(1:0:0:1) P¥C) and ¢'=(1:0:0:0) P*C), we have:

G-q = {(x:y:2:u)e P¥C); xu=yz}
= an open dense orbit in P3(C),
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G-q¢' = {(x:y:z:u)eP¥C); xu=y=z}
= a 1-codimensional orbit in P3(C),
PYC)= (G-9U(G¢).

Since a computation shows that the isotropy subgroup of G at ¢ is exactly D’,
we obtain:

P¥C) with the above action is a dominant SL(2;C)X SL(2;C)-equivariant
completion of the homogeneous space SL(2;C)Xx SL(2;C)/D’.

(3.3) Dominant equivariant completion of the homogeneous space SL(2;C)
X SL(2;C)/S(a;b).

DErINITION 3.3.1. We shall define a canonical SL(2;C)-action on the line
bundle Op(d), d€ Z, over P(C).
Let z: €*—{0} —=P*(C) be the canonical projection, and let a: Qy(C?—C?
be the blowing-up of the origin 0 of C?. Then
Qy(€?)—o7}(0) = Cc*— {0},
and under this identification, the mapping = extends to
7: 0W(C?) — PI(C).
In terms of this mapping, we can regard Q,(C?) as the line bundle Op(—1)
over P'(C). Note that:

(1) The matrix SL(2;C)-action on C? canonically induces an SL(2;C)-
action on Qy(C? (=0Op(—1)), and under this action, Qy(C? (=0p(—1))
consists of two orbits o ~(0) (=the zero-section of Opi(—1)) and Q,(C?)—ao*(0).
Now, to each p&PY(C), let /, denote the corresponding line through 0 in C?

(4, is canonically identified with the fibre of Op(—1) over p), and we fix a base
e, of this fibre /. For instance, if p=(1:0)€ P*(C), we set:

(2) e, = (1,0)€4,.

In terms of this notation, the fibre of Op(d)(=(Op(—1))®~?) over p is expressed
as (4,)®“=C-(e,)®°. Hence

(3) we can define a canonical SL(2;C)-action on Op\(d), setting g-(\+(e,)®~%)
defn A (g-e,)®7¢ for all g€ SL(2;C) and all A EC.

Here, in view of (1) above, we have:

(4) If d=0, then Opi(d) is a disjoint union of two orbits, one of which is the
zero-section of Opi(d), and the other is its complement.

(3.3.2) ExampLE 5. Let pr;: PY(C)X PY(C)—P'(C) be the projection to the
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i-th factor, (:=1,2), and let a, b be integers with >0 and a=b. Regarding

E defn Opi(a) X Op(b) as the vector bundle pr,*(Op(a))Ppr.*(Opi(d)) of rank 2
over P'(C) X P*(C), we have the identification:

Proj(E) = {the quotient by C* of the set
Opt(a) X Op(b)-(zero section of Opi(a)) X (zero section of Opi(b))

where the complex scalar multiplication by C* on E is written as
5) C* X (Op\(a) X Op\(b)) — Op(a) X Op(b)
¢, (q’ r) '—’(‘:'q’ 607’).

and p: Proj(E)— P(C)X P'(C) denotes the associated projective bundle of
the vector bundle E. In terms of this identification, we have the following
canonical quotient map by C*:

@: Opt(a) X Op(b)— (zero section of Op(a)) X (zero section of Opi(d))
— Proj(E) .
Now, G=SL(2;C) X SL(2;C) acts on E by
©) (SL(2;C) X SL(2;C)) X (Op(a) x Opi(d)) — (Op(a) X Opi(b))
(B, k), @ n =g k),

where SL(2;C) acts on Opi(a) and Op\(b) as in (3) of (3.3.1). Since this G-
action on E commutes with the C*-action, (cf. (5), (6)),

(7) we can canonically define an action of G=SL(2;C)X SL(2;C) on Proj(E)
so that the quotient map @ is G-equivariant.

We now want to show that Proj(E) with this G-action is a dominant G-
equivariant completion of the homogeneous space SL(2;C)XSL(2;C)/S(a;b).
For this purpose, let p be the point of E defined by

P = ((€n)®™" (€5,)®"")E Opi(@) X Op:(D)
in terms of the notation in (2) of (3.3.1). Then
P(@(p)) = (Po po) = ((1:0), (1:0))EPY(C) X PY(C) -

In view of the G-equivariance of p which follows at once from our definition
of the G-action on Proj(E), (cf. (7)), we infer that the isotropy subgroup Gy, of
G at @(p) is contained in the isotropy subgroup of G at ((1:0), (1:0)), i.e.,

Gy SBX B, (cf. (2.1)).
Now, for every h=(h;;)€ B(SSL(2;C)), we have h,=0, and hence

h-(5)® = (h-€p,)®" = ((hu, 0))®"
= (hy-€p,))® = (hy)"+(€5,)®, for every yeZ.
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Therefore,
Gop = {g(= (h, k))EBXB; g-p(p) = p(p)}

= {(h: k)EBXB; For some c&C*, h'(epo)®—a = c.(epo)®—a}
and k- (e,)%") = -(e,)°

= { (&, k) = ((h;)), (k;;))EBXB; (h)* = (kn)’ } = S(a;b).
Thus, we obtain:

(8) The orbit G-@(p) is regarded as the homogeneous space SL(2;C)Xx
SL(2;C)/S(a:b).

Now, combining (5) and (6), one can canonically define an action of H:=C*
X SL(2;C) X SL(2;C)=C* X G on E=0Opi(a) X Opi(b). Note that

P HG-p(p)) =H-p,
which is, by a=0 (cf. (4)), exactly
E— {((zero section of Opi(a)) X Op(b)) U (Op'(a) X (zero section of Opi(d)))} .

Regarding E’:=(zero section of Op!(a)) X Opt(b) and E”: =0Op(a) X (zero section
of Op!(b)) as line subbundles of E with E=E’'@E"”, we decompose E—(zero
section of E) into three H-orbits:

H-p, E'—(zero section of E’), E” —(zero section of E"’).
Therefore, Proj(E) is a disjoint union of the corresponding three G-orbits:
G- (), Proj(E') (=P'(C) x P{(C)), Proj(E") (~P'(C)x PYC)).
Finally, in view of this fact and (8) above, we obtain:
(9) Proj(E) (=Proj(pr*(Op(a)) D pr.*(Op(b)))) endowed with the SL(2;C)

X SL(2;C)-action defined in (7) is a dominant SL(2;C)X SL(2;C)-equivariant
completion of the homogeneous space SL(2;C) X SL(2;C)/S(a;b).

4. The classification of essentially effective SL(2;C)xSL(2;C)-
actions on algebraic threefolds

Let V be a variety endowed with a regular action ¥: GXV —V of an al-
gebraic group G. (We sometimes denote such a V' by the pair (V;7).) Then,
to every algebraic group automorphism % of G, we associate a regular G-action
v*: GXV -V by

748 ¥) = Y(M(g), ),  forall(g, )EGXV .
In this last section, we prove the following main theorem:

Theorem 4.1. Let V be a non-singular irreducible 3-dimensional complete
variety endowed with an essentially effective regular action v of the algebraic group
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G=SL(2;C)xX SL(2;C). Then, for some algebraic group automorphism h of G,
the space (V;v*) is G-equivariantly isomorphic to one of the following:

(1) P¥C) endowed with the G-action v defined in [2; Theorem (4.2.4)].

(2) Proj(Op(d)DOp(d)BOp(0)) endowed with the G-action X7 defined
in [2; Theorem (4.2.4)], where d< Z is arbitrary, and Proj(Op(d)DOpi(d) DOp(0))
denotes the projective bundle over PY(C) associated with the vector bundle Op(d)
DOp(d) DO (0).

(3) PYC)XP{C)XK, (where K is an arbitrary complete non-singular curve),
endowed with the G-action which factors to the product of the standard homogeneous
one on P(C)X PY(C) and the trivial one on K.

(4) PYC)XPYC)Xx PYC) with the G-action defined in Example 1 of (3.1.2).

(5) PYC)XPXC) with the G-action defined in Example 2 of (3.1.3).

(6) The hyperquadric {(x:y:z:u:v)E P¥C); xu—yz=9v*} with the G-action
defined in Example 3 of (3.2.1).

(7) P¥C) with the G-action defined in Example 4 of (3.2.2).

(8) Proj(pri*(Op\(a))P pr*(Op:(d))) with the G-action defined in Example 5
of (3.3.2), (cf. (9) of (3.3.2)), where (a, b)E Z, X Z is arbitrarily chosen with a=b,
and pr;: P(C)X P(C)— P'(C) denotes the projection to the i-th factor, (i=1,2).

Proof of (4.1). Let ¢ be the minimal dimension of the G-orbits in V" and
¢’ be the maximal dimension of the G-orbits in V. Since the Borel subgroup
B X B (cf. (2.1)) of G=SL(2;C)x SL(2;C) has codimension 2, and since every
orbit of the least dimension is closed, the inequality ¢<2 holds. On the other
hand, we now show that ¢=1. For contradiction, we assume ¢=0. Then,
fixing a point p& V¢, we consider the isotropy representation r,: G—GL(T(V :p))
of G atp. Since G actson V essentially effectively, a theorem of A. Bialynicki-
Birula (cf. [2; Corollary (2.3.3)]) shows that 7, induces an essentially effective
linear G-action on T(V:p). This means that, for a basis for T(V:p), 7, is
regarded as a representation: SL(2;C)XSL(2;C)(=G)— GL(3;C) which in-
duces an essentially effective G-action on C® But, by standard facts on re-
presentations of SL(2;C) X SL(2;C), this cannot happen. Thus, our assumption
¢=0 is wrong, i.e., c=1. Hence 1=c¢=<2, and the following three cases are
possible:

Casei) c=1.
Caseil) c=¢'=2.
Caseiii) ¢=2 and ¢'=3.
First we consider Case i): Since Theorem (2.2) shows that every 1-codi-
mensional parabolic subgroup of G is mapped onto SL(2;C)X B by some au-

tomorphism % of G, every l-dimensional G-orbit W (which is automatically
closed by c=1) is isomorphic to P!(C) as a variety, and in terms of the G-action
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v* obtained by modifying the original action ¥ by A€ Aut(G), the subgroups
G'=SL(2;C)x {e} and G"={e} X SL(2;C) of G satisfy the following:

(a) W sits in the fixed point set V¢,
(b) W is a single G”-orbit.

Therefore, applying [2; Theorem (4.2.4)] to m=n=1, we obtain:

In Case i), for some h’'€Aut(G), the space (V;7") is G-equivariantly
isomorphic to

(1)’ either (P¥*C);v)
(2)" or (Proj(Op(d)DOpd)DBOp(0)); X 7) for some dE Z.

Secondly, we consider Case ii): By combining (i) and (ii-2) of Theorem
(2.2), we see that every 2-codimensional parabolic subgroup of G=SL(2;C)Xx
SL(2;C) is conjugate to BXB. On the other hand, by ¢=c¢'=2, the isotropy
subgroup of G at any point of V' has the same codimension 2 and is parabolic.
Hence, applying Theorem (1.2.1) to k=1, we have a G-equivariant isomorphism:

(V;7)=(G(BXxB))x(V|G)

where the quotient V/G exists as a 1-dimensional normal (and hence non-singular)
complete variety. Since G/(B X B) is G-equivariantly isomorphic to P'(C) X P(C)
with the standard G-action, we obtain:

(3)" In Case ii), (V;v) is G-equivariantly isomorphic to PY(C)X PYC)XK,
(where K is a non-singular complete curve), endowed with the G-action speci-

fied in (3) above.

Lastly, we consider Case iii): By ¢’=3, V contains an open dense (3-
dimensional) G-orbit, which we denote by U. Then (iii) of Theorem (2.2) as-
serts that, for some automorphism % of G, our U endowed with the G-action
7* (obtained by modifying our original v by %) is G-equivariantly isomorphic
to one of the following:

G/(BXT), G/(Bx(J-T)), GID, G|D",
G[S(a;b), where (a, b))E Z, X Z is such that a=b.

(Note that G/(SL(2;C)X(a finite subgroup of SL(2;C))) is not included in
the above, because G must act essentially effectively on 7 and hence on U.)
On the other hand, by ¢=2, the space (V;7*) is a dominant G-equivariant comple-
tion of (U;v*). Therefore, by (ii) of Theorem (1.1.2), (cf. Example 1 of (3.1.2),
Example 2 of (3.1.3), Example 3 of (3.2.1), Example 4 of (3.2.2), (9) of Example
5 of (3.3.2)), in Case iii), for some k& Aut(G), the space (V;7*) is G-equivariantly
isomorphic to one of the following:
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P(C)x P(C)x P'(C) with the action specified in (4) above.
P'(C) x P¥C) with the action specified in (5) above.

{(x:y:2:u:v)e PYC); xu—yz=2?} with the action in (6) above.

P3(C) with the action specified in (7) above.
Proj(pr*(Op(a)) @ pr.*(Op(b))) with the action in (8) above.
Thus, (1)’ (2)’, (3)’, ==+, (8)" above complete the proof of Theorem (4.1).
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