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Chaptef 1

Introductioh



In the laser driven fusion plasma, the problems are

roughly separated into the following three titles.
(1) Absorption and Reflection
(2) Transport
(3) Implosion

At the first, irradiated laser light is partially
absorbed by collisional or collective processes, while partially
reflected by specular refleétion or scattered by the stimulated
Brillouin scattering. To investigate these phenomena is the
fouhdamental problem to perform the laser fusion. At the second,
the absorbed energy, which is mainly deposited near the cut-off
as the electron thermal energy, causes the expansion<of the
target plasma into vaccum. Then, this energy is transported
inward through the so-called transport region. To investigate
how the absorbed energy is transported and what parcent of this
energy is spent to implode the fuel is the second problem.

At the third, the transported energy, which does the mechanical
work against the non-ablating inner regioh, causes the super
compression of the inner fuel and induces the nuclear reaction
near the center of the fusion target. To investigate the
implosion phenomena to carry out the optimum implosion is the
third and final problem of the laser fusion. These are )
schematically shown in Fig.l.1.

My theoretical research on laser fusion-is mainly devoted
to the problem of implosion, so that I intend to introduce the
concept of implqsion. The necessity of the concept of im-
plosion may be easily understood from the following brief

discussion. Let us consider the compressed D.T fuel core with
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Fig. 1.1 Power flow diagram for essential three mechanisms in the
target plasma.
In this diagram, El: laser energy, Er: reflected energy,
Eex: energy lossed by ablation, Ec:.energy transported

in to compressed core, and Ef: fusion energy.




the radius R (cm) and density lofg/cmBE. When this core is
heated up to 10 keV and begins to expand lowering its density
and increasing its radius, the burning rate through the inertially

confined time is estimated as follows.

om®
To - £+ P

On the other hand, the required laser energy E_. to heat the

L
target up to 10 keV maintaing constant/oR is proportional to

P . because

E, <L. = E£04 R 10 (k)

=> £ = (RSP

This  indicates that the required energy in order to get the
same PR value becomes lower with increasing the compress core
density. The detail estimate yields the following requirement

to laser energy in order to reach scientific breakeven.



where Fg:0.213'g/cm3 is the solid D-T density and it is assumed
that the 8 % of incident laser energy is transported into the
compresséd core region through'the reflection and ablation losses.
As apparent from this discussion, it is necessary tovcompresski
the D-T fuel more than 1,000 timeé solid density in order to
perform the laser fusion by the use of practical lasers;‘(lO n
100 k joule) In such a meaniﬁg, the laser may be the
source driver to induce a piston to compress the fuel rather
than to heat it.

In order to clarify what plays the role of a piston in
laser fusion, the problem of the laser induced ablation structure
is treated in Chaps.2 and 3 by the use of a stationary model
(chap.2) and a self-similar model (Chap.3). The detail structures
are investigated using the one-fluid two-temperature hydrodynamic
equations. The résultant structure provides us the relation
between the mechanical power, which gives us the compression
efficiency, and the absorbed -laser power. The efficiency of the
laser driven implosion is discussed.

In connection with implosion, much attention is focused on
the transport ﬁroblem. Since in the high power laser regime
the absorption becomes mainly due to the collective processes,
where the resonantly induced plasma waves accerelate the electrons
to much higher energy, the generated hot elelctrons directly
preheat the innér core and preVent it from being compressed.
In Chap.4; the hot electron transport is discussed. The
following are pointed out. The cold electron return current
_induced to maintain charge neutrality exceeds the sound velocity

and ion wave turbulence is excited near the cut-off. This



turbulence causes an anomalous resistivity, and due to this
resistivity the large electrostatic field is_generated. This
field prevents the hot electrons from penetrating into the
compressed region and preheating there.

In Chap.5, thé preblem of the resonance absorption is
considered associated with the transport problem. Since the
transport problem shows thé exsistence of the strong expanding
motion near the cut-off, or as will be shown in Chap.4, the
very strong return cufrent there, the self-consistent inclusion
of such flow effects on influencing the resnance absorption
processes becomes important. The resonance absorption includ-
ing these effects are discussed in Chap.5. And it is pointed
out that when the flow velocity is sufficiently large, the
growth of the plasma wave is saturated due to convection
loss.

Chapter 6 is devoted to investigate and discuss the im-
plosion symmetry. In this chapter, attention is focused on
the stability of ablation front, since the formation of such
front is unavoilable for inertia fusion. The systematic
analyses are bresented for the compressivity, thermal conduction,
ablation, and convention effects, separately. It is pointed
out that the compressibility, conduction, and ablation effects
reduced the growth of the unstable mode compared with that
given by the ciassical Rayleith—Taylor analysis. In constract
to these effects. the convection effect exhibies the interesting
role in the.stability. In the case where the flow is subsonic
the convection effect gives rise to the instability even when

the acceleration is absent, while in the case where the flow



Chapter 2

Structure of Stationary Propagating

Deflagration Wave



2.1 Introduction

When laser light impinges on a cold solid target, the’absorb—
ed energyrcauses the matter to bé heated and set into motion.

Since the target is located in a vacuum, an expansion wave will;
appear. On the other hand, high pressure created by the rapid ih¥k
crease of plasma temperature at the surface can also drive a coﬁ—
pression wave which propagates into the solid. The compression

wave is maintained by a deflagration wave which separates it from
the expansion region. Namely, the deflagration wavé can play the
role of a piston in laser compression. The electron thermal flux
flows into the deflagration region from the laser absorption layer.
An increase in the internal energy in this region due to the incoming
thermal flux can be regarded as that due to combustion in a chemical
reaction wave. Because of the nonlinear thermal conductivity, the
deflagration contains a steep temperature gradient as shown in Fig.
2.1. The shock and deflagration fronts propagate into the target.
The plasma fluid is accelerated inward across the shock front, and
then accelerated outward to the rarefaction region through the def-
lagration structure. Hence, the deflagration region is often called
an ablation layer.

In this chapter we present the structure of the stationarily
propagating deflégration wave and a steady compression model in a
slab target. Bobinl) has investigated the deflagration structure
in a one-temperature approximation. We will show by using a twé—
temperature model that the ion temperature is about half of the |
electron temperature near the Chapman-Jouguet point of the deflag-
ration. Bobin also assumed that the cut-off density correpsonds

to the Chapman-Jouguet point. It will be, however, shown that the
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Fig. 2.1 Principal peature of the whole system:
(a) x-t diagram.
(b) Spatial profiles of the electron temperature (Te),
ion temperature (Ti), density (n), and velocity (V).
Here, four regions correspond to unperturbed region (1),

compressed region (2), deflagration region (3), and

rerefaction region (4), respectively.
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density at the'Chapman-Jouguet is not necessarily the cut-off den-
sity and that the density is determined by means of the energy con-
servation in the whole system.

It is shown-in Sec.2-2 that the deflagration can be regarded
as a thermal waQe accompanied by hydrodynamié motion and that it
plays the role of a piston in laser compréssion. In this section
the energy relaxation time between the electrons and the ions is
assumed to be small enough for a one-temperature approximation to be
used, while the finite relaxation time is taken into account in
Sec.2-3 and the deflagration structure is obtained in the two-tem-
perature model. Sec.2-4 is.devoted to the shock wave driven by the
deflagration. It is shown in Sec.2-5 that a constant energy flux
should be absorbed in order to realize the stationary propagation
of the deflagration. The compression and ablation profiles are

then determined with the aid of the energy conservation.
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2.2 Basic Equations and One Temperature Approximation

Since we are interested in the thermal behaviour of the plasma

coupled with the fluid motion, the followinQ equations are assumed

2)

as the basic ones “:

;%)?4—5—5 NU =0 - (2.1)
Furugu- - L2 p ()] (22

Here n is the number density of the plasma, u is its flow velocity,
Tg and Ti are the temperatures of electrons and ions (multiplied
by the Boltzmann constant), respectively; Tei is the temperature
equiliblium time between the ions and the electrons, while Ke is

3)

the thermal conductivity of the electrons, namely™’,
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in which m, and m, are the mass of the electron and that of the
ion respectively, and 1nA is the Coulomb logarithm. The first two
equations (2.1) and (2.2) are fhe well-known mass aﬁd momentum con-
servation laws. Here the viscous term is neglected. Equation (2.3)
governs the variation of ion temperature, in which the effect of
ion thermal conduction is neglected>as it is assumed to be small
in comparison with that of the electron-ion temperature relaxation.
The change of the electron temperature is given by Eqg.(2.4).

When the temperature equiliblium time Tei is small, Eg.(2.3)

yields Tig Te' In this case, Egs.(2.3) and (2.4) are reduced to

M, o+ __ 2,2 , = 5
StUST =- 5T+ Sk z7)

in which T =»2Te and X = (1)7/2 X;OTS/Z. Thus, the basic equations
in the one-temperature approximation are given by Egs.(2.1),(2.2)
and (2.7), and the following equations are obtained for the station-

ary phenomenon in the wave frame.



MU = T o L&)

U+ __/—I ::707 K?)

;f. + ~L7n.é{2_1§? 7";52?2Z‘ = C:% (Zﬂ/Q)

where JO, P0

mined by the boundary conditions. If T and u are normalized by

and QO are integral constants, and they can be deter-

N
AN

i

A 7 ~
T- 2=, a

M{‘Ez

/)

S

Eg. (2.9) becomes a parabolic form
T = d(zi) (@R)

This curve is drawn in Fig.2-2. By using the local Mach number,

M = u/(T/mi)l/z, Eg.(2.12) is also written as

/%(%= U - | CZ/@)

Hence, the plasma flow is
. . n
subsonic in 0 < u < 1,
. "
sonic at u = 1, and

L N
supersonic in 1 < u < 2.



Fig.

2.2

T-3 diagram obtained from the mechanical equations.
Points A and B correspond to the front and rear of

the deflagration, respectively.
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In general, through the deflagration structure, the plasma flow

4)

must be subsonic , and the flow velocity'increases monotonicallys
Since the temperature increases with the flow velocity in the sub-
sonic region (see Fig.2-2), in order to realize a stationary de-
flagration, the tail of the deflagrétion must be bounded at a cri-
tical point, x=xp, where scmelexternal heat is supplied. Out ofw
this boundary, the flow is generally non-stationary so that sonic
disturbances exist. Therefore, for a stationary deflagration to

be realized, it is requi?ed that the disturbances do not propagate
into the Qeflagration region. Namely at the boundary x=xp, the
flow velocity must be equal to the sound velocity so that the lo-
cal phase velocities of the sonic disturbances are zero. Thus the
critical point must be the sonic point, which is often called the
Chapman-Jouguet point. It should be noted that although a cons-
tant heat flux shouid be supplied at the boundary Xp’ the cut-off
point may not necessarily be the sonic point. We shall assume that
the cut-off point is outside of the deflagration. Therefore, the
stationary deflagration passes from any subsonic point A to the
sonic point B through its structure on the a-t plane in Fig.2-2.
Under such a regime, the integration constants JO’ P0 and QO are
determined as follows. By the C-J condition, up is equal to the

sound velocity C (=1/Tp / m,). (We denote the variables behind and

p
ahead of the deflagration by subscript p and f respectively.)

Therefore, from Eqg.(2.8) and (2.9),

$:%¢'(% ) E= 2(}. 65/;9



We now introduce the parameter a which is the ratio of the density

ahead of the deflagration to thatt behind.

N | ,
A= L | (z/5)

which will be determined in the next section. Using this parameter

o, form Egs.(2.8) and (2;9), we obtain

\S
{

oY

\{\

N
i

(2-4)d -]y @2./6)

In Eq.(2.10), taking note of d/dx = 0 at the front, we obtain

0, = (=204 Tp @

Let us normalize n, uw and T in terms of the quantities behind
the deflagration : n = npg, u = Cpa and T = Tp%, while the length
is normalized in terms of the mean free path
. P » }

‘tion for u and T are identical with those employed in Eg. (2.11).

Then Eqgs. (2.8),(2.9) and (2.10) become

9%

AU =] & 1f)

1 = (5/24ﬂ)l/2Tp2/(npe4lnA) as x = lp°(mi/me)l/2§. The normaliza

/6
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qi+-L =z (2,19)
U -

~ ~ 2 N}_z 7
EF w0 a7 = g(524), k)
' a= o0 33

In general the density ratio o is small enough to neglect the

right hand side of Eg.(2.20). We then obtain

o
27"

P d

ar

0
N
>

o2, L7? (ZZ/)

Before integrating this equation, we show that the temperature
structure of the deflagration can be approximately given by that
5)

of the thermal wave™’. Since the flow is subsonic through the

structure, Eq.(2.21) can be easily integrated with neglecting the

flow term.
.N %’ ~ Z/S,. 7
7 - ") =

This temperature structure is that of the well-known thermal wave.

Integration Eqg. (2.21) with the aid of Eqg.(2.19), we obtain



a T F W —';;(/ﬂ()W - /f?*i-é()W-—f-g——:,S‘/?f//zéf

ISHE 13U |
T3z gy 6 (ZZ3)

Here w2 denotes u(2-u) (=T), and the integration constant is esti-
mated by setting u=0 at x=0. The width of the deflagration Ax can

be obtained by putting u=l1 in Eq. (2.23),

. M
AX = 0.0%74} G z.24)

On the basis of Eq; (2.23), n and T are calculated as functions of
x, which are plotted in Fig.2.3. One can see that for most of the
deflagration, all the guantities change gently (almost linearly).
However, in the vicinity of the front all the quantities vary very
rapidly as in a thermal wave. At the sonic point, du/dx becomes
infinite, but df/dx is finite. This singularity is well-known as
a bifurcation, but in fact, must vanish due to the non-gstationary

effect. From Egs.(2.1) and (2.2),

uor , <Con 24
U T, 9X * Mn 2t L{af'
oX

M2___C2_

/&



Fig.

2.3

! 0

1
0 0.01 0.02__ 0.03 0.04 0049
X

Normalized deflagration structure in the one
temperature approximation given in Eq.(2.23).
X = 0 and X = 0.049 correspond to the front and

sonic point, respectively.

/7



here C means the sound velocity, (T/mi)l/z. Since the denominator
vanishes at the sonic point, the numerator should also vanish. As

the result, the relation

oC _ 1/ C ox

A

=2 24
2% Z \gy 2F C I

should be established at this sonic point. It will become obvious
in chapter 3 that this singularity appearing at the sonic point
has no physical meaning and taking the non-stationary effect into
account by considering the self-similar motion allows the continuous
extention to the super sonic region.

It shound be noted from Egs.(2.15) and (2.16) that the change
in the pressure through the deflagration is approximately given by

P 2n. T _ = 2PP' which is very small compared with those

£ 7 Py 2PpTp |

of the desity and the temperature for small o . The incoming flow
veloqity into the deflagration U is an from Eg.(2.16), while the
propagation velocity of the deflagration XD is propotional to
al/ch, which will be obtained in Sec.2.4. Consequently, if the
density at the front is large enough compared with that at the sonic
point, that is, if o is small, the pressure is kept nearly constant
and the ihcoming mass flux into the deflagratioh is small. Thus,
the fluid ahead the deflagration is pushed with the velocity

XD - U= in the laboratory frame. This is the reason why the

deflagration plays the role of a piston in laser compression.
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2.3 Structure of Stationary Deflagration in Two Temperature

Model

As shown in the previous section, the plasma temperature
behind the deflagration is high, while its desity is low. Thﬁs
the one temperature approximation may not be valid in the rear of
the deflagration, since the temperature equilibrium time Tai is
propoerional to n—lTe3/2. Inbthis section, we take into account
the effect of the finite temperature equilibrium time. Egquations
(2.1) (2.4) can be inteérated, assuming a stationary propagation
of the deflagration. The resultant equations in the wave frame

are the following with the same mornalization employed in the pre-

vious sections.

il =/ &)

g+ Tl _ z24)

jf Au 5?'” 3 LZKZQQ

’Z =
A% T3 7 A7 % vt .
S(7+T) + FE -k TG = d(s2) RD

Equation (2.28) is obtained by adding Eg. (2.3) to Eq. (2.4). Vg

and Ko are constants equal to 1.72 and 3.73, respectively.

The boundary conditions used at the sonic point are T, t+T; = 1



and u = 1, by which the conditions at the front become ﬁe = %& =
%(2—&) and § = o¢. From Eg. (2.26) Ei is given in terms of U and
ﬁe' which is then substituted into Egs. (2.27) and (2.28) to give

the set of two differential equations for %e and U.

~ ~ ~5%
Al _ | gg)($-24-20) T @=7)

AX K

ﬂ/f[ J [ Z{vz([f’a})(f—Zo(—QZ(U)-/-g% (27:‘2[("+2\[2)7E
—_— = = = - = 1R CE

axr 2k 7 (50— —'Z)Z;A

)

Here we note that in contrast to the one temperature case, the
sonic point is not a sigular point; equating U to unity on the
right hand side of Eg. (2.30) yields a finite d{i/dX, because
d%e/d§ = —d%i/di is established at this point so that the sin-
gularity disappears.

The independent variable X is next eliminated by dividing

Egq. (2.29) by Eg. (2.30). The resultant differential equation,

~—

A CR~A)S~2d-20) (SU 40>~ T2 )
W U-d) (o428 ) + o Y, (27:,)5(\/_””2)7;:

|

2
I

(23))

may then in principle be integrated from the front (G,Ee) =

la, %(2—q)] (point A) to the rear U = 1 (point B) in the (T, @é)

plane to give a relation %e = %e(ﬁ). However, the point A is

obviously a singular point of Eg. (2.31). To obtain the slope of



23

the integral curve at the singular point we assume that, near

the singular point the solition is of the form

U =d + Igexp(sx)
| (232)
T = 2(24) + I, axp (SK) |

where Kl and K2 are assumed small. On inserting these assumed forms
into Egs. (2.27) and (2.28) in which T, is eliminated by using

Eg. (2.26), and retaining only those terms linear in Kl and K2,

one then obtains a homogeneous system foir these quantities. The

characteristic equation of the system given by Egs. (2.27) and

(2.28) at the singular point A is

N / (2-A,)(/-d) 5 |
S /;_..-.—wfd [ =9 ko LEZ2XEAL g fop

(o) (550l)

/=2
[ 5 6 o (z-F)

[ 22-)]%) =0
| z33)

Since a<1 the characteristic equation has two roots with opposite
sign. Such a singular point is called a saddle point. A saddle
point provides a good starting point for the munerical integration

because there is a unique integral curve passing through the saddle



2¢«

point for each characteristic direction.

The numerical results are shown in Fig.2.4. 1In Fig.2.4-(a),
the whole deflagration structure is shown, while in Fig.2.4—(b) the
front structure is shown in an expanded scale. For several g values
which are sufficiently small compafed with unity, it is found that
the deflagration structures are almost the same; and the following
characteristics of the deflagration are obtained. Near the front,
the temperatures and the flow velocity increase steeply but the
pressure is almost constant, thereby demonstrating that the thermal
wave approximation is valid. The one temperature approximation
also holds in the front. The heat is efficiently imparted to the
ions through electron-ion collisions. In the course of the ex-
pansion, the ions_still get some energy from the electrons. However,
the expansion cooling makes the ion temperature lower, so that
it becomes, half of the electron temperature in the rear of the
deflagration. At the sonic point, Te = 0.68 and T, = 0.32, and
ions are heated up to 50 % of the electron temperature due to
electron~jion collisions. The width of the deflagration, Ax, is

given by

fx= 032 [, (%) (%)

where lep is the electron mean free path at the sonic point. It
should be also noted that the pressure changes gently through the
deflagration and the pressure behind the deflagration is about the

half of that at the front.
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Fig. 2.4 Normalized deflagration structure in the twe
temperature model:
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(b) Structure near the front in an expanded scale.
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2.4 Shock Wave Driven by Deflagration

The deflagration plays the role of a piston in laser‘driven
compression, as was shown in the previous sections. A shock
wave can therefore be driven ahead the deflagration. We can
determine the propagation,velocitieé of both the shock and the
deflagration in terms of np, Cp, and the states ahead of the shock.
From Egs. (2.15) and (2.16), the ratios of plasma desity and tem-

pareture (Te + Ti) across the shock are written as

A 4

u- L L §- L atew) (249
Ay &

> \‘v\\

respectively, where the states ahead the shock are denoted by the

6)

subscript s. The Rankine-Hugoniot relation can be then reduced

to the form.

VSVl SN Y N o) =p (23
Zof (00-%+47f7/_’)d+,2(%+27;) 0 )

from which the parameter ( is determined as a function of the
plasma desities and temperatures in the unperturbed region and
at the C-J point. The solution of Eg. (2.36) can be given

approximately by

I

g

277 + A

R

o (37)

&f%z;_#w¢ﬁZF
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From the definition of the deflagration4), 0<l, the condition for

the pressure,

is required to realize the deflagration wave.
Thus, with the knowledge of np and Tp, which will be determined
in the next section, the plasma motion can be uniquely determined.

The shock speed Ag given by

FT g% gAY s
ﬂiz/“[(%_,j/ﬁcj =g G (@5

where Eqg. (2.16) is used to eliminate Te. The downstream flow
14

velocity of the shock wave Ug is calculated in the laboratory

frame as

%][/ _ (/"/Z{L) ;L/y (Z?’f)

When one sees this velocity in the deflagration frame moving with

the velocity XD, it corresponds to the inflow velocity u Thus,

£*



’,/’sz..a @p)

Using Egs. (2.16), (2.38) and (2.39), we obtain the propagation

velocity of the deflagration,

/(/a—/)f% t(zd)] +a} G @.4)

Since ¢ is small compared to unity, as long as § is small enough

we can obtain the followings for AS and AD’ i.e.,

Asr Do < oPc (@12)

Since the plasma is initially at rest, the kinetic energy

aquired by a particle passing through the shock front is equal to

4

A | |
éib% - EE‘A”Q L?‘ é?ﬂ%?

Also, the increase of the internal energy of a particle is given by



<7

Eon = 5)'(7;-—7}) | R4

With the aid of Egs. (2.16), (2.35), (2.36), (2.38) and (2.39), the
total enerty increase of a particle passing through the shock front

is written as

E - (—ckvl»+€£rz,

= (1) (2-d)A T, ey,

Although the deflagration can be regarded as a piston in laser
compressin, the plasma flowing into the shock compressed region is
escaping to the deflagration regions. This is different from the
usual gas shock proceeding ahead of a piston in a tube. The

flux J0 given by Eqg.(2.15) escapes from the compressed region into
the deflagration region. Thus the energy increase in the whole

compressed region in unit time is given by

-

XW: (/%//}5“(2’)5

= Zf[ f‘of/ (2—0()]%?~o{} (/ﬁf/)(z-o()w/pz,qg

Zu-
z %)
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2.5 Energy Conservation

Isothermal expansion is assumed to follow the deflagration.
Since the deflagration propagates with the velocity AD’ the flow
velocity and the density in the expansion region can be, therefore,

expressed as follows in the laboratory frame,

I

U= §2-+;§§ , N ?7,£@P¢f¥é§r+)@)i4éhj @4

where the point x = —ADt corresponds to the Chapman-Jouget point.

The energy increase in this region is given by

) | po
b= 2o (2T tmuIaz G
"2/]7,{

Substituting Eqg. (2.47) into Eqg.(2.48) and using Eqg.(2.41),

the increase is written as

* 2

Ez'.ro = (42 +féé) 7/:72”6/)9 | £ #7)

where 8 = {(u-1) [50(2-0)/(40-1)1"%+a}.
The energy increase in the whole system is the sum of écomp
and €, given by Egs. (2.46) and (2.49), respectively. Since for

1s0



small values of o, gcomp and €50 COD be approximately given by

E

1) MpTr G+ ( (el (250)

Cb%?>:: %5&(&/

E = [ 4= (U /)(4// ,)/2 Wl G + e (257)

the energy increase in the whole system is

. o -

57‘02‘ - gfom/o -+ g LS50

P

5407/,7;§D + () Z42)

One can estimate the energy partition ratio which is defined as
the ratio of the-enegy increase in the compressed region to that
in the whole system. This ratio can be regarded as the efficiency
of energy transport to the compressed region. Using Egs. (2.50)

and (2.51), we obtain

- £ L P @s3)
Z;wya" 5?f7¢ - [ZZGgWIQ'] C)”'/) o
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It should be noted that the compression efficiency is proportional

to 0L1/2 .

The steady propagation of the deflagration can be realized
only in the case where constant energy flux is supplied to the

plasma to compensate for the energy increase £ Thus, €

tot”
should be equal to the absorbed energy flux ® near the cut-off

tot

density. The absorbed energy flux is carried out from the cut-off
region by the electrons. The electron temperature is sufficiently
high in the cut-off region, and hence the energy transported by

the electron can be given by the form

SZS )[ﬂ (//77 7%9,)¢”f cut-off (sz?Q

where the numerical factor f should be determined by the micro-
scopic phenomena in the cut-off region. Using Egs.(2.52), (2.54)

®=’ n, d
and etot' Te Tp' we obtain

My = 0zt f (e, T = % SO S

where n is the cut-off density. Thus, if the flux ¢ is specified,

the plasma motion of the whole system can be determined uniquely.
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2.6 Conclusion and Discussion

Now, let us consider the case of a D-T solid target whose

density, N, is 4.7x1022 cm_3. With the conditions Té << Tp and

a << 1, the following relations can be obtained from Egs.(2.35),

(2.36), (2.37), (2.41) and (2.55) in the previous sections,

Ny = 49x00” S 3°

o %o 2%
o= aez /7087

U5 _ Y%
A, = 2‘)’)(/0/ A ¢

,.,%3’__’

R

Ap A7XLO //6

here the laser wave length AL in pm and the laser flux & in units

15

of 10 W/cm2 are used. The efficiency n

is also iv
comp SO given as

Zomf = 074 fz ZL—'/

For a Nd-glass laser and £ = 0.6, the efficiency becomes approximately



4

n
ncomp 0.3.

Let us estimate the time lag At to establish the stationary

deflagration structure. It can be of the order of

A = 44X =A/»</0’“~—7?—5— (sec )
QL M

where Tep is in kev, n, in cm > and 1n A is assumed to be 10.
If np is equal to n, as is assumed in Ref. 1, for the Nd-glass laserx

15 W/cm2 we have Ax=0.84 cm and At=14 nsec. These

light of ¢=10
width and time lag are not realistic for the short pulse laser
light. However, in our theory np is much greater than n., hence
we can obtain realistic results. For example, if we assume

£f=0.6, then Ax=24 um and At=85 psec. This result is cofirmed by

computer simulations.
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Chapter 3

Self-Similar Motion

in Laser Produced Plasma

I
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3.1 Introduction

To achieve break-even conditions in microfusion, a laser
pulse must compress a D-T fuel to densities well above that of a
solid density ng . and strongly heat its corel)’z). The radiation
is absorbed near the critical density where the electron plasma
frequency is equal to the laser frequency. Rarefied coronal
plasma is produced and hydrodynamic motion of ablation gives a
reaction force to implode the central fuel.’ Hydrodynamics is
therefore essential to the ablation and implosion phenomena.

The ﬁydrodynamics of laser plasma interaction has already

been investigated both in theoretical analysis3)'4)’5)'6)(see

7),8),9) .

Chap.2) and by the extensive computer simulation
theoretical analysis has concentrated on the stationary problem

for constant laser irradiation, which cannot clarify time-dependent
hydrodynamic phenomeﬁa. In order to clarify how the hydrodynamics
evolve with time and how these behaviours depend on the irradiated
laser prameters(pulse shape, its duration, and frequency), we
consider to solve the hydrodynamic equations by reducing them to
the ordinary differential ones, which gives us the self-similar
motion for hydrodynamics of ablating plasma.

0)

. . 1 . .. . .
Anisimov noted the exsistence of self-similar motion in-

cluding electron conduction and ion-electron enerqgy relaxation,

and Barero and Sanmartinell)s12)

"extensively analysed the self-
similar motion for the hydrodynamics under the absorption of
linearly increasing laser flux. We here consider the self-similar
motion for the hydrodynamics of laser produced plasma. It is

pointed out that one fluid, two temperature hydrodynamic equations

including nonlinear electron thermal conduction and ion~electron



energy relaxation terms reduce to ordinary differential equations
in general. Solving theée equations under appropriate(idealized)
boundary condition gives us various self-similar motions according
to the diffefence of similarity parameter ao.

In Sec.3.2, similarity properties of basic hydrodynamic equét—
ion are pointed out and the resultant ordinary differential equat-
ion are obtained. The way in which these reduced equations should
be integrated under the idealized boundary condition to the ablation
front is considered. An unique integral path which gives us a
phsically -meaningful ablation structure is found. To determine
a similality parameter o and dimensional constant A is devoted to
Sec.3.3. By considering the energy consevation relation through
the system, the parameter o and dimensional constant A are deter-
mined. In terms of these o and A, an ablation front pressure,
which gives a mechanical power to compress an inner solid region,
is obtained. 1In Sec.3.4, an application of this analysis to an
abléting plasma produced through an inverse-bremmstrahlung absorp-
tion of a constant laser flux is considered. Using the resultant
ablation structure and considering strong shock formation in
front of the ablation region, an x-t diagramkfor the characteristics
is shown. In Sec.3.5, the relation between absorbed laser flux
and ablation front pressure is considered. It is found that due
to an expansion of the ablating region, the absorbed laser energy
should be increased in proportion to one sixth power of time in

order to maintain a constant pressure at the ablation front.



57

3.2 Similarity of Basic Eqguations

We consider a fully ionized plasma produced by the incidence
of lasér radiation on a solid target. The produced plasma may be
described by the one-fluid equation as long as the characteristic
scale length for spatial variation is much smaller than the Debye
distance XD, and this condition is usually satisfied. However,
the temperature relaxation time Tai between electrons and ions is
long enough and the ions cannot get sufficient energy from the
electrons to compensate an energy loss due to expansion cooling.
We therefére employ the two temperature model with the electron
thermal conduction and electron-ion energy relaxation. Then basic

equations are shown as follows.

FEIT) + U (ZT) + FET)ou -2 4 2T 7’) —

1 XN X € ax

O4)

where n,u,Ti,and Te are the ion number density, flow velocity,

ion temperature, and electron temperature, respectively. The



coefficients'\)0 and Ko are definedl3) by

Uy = L4867 x ””’e e*lA

63y,

,k; = 0,30 x f’ﬂ@, ?AZ/Z)

where my and m, are ion and electron masses, and 1lnA is the Coulomb
logarithm- (This is assumed constant here). 1In the above eguations
we made use of the fact that the plasma is neutral, writting
n=n, = ne/Z. We also exploit the fact that the ratio me/mi is
small. These edquations describe'the plasma motion in the frame
moving with the ablation front (x=0), and an inértia force coming
from an acceleration of the ablation front is neglected.

Let us investigate the gimilarity involved in Egs.(3.1)v(3.4).
In order to do this we shall resort to dimensional con51deratlonsl4) L5
Equations(3.1)v(3.4) do not contain any dimensional parameters
without the dependent variables n, u, Te’ and 'I'i and the indepen-—
dent variables x and t and the dimensional constants m. and «

-1 -1

is constructed by Kg ~my .) Dbearing in

0"

(The dimension of vo

mind the dimensions od functions, n, u, Te' and Ti' we can represent

them in the form

N = /(m/zji/\/

o B3.4)
U= = '1'7
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2
fe = /'ﬂ?‘f('gz’/‘) 17
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where N, V, ée,and eivare dimensionless functions that depend on
only the dimensionless variable constructed by x, t, and parameﬁers
in the problem. It is noted that Egs.(3.1l) and (3.2) are homo-
geneous to the density n, so that its form is determined by the
energy equation (3.3) or (3.4) and in this case it is given by
the density dependence of the electron heat conduction term.

Ih general self-similar motion has a power-law dependence on

time, and the nondimensional similarity variable £ with the form

§= o 3.7)

is introduced. Here A and o are constants (A is dimensional and
o .1s a pure number). Substituting x = Atag into the relations

(3.5) and integrating new variables g, v, Tar and Ty

S 5N, Vs)=3V, Zw=-36 5.5)

,then Eg.(3.6) is rewritten in the form
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Jo-

y
= ko ml AT G

u=42"Vw ©.9)

2 (1)

Te = m A Ces)

Taking account of the definition of the similarity variable (3.7),
we substitute the above relations into Egs.(3.1)n(3.4). After
some arrangement we obtain the following ordinary differential

equations.

\/y*df)g/_/.[zf/_[_ (‘}d_ﬁ)jg? =0 (),/0}

)0+ 1 9(28+)] () =0 o)

€

(V-7 + { Z v+ 20D} T —/4433-5—(_—(7%;;5—‘)— =0 (.9

(V-d§)(20+0)+ {3 Ve26) 20T - ;;’.g?/_ (2 0) -0
0./3)

v,.m

where Yo is a dimensionless constant defined by Mg = KoVl -



The differantiation of the reduced functions with respect to the
similarity variable £ is denoted by a prime.
Before solving the above equations, we set aboundary condition

to the reduced variables. It is well known3)

that as long as the
target density is much higher than the cut-off density, the QMf‘;;;“:f
deflagration structure exhibits steep gradients of density n,

velocity u, temperature Te and Ti in the vicinity of the front,v
while the pressure nT and mass flow density nu are held almost

constant there. Therefore, we set the following idealized

boundary condition at the front § = 0.

i:

o2
%72)?; =0

but | (/4)
;ZVP/ é?Z:) 0?5: :¥ o, o2

3)
Taking account of the structure of stationary deflagration

which says that the flow is sufficiently subsonic, the temperature
relaxation_is effective enough to give Te = Ti , and the

electron thermal conduction play the most significant part to
determine the ablation structure, then we can reduce Egs. (3.10) -

(3.13) to an approximate form near the ablation front:



”5}:%(’ 1) ot ENEY Y.

=7 | )
Je =T ¢ comad (3.777)

7, = ¢ z / Z o\
EtNDU L+ (2D VG ey (770 ) =0 Bl
It is evidient from the relation (3.9) that one of the constants
of integration JO and Po,can be adjusted by varing the prameter A.
We set therefore J0 to be unity. Using Eqs.(3.15),(3.18), and

(3.14), the equation (3.18) is solved giving the form

24
- (ZurbE)
gV = PrZEmpi] e,

%= 7

The temperature profile in the above form is identical with that
of the well-known thermal wavelG).

Here, a new problem to determine the constant P0 appears
when we integrate Egs.(3.10)-(3.13) starting from the approximate
solutions(3.19). The front pressure P0 should not be chosen
arbitrally. If we specify some arbitrary value of this constant PO
and start the integral of Egs(3.10)-(3.13), the integral curves

will in general diverge, and the curves will not correspond to

the correct solution. Only for a particular value of P0 will



the integral curves converge and give a reasonable profile.

This is one of eilgen value problems, which are well treated for
the Schrodinger equation, and the finitness of the wave function
is , in thié.case , correspond to the energy conservation of the
whole system. | |

If we consider the assymptotic behaviour of the solution

given by Egs. (3.10)-(3.13), we can specify a reasonable, unique
integral path by the fo;lowing procedure. In order for the solu-

tion to conserve the total energy, the electron thermal flux

. . . 5/2 —laTe
coming from the infinite (§+«) must be finite ( S=« Z %

0
. . _ , 5/2 " . . . _
is finite at £ = « and this also means Te Te is finite at &= )

T
e

In order to satisfy this asymptotic relation, the electron temperature

increases as follows.

277
?Z << Ef 7@, S oo éﬂz@p

But, due to expansion cooling the ion temperature decreases

monotonically.
&2 0 fer Smoee 62/

By use of the transformed variables G(§) = £g(&), V(&) = v(§)/&,

and 6(&) = (ZTe+Ti}/£2, the equations (3.10) and (3.11) are



rewritten by the form

N dLG . AV _ 3
(7 o/)ﬂ,%}, o L(/-o) 6.22)

éjﬁf W""jﬂ% j:f/fﬁ) ()7 )

The first term of the right side of Eq. (3.23) can be neglected
for £ - » as obvious from the asymptotic relations (3.20) and
(3.21). Consequently, Egs.{(3.22) and (3.23) reduce to the follow-

ing form for & - .

AhG _ (V)V+&0-a)(7a)
abs (7o) =6

329

The left hand side must be negative for § - «, because the density
g(&) = G(£)/% should decrease faster than g'l to maintain the
total mass finite. For a>9/8 the numerator of Eq.(3.24) is

always positive. Therefore, to satisfy the above relation the
denominator must be negative, namely 06 > (V—u)z. The equation
(3.21) also denotes that the reduced temperature 8 must be equal

to zero at & = «. These two requirements give us the unique
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integral path, which is drawn schematically in Fig.3.1l. The
equation (3.24) also denotes the exponential decrease of the dens-
ity g. It is easily shown that the situation is the same for
1<a < 9/8.

in the case of o < 1, the temperaturs and flow velocity are
infinite at time t = 0 , obviously from the relations(3.9). ‘This
case corresponds to that of the collapse problem and may be, for
example, applied to investigate an adiabatic compression by the
use of ﬁhe tailored pulse. The origin for time (t=0) is taken
at the instant of collapse. We analyse the system for negative
time. In this regard, we slightly modify the definitions.
These collapse problems contain much interest, but we do not treat

them here.



Fig. 3.1 Integral path in (V,8) space.
Dotted curve means the schematic integral path.
The integral path should pass a sonic point and
converge into the point (a,0) for § -+ o« with positive
value of T—(V—a)Q. Here, the curve, 6=V2, is a

sonic one.

&

e



3.3 Energy Conservation and Determination of Similarity

Parameter o and Dimensional Constant A

By considering the energy conservation for the system, the

similarity prameter o and dimensional constant A can be uniquely

determinéd as follows. Multiplying Eg.(3.4) by the density n

and using Egs.(3.1) and (3.2), we obtain the energy egquation as

a conservation form.

2 -
7 Lot En(2E+ 7))

+ = [5’»}%5}74(3+ En(T+TI)u -

Integrating this equation over the space from the origin to the

infinte yields the total energy conservation:

where

Er = 0/[5’» Wy A+ 20T +T) ] AX

&%)



where to evaluate the integral, we made use of the fact that no
© energy convection exsists at x=0 and . The energy increase in
the whole system is compensated with the thermal conduction from

the infinite. From Eg. (3.9), Eq.(3.25) is rewritten as

7 L7 |
;50,)2 Er = //4 ‘S 2 | G24)

where S_ is the nondimensional thermal flux at & = o [ S, =
Te5/2Te (¢=»)]1, which should be given after integrating Egs.
(3.10)-(3.13). Let us assume that the incident laser flux is
absorbed arround the underdense region and the absorbed power is

given by Iab = cbotB ( B is a pure number and ¢0 is a constant ).

The energy conservation requires the relation
,olg;-.gﬁt’g
ot =T 0

Comparing this equation with Eqg.(3.26), we can determine the

-similarity prameter o and dimensinal constant A:

pr7

o=z

" 627)

/':(/(}777/&«,)



Substituting this prameter into Egs. (3.10)-(3.13) and integrating
them according to the procedure mentioned in the previous section,
we get the nondimensional ablation structure. The dimensional
structure is obtained by substituting the constant A given in
Eg. (3.27) into the relation (3.9). |

It is important to consider how this resultant ablation
implode the inner solid region. Up to now, we treated only the
ablation region and the meaningful quantities to construct the
compressed region are given by the mass flow nu and tht ablation
front pressure P. These values provide us with the boundary
condition to construct the dynamics occuring in the compressed
region. From Egs. (3.15)-(3.17) and relations(3.9), the pressure

and mass flux at the ablation front are given as

£ Sol-%

G+2)P ko mi A 2

1)

P

629
fz 174 -
;Zk':z /<; }%2//;47 Zf and

where the constant P, should be given after the integral.

0
These boundary condition correspond to the problem of the comp-
ression with the porous piston. We do not here treat the problem
to construct the compressed region, but the simple analysis

will be shown later. It is noted that if we could determine

the dynamics of the compressed region we get the prpagation velo-



city of the ablation front and we can transform the variables
from in the frame propagating with the ablation front velocity

to in the laboratory frame, obtaining the whole dynamics of the

implosion and ablation.

£=2
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3.4 Application to Ablating Plasma Produced by Classical Absorption

Let us consider the case where the incident laser with

constant power I, is absorbed through the inverse-bremsstrahlung

0
absorption process by a D-T plasma (Z=1). In this case the abs-

orbed power I will be given as the form

ab

L= [1-2pC2 [ Kea)] ],

~ 7l G27)

where

k= 2eno” bt g L (%)
= -y

Here, nc and KL are the cut-off density and laser wavelength,
respectively. The absorption rate is assumed to be small in
Eq.(3.29). As mentioned in Sec.3.2 the density exhibits an

exponential profile in the underdense region, éo that we can

perform the integral to Eq. (3.29).



v AT -2 3-2d
g = 22417 ey Fhla t z32)

where 1. and Te(EC) are non-dimensional density scale length,
n/nc = exp[—(g—gc)/L], and the temperature at cut—-off. 1In this
case,B . in Eq.(3.27) is gqual to 3-2a and ¢0 is also}given in
Eg. (3.30), sc that the similarity prameter o and the dimensional

constant 'A are

o=
;3/)

N {
A = ( 2.2 x0 "4A 5L 7 )/y
£§4”%k;%? ZZ%%§)~J;b °

Fig.3.2 shows the resultant profile obtained by integrating
Egs.(3.10)-(3.13) with a=5/4. The integral was carried out
numerically using Runge-Kutta method. The meaningful integral
required PO = 1.361 and the resultant profile gave L=1.30,

3/2

T

S =75.0.
-ec ©

Let us consider to make anvx—t diagram for the implosion
dynamics. Calculation of the ablation front velocity will be
simply carried out if we assume a strong shock formation in front
of the ablation region. The ablation pressure caluculated in

Eg. (3.28) make ashock in the solid region, and its propagation
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Fig. 3.2

Nondimensional ablation structure in the case where a=5/4.

Here, g, Vv, Tat Tyv and S are the density, velocity,
electron and ion temperature, and electron thermal
flux, respectively. These nondimensional quantities

are converted into the dimensional ones by the use

of relation (3.9) after determination of constant A.
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velocity As may be givenl7) as

/
Z
2}5,: ,{‘.M__./J‘

3 AWQ7&>

where ng is the initial solid density, and a specific heat y is
assumed to be equal to 5/3. Moreover, considering the mass con-
servation across the ablation front, ,the propagation velocity

of the ablation front Aa is calculated.

| 379 kAT LF % 4
ﬂa:;z(jf'—;zj‘).% + g A

where the mass flow given in Eg. (3.28) and the well-known shock

11)

relations are used. Using this propagation velocity we can

construct the x-t diagram in the laboratory frame, which is shown

in Fig.3.3. This figure shows the case in which I, = 1015 W/ém2

0

and XL = 1.06 ym. Here, 1nA is set to be 10. In Fig.3.3, the
symbols S, A, Sp, and C denote the shock front,ablation front,
so~-called Chapman-Jouguet point (which means a sonic point in
the frame moving with the ablation front),and the cut-off point,
respectively.

The structure shown in Fig.3.2 and the dynamics given by
Fig3.3 exhibit good agreements with those obtained by computer

simulations, which are shown in Fig.3.418). ( Take care that
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Resultant x-t diagram for the case where 1.06 um

15 W/cm2 is absorbed through the -

laser with power 10
inversebremsstrahlung by a D-T plasma which is
initially solid.

Here, the characteristics of the shock front (S),

ablation front (A), Chapman-Jouguet point (Sp), and

cut-off (C) are shown respectively.
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A typical implosion structure obtained by com-
puter simulation. p denotes' plasma pressure (X
1010 kg/m sec?), p mass density (x 102 kg/m3), u
flow velocity (X 105 m/sec), Te electron tempera-
ture (X 108 °K), T3 ion temperature { X 106 °X) and
T=T.+T:. S corresponds to the shock compres-
sed region and D the deflagration region.
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A x-t diagram of implosion. S corresponds to the

shock compressed region ad D the deflagration

front, C-J the Chapman-JYouguet point and C the
cut-off point. - :

Typical example of the dimensional ablation structure

and the x-t diagram for the corresponding characteristics,

obtained by a computational calculation (Ref.18).

These computational results support the accuracy of

the present self-similar analysis to the laser produced

plasma behaviour.



the target material used in this simulaion is different from
that employed in the present analysis, and the simulation

employed a hydrogen solid target.)



3.5 Concusion and Discussion

Imploding a fuel target is required to achieve the inertia .
fusion within the usage of the practical laser. In order to
achieve the supexr compression, the controlled compression ,
especially adiabatic one, is necessary. The irradiation of laser
light gives rise to a formation of the ablation region, and
through this region the absorbed energy is transfered toward
the overdense region. This transported energy causes the implosion
by doing the mechanical work against the inner non-ablating
region. 'As mentioned in Sec.3.3, between the absorbed power

and ablation pressure there are such time dependences.

£ol-7
P
Ly Z |
(3.32)
Sol-£
Namely, there ié the difference in time response by tmOL+l between

them. Let us consider the case of a constant absorbed power

( Iab = const. ). In this case, Eqg.(3.32) says

-4
d=-F — B o<t

This relation means that due to the expansion of the deflagration



region in proportion to t7/6

; the absorbed energy can not be
transported directly to the ablation front but is spent so as to

compensate the expansion of the deflaglation region. This is

analogeous to pushing a wall in roller skates. Under the constant

power absorption, the formed shock wave will be weakened by the
following rarefactive perturvations. In order to sustain the
shock, we must therefore require for the absorbed power to in-

creas as follows.

@:W — o= £ Ly < f%

N /

In such a case, the absorbed power is transported to maintain
the constant ablation pressure suppling more energy to the
expanding deflagration region. What was mentioned above is one
of the significant differences compared with the result given
by the stationary analysis shown in Chp.2.

It may be interesting to compare these different model
analyses. The treatment with the stationary model has advantages
in the simplicity of the basic equations and moreover being
easily taken account of various anormalous effects. However,
in intending to enclose the system self-consistently, we face
the problem to dgtermine the unknown prameter as seen in Chp.2.
And, the restriction coming froﬁ the momentum conservation causes
an appearance of singularity near the sonic point,:which prevents
the solution from extending into the super sonic region.

Morever, the stationary solution says nothing about the time



evolution of the phenomena. Therefore, we have to pay atten-

tion to under what conditions the stationary analysis provides

us with well approximated solutions.

In

contrast to the stationary treatment the analysis with

the self-similar method provides.the ablation structure which

exhibits the continuous structure over the ablation region from

the front to the vaccum without showing any singularities.

Moreover, the time dependent dynamical evolution of the ablation

phenomena can be obtained for the various cases.

It
treateé
effects
exhibit

region.

is interesting to point out that not only the case

here but also the others including, for example, the
of hot electron transport or heat inhibition ... may
the self-similer type time evolution in the ablating

So, the applications of this self-similar method to

the various probiems will provide us with the more realistic

ablation and implosion phenomena.
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Chapter 4

Hot Electron Energy Flux Limitation

by Electrostatic Field

5
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4.1 Introduction

When intense laser light is irradiated on a target, collective
processes, for instance, parametric instabilitiesl)’z), and/or
resonance abéorption3)f4) become more important than inverse-
bremsstrahlung. In conection with the collective absorption,

5)'6)’7). When the hot electron energy

hot electrons are generated
exceeds about 10 kev, the mean free path is longer than the scale
length of target plasma. In such a case, those electrons penetrate

8)

into the core plasma and preheat it ’. Furthermore, they expand
out into the corona region generating fast ions thereg). Therefore,
we have to understand how due to those long mean free path electrons
implosion efficiency, preheating, and corona-core decoupling are

affectedlo).

In this chapter, we point out the electrostatic
field generation, which redudes the hot electron heat conduction.

A qualitative explanation of the electrostatic field genaration,
is as follows. When the hot electrons expand into the overdense
region, a return current of background cold electrons toword the
critical layer is induced to maintain charge neutrality. The
electrostatic field is then buill up because of fihite electrical
resistivity of the return current. Moreovér, if the electron drift
velocity exceeds the ion sound velocity, ion waves become unstable
and the turblent state appears. When this is the case, the
electrical resistivity is enhanced by electron-ion wave scattering.
As a result, the strong electric field is génerated by anomalous
resistivity, and the electrostatic potential energy at cut-off
reaches a few times the hot electron energy. This electric field

insulates the hot electrons from the core region. (This is shown

schemalically in Fig.6.1.)
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Here, the hot electrons are assumed to be collisionless
because the hot electron-ion collision freq_uency,.vhi is approximately
related to the cold electron collision frequency, Vi by Vi g'
vei(TC/Th)3/2 << Vg where Tc and Th mean the temperatures of
the hot and cold electrons, respectively. Note that this relation
is maintained even if the electrons are scattered by the ion waves.
Therefore, the ratio of the hot electron mean free path lh to the

' . : v
cold electron path 1C is lh/lc =

(Th/Tc)z' Whén Th/TC is gufficiently
greater than unity and our consideration is restricted to a region

of width, lC << L & lh. We can assume that the hot electrons are
collisioﬁless whereas the cold ones are collisional. Therefore,

the Vlasov equation is used to describe the hot electrons and the

cold electrons are described by the fluid equations.

The phenomena are assumed to be stationary, because the
electrons re-distribution tiﬁe scale is much shorter than the time
scale of ion motion and/or laser pulse length. Two models are
considered. One is the one dimensional slab geometry and the other
is the spherical geometry. (Note that the one dimensional slab
model is a limiting case of the spherical case.) For simplicity,
we consider the slab case at first in order to clarify the mechanism
of electrostaﬁic field generation.

The hot eiectron distribution is then given by the BGK solution
of the Vlasov equation. The velocity moments of the distribution
give the hot electron density and current. Using the hot electron
density and current which are now only the functions of potential,
the cold electron equation of motion is reducea to an equation

for the electrostatic potential. This equation contains the cold

electron-ion collision frequency. When the electron drift velocity
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is smaller than the sound velocity, the well-knowned Spitzer's
formula for the collision freqguency may be used. For a éuper—
sonic drift velocity, an anomalous collision frequency due to the
ion wave turbulence has to be used. In order to obtain the
anomalous collision frequency, the wave kinetic equdtion for ion
waves involving the nonlinear Landau damping is discussed and
so-called Kadomtsev spectrum is used. Inserting the resultant
spectrum into the quasilinear equation of cold electron, the
anomalous collision freéuency is determined.

For the typical parameters of laser produced plasmas, the
potentiai profile is determined and tne potential jump ]e@/Th{ N
1l &~ 2 is obtained in the vicinity of the critical layer. Such
a potential jump is mainly attributed to appearance of the ion

wave turbulence near the critical layer. The hot electron flux

oo

reduction is then found to be about 10 (spherical) or 20 %
(plane) of the free streaming limit.

The dependence of heat flux reduction on hot electron
density is also investigated and the fiux reduction is found to
be enhanced with increasing hot electron density. It is interest-
ing, however, tﬁat in spite of such a reduction, the total thermal
flux of hot electrons penetrating into the core region is
approximately constant. The effect of an anisotropy of the hot
electron distribution function oh the flux reduction is also con-
sidered. Finallj, the flus rediction in the high Z material.is
considered. In such a case, electrostatic field effects on the

flux reduction seems to be important even without ion wave

turbulence.
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4.2 Eqguations for Slab Model

The Vlasov egquation for the hot electron distribution function

fh in the one dimensional slab potential @(x) is

2 e 2 2 —
Uazi{*’ ;75)?52}7/{ o . #/)

The fluid equations are employed to describe the cold electrons.

Ml = ] ¢ el s X, 42)

endt --mnu - T - w

Here, N, ue,,and Te are the density, velocity, and temperature of
the cold background electrons, where Te is assumed constant, and J0
is a constant of integrations. The ions are assumed to be the

stationary background with charge Z and density ni(x), and the quasi-

condition for the plasmas is then shown to be

Xy :%-f-z:;f{fﬂﬂ

o %)
ﬁ/€;,g,+// Vi AV =0
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Note that the charge neutrality condition is required since the
scale of spatial variation L is much longer than the elcetron Debye
length @D.

Now let us solve the Vlasov equation for the hot electron by
the BGK procedurell). Here, we assume that the hot electron

distribution function at the critical surface x=xc-is given by a

Maxwellian one with temperature Th.

M Me

74"" “"“‘"""““%1"‘/0(‘27;1/2) Ay,

ézﬁ;yz Z;/f

Here, Nyo is a density of the hot electrons at cut-off. The
assumption of the Maxwellian distriburion is based on the fact
that the hot electrons are produced due to the stochastic heating
by the electric field of plasma waves resonantly generated at
cut-off. It is obvious that the equation (4.1) conserves the

total energy for s single electron,
= e 2 ;é ot
E" 2 4 € (x)

The potential ¢ (x) is considered to decrease monotonically from $=0
at cut-off to ¢=¢, at a inner boundary (x=x0) where the Coulomb
collision between hot electrons and ion becomes significant.

In such a case, electrons climbing over the potential barrier are
assumed to penetrate into the collisional region and deposit their

energies.
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On the other hand, the electrons satisfying the following

condition are reflected by the potential toword the critical layer.

V < Vew = ;;27(6, (-, ] #£)

Here, Ve is the velocity with kinetic energy equal to the difference
of the potential energy. The condition (4.6) is obvious from the
energy consevation for Eg.(4.1). Under the boundary condition

(4.5), the BGK solution for (4.1) is easily obtained to be

47};0 M 2 c .
Vi 1, /&(f[,ﬂ;[/"" f¢(x)] ; (V<)

ﬁ = (7))
0 C(vel)

The schematic feature of this distribution is shown in Fig.4.2,
Note here that the distribution(4.7) has a net current and a
heat flow from cut-cff toward inner overdense region.
Taking the zeroth and first velocity moments of this distribution,

we obtain hot electron density nh(x) and current jh(x)

MWy0) = Mo ﬁ’/”[%f‘¢(x)] - [Reoy, ]

Ly 44
Th @ = = =i P (e /T, )
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Fig. 4.2 Schematic picture of hot electron distribution

function given by Eqg. (4.7).

7’
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Here, Vh =‘/Th/me and a function (&) is an error function defined

CE
o= f | 2p(-£) at 41

Eliminating n, and u, in Eq.(4.3) by the use of Egs.(4.4) and (4.8),

the equation (4.3) reduces to the equation for ¢.

o A

x\

i “
az _,ig';/c_,_l/__y,f% 77&0@(%)(—‘4' ¢_€'%)

Here, the nondemensional variables are introduced by

H = Mo /7, Gy

and also

(1%



2 -1

. . ) _ -1 _ . .
where v, is defined by Vg = Vg ncJO (xc XO) . The egation

0
(4.10) gives us a spatiél structure of the electrostatic potential
5(%)_ Note that Eqg.(4.10) involves the peak potential wvalue ¢0

at the overdense boundary, so that the equation is solved as an

eigenvalue problem.

For solving the Eq.(4.10), we have to determine the electron-

ion collision frequency Vay- This problem will be considered in

Sec.4.4. - Before considering v,,.. we will derive the basic

6

equations for the spherical symetric model in the following section.
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4.3 Equations for Spherical Model

In a spherical plasma sustaining spherically synmetric potential
¢$(r), the Vlasov eguation for a hot electron distribution function

fh is given by

2

GRS IS ) s I =0 4

S -
For cold electron, the fluid eguations are

7

Y el = . ¢ cwad %z

éﬁﬁézyi? e,ké‘7%éé - 7g-£%%§ éZ/$7

We also require charge neutrality condition same as Eqg.(4.4).
Now, let us set the hot electron distribution function at
cut-off to be a bi-Maxwellian with temperatures Ty in the radial

direction and T, in the azimuthal direction, namely,

37
_ Poo e ﬁ%: 2 We 2 4
]£ o g 7 /9 //r 27, %) (#44)
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S . 2
Here, v is the azimuthal velocity component, v, =

(V62+V¢2/sin26)/r2. The reason why we take anisotropic dis-
tribution for hot electron is due to the fact that the electron
acceleration by resonance field is mainly along the density gradient
direction, and in general, the hot electron distrubution is not
isotropic. Considering the constants of motion of electrons for

the central force in Eq.(4.13), we have the following conservation
relations for the energy E and the angular momentum M for a

single electron,

il

E= Z(ny) - e P i e

4./7)
M

i

rv, = (1 + @Z/thzﬂ)%_  cost

If the potential ¢(r) varies monotonically from ¢=0 at cut-off
(r=rc) to ¢=¢0 at the overdense radius (r=r0), the electrons
climbing over the potential penetrate into the collisional region
and deposit their energies by collisions with the backgroud plasma.
On the other hand, the electrons satisfying the foilowing con-

dition are reflected by the potential toward the critical layer.

2

'
}/-2/}22

A= AN G



Here, the definition of Vc(r) is the same given in Eq. (4.6) with
¢(r) instead of ¢(x), namely, v_>(r) = 2e[$(r)-9,1/m,. The
condition(4.18) is obvious from the energy and angular monentum
conservation, Eq.(4.17). In Fig.4.3.a, the achematiC‘feature of
the hot electron distrivution’at a radius r is shown. Note here
that the distribution has a loss cone according to the condition
(4,18). This is partly due to an efective potential (centrifugal
force) associating with electron angular momentum. Under the
boundary condition (4.165 the BGK solution for the hot election
distribution function is derived from the conservation laws for

energy and angular momentum as follows:

[ T E _Meny/ 11
7/{— (275/%)%7;7/;% /&(f[—']; 2 }2)(71 ’T;)J
&7

Substituting relation(4.17) into E and M of this equation, the

BGK solution of the hot electrons is obtained under the reflection

s

condition(4.18). We can also reduce the distribution function(4.19)

to a radial velocity distribution function, by integrating the

distribution over v ;
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(b)

Schematic picture of hbt electron distribution at a
radius r:

(a) Contours of the distribution in Vs V.

The reflected component has a loss cone to satisfy
condition (4.18).

(b) The hot electron distribution function versus V.-
The distribution consists of two Gaussian profiles of

diferent halfwidths, given by Eqg. (4.20).
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Here, v

h is the radial hot electron thermal velocity (Th/m)l/z, B
is the temperature anisétropy defined by TL/Th' and T is the radius
normalized by cut-off radius, %=r/rc. The nondimensional function

€ is defined by

> -y
gz

This hot electron distribution function versus V. is shown in Fig.
4.3.b. Taking the zeroth and the first velocity moments of this
distribution, the hot electron density nh(r) and current jh(r) are

obtained as foliows.

)3 )]

~ 2 | 62229
]

ap (7
W/L[U = 7740 «\,Pz/%—r 2 [é[l/c
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Here, v is normalized as GE =>vc/vh,_and (%) is the error
function defined by Eg.(4.9).

For the spherical case, we also obtain the differential
equation of .#(r) using the charge neutral condition through the
same process as the slab case. However, since the meaning of the
equation becomes clear by the use of the integral form, We stop
deriving the deffential form explicitly.

Using the integration constant JOs of Eq.(4.14), we solve Eqg.

(4.15) to obtain the cold electron density as the function of &(r),

tem [ Znf R (2805 o) ol L) 42

s

where Do is an integration constant, representing the cold
electron density at the cut-off. We normalize the potential and

the densities by the hot electron temperature T, and the cut-off

h
density n according to the slab case normalization. Using

Egs. (4.14), (4.21) and (4.22), we can rewrite the neutrality

condition(4.4) as follows.

I wpl-E)
GZ; _ ;fﬁ-lg_ Ho /?(
(TR

423
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— op(-4)
7/

tZ)]

= £ 4%
where o= Th/Te’ Eq. (4.24) determines the spatial structure of the
electrostatic potential %(%). If we differentiate this with respect
to %, we get the differential form corresponding to Eqg.(4.10).

Note that the equation for the slab case is obtained by taking the

limit, r ~ry = fixed and r > in Eq. (4.24).



4.4 Anomalous Resistivity due to Ion Wave Turblence

Before solving Eq.(4.10) or (4.24), it is necessary to deter-
mine the collision frequency Vai® When the return current velocity
ug is smallér than the sound velocity C, = (ZTe/mi)l/2, thé
electrical resistivity is equal to Spitzer's formulalB). However,
when the drift velocity associated with the return current ex-—
ceeds the sound velocity, ion waves are unstable and the electron
scattering is then dominated by the ion waves. 1In such a case,
the electrical conductivity is reduced anomalously. Therefore,
we must determine the collision frequency))ei in the ion acoustic
turbulence regime.

When the ion acoustic turbulence with spectrum I, builds up,

k

transport coefficients like electrical conductivity should be
estimated from the quasi-linear equation for the coarse—-grained

velosity distribution function.

J[ "/a/r 7{? /n a;r )LV 7[(/%) Z/k (I/k dw-w)

/'éaw e) =0 ¢2)

Thereby k is the wave vector of an ion wave, §(p-kv) is the Dirac

delta function, and the wave number spectrum Ik is the mean sqguare

=

of the oscillating potential o1 of the ion wave ( I, = <|¢k[2

.

Taking the first velocity moment of Eg. (4.25) and comparing it

<.

W



with Eg.(4.3), we obtain the following expression for the anomalous

collision frequency Vai’

2 / B
)%v’ﬂ(;,e;) W LV,%/@%V l//zS(w—/zeu/)/;f;;Jé AV ¢2)

The turbulence spectrum Ik should be determined by the wave kinetic
equation, in which the no;iinear Landau damping is. taken into
account as a saturation mechanism of ion wave instability. When
the deviation of the cold electron distribution function from the
thermodynamic equilibrium is small enough, the distribution
function with the flow velocity u, and thermal flux Q may be

approximated by'l4)

7, W)t g, R
%:(Zc%)%/@f [ 2l* J{ BN Me V7

where Ve is the cold electron thermal velocity. Using this

distribution under the condition ZTe >> Ti’ the wave kinetic

equationlS) is



b o _[E ot I
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Here, w i and o are the plasma frequencies of ions and electrons,
v. and fi are the thermal velocity and the distribution function
of ions, k" = k-k', and the angle 6 is the propagation angle of

an ion wave with respect to the electron current. We average Eq.
(4.28) with respect to © over the unstable cone to obtain the
statiohary spectrum Ik. The thermal flux Q in Eﬁ.(4.27)>is

. _ N 3 .
described by Q = KedTe/dr = meneve lc/LT, where lC is the cold

electron mean free path and LT is the spatial scale of the

. 3 0
temperature variation. Consequently, Q/meneve = velc/LT. Thus,
since the condition lc/LT <(Zme/mi)l/2 is satisfied, we can neglect

the term induced by the thermal flux Q in Eqg.(4.28) and obtain

2

2P 2
v MGU  (=3)7 2
V z(Xe}%// 2F5) R

I/;e(
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where 8 is the velocity ratio Cs/ue (<1), the function F(§) is the
correction factor of order unity, and kC is the upper limit of the
wave number of the ion wave turbﬁlence where linearvgrowth rate
due to the current balances the linear ion Landau damping.
éubstituting this spectrum into Eq.(4.26), we obtain the anomalous

collision frequency Voi by the use of the electron distribution

function (4.27).

Y, = Lo K ) %29)

& T

where H(§) is a function which comes from the ahgular average
~over the unstable cone. The function H(§) is plotted with respect
to § in Fig.4.4.

When the ion fluctuation is superthermal, namely, § < 1,
the electron-ion effective collision frequency is given by Eq.
(4.29). On the other hand, when the drift velocity is subsonic,
i.e., § < 1, the collision frequency is given by Spitzer's

16)

formula, that is,

2 €?¢¢£/1>

))6(": /70£ Wﬂc' (%30)

where 1n A is the Coulomb logarithm.
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H(S§) is a function which comes from the anguler average

over the unstable cone, § being the velocity ratio

Cs/ue.
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4.5 Self-consintent Electrostatic Field Generation and Reduced

Hot Electron Heat Flux

- Using the coliision frequency obtained in the previous section,
we solve Eqé; (4.10) and (4.24) with respect to ¢. Here, we assume
that the ion density n, in Egs. (4.10) and (4.24) has an exponential
prefile, n, = nc/z exp[(rar)/Li], where Li is the density scale
length. In such an ion density, the hot electrons are not subjected

t Coulomb collisions with the ions over a distance ls from the

cut-off;
\
_ / « 3
A Led ety + 1) 0
‘"Thereby lhc is the hot electron mean free path at the critical
surface. Over the distance 1, the hot elelctrons can be described

by the collisionless Vlasov eguation as shown previously. There-
fore, we take the system size L to be smaller than the distance ls.
It is noted, however, that Egs. (4.10) and (4.24) contain the
maximum value of the potential ¢O which should be determined
self-consistently. Therefore, they have to be solved as an
eigenvalue problem. We solved them numerically.

In the slabe case, following parameters are used,

/ -
WC:/OZ.%J’I ./((c"'/?; =ﬁ/&(/4(/ 7;:/() ,é.é?—

Tho = 25 | Te= $005V, ;=20 gy

Zi‘ = / »e ={
(” /ﬂ/(’( Y 4 (4(32)



A resultant profile of the potential is shown in Fig.4.5. It is
found from this figure that the turbulent state appears in the
vicinity of the critical layer and the potential ¢ decreases
(or $ increses) rapidly due to anomalous resistivity. 1In the
spherical model, the corresponding potential profile is shown in
Fig.4.6, where additional parameters, B=1, rc=100um, r0=50ﬂm,
are used. TIn Fig.4.6, we see that the potential height is
reduced by the geometrial effect compared with the slab case.
Let us now investiéate the reduction of the hot electron
energy flux. The inward going energy flux of the hot electrons

over the electrostatic potential is evaluated to be

- QP (-¢) 423)

in the slab case} and

& = 475};‘/%”’%37{(%)”/”*/

2 o af =1/

~ 2

0

- Q.

exp ( -3) @

&7



'Fig.

4.5

The electrostatic potential and return current
velocity in the slab model.

Thevnormalized:potential $ = --eqb/Th and flow velocity
Y

u, = lO—lue/CS are drawn by the solid and dotted lines.

The turblence appears near the critical layer (§=0).

Fo
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The electrostatic potential and the return current
velocity in the spherical model.

The normalized potentiél $5 --ed)/Th and the flow velocity
Ee = lo—lue/cS are shown by the solid line and the
dotted line, respectively. The turblent state appears

near the critical layer (%ﬁl) and the large electric

field is produced due to the anomalous resistivity.
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in the spherical case. Here, Qc ='(2“)_l/2nhOVhTh is the heat
flux density of the half Maxwellian distribution at cut—dff,

and Q_ = (2ﬂ)_l/2n v, T 47r % is the total heat flux emitted from
the cut-off sphere. From Egs. (4.33) and (4.34), we define a flux

reduction coefficient £ by

Q, >
J[E o) = LF (‘f) | #35)

in the slab case, or

6 i
- CL _ %,))é
/= o pru-p% vl P @

in the spherical case.

Egs. (4.39) and (4.36) clearly indicate that the electrostatic
field effect, say exp(—%o), reduces f both in the slab and
sperical case.. .However, in the spherical case, the effect of the
anisotropy of hot electron distribution g8 and the geometrical
effect 2 ‘

0
4.6, it is found that the reduction coefficient £ is 0.20 in the

are also effective for the inhibition. From figs.4.5 and

.slab case and O.li in the spheriéalbsace, respectively. Note
that the generated electrqstatic potential has the height almost
equal to hot electron thefmal energy Th.

Let us now investigate hot electron density dependence of £

at the critical layer. Fig.4.7 shows the result. Although one
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4.7

Reduction coefficient of hot electron heat flux versus
hot eiectron density.

The solid line corresponds to the reduction coefficent
in the slab model. The dotted and dash-dot lines
correspond to those in the spherical model with B8=0.1
and B=1, respectively;

(a) Reduction coefficient £ versus hot electron density
N :

"ho
(b) Total energy flux penetrating into the core region

where f is given by Eqg.(4.35) or (4.36).

. 0 . . .
versus hot electron density n . This flux, which is

ho”

. v . s -
proprtional to the quantity nhof, is insensitive to

variation of the hot electron density.

5
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of the most important problems in the laser produced plasma is how
the hot electron density is related to other physical guantities
such as Th and Tc' we have reStricted our considerarion to the
density dependence of the reduction coefficient f without changing
the other parameters used in obtaihing Fig. 4.5 and 4.6 previously.

Fig.4.7.a shows the n dependence of the reduction coefficient

ho

f and Fig.4.7.b shows the n dependence of the total eregy flux

ho
penetrating into the core region, which is proportional to nhof.
It should be emphasized that the potential depth becomes larger’

in proportion to the hot electron desity n and the reduction

ho
coefficient f decreases. However, the tatal energy flux penetrating

into the core region is independent of n and is maintained almost

ho

constant as X, f = 0.11 in the slab model and ghdf = 0.06 in the
- spherical model.

Let us now investigate the effects of the anisotropy of the
hot eiectron velocity distribution on the flux reduction. When
we consider the machanisms of hot electron generation; for instance,
the resonance absorption the electrons are accelerated mainly
along the density gradient which is the radial derection. When
this is the casé, the relation Th >> T, Q»TC is generally
established. From such a point of view, the g dependence of the
reduction coefficient f was investigated and the results are shown
in Fig.4.8. This figure clearly indicates that f is insensitive to
g- This fact ishinterpreted as follows. For small g, the hot
electron number for the large angular momentum is small and the
average hot electron kinetic energy in the radial direction is

relatively large. However, a large electrostatic potential is

built up and strong reflection occurs due to the electrostatic
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filed. On the other hand, for large £, hot electrons are
effectively reflected both by centrifugal force and a
modereate electrpstatic filed. Because of the self-consistent
behavior.of the elcetrostatic filed as mentioned here, the
reduction coefficint £ is maintained constant.

We also\investigated the dependence on £he ion charge state
Z of the hot electron flux reduction. Althought the hot
elcectrons are free from collisions over the distance ls from
cut~-off given by Eqg. (4.31), the cold elctron return current
depends upon the coulomb collision freguency, namely, Z and the
electrostatic potential then depends on Z. Therefore, even if
our consideration restricted to the region where hot electrons
are collisonless, it is meaningful to look at the Z dependence
of the hot elctron heat flux. The 2 dependence of f is shown
invFig.4.9 for the slab mode. From this figure it is found
that within the collisionless region the heat flux is further
reduced by a factor about 0.2 with respect to that generated
at cut-off. So, the heat shielding by the elctrostatic field

is very important even if high Z materials are used.
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4.9 Dependence of the hot electron flux reduction on the
ion charge state 2.
The heat flux is reduced by a factor of about 0.2 by

the electrostatic field.



4.6 Conclusion and Discussion

In the stationary production of the hot electrons, a
cold electron return current is induced and an eiectrostatic
field is built up due to finite electrical resistivity.
We investigated the elctrostatic field effects on the hot
elctron heat flux. It is found that ion turblence is produced
locally in the vicinity of the critical layer to enchance the
elctrical resistivity. The induced potential depth le¢/Th‘ is
found to be larger enough to reduce the hot electrons. The flux
reduction coefficient f depends strongly on the hot electron

density. The heat flux of the hot electrons («n, ,f) is, however,

ho

nearly constant, which is about 0.04 n vy Ty for the slab model

and 0.02(rcr0)2ncthh for the spherical model.

We should also emphasize that the geometrical structure
of the target plasma is important not only for the transport
of hot elctrons but also for the general transport problems
of energetic particles. Finally, we claim that the electrostatic
field is also important for hot electron shielding by high Z
materials.

Joule heating of the cold electrons was not taken into
account in this paper. In the case of a rest plasma, the
stabilization of turbulence due to Joule heating would be
possible and important. However, there always exists the
ablative flow in laser produced plasmas, and the energy
- deposited by the Joule heating is convected.out into the

underdense region. Therefore, the backgroud electrons can

- remain cold. This fact is interpreted as follows. The



energy balance between Joule heating and conventive loss
gives us the approximéte cold electron temperature,
e¢o/(M2/2+5/2), where M is the Mach number of the ion,flow
at cut~off. Therefore, the cenvention loss for M = 3 keeps
elecctron temperature. In such é case, we can justify the
neglection of Joule heating and expect anomalous hea£ flux

reduction.
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5.1. Introduction

At high laser intensity the interaction between laser
and coronal plasma of fusion target appears to be dominated by
the coupling of electromagnetic wave with plasma wave. Thus,
the dominant absorption mechanism is likely to be the linear
conversion of the transverse electron magnetic wave to a
longitudinal plasmavwave. This occurs in the vicinity of the
critical density in the case of the obliquely incident P-
polarized laser light. The microscopic analysis of the linear
conversion is necessary associated with the determination of
the hot electron energy spectrum, which has direct effect upon
transport problems as shown in the previous chapter. 1In the
case of strongly driven plasma oscillation, the growth of the
plasma wave is saturated by the onset of wavebreaking and the
production of energetic electrons.

The wavebreaking amplitude in a cold, spatially uniform
rest plasma without an external pump field has been calculated

by Dawsonl). The corresponding amplitude in a cold, spatially

2)

inhomogeneous ‘rest plasma has computed by Koch and Albritton™’,
and the investigation of the wavebreaking regime where collective

osillation energy is converted into random energy of the electron

3)

motion has also been done by them™’. Plasma temperature effect

on reducing the wavebreaking amplitude has been calculated by

4) 5)

Kruer

by the use of the results calculated by Coffey with

the "water bag" model. ‘"paricle code" similation has been

also employed to investigate the dynamics of the resonance

6),7),8)

absorption , giving good agreements with theoretical
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results. Using this particle code, the correspondencg between
simulation and experiﬁental results has been investigatédg)’lo)
to get, especially, a scaling‘law to the hot electron tempera-
ture. And it seems that a good agreement exsistes between these
results.

However, the laser produced plasma is not an ideal rest
plasma but is a plasma expanding into a vacuum.‘ Moreover, as
we have seen in the previous chapter the géneration of hot
electron iﬁduces the EOld electron return currenﬁ toward the
underdgnsé region. The exsistence of this flow will influence
the resonantly excited plasma wave, and hence the hot electron
generatibn. In this chapter, we take flow effect into aécount
to investigate the linear conversion and the plasma wave
excitation.

In Sec.5.2, the Lagrangian description is employed to
investigate the dynamics of resonant excitation of plasma
wave and the oscillation is expressed in this frame. Inversion
from Lagrangian to Eulerian variables is carried out in Sec.5.3
and a distortion of the wave profile is demonstrated, as well
as an appearehce of wavebreaking. In Sec;5.4, the resonance
field amplitude limited by the convection loss is obtained,
including the amplitude limitation due to wavebreaking.
Finally, the comparison with the other, finite temperature
effect and time dependent wavébreaking effect at rest plasma,

is shown to investigate what effect is most significant for

our practical plasma.
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5.2 Basic Eguations in Lagrangian Frame.

We consider an obliquely incident electro magnetic wave
on a plasma with a monotonically increasing plasma density.
The laser electric field is polarized in the plane of incidence
(P~polarization). The electromagnetic wave is reflected. by
the density gradient so that it does not reach the critical
surface, where the laser frequency equals the plasma frequency.
However, some of the electromagnetic energy tunneis into the
critical surface. Thus an obliquly incident electrmagnetic
wave results in an electric field along the density gradient
with thé frequency near the local plasma frequency at the
critical surface and resonantly excites an electrostatic plasma
wave.

We use the Maxwell equations and the equation for the

electron motion to see the resonant excitation of the plasma

Y. A |
Wl = =) + T E %)
VE = #1€ (2N~ o) “2)

m (5 + VsV = —e F (3)



o7

We do not consider the ion motion because the wave excitation
occures much faster than the time scale of ion motion. The
efféct of the electron temperature which gives rise to the dis-
persion effect on the excited plasma wave is neglected. Near
the critical surface the tunneled magnetic field shown ih the
left hand side of Eq.(5.1) corresponds to the driver field.
The amplitude of this field is almost homogeneous near the
critical layer along the density-inhomogeneous direction (x-
direction) and the vector component of Wx[B is dominant in the
x~-direction. Therefore, the induced plasma wave oscillates in
the x—di;ection. We here consider the motion only in the
density-inhomogeneous, x-direction. Then, Egs.(5.1)-(5.3) are

rewritten as the form

STE = ~#L ] + C(p<B), g0’

Vi E = #edfy i+ 475/‘ (2)

Gz rvs)V =~ wE >’

where ( W?E3)X is the x-component of the vector WxB and E,
V, and j is the electric field, electron velocity, and current
in the x-direction, respectivrly.

By representing the aboube eguations in the Lagrangian
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frame, we can easily treat large amplitude oscillation without
considering various nonlinear effcts. From Egs(5.1)' and (5.2)"

the variation of the electric field in the Lagrangian frame

is descrided by

LE - My e o (mB), &%

where d/dt = 9/3t + vo/3x is the total derivative following

the electron motion, and wpoz is the electron plasma frequency

given by the initial electron density (ne=Zni at t=0). Operating
the total derivative to Eg(5.3)' and eliminating dE/dt by the

use of Eqg.(5.4), the following model eguation is obtained.

av ., 2, e
R a7 C(mB), ey,

The driver term of the right hand side in the equation is

approximately given by the form

ﬁ’B'W(WZﬂLlﬂ/?) Z, :8)

where w is the frequency of the electromagnetic wave; k_ =
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%sin@ is the wavenumber in the y-direction with the incident -
angle 9; B is the magnetic field amplitude at the critical
point and assumed constant, and éz means the unit vector per-
pendiculei té the plane of incidence. Substituting Eg.(5.6)
into (5.5) and neglecting the sinusoidal y-dependence oflthe

variables, Eq.(5.5) reduces to

[[2 2 _ 2 :
%Vju Wfol/“ — W Yy Sin(WA) &7)

eB
where v_ = C€sind is the driver strength.
d mo
In the above equation the plasma frequency pr defined

by thefixed ion density is the function of time in genral,
since the electron has a mean velocity. Noticing this and
using a complex representation for the oscillation velocity v
with v=£(t)exp(iwnt), where f£(t) varies slowly in time, Eq.(5.7)

reduces to an equation for f£(t).

5/{;27[ + 2w % +[é<//,,f(f)~w2]][= ~ e by

Since the function f(t) is slowly varing in time, the second
derivative in this equation is sufficiently smll. Neglecting
this term and integrating the above equation, the resultant

oscillation velocity for Eq.(5.7) is obtained in the form
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| ¢ Eou o
Vo;: ELWI/g’fz?D(z'a/‘f)o/,Q)jp[.ZZ %;.{Q__df]ﬂ%
| &P

where wpo(t) is the plasma frequency in the Lagrangian frame
moving with the electron fluid element.
Let us assume that the background plasma has a linear

density profile near the critical surface where x=0, i.e.,
2 . 2 I
W = " (I-7) (59)

where L is the density scale length. In the Lagrangian frame,
relation between the Eulerian coordinate x and time t is shown

as

r .
Z:D/légééﬁ)ﬁ% + Wt +A (ST/(O)

where a=x(t=0) is an initial position of an electron fluid
element and Vos(t,a) is an oscillation velocity of this element,
which may be given after solving Eg.(5.8). Since we are in- |
terested in the oscillation behaviour near the critical surface,
the mean velocity can be assumed constant.

When we carry outﬁthe integral of Eqg.(5.8), the plasma
frequency ©5o is given by substituting Eg(5.10) into (5.9).

In this case, the inclusion of variation for the background
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plasma frequency due to the quivering motion, which is given
by the first term of the right hand side in Eq.(5.10), allows
the appearence of some nonlinear phenomena, in particuler, the
generation of higher harmonic oscillations. Although such
nonlinear effects are important near the critical layerll),

we neglect these effects and focus our attentipn on the effect
coming from the exsistence of mean electron velocity.

Let us introduce nondimensional variables to the time,

coordinate, and velocity.

Y. - , S =, - = (1)

&

Where tD and %, are defined by Bw—l and Bvow_l respectively
using a nondimensinal prameter B=2(wL/V0)l/2 which means a
square root of the ratio between the time interval L/v0 and
the oscillation period. Note that the parameter B is much
larger than unity within the context of our interest. By the
use of the nondimensional variables defined by Eq.(5.11), the

oscillation velocity of Eqg.(5.8) is shown as

7 - /@ [ ez(/}‘ R }')/ 267y +§'2)d§,J
(si/2)

where ?E; means taking a real part. Introducing the nondimen-
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sional initial position a;a/xD and a new time coordinate n =
n . . . . . .

£ + a ( The origin of this time n=0 is set to be the time when

the electron fluid element which is located initially at a

passes the critical surface x=0.), Eg. (5.12) is rewritten as

Locrz) = (582 [eonprr=an) [ C sy

Y /%:‘ 2)] =77 4 S /E7) “J(/%ﬁ”),]}
73)

where the functions C and S are defined by the well-known

Fresnel integrals as

Z 2
( (2) =_/ cor (LF7) dt
| X
S =/ S (L) dt

respectively. Profiles of these functions are shown in Fig.
5.1. For example, the oscillation profile given by Eqg.(5.13)
is shown in Fig.5.2 where B=50. 1In Fig 5.2.a, the case where
§=0, say, initially located at the resonance point, is shown

n . . .
and the other case where a=-« is shown in Fig.5.2.b. The
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Fig. 5.1 Fresnel integral curves.

Fresnel integrals C(z) and S(z) are defined by

X
Cony= | ow (E2)AE

-~ P00

| .
AYZS =/ S ( £t)at

“pd

i
-

The assymptotic values are C(x) = S(«)
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Fig. 5.2 Oscillation profiles given by Eqg.(5.13), where the

prameter B=50 is used.

(a) shows the case where a = 0, i.e., the oscillator
is initially located at thevresonance point, while
(b) is the case where a = -», 1In this case the
envelope of the oscillation profile is given by the

well-known Fresnel pattern.



later case corresponds to the stationary oséillation profile
after the passage of sufficient time. Note that in ofder for
the resonance oscillation to be enhanced it takes sufficient
time. This is clear from that the later case with sufficient
time before arrival at the resonance point exhibits much en-
hanced oscillation than the former case. Itvis aiso noted
that the oscillation amplitude shows its peak'value after arr-=
ival at the critical point and its envelope exhibits a Fresnel

1/2

pattern defined by (C2+Sz) in the case where g=—w. We are

r7¢

interested in the flow effect on limiting the resonantly enhanced

amplitude. Therefore, we will proceed using the oscillation

. ~ 4
form in the case where a=—w,.



5.3 Inversion from Lagrangian to Eulerian Variables

The quivering distance defined by

d4ys =o/z£Vﬂ; at

may be calculated from Eg.(5.13).. By the use of the fact that
the prameter B is much larger than unity and’we are interested
in the oscillation behaviour near the resonance point where
n is order unity, then the displacement given by integrating

Eg.(5.13) with respect to time n is shown approximately by

the form

P

8, = -JE L [sm(pr-r4ap) Co/z 1)
e aolprp=as) S En] 6

where in Eq.(5.13), C(¥2/ma) and S(v2/ma) are neglected
because a - «, but the wave phase in the argments of the sin
and cos functions are left. The normalization of &8x is

os
. N _
defined by 6xos = GXOS/XD.
Let us consider to carry out inversion from Lagrangian
to Eulerian variables. The relation (5.10) is rewritten in

the nondimensional form

= (2,7 7 645

14
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Using this relafion with Eq. (5.14) we can transform from
Lagrangian coordinate 3 to Eulerian coordinate ¥. TFor example,
the wave profile at some time in the Bulerian frame is shown
in Fig.5.3 for the oscillation velocity given by Eg.(5.13),
where the prameter vo/vd = 5.422 is employed. It is apparent
from this figure that the deformation of the oscillation.pro—
file from a linear-phase, sinusoidal one appears and the wave-
breaking occurs in the underdense region where ¥ > 3.

For the corresponding electric field, we can obtain ﬁ =

6205 from Eq. (5.3)' with Eqg.(5.12) in the same approximation
used in obtaining Eq.(5.14). Here, the electric field is
normalized as E = —eBE/mva. The electron density perturbation,
dn = ne—ne(t=0), may be given by the continuity relationlz);
DX
N (¢70) = Mo (48 " 57
y (%)

S = -/ »

where 6n = 6n/ne(t=0). The electric field and electron density

perturbation are shown in Fig.5.4, where steepnings of the
electric field and corresponding density bounchings with
narrow highdense regions appear. It is noted that when and/or
where the inequality, EE(6§OS)+1 < 0, is satisfied, the trans-

oa
formation from Lagrangian to Eulerian variables does not remain



; //x\ , /\
\
| |

’ / |

Fig.

5.3

Spatialnprofile for the oscillation velocity in the
Eulerian frame with vo/vd = 5.4.
It is obvious from this figure that wavebreaking appears

for ; > 3.

s
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"Steepnings" appear at the wave fronts.

/9



/R0

[£a]
[Fale!

] | |
0 J k/UU

ot

-
[en}
o0
o
[aN]
[
fas}
e g
[én
=

D
r
ro —
o
o8]
fon
[}
oJ
[ep
[ee]
F=1
o x Jpu
o

Fig 5.4.b Corresponding density profile.
"Bounchings" of electrons appear distorting the

wave form from sinusoidal one.



/2/

unique for all time and space, therefore we must abandon the

solutions in these reagions.
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5.4 Wavebreaking Condition and Resonance Field Amplitude

As mentioned in the previous section, when an overtaking
of the electron fluid elements appear, the phase mixing of
the oscillation motions limits the wave amplitude to less
value, as well as the Lagrangian formalism that has been
employed in the present anarysis haS no meaning mathmatically.
As apparent from Fig.5.3 and 5.4, wavebreaking occurs pre-
dominantly in the underdense region. This may be explained
as follows.

For a streaming cold plasma, its dispertion relation is

readily shown as

2

(CL/-—/%Z%Z,) = 51?9

where U, is a mean velocity,,wp is a plasma frequency, and

k is a wavenumber. Apply the dispertion relation to an in-
homogeneous case, where wp=wp(x). Then, the local wavenumber

is given by (w,-w_)/u, by assuming w=w const. In our problem,

0°
as seen in the previous section the wave amplitude in the

underdense region ( w ?wp ) remains nearly constant. (see‘Fig.

0
5.2.b or Figs.5.3, 5.4.) Therefore,setting this amplitude
as vs,for instance, we can roughly estimate the wavebreaking

conditions as

—> a, < (“fig')wo ($17)



This ineequality means that if the phase velocity of the plasma
wave becomes smaller than the oscillation vellosity, eiectron
trapping by the large :amplitude wave potential occurs, and the
amplitﬁde.of this wave is limited. This is one of rather
qualitative explanations for the wavebreaking phenomena.
The inequality (5.17) says that the wavebreaking predominantly
occures in the underdense region.

The above discussion for the wavebreaking condition is
not so strict. The strict definition of wavebreaking is given
by a breaking of Lagrangian formalism. The condition of this

breaking is shown from the continuity relation as

= (5x,) £ -/ Gir#)

for the present problem. Making use of Eq.(5.14), and minimai-
zing it over an its oscillation period, we obtain a local

wavebreaking condition.

Lo L@ (/70) el

+ () C (/20 »5/77(72)]7 &/7)

where n corresponds to the coordinate of the oscillation
center. The wavebreaking condition (5.19) is drawn in Fig.5.5.
For the example in the previous section where VO/Vd=5'422' it

is evident from this figure that the wavebreaking condition
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. . . . . o ~
s satisfied in the underdense region where n A&~ x > 3, as

noted in the previous section.

Let us determine a peak amplitude of the present resonance
field by taking into account the breaking condition. The
peak amplitude Vosp' which has a direct relation to a maximum

energy of hot electrons, is estimated from Fig.5.2.b as

Y
- Zz Vi
%/, z/ (L w) G520

Va
it J=)S50 g X =2 (L)

, Wwhen wavebreaking dose not occur at this point. However,

in the case of vo/vd < 2.7, wavebreaking appears at this peak
point. Therefore, we have to take it into account to get

the peak amplitude. As the results, we can expect the follow-

ing peak amplitudes for the streaming plasma.

20 (W ) e 227
A &-2/)

05 /2 ;
7 s (WL/Vd)/Vd Sor 17‘3-42.7

Thus, if the flow velocity is sufficiently large, the resonance

field is saturated by the convection effect. On the other



hand, when the flow velocity is not so large, the wavebreaking
occures predominantly to limit the peak amplitude of the

resonance field.

Vazd
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5.5 Conclusion and Discussion

In the previous sections, we have focused only on the
convection effect for the saturation mechanism which limits
the resonance field amplitude to a finite value. We hére
intend to consider the other effects of the electron tempera-
ture diSperéion and .rest plasma wavebreaking,'and to compare
them in order to specify what exhibits the most significant
effect for the resonance field and, in addition, for the hot

7)

electron temperature. The fomer effect limits a localization

of the resonance field by a wave dispersion coming from the

2)

electron pressure work. The later effect is essentially
the same with that described in the present analysis without
the treatment of a time evolution for the resonance field.
According to Ref.7, the resonance field saturated by the

dispersion shows the profile given by an Airy function and its

peak amplitude is

Vop = ¢22)

where Ve is the electron thermal velocity. For the cold rest

plaéma, wavebreaking appears when the peak amplitude reaches

A

5P (-23)

as given in Ref.2.

Compareing these amplitudes given by Egs. (5.21), (5.22),
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and (5.23) and noticing that the most significant effect limits
the peak amplitude to the lowest value, we obtain the follo-
wing condition to the case where the flow effect is most

significant.

Z ARV
?;* > 30 (;;Z—/)

<€

Note that ve/wL " ADe/L is much smaller than unity. The
diagram for the competition between these three effects is
shown in Fig.5.6. To know where our plasma is located in this
diagram is a drastic problem associated with hot electron
generation. For the particle code simulation, it seems that
the effect of flow is not included. However, in order to
investigate the steady production of hot electrons, this effect
can be expected to play the significant role in thebactual

laser produced plasma.
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Diagram for the competition between the effect of

rest plasma wavebreaking, the thermal effect, and
the convection effect.
Seculer growing of the resonance field is limited

by the most effective mechanism.
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Chapter 6

Effects of Flow, Thermal Conduction,

and Cdmpressibility on Implosion Symmetry
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6.1 Introduction

To achieve the laser fusion within practical laser
.energy, (10_& 100 kJ), it is important to compress the fuel
up to lO3 n 104 times solid density. Even if the achieved
compression by spherically symmetric implosion is extremely
high, unavoidable departures from symmetry limit the achiev-
able compression. These departures from symmetry can arise
from pellet asymmetries, from nonuniform laser illumination,
and from hydrodynamic instability. The fusion pellets must
be suffiéiently symmetric so that the compression is not
reduced by“nonunuform‘motion of the pellet surface. Though
a requirement to the pellet surface is severe, it is not
inachievable.

The uniformity of laser energy deposition on a spherical
pellet surface depends on the number of the laser beams,
intensity distribution, and focusing condition. If any
smoothing or averaging effects are absent, the nonuniformity
of laser flux would lead to marked temperature and hence
pressure variation in the pellet surface, causing non-
uniform acceleration and destroying the sgpherically symmetric
hydrodynamic motion. The effects of nonuniformity may be,
however, very markedly alleviated by electron thermal condi-
tion through the conduction region. According to Ref. 1,
the characteristic smoothing scale is of the order of thousands
of microns for glass lase; case. This scale is much larger
than the pellet radius. Therefore, as long as the thermal

condition is considerable, the conduction tends to make the

pressure at the ablation surface much more symmetric than
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might be expected from the laser energy distribution (see
also Ref. 2). This smoothing effect essentially depends on
enrgy transport problem, so that reduction or limitation of
heat transport would reduce the smoothing effect.

We now turn to the question of hYdrodynamic.stability
of the implosion. Principal x-t diagram for the‘implosion
of a typical target is shown in Fig. 6.1. The typical
target is constructed by three layers; say, fuel, high-Z pusher,
and low-Z ablation. In the light of the classical problem
of Rayleigh-Taylor instability, this instability can occur
at I, II, and IIT in Fig. 6.1, and any perturbation of these
surface will grow. At a plane interface the growth rate is
given by

v = (okg) /2

where o [= (pl—pz)/(pl+pz)] is an Attwood number, k is the
wave number of the perurbation, and g is the acceleration of
the corresponding surface. For the instabilities at ITI and III,
the classical formula may give a correct growth rate without
modification due to a diffuse boundary effect. However, for
the instability at the ablation front ( I in Fig. 6.1), this
formula may not provide a well approximated value for growth
rate since there exists the ablating flow across the front,
the large thermal‘conduction, and so on. The stability
analysis to the ablation front, which is characteristic for
implosions in all inertia. fusion schemes, is unavoidable
problem to achieve supercompression.

On the effect of thermal conduction, Nuckolls et al.4)

suggested that the amplitude of the instability will be

restricted by ablative "fire ploishing": any salient high-~
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density region will be nearer to the critical density surface
where heat source exists and will thus be more rapidly
ablated.  In Refs. 5, 6, and 7, numerical analysis have been
done using one-dimensional linear perturbation codes in

which the analystic‘equations_govering fluid dynamics are
transformed into a set of linearized equationsvgovering the
time evaluation of éeturbations, decoupled by an expansion

in term of spherical"or Fourier harmonics. Shiau et al. in
Ref. 5 concluded that the ablation surface is not stabilized
against small depatures from spherical symmetry. However,
Henderson et al. in Ref. 6 found that for conditions relevant
to laser fusion experiments the surface is positively stable.
Moreover, Brueckner et al. in Ref. 7 showed that the ablation

surface is stable, and they pointed out that the inconsistent

result obtained in Ref. 5 is due to the fact that the tempera-

ture used in the analysis was much lowered for the thermal
conduction effect to be effective to the ablation front
stabilization.

The flow effect on reducing the classical Rayleigh-

8)

Taylor growth rate was pointed out by Bodner. He carried
out a model analysis by setting that the ablation front is
assumed to be discontinuous surface and the flow across this
front is sufficiently subsonic in both sides. He found

that the effect of convectional flow reduces the classical

gr owth rate to

y = /Kg - ku

where U, is the upstream flow velocity. Afanasev et al,9)

also pointed out that the convectional flow will carry the

-



growing pertubations to the stable region and the growth of
pertubations may be reduced by the convection effect.
Recently,_CattolO) analysed an ablating stabilization by
considering the diffused, structured ablating plasma and he
concluded that the most unstable modes, kZLzal, are insensitive
to the ablation stabilization, where L is the dénsity scale
length at the ablation front.

In summarizing aspects on the ablation front stablity,
it is convenient to refer the schematic representation given

by Boris et al.l)

According to Ref. 11, the changes expected
in the dispersion relation from the various effects at
ablation front are represented schematically in Fig. 6.2.
The upper curve ( *¢+++--—- ) is the case of an ideal density
discontinuity in an incompressible fluid. When finite
vdénsity gradient scale length are taken into account in an
incompressible fluid, the dispersion relation is modified at
short wavelength ( -+-¢-+-~ ), The growth rate is essential-
ly constant and given as y=/g/L at shorter wavelengths,
k%l/L. Addition of convection and finite thermal conduction
tend to reduce the growth to zero at sufficiently short
wavelength giving the (----) curve shown in the figure. The
uppermost solid curve differs from the dashed curve by the
addition of acceleration term which reduces the gravitation-
al force to_gefftg—dz/dxz(ug/Z). Moreover, they say_that-
the lower solid curve includes the further addition of
dynamic stabilization for the most dangerous unstable modes.

It seems to be optimistic to the ablation front stability.

However, in order to achieve more symmetric implosion and
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also controll the stability of the ablation front, more
investigations to the front stability are needed, especially,
in the field of theoretical analysis. In this chapter, we
intend to formulate this problem including the effects of
compressibility, thermal conduction, ablation, and convection.
In Sec. 6.2, the linearized equations governing the
evolution of the small perturbations are introduced with
inclusion of the energy equation. Section 6.3 is devoted
to investigate the thermal conduction, ablation and compress-—
ibility effects. It is concluded that in the case of short
wavelengfh perturbations, the thermal conduction effect reduces
the growth ‘rate whereas ablation effect works in stabilization.
In the case of the longwavelength perturbation, the effect
of compressibility reduces the growth rate, but this effect
iéﬂnot so effective and the modification to the classical
value is small. Moreover, in contrast to incompressible
Rayleigh-Taylor formulation, it is found that the source
term causing instabilities is not proportional to-wﬂ%yﬂjj
but proportional to VFP-WT. 1In Sec. 6.4, attention is focused
on the effect of convective flow adopting a discontinuocus
model to the ablation front. It is found that the ablation
front is unstable even if the gravitational filed is absent,
say, the convection effect does not play the role of stabilization
as shown in Refs. 8, 9, but induces a new type instability.
However, when the flow velocity exceeds a sonic speed at the
downstream, then it is foﬁnd that this instability induced
by the convection is stabilized, coupled with the effect of

compressibility.
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6.2 Basic Equation for Linear Perturbations

In the compressed region and/or near the ablation front,
the hydrodynamics well describe the evolution of the motion
of iaser produced plasma. We carry out the stability analysis
for the evolution of the small deviations from the‘equilibrium
state. Basic Equations which describe the equilibrium state

and also controll the evolution of the perturbations are

2P+ (P =0 1)
Pl +up)u = -pP +£3 42

2 (2pr Lpu?)+ (5 PU + 2pucu +Q) = PG
F(2P+ dru)+ V| ¢ )-rav

where , {4, and P are the mass density, velocity, and pressure,
respectively and g7means the graritational field coming £from
a inertia force in the frame moving with the ablation front.
(see Fig.6.1.) The electron thermal conductibn is denoted by
the flux(g)in Eg.(6.3). Here, the above equations are the
equations of continuity (6.1), motion (6.2), and energy (6.3),
respectively.

We simplify the problem by reglecting the effect of a

spherical geometry and setting the equilibrium motion only



in the x direction and gravitational force is also in the

same direction. Then the zeroth order equations for the

equilibrium state are

AU = cmet N K4

l d 1 _ A 7
i g~ Z(2) 8y,

/%0

LR +Q) + AP o 02

>

where subscript 0 means the zeroth qguantities. Fig.6.3 is a
schematic of the typical spatial behaviour of the zeroth
variable in the vicinity of the ablation front.

In linearizing Egs.(6.1) - (6.3), we assume that the

perturbed guantities depend on the time and the transverse

dimension y as

F ) = fog 2P (ot eckl) “n

where k is a wavenumber of the sinusoidal perturbation in the

y direction. The linearized equation for Egs. (6.1)

then

- (6.3) are



Fig. 6.3 Schematic profile near the ablation front.
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yhgre f&, U U Piy Q- le, and [ ]l are the first order

perturbed guantities and the perturvations for thermal flux

are given by () = (Q - le' 0)

only the y-directional thermal flux peraturvation le, and

. Hereafter, we take account of

neglect Qxl' Since the thermal flux in the diffusion form is
given by @ = -KWVT (where K is the thermal conductivity and
T is the temperature defined by T = P/p), the perturbed flux

is

le

Q/,= -k Y (F-77) | (£./2)

where X = K/p0 is the thermal diffusivity. In obtaining

Eg.(6.12), we neglected the perturbation for K.



6.3 Termal Conduction, Ablation, and Compressibility Effe

on Reducing the classical R-T Growth

By separating the convection effect from the effects
the compréssibility, thermal conduction, and ablation, we
consider only the later effects in this seétiéh. Here, th
convection and ablation coming from the zeroth order flow
defined as follows. The former is the effect carrying the
perturbation with the.zeroth flow, which is denoted by the
T(ua%; in Egs. (6.8) - (6.11), whereas the later denotes
tortion of the equilibrium state because of the exsistence

the zeroth flow. The perturbation for the kinetic energy

denoted by | ]1 in Eqg.(6.11) is neglected in this section,

since we assume the flow is sufficiently sobsonic. Then,
" the right hand sides of Egs. (6.8) - (6.11) can be set equa
zero. The reduced equations are

Yl g+ KR =0

YL+ Lp—pA

cts

of

e

are

term
a dis-

of

1 to

(.3

¢r)

(Gr+£r-r+ 5 ER)P o+ £ 40T%) KT A [ =

where )y = )+ duo/dx, I x pO xl, and A = g - Uog%th -

The perturbed velocity u is eliminated using Eqg. (6.10).

vl

A denotes the effective gravitation when the ablation exsi

%y

Here,

sts.



Eliminating the pressure Pl and the density f&, we get the

following differential equation for 9;.

whe

H
M

= KL (A+£4) /B
= [(£7T 20A)+ (Ex-rAD /B

F AR, A KAl YR
= 2B/X)+)5//X )k

6

b= (/;mr/)(/m £5) - 27

Eguation (6.16) is rewritten in the Sturm-Liouville form.

FUFSEE)+HE% =0 @

”

e x
A= ﬂ>;f>(—-/ = dx)

4%%
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We obtain the folloiwng form for S by using the zeroth

relation (6.5)

nrkag ) EGE - B 2 EE)
}S = 0 p
(6/7)

. X

By multiplying Eq.(6.18) by the complex conjugate .y;
and integrating over the x space from the negative infinite to
positive infinite, the following variational formulation is

obtained.

= e Afr= FUEL

4%(%57[‘7‘ ~{;%LZ /;—[{%“"r + kK 7:};/[9%‘2) Salx

R | (20)
7§ = [+ "’L//kzﬁ

| 2 K ¢2)
Fr= (+E A

g

where we used the fact that y; is bounded at £C? . We
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neglected the first term in H of Eg.(6.17), because the
variation and/or the jump of the derivative for To'is sufficiently
small within our interest. Iﬁ the above formula, fc and fT
provide the modifications. due to the compressibility and
thermal conduction, repectively. It is obvious from Eg. (6.20)
that the region where A‘§%;;>0 is unstable.

vThus, by making use of Eg. (6.18) or (6.205 the stability
analysis proceeds. We here consider the two limiting case.s
One is the case of much shorter y~directional wavelength than
the sc;le length L of the zeroth order variables (diffuse boundary
problem), and the other in the case of much longer wavelength

(discontinuous boundary problem).

Case-A (kL. > 1)

When the y-directional wavelength is much shorter than the
scale length L of the zeroth variables, bhe unstable mode may be
localized over the unstable region and local approximation may
be good for the analysis. In this limiling case, Eg.(6.18)

reduces to the approximate form

d SN N S W
/pﬂ/z)c) 79( 7/2+ T dx r)lé;jO

In this equation, the spatial extent of the wave function

directly depends on the unstable source term, which is given



by the term propotional to A'éﬁ?x . Near the ablation
front, the temperature varies very rapidly, while the
pressure is kept nealy constant. Thus, the variation of P0 in
Eg.(6.22) can be neglected.

Let us set the temperature profile as

[ dlo / ;<
- = AX %23
) coah () 6.23)

where L is the ninimum local scale length of the temperature
profile;vwhich may be given y rhe scale length near the
thermal wave front, and ¢l is some value corresponding to the

width of the ablation structure. Then, Eq. (6.22) reduced to

A /2 4 2
}§+ (Z z/r /M(a’uﬂ;):)/?fﬁ=0 (£.2%)

The solution of this eigenvalue problem is given in the textbook

of Landau and Lifshitzlz). And the eigenvalue is, in this case,

expressed as

J_’Ig = ._0..(_2[\//—,'- ~A K- -(/vﬁ2/l)] ) ¢.25)
7 Z (A +r )L o -



where n=0, 1, 2, 3, ...,. The most unstable mode is obtained
when n=0. This is evident setting y’= 7 in the above
equation. The relation(6.25) provide us with the growth rate
/. For ‘large k, Eq.(6.25) may be approximated to the follow-

ing quadratic equation

yie Lpar -4 =0 24)

or simply

4 AU,
- - 2
Ey ¢

It is found from these results that the effect of thermal
conduction reduces the growth rate, not stabilizes the
instability, and the effect of the ablation gives the reduced
gravitational‘force ?-;4§%? instead of g and also plays
a characteristic role to cut the unstable mode spectrum when
g%% is sufficiently large.
If we neglect the effect of thermal conduction, Eg. (6.26)

gives

r =A% - 5 (249

Frr N

/g
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This points out that the well-known growth rate A7 1Q)

is reduced by ‘%6%ZZ due to the additional ablation effect.

Case-B (kL. K 1)

When the y-directional wavelength k is sufficiently large
compared with the scale length of the zeroth order variable
near the ablation ffont, then the unstable mode extends on the
spatial scale of not i but rather k_l. When this is the case,
the problem becomes that for the discontinuous equilibrium state.
In the discontinuous problem, the Source which gives rise to
the inséability is localized at the discontinuous surface,
while the unstable mode extends over the upperdense (region I)
and lowerdence (region II) regions where the growth variable
are almost homogenious respectively. For kL «£ 1, by
neglecting the effects of the ablation and the thermal con-

duction, the variational form given by Eg.(6.20) reduces to

~ kziﬁ:?z T oTF
2 4 /+3§-]2/}227£_‘ | e ax
/= 2 627)

/o:,(/+ %/f%zz [jx /;l%cllz) — aX

AN

N

i
Y

The corresponding growth rate will be calculated using
maximization method for the given test function as follows.

Let us set the wave function as the form



,@X/D(}(,:() X <0
=L 91 Y
M/D(/(ZZ) X >0

N

in the upperdense region (x < 0) and the lowerdense region
(x > 0), respectively. Moreover, for simplicity, we assume
in x >>0; satisfy the

that the temperatures T in x L0, T

01 02
relation T01<§: T02 and the pressgure PO varies very dradually
in space compared witﬁ k_l. Then, the integrations of Eqg. (6.29)

may be carried out to give

2 ( Ly L1
Aéé?</-/%'j%')f><k225 * [) z A p ﬂgl/)

)/2:: | o2 y 643[)
K R / 2 /
5 -t Lt
(,/¢~§; 7}?;2;/ i Fﬁ 4)4§€, (%( K> 2%;

Here, we made use of the fact that the numerator of Eqg. (6.29)
involves a delta function given by dE;QX at the discontinuous
surface, x = b. The maximization for r2 in Eg. (6.31) with
respect to Kl and K2 provides us with the well approximated

growth rate. With the corresponding values

, SR = X
/Z/: k(/'%/fflg"?;/)

fo = K

we obtain the following growth rate in the case where é;:»/p
: 02

¢.32)
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/ Tz (/ H%rz//zzz;)ka? (4:23)

This results show that when k is sufficiently small satisfing
the relation ¥/k §ff§;i; (sound speed in the upperdense region),
then disturbances of the unstable mode cannot propagate rapidly,
therefore the extent éf this perturbation at the upperdense
regeion is reduced to that obtained in Eq. (6.32), and the
corresponding growth rate is also reduced as obvious from
Eq.(6.333. It is found, however, that the reduction of the
incompressible growth rate ?%jE?.due to the compressibility
effect is not so drastic even when }’22 kzl; , as long as
}2~<'kfz& . And it may be rather important that when the
extent of the unstable mode is large, the zeroth equilibrium
state in the upperdense (x £ 0) and the lowerdense (x > 0)
regions may be distorted due to the gravitational force so
that the variations of PO’ TO’ and PO over the extent of the
unstable mode.should be taken into account for the integrations
in Eq. (6.29).

The effect of the compressibility on reducing the
classical growth rate is not so drastic by itself, but as
shown in the following section, this effect plays a significant

role together with the convection effect.
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6.4 Effect of Convection on Stabilization and Destabilization

In this section, we consider the discontinuous problem

to the ablation front stability (see Fig.6.4) including the
effects of convention and compressibility but excluding the
effect of the thermal conduction which is not‘essential for the
discussion of this section. The effect of ablation is also

not essential in such a discontinuous model. For simplicity,
we do not consider the energy equation (6.11) and set P1=T0Pl.
This assumption is reasonable for region II, where the thermal
conduction is large enough to give the temperature perturbation
Tl = 0, but not for region I, where the adiakatic assumption
Pl=5/3T0/Ol is rather resonable. - However, this effect does not
change the following discussion so much that we set P1=T0Pi
" hereafter. Then, Egs. (6.8) - (6.10) for the perturbations

are rewritten as

(V+ M+Mo%)/@ g A Uy + Lk, //w&,”M
g3¢)

% (%
£lr+ 42 MO}:(——)MX/‘F—Z;)?//O— [g'/“%/; e ﬁ%v ¢ 3

L+ ud )iy, +ikT, f =0 Y



UPPERDENSE REGION LOWERDENSE REGION
Y01 Vo2
To1 To2
Po1 Po2
Ml M2
flow :
REGION-I REGION-IT

Fig. 6.4 Geometry for jump conditions to the zeroth quantities.
The flow velocity, temperature,.density, and Mach
numbers are defined by uOl' TOl'QOl’ and Ml in the

upperdense region I, while Uyyr T02' Poor and M2 in

the lowerdense region II.
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We assume that the gravitational force is not so strong
to disﬁort the zeroth variables and hence the instability mode
in theiregions I and II. Thus, by neglecting the spatial
variations of the zeroth variables in the both regions, the

characteristic equation for the unstable mode is
(P tod)((W-T)E 5 2Vt )+ KT +0 7] =0 €37)

where N} = d/dx. After solving this equations, the perturbed
mode is given by the form proportional to exp (XX ). In
region I with high density, low temperature, and sufficiently

subsonic flow, the meaningful solution of Eq.(6.37) is

Je [ o ¢38)
) +/M/k7—l) //k (”k') g

),«.2
£ Ty

and in region II with low density, high temperature, and sub-

sonic flow, X is

o= - L \
0 ¢7)

)k GR)

(¢.%0)




where M, and M, are the Mach numbers at the region I and region
II, respectively, It is noted that the extent of the pertur-
bation in region I given by Eqg.(6.38) is identical to that
given by~Kl in Eg. (6.32), say, the modification of the
spatial extent is mainly due to the compressibility in the
regeon I, whereas in the region II, a new mode X = - f/uOZ
which is due to cirect effect of convection appears, and the
surface mode(6.40) is drastically modified, when the flow is
supersonic, M, > l.}

According to these three modes, the amplitudes of the
perturgations in the vicinity of the discontinuous surface are

obtained from Egs. (6.34) - (6.36) as

é/X/::A

//)// = 2 *5‘ A | @)

g = E e )A

o KRG

at x = -0 in region I, and
Uy = B+

ks ‘
Sy e Y b

o= =L (g + )T

2 2 Lo2
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at x = +0 in region II, respectively. Here, (;,‘/ﬁii and

. 5/7;_ , and o, and k, are )< of Eqs(6.38) and (6.40),
respectively. A is the amplitude of the x-directional perturbed
velocity for the mode(6.38). B and C are amplitudes of the
modes (6.40) and (6.39), respectively. Note that the perturbation
corresgsponding tb the mode (6.39) is a transverse one, say,

Fﬁ = 0. The perturbations have been specified by the tree
constants A, B, and C as described above. In order to obtain

the dispasion relatioﬁ to the unstable mode we use the following
consevation laws given by integrating Egs(6.34) - (6.36) across
the perturbed discontinuous surface. The intergral are

carried out over the infinitesimal range from ELO to _§+0,
where f means the x-diredtional displacement of the discontinuous
surface. Then the consevation laws of mass, x-momentum, and

y-momentum flows are

+0 ¢$%3)
[Ft+6 (y=05)] =0

- ' 70
(A2 tthy -l 75+ 7+ 525 ] =0 1)

[ Ly +ikth I =0 o

-0

where | Jfg means the Poisson bracket. When the thermal con-
duction is included, to find out relation between E'and thé

other l-st order gquantities becomes the most important problem to
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get a correct dispersion relation, since the discontinuous
surface corresponds to that of the temperature profile for
the ablation front. However, in the present case, where the
effect of thermal conduction is excluded and attention is
limited to the compression and convection effects, the tem-—
perature discontinuity follows the perturbation in the
upperdense region, because in this region the tharmal per-

turbation follows that of the other guantities. Therefore,

we set that

i
E :/ th 4t L/fz’=~0

/A 223

By sybstituting Egs.(6.41)and (6.42) into Egs. (6,43) -

(6.46), we obtain the following dispersion relation

CEXTMX M)

/‘/‘Mz.z__g_;; _ __/§ i H/ /2 Pl 4
/'//sz /QEI /?IX /\1, / M /22)( 0

> . | /o 1.
1.1 (1) X 7 Z ;7 A

€7
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where X =_)//kCOl and the jump relations for zeroth quantities
across the discontinuous surface are used under the assumytin
M, <L 1. When we obtain the solution to the dispersion rela-
tion Eg.(6.47), we consider the following three cases;

(I) M < 1, (I1) My & 1, M., < 1, and

1 My
(ITT) M, & 1, M, > 1.

Case-1I (Ml, MZ‘QZ 1)

Ip general, the ablation front satisfies the condition
for the upstream. First of all, we here consider the case where
the flowois also sufficiently subsonic in the lowerdense region.
In this case, as long as the gravitational force is not so strong,
the imcompressible condition provides us with a good approxima-
tion, which will become appear from the resultant growth rate.

By setting kl = k, k2 = -k, the dispersion relation(6.47)

reduces to the following graduratic form.

[C//g/”%{o.z) /VZ"/'A/Z/‘/?HO/MQ Y - ’éb‘g/ é/oz[g(/“éfc{: ‘Z}::) + R (%J‘MOI )] =0

é4)

This dispersion relation is identical to that obtained by

13)

Landau . In the circumstance where Ugy <<_u02, Eg. (6.48)

yields

y=\Jkg+ EKthyl, 6%



It is significant to emphasise that a new type instability
appears at the ablation front due to the convection and the

ablation front is unstable even if the gravitational field

8)

is absent. This result is inconsistent with those of Bodner

and Afanas'ev et alg).

Case-I1 (Ml<gjl, M2

£ 1)

When the downstream velocity appriaches sound speed, és is
apparent from the previous result, the growth rate of thisinsta-
bility ipcreases. In this case, the assumption of imcompressible
fluid is not adequate in the region I. In region II, the flow
effect distorts the perturbalation mode. We make use of the

approximate form

k= [ 1+ X7k

b= (- )%k

for kl and k2 to obtain the dispersion relation

2 2

X [+ M.
= z )k
/'_,LXZ /-1 £ To (/'Mil)

In this case, the essential feature for the qualitative dis-



noted that the effect of convection gives rise to the growth

rate of order kCOl [x ~0(1)].

Case-III (Ml < 1, M., > 1)

As apparent from Eg.(6.40), the evanisent wavenumber
in the region II (k2) becomes a complex value and exhibits an
oscillating decay property, when the flow velocity grows up
to a supersonic one in this region. The dispersion relation,

in this case, may be shown by the form

XL g, M
jrxE M R M~

When the gravitational force is absent, it is readily verify

that the growth rate x given by this relation becomes a pure
imaginary value for M, > 1. This indicates that the unstable
mode 1is stabilized by the convectional effect when the flow
velocity exceeds a sonic speed. This is a drastic result due

to the exsistence of the convective flow across the discontinuous
surface. More rigorous result to Eq.(6.47) is shown in Fig.6.5
When the gravitational force is not so strong, the gravitational

instability is also attenuated by the convection effect.
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Growth rate given by the dispersion relation Eg.(6.47)

for thé case-III withrM2=l.5.

Here, X .0 Xi are the real and imaginary parts of the
growth rate X (=Y/kCOl)- Even when the gravitational
force exsists, the real growth rate (Xr) is reduced
compared with that‘given by the classical Rayleigh-

Taylor instability in the interesting region where

g/kTOl<<l.



/62

6.5 Conclusion and Discussion

The stability analyses to the accelerating ablation
front have been carried out, focusing our attention on the
compressibility, thermal conduction, ablation, and convection
effects. The conventional linearization method was employed
to describ the evolution of the perturbations in the continuity,
momentum, and energy equations. It was found that these coupled
equations reduces to the second order linear differential
equation, when the convection effect is neglected. Méreover,
in this case the tractable variational representation to the
growth rate was also obtained. As the results, it was found
that (1) the source term which causes instabilities is not
proportional to -ypP-¥f but proportional to WP-WT, when the
energy equation is included in the analyses; (2) the y-
directional thermal conduction reduces the growth rate, but
does not stabilize the instabilities; (3) the ablation effect
piay the significant role that it reduces the gravitation to
the smaller value, Jegg = 9 ~ uoggugr and also stabilize the
shortwavelength perturbations by providing the growth rate
with the additional negative term —duo/dx, and (4) the effect
of compressibility becomes important for longer wavelength
perturbations, but it is not so drastic as long as the com-
pressibility is effective only in the upper dense region but
not in the under-dense region. (This condition is satisfied
for the lase inplosion in general.)

In order to inyestigate the convection effects, the

stability analysis was carried out by assuming ablation front



discontinuous. It was found that this effect causes
the new type instability without the gravitational force in

this case of subsonic flow. However this mode is stable for
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the case where the flow is supersonic at the downstream. These

results are essential for the stability of the ablation front
where the flow velocity varies from subsonic to supersonic in
space with the finite transition region. Therefore, in order
discuss some guantitative aspects to the practical stability
problems of the ablation front, it is necessary to extendthis
analygis to the diffused boundary model. In this case, the

other effects described above will inevitablly couple to this
probledeirectly. This problem is now in investigation and

results will be presented near feature.

to
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Chapter 7

Conclusions
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In the present paper, the implosion and ablation mechanisms
were investigated in Chap.2 and 3 and its stability wés also
considered in Chap.6. For the absorption and transport problems,
Chaps. 4 and 5 were devoted to analyses of the linear conver-
sion and the transport of the hot.electrons.rv

In Chap.2, the stationary deflagration structure was
investigated using the one fluid two temperature hydrodynamic
equations. The width of this deflagnation is given by

172 1 in terms of the electron mean free path

ep
at the rear, lep' The structure near the ablation front shows

Ax=0.32 (M/m)

a good'agreement with that of the well-known thermal wave.
The deflagration is characterized by the steep gradients of
the density, flow velocity, and temperatures and also by the
almpst constant prsesure. The density at the Chapman-Jouguet
point is found to be important for compression, because the
implosion efficiency is proportional to the square root of
this density.

In Chapter 3, the self-similar ablating motion was
investigated using the same equations employed in Chap.2,
when the absobed laser energy increases with the form
Iab = ¢0t8. The time dependect dynamics of the ablation
phenomena is obtained uniquely by the use of the energy con-
servation law. It is pointed out that the response between
the absorbed pbwer and the ablation pressure is different in
time, and in order to maintain the constant pressure the
increase of the absorbed power in proportion to tl/5 is necessary.

In contrast to the case of the staisionary model analysis, the

self-similar solution soes not shown any singularity at the
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sonicpoint and it gives us the reasonable structure over the
expanding region.

In Chapter 4, the electroétatic field generation and the
corresponding hot electron heat flux reduction were investigated
including the appearance of the ion wave turbulence near the
cut-off. The collisionless Vlasov equation for hot selections
and fluid equations with the anomalous collisién,effects for
cold electrons were usgsed. As the results, it is found that a
large electrostatic pétential, say, |e¢/Th| =1 or 2 is built
up and only about 10 % (spherical) or 20 % (plane) of the free
streaming flux limit can penetrate into the core region. :

In éhapter 5, the resonantly driven plasma wave was investi-
gated to the case where plasma flow exsists through the
resonance point. Maxwell equation and the momentum eguation
of the cold electron fluid were used, and to avoid the non-
linearity coming from the convection, the Lagrangian description
was employed for the iarge amplitude wave oscillation. It is
pointed out that wavebreaking appears predominantly in the
underdense region, and when the current velocity is suffi-
ciently large.the resonance field amplitude is limited by the
flow effect without occurence of wavebeaking.

In Chapter 6, the stability analyses to the accelerating
ablation front was shown, focusing our attention on the comp-
pressibility, thermal cénductibn, ablation,rand convection
effects. The hydrodynamic .equations including the energy
equation were used. It‘is poined out that the inclusion of
the temperature perturbation provides us with the instability

souce proportional to WP WT , not -WP-¥F . The effect



of thermal conduction reduces the growth rate of the small
wavelength perturbation, while the'ablafion effect play the
role of not only redicing the growth rate but also cutting
the unstable spectrum for sufficiently large wavenumber
perturbation.  The effect of conVection is found to be drastic
for the ablation front stability. When the flow across the
ablation front is subsonic, this effect causes a new type
instability even when the gravitational force is absent.
On the otherhand, wheﬁ the flow becomes supersonic in the
downstream, this convection instability becomes stable, and
instability is caused only by the gravitational force.
Thréughout these investigations,the ablation phenomena,
which play the foundamental role in the implosion process,
became clear, and the stability of the ablation ﬁront was
also clarified. In conection with the hot electron generation,
the effect of the flow on influencing the linear conversion
processes and the hot electron transport inhibition due to the

self-generated electrostatic field were also pointed out.
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