
Title
THEORETICAL RESEARCHES ON LASER DRIVEN FUSION
(Laser Plasma Interaction and Implosion
Processes)

Author(s) 高部, 英明

Citation 大阪大学, 1980, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1097

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



     THEORENCAL RESEARCHe5

              ON

     LASER DRXVEN FUSION

( Lasesc Plasrna Znteraction
          and Implosion Processes)

  L -r`J49K frib2-a fti ii'disRere9thA

     (,z,,,i(.-'llZ,`g.L/k7uc'2,,,ik,JS.,,...XkFzt7)

      January IO, l980

       Hideaki TAKABE

     (Osaka University)



i-

CON [[t EN [[i S-

Chapter l. Introduction l

Chapter 2. Structure of Stationarily Pyopagating
                                                '            Deflagxation Wave

2.l rntroduction .
2.2 Basic equations and one ternperature approximation
2.3 Structure of stationary deflagration in two
     temperature model
2.4 Shock wave driven by deflagration
2.5 Energy conservation
2.6 Conclusion and discussion
     References

 7

 8

li

21
26

30
33

Chapter 3. Self-similar Motion
            in Laser Produced Plasma

3.! In t• roduction

3.2 Similarity of basic eguations
3.3 Energy conservation and detenmination of
     parameter or and dimensional constant A
3.4 Application to abZating plasma produced
     absorption
3.5 Conclusion and discussion
     ReferenceS

 simi1arity

by classical

36

37

39

40

53
60

Chapter 4. Hot Electyon Enexgy Flux
  ' by EZectrostatic Field

4.1 Introductiors

Minitation
65

66



i--

Acknowledgernents
References
Published Pa.pers and Conference Pres' entations



il

4.2 Equations for slab model
4.3 Equations for spherically rnodel
4.4 Anomalous resisbirity due to ion wave turbulence
4.5 Sel[-consistent electrostatic field and reduced
     electrDn heat flux
            '4.6 Conclusion and diseussion
                       '     Refexences

hot

7Q

76

83

88
99'

Chapter 5. Flow Effects on Breaking
            of Resonantly Produced Plasma Wave

5.l Introduction
5.2 Basic equations in Lagrangian frarne
5.3 Inversion from Langrangian to Eulerian variables
5.4 Wavebreaking condition and resonance field amplitude
5.5 Conclusion and discussion
     References

I03

I04
I06
ll6

U2
127

Chaptex 6. Effects of Flow, Thermal Conductiont
                                                  '            and CompxessibUity on Implosion Symmetry

6.l Introduction
6.2 Thermal conducticn, ablation, and cornpressibUity
     effects on'reducing the ciassical R-T growth
6.4 Effects of convection on stabilization and destabili-
     zation
6.5 Conclusion and discussion
     ReEerence

131

l32

l43

l52
162

Chapter 7. Conclusions l65



!

Chapter l

rntroduction



l

     !n the laser driven fusi.on plasma, the problems are

roughly separated into the following three titles.

               (l> Absorption and Reflection

               (2) Transport

               (3) Irnplosion
                                 '     At the first, irxadiated laser light is partiaily
                                      '                         'absorbed by collisional or collective processes, while partially
                           'reflected by specuiaag xeflection or scattered by the stimulated
                                        'Brillouin scattering. To investigate these phenorRena is the

foundaraental problem to perform the laser fusion. At the second,

the absorbed energy, whÅ}ch is mainly deposited near the cut-off

as the electron thermal energy, causes the expansion .of the
                               'target piasrna into vaccum. Then, this energy is transported

inward through the so-called transport region. To investigate

how the absorbed energy is transported and what parcent oE this

energy is spent to implbde the fuel is the second problem.

At the third, the transported energy, which does the mechanical
                                                     'work against the non--ablating inner xegion, causes the super
                                                           'compression o.f the inner fuel apd induces the nuclear reaction
                        '                                'near the center of the fusion target. To investigate the
                                               'implosion phenomena to carry out the optimum implosion is the

third and final pxoblem of the lasex fusion. These are' L

schematically .shown in Fig.l..1.
                                            . -1                                                       '     My theoretical research on laser fusion is mainly devoted

to the problem of implosion, so that X intend to introduce the
          .tconcept of implosion. The necessity of the concept of im-

plosion may be easily understood from the following brief

discussion. Let us consider the compressed D.T fuel core with
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the radius R (.cm> and density

heated up to IO keV and begins
                             '       'and increasipg its radius, the
                    '
conÅíined time is estimated as

 io,cg/cm3>.. when thi.s core ts
                        '        '         '                ' to expand loweripg its density
     ' burning rate through the inertially
                                   '                                'follow$. ' '                                '                                    '
                      '                               '                                   '

f3--  oc
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On the other
      '
target up to
-2  , becauseP

hand,

IO kev
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      ' mamtamg constant loR zs
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Ec ofEe
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R. /7 -';•C
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Thisindicates that the scequired energy in order to get the

              t.         '                             ttsame !OR value becomes lowex with increasipg the compyess core

density. The detail estimate yields the foZlowing requireJnent

to laser energy in order to reach scientific breakeven.



                                                                tee-.

                                                    '      '                                                          '            'where Ps=e.213 g/cm3 is the solid D-T density and it is assurned

                                                       'that the 8 9o. oÅí incident laser enercgy is transported into the

compressed core region through iche reflection and ablation losses.

As apparent from this discussion, it Å}s necessary to compress ' . ,
            '                                                              tt                                                    '                    'the D-T ffuel Tnore than 1,OOO tiraes solid density in oyder to '
                                                       'perfo=vm the laser fusion by the use oE practical lasers.' (10 tL
                            '100 k joule) !n such a meaning, the laser rnay be the
                                   'source driver to induce a piston to compress the fuel rather
                      .                           '                                                  'than to heat it.

     Zn order to clarify what plays the role of a piston in
       t
laser fusion, the problem of the laser induced ablation structure

is treated in Chaps.2 and 3 by the use of a stationaxy model

{chap.2) and a self-sintlar model <Chap.3). The detail structures

are investigated using the one-fiuid two-temperature hydrodynamic
                  'equations. The resultant structure provides us the xelation
                   '
between the mechanical power, which gives us the compression

efficiency, and the absoxbed •laser power. The efficiency of the
                                   '
laser driven implosion is discu$sed.

     !n connection 'with impiosion, much attention is focused on

the transport problem. SÅ}nce in the high power laser regirne

the absorption becomes mainly due to the collective processes,
                                                 'where the resonantly induced plasrna waves accerelate the electrons
                                        'to rnuch highesc energy, the genescated hot elelctrons diyectly

               ttpreheat the inner core and pxevent it frorn being compressed. 1

In Chap.4, the hot electron transport is discussed. The
                                            'foUowing are pointed out. The cold electron returcn current

induced to maintain chayge neutralÅ}ty exceeds the sound velocity

and ion wave tuL'bulence is excited near the cut-off. This
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turbulence causes an anomalous .r.esi.sti.vity, and due to this
                                                      'resistivity the large electrostatic Åíieid is.generated. This

tield prevents the hot electrons Åírom penetrating into the

corapressed scegion and pxeheating there.

     :n Chap.5, the preblem of the resonance absorption is
                                                      '                                      'considered associated with the transport problem. Since the
                          '                                             '                                                       'transport problem shows the exsistence of the strong expanding

motion near the cut-oÅíf, or as will be shown in Chap.4t the

very strong return current there, the self-consistent inciusion
                                                    'of such flow effects on influencing the resnance absorption
      '
processes becomes important. The resonance absorption includ-

ing these effects are discussed in Chap.5. And it is pointed

out that when the flow velocity is sufficiently large, the

growth of the plasma wave is saturated due to convection
                '                            'loss.
                 '     Chapter 6 is devoted to investigate and discuss the im-

plosion symmetry. Zn this chapter, attention is focused on

the stability ofi ablation front, since the formation of such

front is unavoilable for inertia fusion. The systematic

             -tanalyses are presented for the compressivityr thermal cond .uction,

                            'ablation, and convention efEects, separa,tely. .Zt is pointed

out that the compressibiiity, conduction, and ablation effects

reduced the growth of the unstable mode compared with that

              -tgiven by the classical Rayleith-Taylor analysis. !n Constract
                                               v                                                      'to these effects. the convection effect exhibies the interesting

role in the stabiiity. Zn the case where the flow is subsonic

the convection effect gives ri.se to the instability even when

the acceleratÅ}on is absent, while in the case where the Åílow



7

Chapt,er 2

Structure of

Deflagration

Stationary

Wave

Prop4gatipg



                                                                  2

2•.l Introduction

                                                        '                                                          '     when laser light implnges on a cold soiid tai get, the absorb-

          .ted energy causes the matter to be heated and set into motion.

since the target is located in a vacuum, an expansion wave wUl.
                                                                .tttappear. on the other hand, high pressure created by the rapid ' ihL

                                  'crease of plasma temperature at the surface can al$o drive a corti-

pression wave which propagates into the solid. The compression

wave is maintained by a defilqgration wave which separates it from
      '                                                   'the expansion region. Name!y, the deflagrcation wave can play the

role of q piston in laser cornpression. The electron thermal flux

flows into the deflagration region from the laser absorption layer.

An increase in the internaX energy in this region due to the incoming

thermal flux can be regarded as that due to combustion in a chemical
                                       'reaction wave. Because oE the nonlineay thermal conductivity, the

deflagration contains a steep temperature gradient as shown in Fig.

2.l. The shock and deflagration fronts propagate into the target.

The plasma fluid is accelerated inward across the shock front, and
                                                                   'then accelerated outward to the rarefaction region through the def-

lagration structure. Hence, the deflagration region is often'called

an ablation layer.
            '
     !n this chapter we present the structure of the stabionarily

propagating deflagration wave and a steady compression modei in a
slab target. Bok?inl) has investigated the deflagration structute

                               '                                                               .ttin a one--temperature approximation. We will show by using a two-
                                                                 'temperature model that the ion tempexature is'about half of the

electron temperature near the Chapman-Jouguet point of the deflag-
                                                     '                                                          'ration. Bobin a:,so assumed that the cut-off density correpsonds

to the Chapman-Jouguet point. It will be, however, shown that the
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density at the Chapman-Jouguet is not necessarily the cut-off den-

sity and that the density is determined by means of the energy con-

servation in the whole system.
                                                         '                                  '     M.t is shown-in Sec.2-2 that the deflagration can be scegarded
           r               '                                                    '                                                              '                                           'as a thermal wave accompanied by hydrodynamic rnotion and that it'
                                                              '                                                          'plays the role of a piston in laser compressionr Xn this section
                                                  '
the energy relaxation time between the electrons and the ions is

assumed to be small enough for a one-temperature approximation to be

used, while the finite r'elaxation tirrte is taken into account in

Sec.2-3 and the deflagration structure is obtained in the two-tem-
                          '                                'perature ' model. Sec.2-4 is devoted to the shock wave driven by the

deflagration. Xt is shown in Sec.2-5 that a constant energy flux

should be absorbed in order to realize the stationqry pxopagation

of the deflagration. The compression and ablation profiles are

then determined with the aid of the energy conservation.



!/

2.2 Basic Eguations and One

     Since we are interested

coupled with.the fluid rnotion
as the basic ones2):

 Ternperature Approximation

in the the'r.mal behaviour of the plasma

, the Åíollowing equations are assumed
                        '                                  '                                    '               '                                  '               '                       '

o--aeit"?-? xn"==o

?-?-tor""7-2- xu----
au,ln2-a}--x(nt

zi-0="tT,tu,-0.-Z,7==-.-i--77sl,lxLc

?0ir.Te'+a?2xle='-f 1.,`!,Sl."

 (le"T)J

+.TLe..s...e77t.:

  rs--1

-f'

7e`'

.S 2-
  3k 0x

]G9,Ll.

(2, i)

(2,.2i.)

(2,s2

(2, Åë/)

Here n is the number density of the plasma, u is its

•Te and Ti are the.ternperatures of electrons and ions

by the Boltzmann constant), respectively; Tei is the

equiliblium time between the ions and the electrons,
the thermal conductivity of the electrons, namely3),

flow velocity,

(muitiplied

temperature

while K is       e
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7ec' `'   vJ
2itptrc

nvi rs 3k

7(er - K29 (

 a nve P"f2 e"Zl

            Yzi}3% 7e         IZS
=keole

(zy-?

re1 va.ke"L.e(Z-
ig6?

in which ,me and mi are the mass of the electron and that of the
                             'ion res}pectively, and lnA is the Coulornb logarithrn. [rhe Eirst two
                                                   '                              'equations (2.1) and (2.2) are the well-known mass and momentum con-

servation laws. Here the viscous tescm is neglected. Eguation (2.3)

governs the variation of ion temperature, in which the effect of
                   '             '                                   'ion thermal conduction is neglected as it is assumed to be small

in comparlson with that of the electron-ion ternperature relaxation.

!Vhe change oE the electron ternperature is given by Eq.(2.4).

     when the temperature equiliblium time Tei is small, Eq.(2.3)

yields [riSt Te. In this case, Eqs.(2.3) and (2.4) are reduced to

tet3+a a'0K1:- f2-,2 x"t Z
3n

.-.k.a.Z (l7?

in

in

and

ary

which T = 2T. and ,i<= (})7/2 )<.r oT5/2.

the one-temperature approximation are

 (2.7>, and the Åíollowing equations

 phenomenon in the wave frame.

  Thus, the basic

 given by Eqs.(2.

are obtained Åíor

 equations

1),(2.2)

the station-
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where

mined

Jo

by

   '

 a-.-,,/,,pt7-2, ge9?
llr7"+2--t7pzda2G,ilkEe"lk/5td.f-.-c?. ca!o?

                     '

, Po and Qo are integral constants, and they can } ?e deter-

 the boundaxy cQnditions. rf T and u are normalized by

Eq.(2

   '    7N- .$ ,

.9) becomes a parabolic

xv 2a"-      r.

form

ce,!1?

..• v-

7 =- x"vta (2-aV? (l/2?

This

M=
 curve
u/ (T/m

Hence, the

 is dr.awn in Fig.2-2. By using
i)l/2, Eq.(2.l2) is also written

               .-M.,    M2- --4k.
      • 2-a

 plasma flow is
                     '     subsonic in O < or < lr

        . rL              u= l, and     $omc at
                       '     $upersonic' in l < or < 2.

the

 as

local Mach number,

ca,/5?
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Fig. 2.2 T-u diagrarn obtained from the mechanical equations.

    Points A and B coxrespond to the facont and rear oÅí

    the defiagration, respectively.
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rn general, through the deflagration structure, the plasma flow
must be subsonic 4>, and the flow velocity increases monotonicany;

Since the temperature increases with the flow velocity in the sub-
                                                                '            'sonic region tsee Fig.2-2), in order to realize a stationary de-
                                               'flagration, the tail of the deflagration must be bounded at a cri-
                                                                ttttical point, x=xp, where some,external heat is supplied. Out of

this boundary, the flow is generally non-stationary so that sonic

disturbances exist. "ihexeforet for a stationary deflagration to
                                                    '                                          'be realized, it is required that the disturbances do not propagate

into the ,deflagration region. Namely at the boundary x==xp, the
                              'flow velocity must be egual to the sound velocity so that the lo--
                                                        'cal phase velocities of the sonic disturbances are zero. Thus the

critical point must be the sonic poSnt, which is often called the

Chapman-Jouguet point. It should be noted that although a cons-

tant heat flux should be supplied at the boundary x p, the cut-off

point may not necessarily be the sonic point. We shail assume that

the cut-off point is outside' of the deflagration. Therefore, the

stationary deflagration passes from any subsonic point A to the
                                           NNsonic point B through its structure on the u-T plane in Fig.2-2.

under such a regime, the integration constants Jo, Po and Qo are

deterrnined as follows. By the C-J condition, up is equal to the

sound velocity Cp (=yiEi[57t-iiilii). (We denote the variables behind and

.ahead of the deflggration by subscript p and f respectively.)

Therefore, from Eq.(2.8) and <2.9),

1. = M,rt-••C2 , Z7 - 29. (z,/Åë?
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We now

ahead

 introduce the paramete.r a which is

of the deflagration to thatV behind.

        d.. ILt

                mf

the ratio of the density

(z/s-)

which will be determined

ct, form Eqs.(2.8) and (2.

         '

          blf -" bl Cfi .

in the

9), we

next section.

obtain

Using

7fr -- (2-dibl •TR

this parameter

(2,i5?

In Eq.(2. IO) , taking note of d/dx =O at the fyontt we obtain

00 -'--'

 (JLe-26'<? O! ' 17 (z,!7?

     Let us norrnaiize n, u and T in terms of the quantities behind
the deflagration : n = npft, u = Cp{X and T == TpaS, while the ldngth

is normalÅ}zed in terms of the mean free path •• '
,l

p == (s/24rr)i/2Tp2/(npe4inA) as x = ip.(rnYme)1/23\i The normaliza'

                                               'tion for u and T are identical with those employed in Eq.(2.ll).'
                                                            /t
Then Eqs.(2.8),(2.9) and (2.IO) become

 t"v/n a!-=/ (Zi/if?'



                        """                 a+I - 7.                                                           e,12?
                       a

       fy'7t.ft"""2-aIA"l"dtny-`'bl(Y-.2.bl?,'33 kZO?

                                                          '     '     In general the density xatio or is small enough to neglect Ehe

right hand side of Eg.(2.20). We then obtain ,

                     nf2 .. N '
         ' .-k.7,, f/ .--2 al= dX. , . (zF/?

Before integrating this equation, we show that the temperature

structure of the deflagration can be approximately given by that
of the thermal wave5). since the flow is subsonic through the
                                                                 '
structure, Eq.(2.21) can be easily integrated with neglecting the

flow term.

                7..!..9g/S/.XN72/S' va2z?

                                          'This temperature structure is that of the well-known thermal wave.

Integration Eq.(2.21) with the aid of Eq.(2.l9), we obtain'

l7
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             '        ,.,L.       21L = .,,l- wk- 2"1 (uatv? bvJ-- G--2- .m bv -- is sw"ts

                               '            -5I"F.s?f`n-'(i.--iZ.'.'?-KKg4f/. , (itz5)

                                                             .tt                                     '                                    tt                                          t tt                                    '                    '             '                            '                                                                '               '                       '                                                          '
Here w2 denotes u(2-u) (=[D), and the integration constant is esti-

rnated by setting u=O at Å~=O. The width of the deflagration Ax can

be obtaiped by putting u=l in Eq.(2.23),

                                   '               AJ(=='0`099/>4p'tt4ld.>>% ' (2'2f?

On the basis of Eq. (2.23), n and T are calculated as functions of

Å~, which are plotted in Fig.2.3. 0ne can see that for most of the

deflagration, all the quantities change gently (almost linearly).

nowever, in the vicinity of the front all the quantities vary very

rapidly as in a thermal wave. At the sonic point, du/dx becomes

infinite, but d'r/dx is tinite. This singularity is weU-known as

a bifurcation, but in fact, must vanish due to the non-stationary

effect. From Eqs.(2.I) and (2.2)r

         '                                  '               '          au ptew-",.tOx-"tÅít?e4-up"-Y"

          ?X -r a2-cZ '
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sonic poi•nt, respectively.
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here c rneans the sound veiocity, (T/mi)i/2. since the denominator

vanishes at the sonic point, the numerator should also vanish. As

the result, the acelation

           .eS,•==/(.iii)t4'--sse"?

should be established at thÅ}s sonic point. It will become obvious
                                                                'in chapter 3 that this singularity appearing at the sonic point
                                          'has no physical meaning and taking the non-stationary effect into

account by considering the self-similax motion allows the continuous
                                                 'extention to the super sonic xegion.

     It shound be noted from Eqs.(2.l5) and (2.16) that the change
in the pressure through t,he defiagration is approximately given by
        '
PE = nfTf 2n pTp = 2P p, which is very small compared wÅ}th those

oE the desity and the temperature for srnall or . The incoming flow

veloc,tty into the deflagration uf is ctCp from Eq.(2.i6), while the

propagation velocity of the deflagration XD is propotional to
orl/2cp, which wiu be obtained in sec.2.4. consequently, if the

density at the front is large enQugh coTnpared with that at the sonic

point, that is, if ct is small, the pre$sure is kept nearly constant
                                              'and the incoming mass flux into the defiagration is small. Thus,
                          'the fluid ahead the deflagration is pushed with the velocity
                                'XD - uf=AD in the laboya"Lory frame.' This is the reason why the
                                                      'deflagration plays t'b.e role of a piston in laser compression.
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2.3 Structure of Stationary Deflagration in Two Tempexature

     Mode1

     As shown in the previous section, the plasrna temperature

behind the deflagratx'on is high, while its desity is iow. Thus
             '                                                  '                     'the one temperature approximation may not be valid in the rearc of
                          '                                                                 'the defiagration, since the tempeacature equilibrium time Tei is

                             tt'propoeriorai to n-ITe3/2. ,zn this sectionr we take into account

the effect of the finite temperaturce equilibrium time. Eguations

.(2.1) (2.4) can be integratedr assumSng a stationary propagation

of the deflagration. The resultant equations in the wave frarAe

are the following with the same mornalization employed in the pre-

vious sections.

              dia-/. - (zie?
                    tv tv            a"" ., if.'-c =z. ' (zz57
                     a

             tv tv tv 'V          pta.A7T;-fz:.Zcdd.."v'V--,y,-Ztllf2i2,-'e.IZ.==o (?•272

                                                   '        sk-(i+fi?t f/ a2-K, xV. %tr. - blu--2of2 (Z-if?

Equation (2.28) is obtained by adding Eq. (2.3) to Eq. (2.4). vo
                                                   'and Ko are constants equal to l.72 and 3.73, respectively.

The boundaxy conditions used at the sonic point are Te + Ti = l



and
Å}(2-

ffet

the

                                                              2Z

                                '        'u = l, by which the conditions at the firont become ore = T'" it =

ct) and u'" --- ct. Frorn Eq. (2.26) Cifi is given in terrns oE u'" and

which is then substituted into Eqs. (2 :.27) anS (2.28) to give

set of two differential equations for Te and u. .
                                                              '                               . t...
                        '
                                                            '     'tt.ra'i..tl(a",v-diu--2d-2"N?r.T`/'2 , gzg2

                                       '
      da-V . J t • a""2M -of)(f-2d-2a'"? +kv. (2f.-2""'-""''2?-7

         ,tt-7kT u-V(fa-4""V2ptJ'eV?fef"6 (z2o?

                                 '
     Here we note that in contrast to the one temperature case, the

sonic point is not a sigular point; equating 'u" to unity on the

right hand side of Eq. (2.30) yields a finite d{f/dxA', because

dore/dx'V -- -dori/dx"' z's established at this point so that the sin-

gularity disappears.

     The independent variable X is next eliminated by dividing

Eq. (2.29) by Eq. <2.30). The resultant differential e(luationt

                .

                            '                               '                                                             '      d7, . pt""(ad?"=2d-2bl"v?(f""'-ga2-f.?
      tt =r' a2(uN-d?(y-2bl-a-i?+ky. ei?a-avrs- (Z3i?

may then in principle be integrated from the front (u'" ,liFe)

[or, S-(2-ct)] (point A) to the rear {i = l (point B) in the (u'", fire)

                         tV tvplane to give a relation Te = Te("u). However, the point A is

obviously a singular• point oE Eq. (2.31). To obtain the slope of
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the integral

the singular

curve

point

at

the

the singular

 solitibn is

point

of the

we assume that, near

 form

bltv .-" al + l(,

itN.-

7e t= .!2<.

2
(.2-ct?

exR(s?N(?

--  l(. -eo(/)c,Ls'5?f?

va32?

         ,where Kl and K2 are assurned small. On inserting these assumed forms

into Eqs. (2.27) and (2.28) in which Ti is eliminated by using
                                'Eq. (2.26), and retaining only those terms linear in Kl and K2,
                                                  'one then obtains a homogeneous system foir these quantities. The

charactexistic equation of the system given by Egs. (2.27) and

(2.28) at the singular point A is

S..- f     /        ( f--4 of- k Y,
9-.-7-ct

--
 !.-2 ke% (XEf.=

(2 - oj. )(/--al

         gbl?
        7of)

at

(}

]}

(2-a?]

•s

tZI ] =o
(i,33)

Since or<l the

sign. Sucha
point provides

because there

characteristic equation has

singular point is cal!ed a

 a good starting point for

is a unique integral curve

 two roots with opposite

saddle point. A saddle

the munerical integration

passing through the saddle
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point for each characteristic direction.

     The numerical results are shown in Fig.2.4. Zn Fig.2.4-(a),

the whole deflagration structure is shown, while in Fig.2.4-(b) the

front structure is shown in an expanded scale. For several ct values
                                 'which are sufficiently small compared with unityr it is found that

the deflagration structures are almost the same, and the fioUowing
                                             '                            icharacteristics oÅí the deflagration are obtained. Near the frontr
                                                               '                                                              'the temperatuyes and the flow velocity increase steeply but the

pressure is almost constant, thereby demonstrating that the the]rrnal

wave approximation is valid. The one temperature approximation

also holds in the front. The heat is efficiently imparted to the
                                           'iens through electyon-ion collisions. In the course of the ex-

pansion, the ions still get some energy frorn the electrons. However,

the expansion cooling rnakes the ion temperature lower, so that

it becomesr half of .the electron temperature in the rear of the

deflagration. At the sonic point, Te = O.68 and Ti = O.32, and

ions are heated up to 50 2 oE the electron temperature due to

electron-ion coUisions. [rhe width of the deflag]ation, Ax, is

given by
       '
            AJU-' 0•3i.gs2(gZ'f7% - (/<?Y9?

whexe lep is the electron mean free path at the sonic point. zt

should be also noted that the pressure changes gently through the

deflagration and the pre$sure behind the deflagration is about the

half of that at the fxont.
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2.4 Shock Wave DrÅ}ven by DeMagration

                                                       '                                 '     The deflagration plays the role of a piston in laser driven

compression, as was shown in the previous sections. A shock

wave can therefore be driven ahead the deflagration. We can

determine the propaga`Li'on velocities of both the shock and the

deflagration in terms oÅí n , C , and the states ahead of the shock.
                         pp
                        'From Eqs. (2.l5) and (2.l6), the ratios of plasma desity and tera-

pareture ([I]e + Ti) across the shock are written as

/"=
m4'=olJ#'i 5=

tlf.-d(2-ct?7Z;F ; tr3"2

respectively, where the states ahead the shock are denoted by the
subscript s. The Rankine-Hugoniot relation6) can be then reduced

to the form.

4of2--(2"t/" .7" Z-,----S;)?of"-?(Y5i4f2tip'?=0 (kiM?

from which the pararneter or is determined as a function of the
                                                  'plasma desities and temperatures in the unperturbed region and

'

at the C-CT point. The solution of Eq. (2.36) can be given

approximately by

               .v 2t?7Rr+9iJP7"7sT
            ct =
                    evflztM.72.r

va37)
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From

the

 the definition oE

pressuret.

the deflagration 4)
t or<l, the 'condition' for

t7R? >.l 2.y

is required to realS.7.e the deflagration

     Thus, with the knowledge of np and

in the next section, the plasma motion

The shock'  speed Xs given by

 wave.

 Tp, WhiCh Will

can be uniquely

be determined

deteacmined .

A. = ,b< (   k7f
•---•--•----

(ÅëY-/l.)rw,t

J%
-/ ( tettS2z(2-db

92au -
1-e7 tsM?

where Eq.(2.I6)

velocity of the

frame as

is us'ed to

shock wave

elimÅ}nate Tf. The
 'uf is calculated in

downstream flow

 the laboscatory

af Z - (/- .-.,{!1..

vit't•<

? A,sx (zs72

When

the

 one sees

velocity

 this

XD, it

velocity in

 coMresponds

th' e

 to

deflagration frame

the inflow velocity

movzng

 UE'

 with

Thus,



xe

blfi -2.-- af (zqo?

Using Egs.

velocity of

(2.16), (2.38) and

the deflagration,

(2.39), we obtain the propagatzon

2p =f (/-/? (  yof
lof-1

(2- al?7
,PIE,l. -bl19 (l,4/?

Since q

we can

 is small

obtain the

compared to

 followings

unlty,

fo ac A
     s

as

and

long

 XD'

as 6
.z.e.r

is small enough

2,r 2 7p ()<:
of yz 9 (iÅëZ)

     Since

aquired by

the pXasma

a paMticle

is initially at

passing through

rest

the

, the

shock

kinetic

Eront is

energy,

 equal to

Efe,.
==

 f/ ewd "fi2
kÅë32

Also, the increase of the internal energy of a particle is given by
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E. -.Ei(Tf-7,r.) (zyy?

With the aid

total enerty

is written as

of Eqs.

zncrease

E-
   "-

(2.l6), (2.35), (2.36), (2.38) and

of a pancticle passing through the

Ekti. " gpre

(/u-!? (z'bl?bl lp

(2.39)

shock

r the

front

caÅës?t

Although the deflagration can be regarded as a piston in laser

compressin, the plasma flowing into the shock compressed xegion is

escaping to the deflagration regions. This is different from the

usual gas shock proceeding ahead of a piston in a tube. The

flux Jo given by Eq.(2.15) escapes from the compressed region into

the deflagration region. Thus the energy incxease in the whole '

cornpressed region in unit time is given by
          '.

                 .                                '
            '
        `El?dlpt,p =' (/`"7" ,2s pt ,l-? E

                  '              -- (f(yi-of1 (2-bl?J/2 ptol } (2`7"i?(2-ol?car129

kev
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2.5 Energy Conservation
              '
     Isothermal expansion is assumed to follow the deflagration.

Since the deÅíiagration propagates with the veiocity AD, the flow

velocity and'the density in the expansion region can ber thereforer

expressed as foUows in the laboratory frame, '.
                                                         '

U-9./"Z,

         '
where the

The energy

ag= 4de2(--lt-X-f7p7te7J (1,47?

point x = -ADt coxresponds to the Chaprnan-Jouget point.

 increase in this region is given by

 '8

Substituting

the increase

`so ' d4/ paof(f3 17 -

         - 2.l

 Eq.(2.47) into Eq.(2.48)

 is written as

.-imcU2?dJ(

and using Eq.(2.41)t

kva?

4t., `= (4-ge "2E2? :Z7T4ep 2y9?

where B

     The

and e.
     ISO

= {(y-l)[5ct(2-ct)/(4.-.l)]l/2..}.

                         '
 energy increase in the whole systern is the sum ofi ecomp

 given by Eqs.(2.46) and (2.49), respectively. Since for



Sl

                           '
small values oE ors ecomp and eiso can be approxiraately given by

  '       '
       '               '
     3,..f2':-: (4Lf4,Z'.vol/?A'2(L/"-/?on2-7cr +orof) ' (/irs`z?)

     8',>-o- (4-(/g--/>(tgi;if'glr;yal/?/'2JnjflgeR-f"0(bl7 (J2?s-/?

                        J

the enexgy incscease in the whole system is

       e e e      (S?f,t =' (S?eom/) 'e E?diso .

           ---9"2Tz9+0(of7 ts2?
                                             '
    '                                        '

One can estirnate the energy partition ratio which is deEined as

the ratio of the'  enegy increase in the compressed region to that

in the whole sys'tem. This ratio can be rega=ded as the efficiency
Oanfde?:fZl rrjlgSoPbOiatintO the COMPr 9ssed regio?• using Eqs.(2.so) .

                                          '                                           '                                                             '                   e-        2an,7-t/,,,dfpm'P"-(tf/4-,>7k'z(pt-?bly2, tslf?
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It should be noted that the compression efficiency is proportional
                               '

     The steady propagation of the deflagration can be realized

only in the gase where constant energy flux is supplied to the

                                           ">plasma to compensate Åíor the energy increase Etot. Thus, etot

should be equal to the absorbed energy flux Åë near the cut-off

density. The absoybed energy flux is carried out frorn the cut-off
          'region by the electrons. The electron temperature is sufEiciently
                                                              'high in the cut-off region, and hence the energy transported by

the electron can be given by the fiorm

         SiZi = / (ilfe le Ufh??,tiL .f-.tiz !l'1;)/

                                                             '

        'where the numerical factor f should be determined by the micxo-

scopic phenomena in the cut-off scegion. Using Eqs.(2.52), (2.54)

        .             [p tv T, we obtainand Åë == e         tot' e p
                       '                                                          .

                                                              '                       '    /7ZR:a2LS"j/(il13?]TZ47..'77T..(tmp.,A'ZÅë?2/8 krk?

                                                     '                                  '

where nc is the cut-off density. Thus, if the flux O is specified,

the plasma motion of the whole system can be determined uniquely.



                                                                 siJ

2.6 Conclusion and Discussion '
                                             '
   ' Now, let us consider the case of a D-T solid target whose
density, ns, is 4.7xio22 cm-3. with the conditions Ts << Tp and

:,lg,lI 7:?,g?li7gl22,r2kgti:?:,ga:..b:,2b;a.g:e,g.lrg:.:q,gAg?•3s'•

        '                                                        '

     ' '7Z7,, c:' /<g?(./o2"2/.?,'2

         ' le7 `tr a2z /-2/87.4/J di 2/3

          J?).T c z3x/o7/7/62.--!/".di-Ajr

          lp cr /7./o7fY67ii/3Åë-k/3

                   '
                   '                         '                                                            '                       '                -
here the ].aser wave length XL in vm and the laser flux Åë in units

of  lol5 w/cm2 are used. The efficiency ncornp is also given as .

              '                                                        '
' 2,../,] ,,,,, o,3,,p /%,a,--'i '

                                                             '                              '

For a Nd-glass laser and f = O.6, the eEticiency becomes approximately
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n N O.3. comp
   , Let us estimate the time lag At to establish the stationaxy

deflagration structure. It can be oij the order of
      '

       tift = -:ll;ilYL ---Kix/o!o ;iz:l:e73/{i (.s?.?

where T is in kev, n in cm-3 and ln A is a$sumed to be lo.
                      p       ep
!f np is equal to nc as is assumed in Ref. I, for the Nd-glass laser
light oÅí 6=lol5 w/cm2 we have Ax=o.s4 cm and At=l4 nsec• These

width and time lag are not realistic for the short pulse laser

light. However, in our theory np is much greater than nct hence

we can obtain realistic results. For example, if we assume

f=O.6, then Ax=24 vm and At=85 psec. This resuit is cofirmed by
                                          'computer simulations.
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Chapter 3

Self-Sim"ar Motion L./.

in Laser Produced Plasrna
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3.l Xntroduction

     To achieve break-even conditions in microfusion, a laser

pulse must cprRpress a D-T fuel to densities well above that oE a
solid density ns, and strongly heat i'ts corel)''2). The radiatioh.

                                               'is absoxbed near the critical densÅ}ty where the electron plasma

frequency is equal to the laser frec{uency. RareEi'ed coronal
                            '                 '     'plasma is produced and hydrodynamic motion oÅí ablation gives a
                                           'reaction fonce to implod6 the central fuel. Hydrodynamics is

thereÅíore essential to the ablation and implosion phenornena.

      .t     The hydrodynamics of laser plasrna interaction has already
been investigated both in theoretical analysis3)'4>'5)'6)(see

chap.2) and by the extensive computer simulation7)'8)'9). The

theoretical analysis has concentrated on the stationary problem

for constant laser irradiationr which cannot clarify time-dependent
hydrodynamic phenomeria. In order to clarify how the hydrodynamics

evo!ve with tirae and how these behaviours depend on the irradiated

laser prameters(pulse shape, its duration, and frequency), we

consider to solve .'the hydyodynamic equations by reducing them #o

the ordinary differential ones, which gives us the self-simUar

motion for hydrodynamics of ablating plasma.
                                                               '      '     AnisimovlO) noted the exsistence of self-sirnuar motion in-
                                            '                                                                '
cluding electron conduction and ion--electron energy relaxation,
  'and Barero and sahmartineii)'i2)'extensiveiy anaiysed the seif-

                                        'similar motion for the hydrodynamics under the absorption of

linearly increasing laser flux. We here consider the self-similar

motion for the lydxodynamics of laser produced plasma. !t is

pointed out that one fluid, two temperature hydrodynamic equations
                         'including nonline.a.r electron thermal conduction and ion-electron



jth"

energy relaxation terms reduce to ordinary differen Yial equations
                        'in general. Solving these equations under appropriate(idealized)
                                   ttboundary condition gives us various self-similar motions according
            .to the difference of simUarity parametesc ct.
                                                                '  ' In Sec.3.2, sirnilarity properties of basic hydrodynamic equat-
                       '                                           'ion are pointed out and the resu!tant ordinary differential equat-
                      '
ion are obtained. The way in which these reduced equatid}ns should

be integrated under the idealized boundary condition to the ablation

Eront is considered. An unique integral path which gives us a

phsically•meaningful ablation structure is found. To determine

a similality parameter ct and dimensional constant A is devoted to

Sec.3.3. By considering the energy consevation relation through

the system, the parameter ct .and dimensional constant A are deter-

mined. rn terms of these ct and A, an ablation front pressuze,

which gives a rnechanical power to compress an inner solid region,

is obtained. In Sec.3.4t an application of this analysis to an
   'ablating plasma produced through an inverse-bremmstrahlung absorp-

tion of a constant laser flux is considered. Using the resultant
                                                              'ablation structure and considering strong shack formation in
                                               '                                '                                             '            'Åíront of the ablation region, an x-t diagram for the characteristics
                                                                  '          '                                                                   'is shown. :n Sec.3.5, the relation between absorbed laser fiux

and ablation front pressure is considered. It is found that due

'to an expansion of the ablating region, the absorbed laser energy

should be 'increased in proportion to one sixth power of time in

order to maintain a constant pressure at the ablation front.
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3.2 SSmilarity of Basic Eguations
  '                               '                                                          '
    .We consider a fully ionÅ}zed plasma produced by the incidence

of laser acadiation on a solid target. The produced plasma may be
             'described by the one-flutd equation as long as the characteristic

scale length for spatial variation is much smaller than the Debye

            and this condition is usually satisfied. Howeversdistance ,X
                                          'the temperature relaxation time Tei between electrons and ions is

long enough and the ions cannot get sufficient energy from the

electrons to compensate an energy loss due to expansion cooling.
         .We therefore employ the two temperature model with the electron

thermal conduction and electron-ion energy relaxation. Then bas•ic

equations are shown as foilows.

       Åín-.e77ti-0 ' (s,/7
     2'2pttatbla2xa+tlt?(n4tl3ZIIZe+.,i`'?==o (a2?

                                                            '                                                    '
                        '          '     d2tle'a?`0-xld+,ttfe,-2-,%+y,g3didtt,2-,s-`?--o (3.3)

                            '                                                                '           '                                                     ..                                                              '                                  '                                      '
    ?'-2-"\igble?"det9,tsle•le)"f2tsle"1?p2x"-yS.--'k'6-"%.-2---.(2;Z'-f-'leO`'d

    .t                        ' {(l31 .<L.,)
                                                    'where n,u,[ei,and Te are the ion nurnber densityt flow velocity,

ion ternperaturet and electron temperature, respectively. The



;f2Z]'

coefficients vo and Ko are defined13> by

   '                                    '               '

                                                            '        22o ==' K667Å~ geii/2eÅëL`41i4, ', •' -(3.sL)/

                                                  '                                        -!        k. ' 0i30xbl (pt.A' e"ZA?

                   '

whesce m, and m are ion a.nd electron massest and lnA is the Coulomb       le
logarithm•(This is assumed constant here). !n the above eguations
                                           '
we made use of the fact that the plasma is neutyal, writting

n == ni == ne/Z. We also expZoit the fact that the ratio me/mi is

small. These equations describe the plasma motion in the frame

moving with the ablation front (x=O), and an inertia force coming

from an acceleyation of the ablation front is neglected.

     Let us investigate the sirnilarity involved in Eqs.(3.1)N(3.4).
in order to do this we shau resort to dimensional considerationsl4)'l5

Equations(3.l)N(3.4) do not contain any dimensional pararneters

without the depen.dent variables n, u, Te, and Ti and the indepen-

dent variables x and `L and the dimensional constants m. and K .                                                      io
(The dimension of vo is constyucted by Ko"imi-l.) bearing in

                                               '                                                              'mind the dimensions od functions, n,'  u., Te, and Ti, we can represent
                                                               '
                                '                                           '                                                                '

              ne =' x, m,ri" tx.' !v

               a==-,-T (50
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           Z, == ••4imd(iil!7ks.

            .where N, V, ee,and ei.axe dimensioniess functions that depend on

only the dimensionless varGable constructed by x, t, and parameters
                                                                 'in the pxoblem. Xt is noted that Eqs.(3.11 and (3.2) are horno-
                                  'geneous to the density n, so that its form is determined by the

energy equation (3.3) ox. (3.4) and in this case it is given by

the density dependence of the• electron heat eonduction term.
                                                              '      '
     rn general selÅí-similar rnotion has a power-law dependence on

time, and the nondSmensional similarity variable g with the form

g == ,Terof
(3. 7)

is Å}ntroduced. Here A and ct are constants (A is dimensional and
ct..rks a pure number). Substituting x == Atorg into the relatSons

                                                             '(3.5) and integifating new variables gt v, Te, and Ti

ftw-s3pt, ocs?-kZ le bl ---' S20e

             lj

(3,81)

,then Eq.(3.6) is rewritten in the forrn



 'ue

ve = K. arz %
al

,,i
ii 3X3d-4g(s?

"= A f- dN/ l/(? (3s9)

7Te ==

 a
/pt cA2  2(d-1?t 7e.cs?

 e

        ,
Taking account of

we substitute the

some arrangement

equations.

 the definition of the similarity variable (3.7)i

 above relations into Eqs.(3.I)N(3.4). After

we obtain the following ordinary differential

(a- ds? sV f b!" (3bl- 4?7 E - o
(3,lo7

(l/r--atyL,) yki. s-i f'2ts1.- ld?f/ie-

(gr- ofS? zd/" ZA 3-2- o/"2(d-!?] ld

(y-als? ts

where Vo IS a

Ze"Zc'/} /
"

ts2

di' mensionless

(d-!? U-0

-/a,g

oi-.2(ofv/?7tsle-Zt')

constant

(3,/!2

3.,,SZ?sllSi}!L`tlZe,/Zt?.o (3,iLv

    tL.e

-3"2 gf(Ze%lei?i=o

                (y. /3?

defined by vo = KoVoMi•
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The differantiation of the reduced functions with respect to the
  '                                                           'similayity variable g is denoted by a prirae.
                                                     '     Before solving the above equations, we set aboundary condition
           .to thg reduged vantables. It is weU known3) that as long as the

targGt density is much higher than the cut-off density, the •J..T ".

deflagration structure exhibits steep gradients of density n,

velocity ur tempexature Te and Ti in the vicinity of the front,

while the pressure nT an,d mass Elow density nu are held almost

constant there. Therefore, we set the following idea!ized
                                                    'boundary•condition at the r-ront e == O.

               7-pa

              'Zl.,C- 7e. 7,' "0

                  '

            7pt. Sle,fld i 0. oo

                                                        3>
Taking account of the structure of stationaxy deflagration

which says that the Åílow is sufficiently subsonic, the temperature
                   -trelaxation is effectxve enough to give Te = 1]i ., and the
      'electron therrnal conduction play the most significant part to

determine the ablation styucture, then we can reduce Eqs.(3.IO)-
           '(3.l3) to an approximate form near the ablation front:



,21lr2t

               ty =' ,Z.T (='D rnd. ' , . tsie?
                                           '               7e:ZL -' . . (L9tl6?
                                                '               `7zTe-Zo? :nd . (3,//77
                                                         '                                                              .t        (ir"/2 21n l.'" 3-'-e (.gf/? z!' `2.1' - ;'-?tl ,(1. "AG-)/= o. (3,i2?

                         '                                                  t..                                            '
It is evidient Åírom the relation (3.9) that one of the constants

of integration Jo and Po, can be adjusted by varing the prameter A.

We set therefore Jo to be unity. Using Eqs.(3.l5),(3.l8), and

(3.l4)r t•he equation (3.l8) is solved giving the form

                           ' Z/t-               7e = (2"(/-- g'?g)

                           '                                             2                E-' zir-/= Z,?(2"EL (i-.J?SJ-3- (3,/g)

                   '
                                                 '
                7ds7e

                                     '               .                                                        'The temperature profiie in the above form is identical with that
oÅí the weu--known thermal wavel6) .

     Here, a new problem to determine the constant Po appears .

when we integratg Eqs.(3.IO)-(3.l3) starting from the approxirnate

solutions(3.19). The front pressure Po should not be chosen .

arbitrally. IE we specify some arbitrary value of thÅ}s constant Po

and start the integrai of Eqs(3.IO)-(3.13), the integral curves

wili in generai diverge, and the curves will not correspond to

the correct solution. Only for a particular value of Po will
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the integral curves converge and give a reasonable profile.
  ' '
This is one oÅí efugen value problems, which are well treated for

the Schscodinger equation, and the finitness of the wave function
           '
is , in this case , coracespond to the energy conseTvation of the

whole system.

     rf we consider the assymptotic behaviour of the solutien
                                                             '                                               'given by Eqs.(3.IO)-(3.13)t we can specify a reasonable, unique
                                                          'integral path by the foZ.lowing procedure. In order for the solu-

tion to conserve the total eneacgyt the electron thermal flux
                                                          aTcoming from the infinite (g"oo) must be finite ( s=KoTe5/2z-i axe ,

                                        5/2 'is finite at g= co and this alsO meanS Te Te                                              is fÅ}nite at g=oa )

!n order to satisfy this asymptotic relation, the electron temperature
                                                       '                                          'incxeases as follows. .                           '                                '                                                          '

                          2/Z                7e o`: ..li5' ,7t{;. .j'.oo (e,?,.zo?

But, due to expa.nsion cooling

monotonically.

                .7i• ---' 0

the ion temperature decreases

yigpz 3-- c>o (3,21?

By use of the tr.ansÅíer!ned variables G(C) == gg(g), v(g) = v(g)/g,
                    2and e(g) = (ZTe+Ti)/<" , the equations (3.IO) and (3.ll) ance



                                                                  ,2iii;

             '
rewritten by the form
  '

         '

                          '                                                      tt                                                   '     (r/-of?tdiase-+.tpmg ---4(/-ol?, e,2v

                                 '      '
     0.d,,afft(77'--"'top,}='',(;ISo?--(l7-'/7Zi'e,23?

                                                  '

        '
The tirst term of the right side of Eq.(3.23) can be neglected

for g . oo as obvious from the asymptotic relations (3.20) and

(3.21). Conseguent!y, Eqs.(3.22) and (3.23) reduee to the follow-

ing form for g .- oo.

         dA ff M-/27-4(/-bl?( ptd? - .
        Z7tZI= (7ptol?2-o . (3,29
                                                             '
               .
                                             '
                                             '                              '             '
The leEt hand side must be negative for g eF co, because the density
g(E) == G(g)/g should decrease faster than g-l to maintain the

total mass finite. For or>9/8 the numerator of Eq.(3.24) is

always positive. Therefore, to satisfy the above relation the
denominator rnust be negative, namely e > (v-od2. The equation

(3.2!) also denotes that the reduced temperature e must be equal

to zero at g = oo. These two requirements give us the unique
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integral path, which is drawn schematically in Fig.3.l. The
  'equation (3.24) also denotes the exponentÅ}al decrease of the dens-

                                                                 'ity g. It is easUy shown that the situation is the same for

     in the case of ct < l, the temperaturs and flow velocity are
                                             'infinite at time t = O , obviously from the relations(3.9•). .This
                   '
case corresponds to that of the collapse problem and may be, for

example, applied to lnvqstigate an adiabatic compression by the

use of the taUored pulse. The origin for time (t=O) is taken

at the in•stant of collapse. We analyse the system for negative

time. Xn this regard, we slightly modify the detinitions.

These collapse problems contain much interest, but we do not treat

them hexe.
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3.3 Energy ConseMvation and Determination of Similarity.
                             '     Parameter or and Dimensional Constant A

                                       '
     By considering the energy conservation for the system, the

similarity prarneter ct and dimensional constant A can be uniquely
        t.determined as follows. Multiplying Eq.(3.4) by the density n
                         '                                                    'and using Eqs.(3.l) and (3.2), we obtain the energy equation as

a conservation form.

      ta(2-/ew`vea2-t"kts1.tiLc•?7

         + ol ( 2--i-mdrea3" fYk(gl."irel?pt -i--kol.`2(f.7e7 == o.

Integrating this equation over the space from

inrtnte yields the total energy conservation:

             teE,---L2If-lb1.'2'i:,a.rs/...

where

gi--/.7i/

the

mt Ma Zf f3 77 rgl,

origin to the

"av7 dx

(s, op



where to evaluate "Lhe integralt we made use of the fact that no

energy convection exsists at x=O and co. The energy increase in

the whole system is compensated with the therrnal conduction from
the infinit6. Frorn Eq.' (3.9)t Eq.(3.25) is rewritten as

                                              '                                  '         '
                                                         '
                                             '                                  '    '                         '
        nt0tE-=".--kmp7kA67Soo.tld-fi (3•25?

where S. is the nondimensional thermal flux at g == oo [ S. =
Te5/2Te' (g=oo)], which should be given after integrating Eqs.

(3.IO)-(3.13). Let us assurne that the incident laser flux is

absorbed aracound the underdense region and the absorbed power is
                  Bgiven by Zab == Åëot ( B is a pure number and Åëo is a constant ).

The energy conservation requires the relation

                           '

                  tS;tTE.-Åë,tP

                              '

                                         '           '
comparing this eguation with Eq.(3.26), we can determine the

similarity prameter ct and dimensinal constant A:

               .i,i!.i(A`fr",,7,,,x.(J4....s.?•s(6( (327?

jo
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Substituting this prameter into Eqs.(3.IO)-(3.l3) and int.egrating
                                          'them according to the pscocedure mentioned in the previous section,

we get the nondimensional ablation structure. The dimensional

structure is obtained by substituting the constant A given in
                                   'Eq.(3.27) into the relation (3.9).. ' •
                                '
     It is important to consider how this resultant ablation

implode the inney solid .r-egion. up to now, we treated only the

ablation- region and the .meaningful quantities to construct the
                                                  'compressed region are given by the mass flow nu and tht ablation
                       'front pressure P. These vaiues provide us with the boundary

condition to construct the dynamics occuring in the compressed

region. From Eqs.(3.l5)-(3.17) and reiations(3.9), the pressure

and mass flux at the ablation front are given as

                    '                                      f y-d-g              Zf?= degyP. ko Wd A t

                                                            (3s28)

             Jlfr - k. w,SAAqt9bl-sfr

where the constant Po should be given after the integral.

These boundary condition correspond to the problem of the comp-

ression wLth the porous pxston. We do not here treat the problem
                                                            'to construct the compyessed region, but the simple analysis

will be shown later. It is noted that if we could determine

the dynamics ef the compressed region we get the prpagation velo-
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city of the ablation fxont and we can

from in the frame propagating with the

to in the laboratoscy frame, obtaining

implosion an' d ablation.

transform

 ablation

the whole

the variables
          'front velocity

dynamics of the
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             '
3.4  Appiication to Ablatxng Plasma P xpduced by Classxcal Absorption

     Let us censider the case where the incident laser with

constant power Xo is absorbed through the inverse-bremsstrahlung

.ab.gO.rdP;gXg.PiO.bCeeiSYbg Dg-i:.P.i:gM:hgZ;gllh rn thxs case the abs-

   '

                 't                                                 ..       . "Zalb= (/--J2'`R(-2/pa/<.ridx?71,

                                   (

                 '                                             '                .i.-l/.nkOofdx•J. (s2f?
                       t
                               '
                  '                                                 '                                           '
where
                           '
           k.==,x72x/o-i/Adt/t.2itW.ve

               -                                 '

Heret nc and XL are the cut-off density and laser wavelength,

respectively. The absorption rate is assurned to be small in

Eq.(3.29). As mentioned in Sec.3.2 the density exhibits an

exponential profUe in the underdense region, so that we can

perfoscm the integrai to Eg.(3.29).
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wherei"abnlT'2.iil)"[!IZ-"`i-n'giniii4ileni•o6nait(ln's-iy'sc2a(eiength(S'0?

n/nc = exp[-(g-gc)/L]t and the temperature at cut-off. In this
                                                             'case,B in Eq.(3.27) is equal to 3-2ct and Åëo is also given in '

Eq.(3.30), so that the similam'ty prameter ct and the dimensional

constant A axe
         ,

                  bl- Y/4

                                                            G,3/2
             A-(/i2rf./,0i.i't.S,S.,6.i.>"2

Fig.3.2 shows the resultant profile obtained by integrating

Eqs.(3.IO)-(3.l3) with ct==5/4. The integral was carried out

nurnerically using Runge-Kutta rnethod. The meaningful integral

required Po = 1.361 and the resultant profile gave L=l.30,
T 3/2s =7s.o.
..ec co -'                               ''

     Let us eonsider to make an x-t diagram for the implosion

dynamics. Calculation of the ablation front velocity will be

simply caryied out if we assume a strong shock formation in front

of the ablation scegion. The ablation pressure caluculated in

Eq.(3.28) make ashock in .the solid region, and its propagation
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Fxg. 3.2 Nondimensional ablation structure in the case where
                                         '                              '     Here, gt v, Te( Ti, and S are the density, velocity,

     electron .and ion temperature, and electron thermal
                                                       '     flux, respectively. These nondimensional quantities

     are converted into the dimensional ones by the use

     of relatSon (3.9) after determination of.constant A.

or =5/4 .
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velocity xs may be given17) as

                                J
               tJiL]s-'-"-"-('ilZ't,zg{i,;IIi,l,;,,,7,)'2

                          '

             '
whesce ns is the initial solid density, and a specific heat y is

assumed to be equal to 5/3. Moaceover, considexing.the mass con-

servation across the ablation front,,the propagation velocity

of the ablation Åíront X is calculated.
                      a

    .Jl,=4-"-(fL2,!Kli'IZIZ/eZ'?tlt4--/-----k-i,omi"ZA:"

                                                 '                  '

wheye the mass flow given in Eq.(3.28) and the weU-known shock
reiationsil) are used. using this propagation veiocity we can

construct the x-t diagram in the laborcatory frame, which is shown
in Fig•3•3. Th,is figure shows the case in whiÅëh xo = lol5 w/dm2

     'and X]) = l.06 vrn. Heyet lnA is set to be IO.,In Fig.3.3, the
                    'symbols S, A, Sp, and C denote the shock front,ablation front,
                    'so-called Chapman-Jouguet point (which rneans a sonic point in
                                                             ..
the frame moving with the ablation front),and the cut-oEf pointt

respectively.

     'i"he structure shown in Fig.3.2 and the dynamics given by

Fig3.3 exhibit good agreeraents with those obtained by computer
simulations, which are shown in Fig.3.418). ( Take care that
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Fig. 3.4 Typical example of the dimensional ablation structure

and the Å~-t diagram Eor the corresponding characteristicsr
                            '       'obtained by a eomputational calculation (Ref.18).

These cornputational results support the accuracy of

the present self-similar analysis to the laser produced

plasma behaviour.
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3.5 Concusion and Discussion

     Imploding a fuel target is tequired to achieve the inertia.

fusion within the usage of the practical laser. In order to
             '                                                'achieve the super compxession, the ' controUed compression ,
                                                          'especially adiabatic one, is necessary. The ir.radiation of laser
                                              '                                                              'light gives rise to a foxmation of the ablation xegion, and . .. '

through this region the absorbed energy is transfered toward

the overdense region. This transported energy causes the implosion

by doing the mechanical work against the inner non-ablating
        ,
region. As rnentioned in Sec.3.3, between the absorbed power

and ablation pressure there are such time dependences.
                           '

                               dof-7
                 /a6 `=/t .
                                                            (5,5Z)
                               fd-l
                 ?f -<ft

Namely,

them.

( Iab ==

 there

Let us

 const

 is the difEerence

considey the case
           '.). In this case,

in time response by t-or+i between

of a constant absorbed power
                          ' Eg.(3.32) says

`iii])tit    7
== --la  tfst

-> 2f cÅ~:

  -P(6
t

This relation means 'that due to the expansion of the deflagration
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region in proportion to t7/6, the absorbed energy can nog be

transported directly to the ablatÅ}on front but is spent so as to

compensate the expansion of the deflaglation region. This is

analogeous to pushing a wall in roller skates. Under the constant
                    '                                                       '                                  '                                                          'power absorption, the forrned shock wave will be weakened by the
  '
following raxefactive perturvations. rn order to sustain the l'.

shoc]<, we must therefore -require for the absorbed power to in-
    'creas as follows.
               '

       2fecma" . al==e . 1.baf l/`-

In such a case, the absorbed power is transported to rnaintain
                           'the constant ablation pressure supZpling more energy to the
                   '
expanding deflagration region. What was mentioned above is one

of the significant differences compared with the result given

by the stationaxy analysis shown in Chp.2.

     It may be interesting to compasce these different model
                                              'analyses. The treatment with the stationary rnodei has advantages
               -
in the simplicity of the basic equations and moreover being

easUy taken account of various anormalous effects. Howeverr

in intending to enclose the system self-consistently, we Åíace

the problem to dgtermine the unknown prarneter as seen in Chp.2.
                               'And, the restriction coming from the momentum conservation causes
                                                            '
an appearance oE singularity near the sonic point, iuwhich prevents

the solution from extending into the supey sonic region.

Morever,.the stai icnary solution says nothing about the time
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evolution of the phenQrnena. ThereEorer we have to pay atten-
                                                      'tion to under what conditions the statienary analysis provides
                                                              '                             'us with weU approximated solutions.
     Mn contrast to the stationarY treatment the analysis with

        'the self-similar method provides the ablation structure which

exhibits the continuous structure ovex the ablation region from
                          'the front to the vaccum without showing any singularities.

Moreoverr the tini e dependent dynarnical evolution of the ablation
          'phenomena can be obtained for the various cases.
                   '
     Zt is interesting to point out that not only the case

txeated here but also the others including, for example, the
                'effects of hot electron transport or heat inhibition ... may

exhibit the self--siMiler type time evolution in the ablating

region. So, the applications of this self-similar rnethod to
                'the vayious problems will provide us with the moxe realistic
                 'ablation and implosion phenomena.
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4.l Xntroduction

     When intense laser light is irradiated on a target, collective
processes, for instance, paxametric instabilitiesi)'2), and/or

resonance absiorption3).'4) become rnore irnportant than inverse--

bremsstrahiung. !n conection with the collective absorption,
                                                                 'hot eiectrons are generated5)'6)'7). when the hot eiectron energy
                              '         '
exceeds about IO kev, the mean facee path is longer than the scale

length of target plasma.. In such a case, those electrons penetrate
into the cosce plasrna and preheat it8). Furthermore, they expand

out inte the coxona region genexating fiast ions there9). Therefoxe,

we have to understand how due to those long mean free path electrons

implosion efticiency, preheating, and coxona-core decoupling are
        IO)           . In this chapter, we point out the electrostaticaffected

field generation, which redudes the hot electron heat conduction.

     A qualitative explanation of the electrostatic field genarationr
 'i$ as follows. When the hot electrons expand into the overdense

region, a return cuxrent ot- background cold electrons toword the

criticai layer is induced to maintain charge neutrality. The
         '                                                  'electrostatic fie.ld is then builV up because of Einite electrical
                                          'resistivity of the return current. Moreover, if the eXectron drift

velocity exceeds the ion sound velocity, ion waves become unstable

and the turblent state appears. Whe'n this is the.case, the
                                                     '
electrical resistivity is enhanced by electron-ion wave scattering.
                                          'As a result, the strong electric field is generated by anomalous
                                                             'resistivity, and the electrostatic potential energy at cut-off

reaches a few times the hot electron energy. This electric tield
                                                            '                                        'insulates the hot electrons from the core region. (This is shown

schemaiically in Fjg.6.1'.)'



N•SNC.C5

' ENERGyl

t
't

COLLECTI'VE

tttt.J

LIS1ON HoT
'ELEcTRON

CURRENT

l•

1

ELECTROSTATIC

  PoTENTzAL
I

iff

DENslTy •

COLD ELECTRON
RETURN CURRENT

REFLEeTION
s

LAsER

:::D

(OVERbENs'E REGIoN)

-m-L- IoN WAvE TuRBLENcE

s.

tt tt tt ttt t t tt tt (UNDERDENg'E'"'R'E'''<li+'i'dN')''

ttt

Lcs<< L {S LHs CUT-OFF

v-o
•H
ig

U
' -rhl

po
p
co

o
N
po
•Åë

Ho
o
sp
M
o
L4-l `

E rn.. as -HMqUi Srd. o
•H C>VEHqas o•H •rlvpcu oONoo"qo dlv pt
H

.

cr

.

pt
-H ,
lv



                                                                 va

       '
     Heye, the hot electxons are assumed to be collisionless
                                                     '                                    'because the hot electron-ion collision freguencyt vhi is ' approximately

related to the cold electron collision freqUenCY, vei bY vhi 2
          3/2Vei(Tc/Th) . << Veit Where Tc and Th mean the temperatures of

the hot and cold electyons, respectively. Note that thÅ}s relatiOn
                                     'Å}s maintained even if the electrons are scattered by the ion wave$.
                                              'Therefoye, the ratio of the hot electron mean free path lh to the .
                   '                               '    'cold electron path lc is lh/lc =`V ([Dh/Tc)2. Wh6n Th/• Tc is sufficiently

greater than unity and dur consideration is restricted to a region

of wid th, l << L Åí 1                         We can assume that the hot electrons are                     h'           c                                 '        ,collisionless whereas the cold ones auce collisional. Thereforez

the Vlasov equation is used to describe the hot electrons and the

cold electrons are described by the fiuid equations.
                                             '     The phenomena are assumed to be stationary, because the

electrons re-distribution time scale is rnuch shorter than the time

scale of ion motion and/or iaser pulse length. Two models are

considexed. One is the one dimensional slab geometry and the other
                                                         '                                         'is the spherical geometxy. <Note that the one dirnensiOnal slab

rnodel is a limiting case oÅí the sphexical case.) For simplicityr

we consider the slab case at first in order to clarify the mechanism

of electrostatic field generation. ' '
              '
     The hot electron distribution is then given by the BGK solution
                                                                '                                   'of the Vlasov equation. The velocity moments of the distribution

give the hot ele6txon density and current.' Using the hot electron
                                       'density and current which are now only the functions of potentialr
                                              'the cold electron eguation of motion is reduced to an eguation
                                                                 '
for the electrostc.atic potential. [Vhis equation contains the cold

electron-ion col!ision frequency. When the electron drift velocity
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             'is smaller than tle sound velocity, the weU-knowned Spitzer's

formula for the collision freguency may be used. For a supex-

sonic drift ve!ocity, an anomalous collision frequency due to the
ion wave turbulence has to be used. In order to obtain the '
                                                               '            '                                                    .anomalous collision Erequency, the wave kinetic equation for ion
                                                        '                                             'waves involving the noniinear Landau damping is discussed and

so--called Kadorntsev spectxiLira is used. Xnserting the resultant

spectrum into the quasilinear equation of cold electronr the

anomalous collision frequency is determined.

     For the typical pararp.eters of laser produced plasmas, the

potential protile is determined and tne potential jurnp IeÅë/Thl 'V

l rv 2 is obtained in the vicinity of the critical layer. Such

a potential jurap is mainly attributed to appearance of the ion

wave turbulence near the critical layer. The }iot electron flux

reduction is then found to be about 10 O-. (spherical) or 20 9.

<plane) of the free streaming limit.

     The dependence of heat fiux xeduction on hot electron

density is also investigated and the flux reduction is Åíound to

be enhanced with incsceasing hot electron density. Xt is interest-
ing, however, tSat in spite of such a reduction, the total theucmal

                                        'flux of hot electrons penetyating into the core xegion is
                  '
approximately constant. The effect of an anisotropy of the hot
                    '                               'e!ectron distribution function on the fiux xeduction is also con-
                'sidered. Finally, the fius xediction in the high Z material i$
                                                          'considered. In such a case,•electrostatic field effects oh the
                                                              '
flux reduction seems to be important even without ion wave

turbulence.
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 4.2 Equations for Slab

     The Vlasov equation

fh in the one dirnensional

Model

for the hot electron

 slab potential Åë(x)

distribution

is

function

uoO
x

/ti+ -sz
2pte

0Åë

0X
`i)

2U
/h --- 0

.

(4/?

The fluid

    '

equations are empioyed to desc nc ibe the cold electrons.

"eae ='  lo •• pma du JU
                 -

(422

eMe
ddi
dx pme ;V.,z' re "e .-•

 Te o/Me

ptax U3?

Heret ne, ue, and Te are the density, velocity, and temperature of
                                                             'the cold background electrons, where Te is assumed constant, and Jo

is a constant of integrations. The ions are assumed to be the
                                     '                                                      'stationary background with charge Z and density ni(x)r and the quasi-
          'condition for the plasmas is then shown to be
                                        '

              gffe = We "/oo71A4 ne

                             -- pa -                                                            (14?
             /feAiie"/,,/beU/h apt "' 0
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Note that the charge neutrality condition is ucequired $ince the
                                                                   '                           'scale of spatial van'ation L is rnuch longer than the elcetxron Debye

     Now iet us solve the Vlasov eguation for the hot eiectron by
the BGK procedurell). Here, we assume that the' hot electron

distribution function at the cacitical surface x=xc is given by a

Maxwellian one with temperature Th•

          .7iAll = (.,,)iilfSi2ii,% Je7h. -szx/> (- .,ll,Iie it/`}i) <{ii`<r?

     '
Here, nho is a density ofi the hot electrons at cut-off. The
                                            '
assumption oE the Maxwellian distriburion is based on the fact
                       'that the hot electrons are produced due to the stochastic heating

by the e!ectric field of plasma waves resonantly generated at

cut-off. It is obvious that the equation (4.i) conserves the

total energy for s single electron, • '
                       '              '    '

                  g. 17fn?u2-eÅëc.? •" e"zdi{

                                             '                           '

The potential Åë(X) is considered to decrease monotonically Åírom Åë=O
                                                 '                                            '                  'at cut-off to Åë=Åëo at a innex boundary (x=xo) whexe the Coulomb

collision between hot electrons and ion becomes significant.

!n such a case, electrdns climbing over the potential barrier are

assumed to penetrate into the collisional region and deposit their
                         '
energies.
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     On the other hand,

condition are yeflected

the

by

 electrons satisfyipg

the potentiai toword

 the

the

 following
          'criti'cal layer.

V( Uc tx] =pt 2e
ma

lip(x) - ipo 7 (4K?

Here,

of the

energy
(4.5),

vc is the velocity with kinetic energy equal to the difference

 potential energy.' The condition (4.6) is obvious frorn the

 consevation for Eq.(4.1). Under the boundary condition
                '                           '   ' the BGK solution for (4.l) is easUy obtained to be

fh ==

  x7fhlo

fitrcJh

0

.a?R,
(-.Cl,ll uz-t9ip(x)7 ; ( u( v. ?

     ......(szV?
        '
J (v)v,?

The schematic feature ore this distribution is shown in Fig.4.2.

Note here that t:'he distxibution(4.7) has a net current and a

heat flow firom cut-off `Loward inner overdense region.
                                                                   '     Taking the zeroth and first velocity moments of this distribution,

we obtain hot electron density nh(x) and current jh(x> - '  .

"Aa?

7h (x,

- t27h. -•e•9,'(z,re

        1
= - pt 7ZhLlh

 (fzS(x?] • Sl5' ( tic oo/vh J

z?,2 (eÅë./T,)
(42)
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Fig. 4.2 Schematic picture of hot electron

function g i• ven by Eq. (4.7) .

distribution
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fr

Here

by

' Vh =Vl- EEhJ7il{le

Eliminating n
      'the eguation

  tvdip '

    =d2

e
(4

and a function Åë(.g) -s an eacscor

di(g) = ,,-i-ndzt /,. Sz?7, (-f?2 dt

and ue in Eg.(4.3) by the use of

.3) reduces to the equation foy

                     -v           21at]i+x,ti,?I-:s'uiZc'

function

Eqs.(4.4)

Åë.

defined

and

(49?

(4.8),

l:gz',v,,     if'v+f.,U t9.e-ao" 7' zVk.silicfic? e:    ")"e-Åë- ,, -a.?
(</0?

Here, the nondemensional variables are introduced by

Åë"". -e Pcx?/1

.Jii zV--.- "(iK2/cJV.

f-(v-.-,(Xc']U)/C7c
-- -o?

ts//7

and also .2-aV., =' -Yu/t:,?

z/,V

.= (.(Åë" .v
-Åë`v?JA'2

!4/2?
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                      'where vo is defined by vo = vh2ncJo-i(xc-xo)-i. [vhe eqation

(4.IO) gives us a spatia' 1 structure of the electrostatic potential
?S&>. Note that Eq.(4.IO) invoives the peak potential value Åëo
         'at the overdense boundary, so that the equation is solved as an

eigenvalue problem.

     Fouc solving the Eq.(4.10), we have to determine the electron-

ion collision frequency vei. This pxoblem will be considered in

Sec.4.4. Before considering vds. we will derive the basic

equations for the spherÅ}cal symetric model in the following section.
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4.3 Equations foLv Spherical Model

                                         '     In a spherical plasma sustaining sphe'rically synmetric petential

Åë(r), the Vlasov eguation for a hot electron distribution function
          'fh iS given by

M.a-?-r fh     /t Iff(V.
      aVs,h4fap?" iad'-9'J22v.fA=0 (4/7?

For cold' electron, the fluid equations are

 2Z vae "e = Jos ,

     ',,mak (g/y?

eM ats? -
   eax

" rve M.,• 77eCl(e
     .d,,4" ra d2- (KiSt)

We also require•

    Now, let us

cut-Qff to be a

direction and Ti

charge neutrality condition same as Eq.(4.4).

 set the hot electron distribution function at
                           'bi-Maxwellian with temperatures Th in the radial

 in the azimuthal directionr namely,

J74k==
      93K
47ho-Me

(zny
29( ny- -f !/2{.

  /n'!Z

v2o)f,'ktmp," r.2-2zaiiuL2? (1/6)
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Here, v-L is the a' zimuthal velocity component, v.L2 =

(ve2+v"2/sin2e)/r2. The reason why we take anisotropic d'is-

tribution for hot electren is due to the fact that the electron
                                                                '                                  'acceleration. by resonance field is mainly along the density gradient

                                                                'directiont and in general, the hot electron distrubution is not -

isotropic. Considering the constiants of motion of electrons for

             ttthe central force in Eq.(4•.l3), we have the following conservation
    'relations for the energy E and the angular momentum'M for a
                                             'Single electron, J .
         '
             E= ;lerpt.2-ij2? -e er,?, : ca7ofC

                                                            (4/a?

             M= xU. -(u,2" uy2/sila2N?/z ,,ndl

If the potential Åë(r) vaxies monotonically frorn Åë=O at cut-off
                   '(r=rc) to Åë=Åëo at the overdense radius (r=ro), the electrons

climbing over th' e potential penetrate into the collisional region

and deposit their energies by collisions with the backgroud plasma.
                                                                'On the other hand, the electrons satisfying the following con-
                                   'dition are reflected by the potential toward the critical layer.

rf .2i) -i•illlil-i--Sz(un"%(2z7J
(e/2)
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Here, the definition of vc(r) is the sarne given in Eq. (v4.6) with
                                                         'Åë(r) instead of Åë(.x), namely, vc2(x). = 2e[Åëcr)-Åëo]/me•, The

condition(4.18) is obvious frorn the energy and angular monentum
                                                         'conservation, Eq.(.4.l7). rn Fig.4.3.a, the acheTnatic featuxe of
                     ttthe hot electron distrivuti'on at a radius r is shown. Note here
                                                     'that the distribution has a los$ cone according to the condition

(4.18). This is partiy due to an eÅíective potential (.centrifugal
                                                '                                                      'Eorce) associating with electron anguiar raomentum. Under the•

boundary condition (4.16) the BGK solution for the hot election

distribution function is derived from the conservation laws for

energy and angular momentum as follows:

fk'" 41k,
(/22z//ki,)j'67LrTA

K uzf7o [- ifL'Sie(XT)2(=tr -- -kr)J

(1/9?

Substituting

BGK solution

condition(4.

to a radial

distntbution

 relation(4.!7) into E and M of this eguation, the

 of the hot electrons is obtained under the reflection
                                            'l8). We can also reduce the distribution Åíunction(4.l9)
                                      'velocity distribution function, by integrating the

 over VL;
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                      .
                         tt4.3 Schematic picture oE hot electron distribution at a

    radius r;
                                          '
     (a) Contours of the distribution in Vrt V •

    The refmi.ected component has a loss cone to satisfy
                                          '    co nd i t '2' on (4.i8) .

     (b) The horv' ele'ctron distribution function versus V .
                                                      r
    The distri•bution consists of two Gaussian profiles of.
                              '    diferent halfwidths, given by Eq.(4.20).
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 t7Zk"

f.tYA

1

fA cr, y.2 =

 Whe
f.eYh

(l-A22)3

l

 ev 2tr
.a)<2[-.rtZ;eti.--t9

(/--pt221 .12 2K
7(-.fettiM,2..e

di(o) ;

pa(pte.
 E2

e
Th

 rf M. (' Ve ?

          ("iO?

Åëo7` (Yr > tic ?

HeaT-e, vh is the radiai hot eXectron theymal velocity ([vh/rn)X/2, B

is the temperature anis6tropy qefined by TVTht and tr''is the radius

normalÅ}zed by cut-off radius, rN=r/rc. The nondimensional function
                                  '        '                        'e is defined by

E2..
    .v/-- Xo 2/xA'2

!- tv2/0 "ifV,2/rs

This hot electron distribution

4.3.b. Taking the zeroth and

distribution, the hot electron

obtained as follows.

 function

the first

 density n

versus v

velocity

 (r) andh

r is shown in Fig.

 moments of this

 curxent jh(r) are

<72hlw= za"

 N7k tr7

=dy{ves2zzz(`di)

<!-,',V., 27!(3 ,,-1L

    ,lfh,Uh
= •-. --pt-  tt

duf ( ..S2.

-Zhr

(91;(%",v? + E •.sZ>(R ( /-- E

2EZ

         ;'>V2;,2

ÅëO)tt-k.>rs+/o '

2a'.2?•ik-,"7c?7

1
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              'Here, vc is noxmaiized as v'V c == vc/vh, and Åë(g) is the error
                                                        '                                                         'Åíunction defined by Eq.(4.9). '
     For the spherical case, we also obtain the diEferential

eguation of •Åë(r) using the charge neutral condition through the

same process as the slab case. However, since the rneaning of the

equation becomes clear by the use oÅí the integxal form, we $top

deriving the deffential for.Tn expZicitly.

     Using the integraticn constant Jos of Eq.(4.'l4), we solve Eq.

(4.l5> to obtain the cold electron density as the functiQn of Åë(r)r

 iJKIe=t4,5"e/.rC,>2a.'2Å~/'(iS.`7S(s)?dfi+n.Jz2k!oAe7--7--.SZ?'"V (12Z7

where neo is an integration constant, representing the cold

electron density at the cut-off. We normalize the potential and

the densities by the hot electron temperature Th and the cut-off
          '                                                       '                .density nc according to the s!ab case normalization. using

Eqs. (4.14), (4.21) and (4.22), we can rewrite the neutrality
                        '                                         'condition(4.4) as foUows.

,,2.='77`ulf---iiit,fli2zCi{IovOR'ffloi'?

      pt (nr,v'2-1?A'/
(423?



A4d'L

and

    (th7iZlh(07.4.t,2iys(Yg',7/.ipt,X'.le`-exf(-atgZr(s)?d,s+n",v,Jdy2(dip'"]

    '!va'VhoutY4,`,-4?,..,(g(a,?rf's-2?<1(.1,ii;f-2E2uZVte--(--3')7

                                                            '           .'v

v5here or= Th/Te. Eq.(4.24) determines the spatial structure ef the
electrostatic potential or(tr). If we differentiate this with respect
    '                     'to B, we get the difEerentia'1 form corresponding to Eq.(4.IO).
                                         '                   'Note that the equation for the slab case is obtained by taking the

lirnit, rc--ro == fixed and rc+co in Eq.(4.24).
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4.4 Anomalous Resistivity due to Xon Wave Tuxblence

     Before solving Eq.(4.10) or (4.24), it is necessary to deter--

mine the collision irequency vei. When the return current velocity
                                                        '           -ue is sTnauer than the sound veiocity cs = (zTe/mi)1/2, the

eiec6ricai resistivity is equai to spitzer's formuiai3). Howevdr,

when the drift velocity associated with the return current ex-

ceeds the sound velocity, ion waves are unstable and the electron

scattering is then dominated by the ion waves. Xn such a caser

the electu'cal conductivity is reduced anomalously. Therefoxe,

we must determine the collision frequency vei in the ion acoustic

                                                     '
                                           '
     When the ion acoustic turbu}ence with spectrum Xk builds upr

transport coefficients like eleetrical conductivity should be

estiinated Erom the quasi-limear equation for the coarse-grained

velosity distribution function.

?-'0-tfe"Y)"?-/xX-p."Åí,,a"2;iipht?/e+Z(i,)2ikllfe

                                 lfea"2vi

e2V

f?

( l7th 8(cu -/k w?

   '
). rO.

 '

er.ae?

Thereby k is the wave vector of an ion wave, 6(tu-kv) is the Dirac
    '
delta function, and the wave number spectrum Ik is the mean squaxe
                                                          2of the oscillating potential Åëk of the ion wave ( Ik = <lÅëkl > >.

                            - -"                      '
Taking the first veÅ}ocity rnoment oÅí Eq. (4.25) and comparing it



with Eq.(4.3), we obtain

collision freqUenCY Veir

    JYet'=re(tfl?i)2/ptf,/dor

the following expression ior the

L/IY;,lkart"ptl/k5(ca-ikpt)lketfedor

        c91

anomaious

U26?

The turbulence spectrurn Xk should be determined by the wave kinetic

eguat' x' on,'  in which the nonlinear Landau darnping is taken into
                                                         'account as a saturation mechanism of ion wave instabUity. When

the deviation of the cold electron distribution function from the

thermodynamic equUibrium is small enough, the distribution

function with the flow velocity ue and thermal Elux Q may be

approximated by' 14) .

                                                '
               '    ,f{-(,,jiill,53;7.-sz>f)ll-((V;V,.elle?2"'U`ZJ{/.ttS.u,

                               ((tt."ei3Ye'Felept"e)}7 (K2ij?'

                                                       '                                           '                                                                 '
                              '
where ve is the cold electron thermal velocity. Using this

distribution under the condition Z[Ve >> Ti, the w.ave kinetic
        15) .equation            IS



a"k

f'zi .0\lk !II2I! k."u:$, (u. e2va0'- es -' m,fi,Qu,z? 2!k

        t--(i`iiSi{iin,.l(iof••,%.,klz,,.(/kifae).Z,,,,I,k.xik!?2

         -r
                                '        x /ki-• aaySS(cu,,-bulk/ -/k/-ut?dth•llk-

(4ne7

Herei oo pi and to pe are the plasma freguencies of ions and electrons,

vi and fi are the thermal velocity and the distribution function

of ionsr k" = k-k', and the angle e is the propagation angle of

an ion wave with respect to the electron current. We average Eq.

(4.28) with respect to e over the unstable cone to obtain the
                                                        '      'stationary spectrura lk. "i"he theacmal flux Q in Eq.(4.27) is
described by Q = KedTe/dr fy' raeneve31c/LTr where lc is the cold

electron mean free path and LT is the spatial scale of the
temperature variation. consequentiyr Q/mepeve3 fy' velc/LT• ThUSr

sinee the condition lc/LT <(zTae/mi)l/2 is satisfied, we can neglect

the term induced by the thermal flux Q in Eq.(4.28) and obtain

lk=(.K?E' f",32 nv,.3c.bUe (!-ff72 /

2(se7`e2rdu,•2 2F(w 2
A(5?
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where 6 is the ve!ocity ratio C$,/ue (+<l>, the function F(6) is the
                                                         '
correction factor of order unity, and kc is the'  upper limit oE the
                                 ttwave number of the ion wave turbulence where linear growth rate

due to the c'urrent balances the linear ion Landau darnping.
         '
Substitut.ing this spectyum into .P.q.(t4.26), we obtain the anomalous

                                                         'collision freguenc,y vei by the use of the eleetron distribution
          'function (4.27). '

              or.,-f•te--4.lz4ze4ofe./Y(s? wg?

where H(6) is a function which comes from the angulax average

.over..the unstable cone. -Mhe function H(6) is plotted with respect

to 6 in Fig.4.4.

     When the ion fluctuation is superthermalr narnely, 6 < i,
            'the electron--ion effective collision frequency is given by Eg.

(4.29). On the other hand, when the drift velocity is subsonic,

i.e.r 6 < lr the collision frequency is given by Spitzer's
formuia,Z6) that isr

JVe(=K70IZ
lzi;.iiilf.if(i'y:t4?4ig,

(K3ol

where ln A is the Coulomb logarithm.



Åí7M

2.

1.

,

(6)

o. O.5 1.0

6

Flg. 4.4 H(6)
        .t
     ovey

     Cs/Ue

is

the

'

a function which comes from

 unstable cone, 6 being the

the anguler average

velocity ratio



                                                                  8st

                                 '
4.5 Self-consintent Electrostatic Field Generation and Reduced

     Hot Electron Heat Flux
                                '
     Using the coliision freguency obtained in the previous section,

we solve Eqs. (4.IO) and (4.24> with respect to Åë. Here, we aspume

that the ion density ni in Eqs. (4.10) and (4.24) has an exponential

profilet ni = nc/Z exp[(rc-re.)/Li], where Li is the. density scale

length. In such an ion density, the hot eXectrons are not subjected

t Coulomb collisions with the ions over a distance ls frorn the '
cut--of r" ;

           '/s --- Lt /Lt (/Ac/(,1-.7 b'"!)' (431?

'1?h'er'Gby lhc is the hot electron mean free path at the critical

surface. Over the distance ls the hot elelctrons can be described

by the collisionless Vlasov equatfion as shown previously. There-

fore, we take the systern size L to be smaller than the distance ls.
                                                                    'It is noted, however, that Eqs. <4.IO) and (4.24) contain the

maximum value oE the potential Åëo which should be determined

self-consistently. Therefore, they have to be solved as an

eigenvalue problern. We solved thern numerically.

     !n the slabe case, foUowing paxameters are used,
                         '
                 '                                '                  ll -S          "c'ZO pm, Xc'-a=fo2o(m. 77==/ok77-

          NE          47"o =' d,Y. 7re' .s`Z7)gZ, Zd;:=ZJT -4277-..

          Ld --- /02ut;t-. X=S"' (432?
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A resultant profile of the potential is shown in FSg.4.5. rt is

found from this Eigure that the turbulent state appears in the

vicinity of the critical layey and the potential Åë decreases
    '                                                     '    N    Åë increses) rapidly due to anomalous resistivity. In the(or

             'spherical model, the corresponding potential profile is shown in
                                                               'Fig.4.6r where additional parameters, B=l,'  rc=IOOvm, ro==50Pm,

are }ased. In Fig.4.6, we see that the potential height is
      'reduced by the geometrÅ}al effect compared with the slab case.
 '     Let us now investiciate the reduction of the hot electron

energy fiux. The inward going energy flux of the hot electrons

over the electrostatic potential is evaluated to be

             (22. .sc /... O"5LMeZ13/k rta dti la{z---Jitf.

                 -R.•foR, .AÅë,ZV? (k3?

in the slab case, and

0os -W 4re/o

     - Q.rs,,

    ooZ/..-tmvl3

        2';V;,2

/liMk?dVr

/<g - a- /g? x" ,vg

   1of r-r.

'2x2de" ," ) (434?



9o

2.

le

S

N

N

N

N
N

N
N

,

N

NÅë

N N   .kb'
.q.,.

'N N     ."-b .nyk. .-

o. O.5
d,4VP'

x
1.0

Fig. 4.5 The electrostatic potential
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Fig. 4.6 The electrostatic potential and the return current
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near the critical layer (or=1) and the large electric
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                                                 '                                       -l/2in the spherical case• Herer 9c == (.2y) nhovhTh is the heat
                                                        'flux density of the half Maxwellian distribution at cut--off,
and gcs == (2g)-l/2nhovhTh4-grc2 is the total heat nux ernitted Åírorn

th.e cut-off•sphere. From Eqs. (.4.33) and (4.34), we define a flux
                                                                 '                                   'reduction coefficient E by , , , . ' •

         f=' 8"=2x2 (- e".v? ess

in the slab case, or

        ,/fEE -t--ij-"=F,.///l/,?7.,.2>2/(-e,l? (g,36)

in the spherical case.

     Eqs.(4.39) and (4.36) cleayly indicate that the electrostatic

field effect, say exp(-oro), reduces f both in the slab and

sperical case., However, in the sphericai caset the efEect of the

anisotropy of hot electron distribution B and the geometrical
effect Nro2 are also effective for the inhibition. Frorn figs.4.s and

gigB ig.is.xgu:e,ihix I:2 g;:".;l.l:", g2e.gii;l:;g.[,cg,el2o.i2.the

that the generated electrostatic potential has the height alMost
                         :t .egual to hot electxon therrnal energy Th•

     Let us now investigate hot electron density dependence of f

at the critical layer. Fig.4.7 shows the result. Although one
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                                                    '
                                        '                                                '
Reduction coefticient oE hot elect]ron'heat flux versus

hot electron density.
                                                   '
The solid line corresponds to the reduction coefficent

in the slab model. The dotted and dash-dot lines
                                                     '
corscespond to those in the spherical model with B=O.l
and B=i, respectively.

<a) Reduction coefficient f versus hot electron density
IYho where f is given by Eq.(4.3s) or (4.36). ,

(b) Total energy flux penetrating into the core region
veysus hot electron density ?Iho. •This flux, which is ,.

proprtional to the quantity fthof, is insensitive to

variation of the hot electron density.
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                                                   '
of the most irnportant problems in bhe laser produced plasma is how
                                                         '
the hot electron density is related to other physical quantities
                                '                                        ttsuch as Th and Tc, we have res'tricted our consÅ}derarion to the

density dependence of the reduction coefficient E without changing
                                   'the other parameters used in obtaining Fig. 4.5 and 4.6 previously.
                                          '     Fi'g.4.7.a shows the nho dependence of the reduction coefficient
                                                tt
f and Fig.4.7.b shows the nho dependence of the totai eregy flux

penetrating into the core region, which is proportional to nhof.

!t should be emphasized that the potential depth becomes larger'

in pxopogtion to the hot electron desity nho and the reduction
                                                           'coefficient f decreasgs. However, the tatal energy flux penetrating

into the core region is independent of nho and is maintained almost
                                              'constant as Nnhof == O.ll in the slab model and fthof =•= O.e6 in the

                                                           'Sph. eriqal model.

     Let us now investigate the effects of the anisotropy of the
     'hot electron velocity distyibution on the Elux reduction. When

we consider the machanisms of hot electron generation; for instance,

the resonanee absorption the eiectrons are accelerated mainly

along the density gradient which is the xadial derection. When
                'this is the case, the relation [Ph >> Tl'N:-• [I]c is generaily

established. From such a point of view, the B dependence ofi the

reduction coefficient f was investigated and the results are shown

.in Fig.4.8. This figure clearly indicates that f is insensitive to
                 '                                ttB. [rhis fact is interpreted as follows. For small B, the hot

electron number for the lgrge angular momentum is small and the
                                'average hot electron kinetic eneFgy in the radial direction is

relatively laacge. However, a large electxostatic potential is

built up and sirong refleqtiQn occurs due to the electrostatic
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filed. On the other hand, for large P, hot electrons are

effectively reElected both by centrifugal foyce and a'

rnodereate electrpstatic filed. Because of the selfi-consistent

behavior.of the eicetrostatic filed as rnentioned here, the

reduction coefficint f is maintained constant.
                                            '                                           '     We also investigated the dependence on the ion charge state

                                         ttZ of the hob electron flux reduction.. Althought the hot

elcectrons are free fxom collisions over the distance l from                                                       s
cut-off given by Eq.('4.31), the cold elctron return current
                                                                'depends upon the coulomb collision fxeguency, namely, Z and the

electrbstatic potential then depends on Z. Therefore, even if

oux consideration testricted to the region where hot electrons
          'are coltisonless, it is meaningful to look at the Z dependence

of the hot elctron heat flux. The Z dependence of f is shown
'in Fig.4.9 for the slab mode. From this figure it is found

that withÅ}n the coUisionless region the heat flux is further

reduced by a factor about O.2 with respect to that genexated

at cut-off. So, the heat shielding by the elctrostatic field

is very important even if high Z materials are used.
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4.6 Conclusion and Discussi.on

                      '                   '     rn the stationary production of the hot electrons, a

                                                          ,cold electron return current is induced and an electxostatxc
                                            ttfield is built up due to finÅ}te electrical resistivity.
                                                         '
We investigated the elctrostatic field effects on the hot

elctyon heat flux. It is found that ion turblence is produced
       'locally Sn the vicinity oS the critical layer to enchance the
                                  'elctrical resistivityr The induced potentinl depth leÅë/[Vhl is

found to be larger enough to reduce the hot electron$. The flux

reductton coefficient f depend$ strongly on the hot electxon

density.. The heat flux of the hot electrons (ccnhof) is, howeveir,

nearly constant, which is about O.04 ncvhTh for the slab rnodel
and O•02(xcro)2ncvhTh for the spherical rnodel.

     We should also emphasize that the geometrical stxucture

oE the target plasrpa is Smportant not only Åíor the transport

of hot eictrons but also for the general tran,sport problems

of energetic particles. Finally, we claim that the electrostatic

field is also important fox hot eiectron shielding by high Z

materials.
              '                                                       '           '     Joule heating of the cold electrons was not taken into

account in this paper. Xn the case of a rest plasma, the
               'stabilization of turbulence due to Joule heating wouXd be

possible and Sr"portant. However, there always exists the

ablative flow in laser produced plasmas, and the enexgy.
                                           'depo$ited by the Joule heating is convected out into the

undexdense region. Therefore, the backgroud electrons can

remain cold. This fact is interpreted as follows. The
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energy balance between Jouie heating and convcntive loss

gives us the approximate cold electron temperaturer -
eÅëo/(M2/2+5/2), wheye M is the Mach number of the ion filow

                                                Nat cec-ofE. Thereforet the cenvention loss for M = 3 keeps
                               '                               'elecctron ternperature. Tn such a case, we can justÅ}fy the

neglection of Joule heating and expect anomalous heat Elux
                                            'reduction.
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Chapter 5

Flow Effects

of Resonantiy

on Breaking

 Produced Plasma Wave
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5.l. Introduction

     At hlgh laser intensity the interaction between laser
                                       'and coro4al plasma of fusion tarcget appears to be dominated by

                                            'the coupling of electromagnetic wave with plasrua wave. Thusr

the dominant ab$orption mechanism is likely to be the linear

conveysion oÅí the transverse electron magnetic wave to a

longitudinal plasma wave. This occuys in the vicinÅ}ty of the

critical density in t'he case oE the obliguely incident P--

po2arized laser light. The raicroscopic analysis of the linear

conver' sion is necessary associated with the determination of
                     '
the hot .electron energy spectrum, which ha$ direct effect upon

transport pxoblems as shown in the pcevious chapter. Xn the

case of strongly driven piasma oscillationr the growth of the

plasma wave is saturated by the onset of wavebreaking and the

production of energetic electrons.
                                                            '                                                      tt     The wavebreaking amplitude in a cold, spatially uniform

rest plasma without an external pump field has been calculated
by DawsonO. The corresponding amplitude in a cold, spatially

inhomogeneous'rest plasma has cornputed by Koch and Albritton2),

and the investigation of the wavebreaking ucegime where collective

osiliation energy is converted into random energy of the electron
motion has also been done by them3). pxasma ternperature effect

                                             '           'on reducing the wavebreaking amplttude has been calculated .by
Kruex4) by the use of the ucesuits caiculated by cokfey5> with

the "water bag" raodel. ""Paricie code" simiXation has been

also employed `Lo investigate the dynarnics of the resonance
                                                         'absorption6)'7)'8),.givipg good agreements with theoreticai
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results. Using this particle code, the correspondence between
                                                       '                                                         9),10)simuZation and experimental results has been investigated
                             'to get, especially, a scalipg law to the hot electron tempexa-
                                                           'ture. An'd it seems that a good agreernent exsistes between these

resuZts.
            '                       '     However, the laser pacoduced plasma is not an ideal. acest

plasma but is a plasma expanding into a vacuum. Moreover, as
                                                          '                                          'we have seen in the p,reviou•is chapter the generation ofi hot
                                                 'electron induces the cold electron return current toward the
                                  '                                    '
underdense region. The exsistence oÅí this flow will influence

the resonantly excited plasma wave, and hence the hot electron

generation. In this chapter, we take flow effect into account

to investigate the linear conversion and the plasma wave

exc.itatxon.

     Mn Sec.5.2, the Lagrangian description is employed to

Sltvestigate the dynamics of resonant excitation of plasrna

wave and the oscillation is expacessed in this fuame. Inversion
                      'frorn Lagrangian to Eulerian variables is earxied out in Sec.5.3

and a distortlon of the wave profile is demonstrated, as well
                                         'as an appearence of wavebreaking. Zn Sec.5.4, the xesonance
      .t
field amplitude limited by the convection loss is obtained,

including the amplitude limitation due to wavebreaking.
                                                         'Fina!ly, the cpmparison with the other, finite temperature
                             'eÅífect and time dependent wavebaceaking effect at rest piasma,

is shown to investigate what .effect is rnost signiÅíicant for

our practical plasma.
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5.2 Basic Eguations in Lagrapgian Frame.

     We con$ider an obliquely incident electro magnetic wave

on a plasma with a monotonically increasing plasma density.

The laser electric Åíield is polarized in the plane of incidence
                                                      ' (P-polaacization). The electromagnetic wave is reflected-by

the density gradient so that it does not reach the critical

surface, where the Xaser frequency equals the plasma frequency.
                     '                                                 'However, some of the eiectromagnetic energy tunnels into the -. '

critical surface. Thus an obliquly incident electrmagnetic

wave rcesults in an electric field along the density gradient

with the frequency near the local piasma frequency at the

critical surface and resonantiy excites an electrostatic plasma

Lwave.

     We use the Maxwell equations and the eguation for the

electron motion to see the resonant excitation of the plasrna

                                       '             w.as =' z4fZfO- tSE da0

                                                         '                                            '             yz =r 4ne c/gnL-ffe) (J:2)

                    '                                                            '            ha J?t.vi9pt- -eE , (s:3?
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                            '                                                      t-we do not consider the ion motion because the wave excrtatxon

occures much faster than the time scale of ion mobion. The
   'efEect of the electron temperature which give's rise to the dis-
                                   '                                  'peysion effect on the excited plasma wave is neglected. Neax
                                                              '                                        'the critical surEace the tunneled magnetic field shown ih the

left hand side of Eq.(5.l) corresponds to the deciver field.
                                                    'The amplitude of this field is almost homogeneous near the
                                   'critical layer along t.he density-inhomogeneous direction (x-

direction) and the vectoy component of V9XB is dominant in the

Å~-direction. Therefore, the induced plasma wave oscillate$ in

the x--dir.ection. We here consider the motion only in the

density-inhornogeneous, x-direction. Then, Eqs.<5.1)-(5.3) are

rewritten as the form

  tOE r ---4ij -- e(pa2??.

                                    1upt2Å~E == enegki pt" 4Z7

      -C2,+u,-2.)v=-tiE
                    '

    /(h/?

    /6T2?
 '  '

    /(J?3?

wheMe ("ZXi6)x is the x-component of the vector Wx{B and E,

V, and j is the electxic field, electxon veloeity, and curyent

in the x--direction, respectivrly.

     By representing the aboube equations in the Lagrangian
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framer we can easily

considering vaxious

the variatiQn of the

is descrided by

 treat layge amplitude

nonlinear effcts. Frcom

 electric field in the

oscUiation
 Eqs (.5.I) '

Lagrangian

.without

and (-5.2)t

frame

XE
ft= w-e

wheace q/dt = D/bt +

the electron motion,

given by the initial

the total derivaptve

use of Eq.(5.4), the

                          '   2Wl.Y.C(tva,as?. (Jr4)

va/ax is the total derivative following
        2 is the eiectron piasraa frequency and to      po
 electron density (ne==Zni at t=O). Operating

 to Eq(5.3)' and elirninating dE/dt by the

 fol!owing model equation is obtained.

au
17zrt t 0c

l!;l7' = -- .rze. C (orXva)x (SLfr?

The driver term of

approximately given

the right hand side in

 by the form

the equatzon is

,iZ3'

where co is t5se

= 29.'tsV(wl-k. gt? e2
          '

r- reguency of the electromagnetic wave; k =       y

(Yf6?
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{lsine is the wavenumber in the y-direction with the incident

angle e; Bc is the magnetic ÅíÅ}eld ainplitude at the critical
                                                        '                                opoint and assumed constantt and Z?z means the unit vector per-
            'pendiculer to the plane of incidence. Substituting Eq.(5.6)
                                                       ' '
into (5.5) and neglecting the sinusoidal y-dependence of the
                                                'vayiables, Eq.(5.5) aceduces to • •
                                '
                                                     '
                                                  '                                                         '                               '                                                   '         t42. u+ tu1; v- -w21d su(tue (sn

      .            '

   - eBwhere vd = mmCsine is the drivex strength.

     In the above equation the plasma freguency tu                                                  defined                                               po
'by thefixed ion density is the function of time in genral,

since the electron has a mean velocity. Noticing this and

using a complex representation foT the oscUlatien velocÅ}ty v

with v=f<t)expGoot), where f(t) varies slowly in time, Eq.(5.7)

reduces to an equation for f(t).

       tC2./ "2zwSllf/ +(o,.11,z(---ou21../- --av2ig

Since the function f(t) is slowly varing in time, the second

derivative in this equation is sufticiently smll. Neglecting

this term and integrating the above equation, the resu!tant

oscillation velocity for Eq.(5.7) is obtained in the form



                                                             /lO

                                                     '                      '                                                       '    U..hftwMd.]zjgkbul?/.S,/pI-L,,/tii'ZlkE2f]2,. Yfui/7dti

                                         '
where eepo(t) is the plasrna frequency in the Lagrangian frame

moving with the electron fluid element. '
     Let us assume that the background plasrna has a linear

density profile near the critical surface where x==O, i.e.r

                                 '
             ocll.2 '- ca2(/--/? - (s9)

                                                 '
where L Å}s the density scale lep-gth. In the Lagrangian framer

relation between the Eulerian coordinate x and time t is shown

                                                       'as

         2f" == /. tV., a.a? dl "V,t-a (st/o?

             .                                               '       '
where a=x(t=O) is an initial position of an electron fluid

element and vos(t,a) is an oscU!ation velocity of this elemept,

which may be gSven after solving Eq.(5.8). Since we are in-

texested in the oscillation behaviour near the critical surface,'

the ;nean velocity can be assumed constant.

     When we carry out 'the integral of Eq.(5.8), the plasma

frequency copo is given by substituting Eq(5.10) into (5.9).

In this case, the inclusion of variation fior the background
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plasma Erequency due to the quiveripg rnotion, which is.given
          '                                      'by the fiyst term of the right hand side in Eq.(5.IO), allows
                                                     'the appearence of some nonlinear phenomena, in particuleri the
                                                'generatioh oE higher harrnonic oscilXations. Although such
nontinear effects are important near the criticai iayerii),

we neglect these effects and Eocus our attention on the effect

coming frorn the exsistence of mean eiectron velocity.

     Let us introduce nondimensional variables to the time,

coordinate, and velocity.
   '

      tfs=%%,'i S="2..-'U"=?-J,(,' (3T!!)

                                         '                                          -1                                -1Whexe tD and xD are defined by Btu and Bvoco respgctively
using a nondimensinai prarneter B==2(tuL/vo)i/2 which means a

square root of the ratio between the time interval L/vo and

the oscillation period. Note that the pararneter B is much

larger than unity within the context of our interest. By the

use oE the nondimensional variables defined by Eq.(5.ll), the
                                                        'oscillation velocity of Eq.(5.8) is shown as

   %;, .. fz l;dl R ( eZas-ÅíF]ptY?/, ;e Z(2--4-`fk'"S'2?di,,,//.?

where j2e means taking a real part. Introducing the nondimen-
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sional initial position tr==a/xD and a new time coordinate n

g + 5 ( The oyigin of this time n=o is set to be the time when

the electron fluid element which is located initSally at a
             'passes the critical surface x---O.), Eg.(5.l2) is rewritten as

          '                                 '             '                     '                    '               '
    l2,(.'("2za'v7r(t(f2/k';/(3zlC"/nv(ve7ia/AV?IC(/.?7?

              -C(/.?2?7-S!lrts7-/?-aF7Zr,JP(/.'-•7?-,J)(/.,"zaVJ}

                                                          (S,13?

where the functions C and S are detined by the well-known

Fresnel integrals as

6ts?

i8(g?

./..gnv

==

/ln/z!

  - pa

r.4

f
(

t2?

ttLD

dt

dt

respect='vely. .Profiles of these functions are shown in Mg.

5.1. For example, the oscillation ptofile given by Eq.(5.l3)
                                             ' '                                'is shown in Fig.5.2 where B=50. In Fig 5.2.a, the case where
            'ty=O, say, initially located at the resonance pointr is shown

and the other case where 2{=-oo is shown in Fig.5.2.b. The
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                                            'later case corresponds to the stationary osqUlation profUe

after the passage of sufficient time. Note that in order for

the resonance oscillation to be enhanced it takes sufficient
                                                           '                                   '                                'time. This is clear from that the latey case with sufficient

time before arrival at the xesonance point exhibi V.s muCh en-

hanced oscillation than the Åíormer case.' It is also noted
                                             ..that the oscillation amplittude shows its peak value after arrÅÄ/H
 '
ival at the critical point and its envelope exhibits a Fresnel
pattern defined by (d2+s2)i/2 in the case where or=-oo. we are

interested in the flow effect on limiting the resonantly enhanced

amplitude. Thereforet we will proceed using the oscillation
form in ' the case where or=-co.
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5.3 !nversion from Legrapgian to Eulenian Variables
                      '                      '                                                '     The quiveying distance defined by •

             dlos--/.Izaosd8

                             '
                                               '
may be calculated from Eq.(5.l3).. By the use of the fact that
                          '                                            'the prarneter B is much larger than unity and we aire inte]rested

in the osciUation behavÅ}our near the resonance point W•here

n is o'rder unity, then the displacement given by integrating

Eq.(5.13.) with respect to tim..e n is shown appyoxinately by
                                             -                                            '
                                                 '

      62.-.-ts--E.ld[s/x(/g2-72:a""A?.d(/.".e27?

                   f tw te7-7 2- a'VDs(A. oJ (S/9

       '                 'where in Eq.(s.I3), c(v'2;/7172t) and s(!2:/7iF2X) are neglected

                                                           '                               '                                            'because tr ÅÄ oo, but the wave phase in the argments of the sin

and cos funcbions are left. The normalization of 6x is                                                    os
            N                = 6x /xdefined by 6Xos os D'
     Let us consider to carry out invescsion from Lagrangian

to Eulerian va-riableS. The relation (5.IO) is scewritten in

                                         'the nondimensional form '
                      tl tt
           '
            ;t\"--.xzV,.Åëa""?"7 6!3k?,
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using this relation with Eq.(5.14) we can txansfOrm frgm
Lagrangian cooscdinate tr to Euiexian cooxdinate 9E. For example,.

the wave profUe at some tirne in the Eulerian frame is shown
in Fig.5.3 for the oscillation velocity given by Eg.(5.l3),

where the prameter vo/vd = 5.422 is employed.'It is apparent''
                                                       '                                               'from this figure that the deformation of the oscillation pro-
                    '    'file from a linear-phaset sinusoidal one appears and the wave-
breakÅ}ng occurs in the underdense region where Nx > 3.
                                                      '     For the corresponding electric field, we can obtain k =

6%s ixom .Eg.(5.3)' with Eq.(5.l2) in the same approximation

used in obtaining Eq.(5.14). Here, the electric field is
              funormalized as E = -eBE/meevo. The electron density perturbation,
6n == ne-ne(t=O)r rnay be given by the continuity relationl2);

                                    2?r             ve. a-o? t= iJl22 (l71? 'a4

              6?. / --/. (4/6?
                        /-ta..v(mas?

                              'where 6Nn = 6n/ne(taO). The electxic field and electron density
                   '                              'perturbation aye shown in Fig.5.4, where steepnirigs of the

electric field and correspondSng density bounchings with
                                                           '                            '      '                    'narrcw highdense regions appear. It is noted that when and/or
where the inequality, 2v(6scos)+l < o, is satisfied, the trans-
formation from Lagrang9'gn to Euierian variabies 6oes not remain
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                                       '                                               '5.4 Wavebreaking Condition and Resonance Field Amplitude

     As mentioned in the previous section, when an overtaking

of the el.ectron fluid eiements appeart the phase mixing of

the osci!lation motions lindts the wave amplitude to less

va!uet as weli as the Lagrangian formalism that has been
                                                       '
ernployed in the present anayysis has no meaning mathmaticaUy.

As apparent frorn Fig.5.3 and 5.4, wavebreaking occurs pre-

dominantly in the und'erdense region. This may be explained

as follows.

     For a streaming cold plasma, its dispertion relation is

readiiy "shown as

              (w-feae?2= ocl12

                                     tt
where uo is a mean velocity, .tup is a plasma frequency, and

k is a wavenumber. Apply the dispertion relation to an in-

homogeneous case, where cop=cop(x). Then, the local wavenumber
                'is given by (coo-tup)/uo by assuming co=too: const. In our problem,

as seen in the previous sec-wion the wave amplitude in the

underdense region ( oso?cop ) rernains nearly constant. (see Fig.

5.2.b or Figs.5.3, 5.4.) Therefore,setting this amplitude

as vs,for instance, we can roughly estimate the wavebreaking
                                                         '              'conditions as ' -                                                   t                    '                                                           '                                    '
                                             '             w •, ttvo             ]5'St!gve.--wR'blOf{;l;'(

                 '
                 ---">' `(-2'i rf{; (/nv t,O?`paio ((L<;,'/7?
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This ineequality means that if the phase velocity oE the plasrna
                                                      'wave becomes smailer than the oscillation vellosity, electron
                     '        '                                                        'trapping by the laxge:amplitude wave potential occuxs, and the
amplitude of this wave is lirnited. This is one oE rather '

qualitative explanations fox the wavebreaking phenomena.

The inequality (5.17) says that the wavebreaking pscedominantly
                                              ..occures in the underdense region.

     The above discussion for the wavebreaking condition is

not so strict. The strict defÅ}nition of wavebreaking is given

by a breaking of Lagrangian Eorrnalism. The condition of this

breaking is shown from the continuity relation as

                  ,,,i-,((clSli?I.1,,,) K"/ ((,st,)id`?'

                                                       '
                                 tt
for the present problern. Making use oE Eq.(5.l4), elnd minimai-
                                                          'zing it ovesc an its oscillatSon periodf we obtain a local
                '              'wavebreaking condition. ' '
        Åí' (.'-y. I/(s/;szr7,s rffpt "etcal7?7]F,

              '                    . (f.z 7•C (ffo - si ig(22?77 (s•/g7

                                                             '

where n corresPonds to the coordinate of the osciUation

cen"Ler. The wavebreaki pg condition (5.l9) is drawn in Fig.5.5.

Foy the example in the previous section where vo/vd==5.422, it

is evident E-Tom this Eigure that the wavebreaking condition
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                                                                   '
 '
                                                               's satisfied in the undexdense region where n ' fit k >iX' 3,.as

noted in the previous .section.

     Let us determine a peak arnplitude of the present resonance

field by taking into account the breaking condition. The

peak ampZitude yosp, which has a diyect relation to a maximum

energy of hot electrons, xs estimated from Fig.5.2.b as .

          %.7=z,/ubl/v.)i4'•Vd •,' . (3ft..?

                                                      kt,i
      ' id7-Kf3 dtrt Xe3(LUti/ca)
                                                         '

                                                 '
, when wavebreaking dose not occur at this point. Howeverr

in the case of vo/vd < 2.7r wavebreaking appears at this peak

point. ThesceÅíorer we have to take it into account to get

the peak amplitude. As the yesults, we can expect the follow-

ing peak amplitudes fox the streaming plasma.

                 '                               '                                 '                                           '
                           tt
             2,!(W):l714,?/i tid 7`Sx -ta%- )2,7

    ZL("'/' '--' /,B(rblL/vd>i6Li(d .7tii,. It2;l-o .,t..,7 (/<"2iL!

             '                                                             '           '                                                 '
                                            '
                       tt
Thus, if the flow velocity is sufficiently lascger the resonance

field is satura`Led by the convection effect. On the other
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hand, when the flow velocity is not

occures predominantly to lirait the

resonance field.

 so

peak

large, the

 amplitude

wavebreaking

of the
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5.5 Conclusion and Discussion

                                                        '
     ln the previous sections, we have focused oniy on the

convection effect for the saturation mechanism which limits
            '                                                       'the resonance tield amptitude to a finite value. We here

intend to consider the other effects of the electron tempera-
            'ture dispersion and.rest plasma wavebreaking, and to cpmpare

them in order to specify what exhibits the most signiEicant

effect fosc the resonance field and, in addition, for the hot
electron temperature. The fomer efÅíect7) timits a localization

of the resonance tield by a wave dispersion comÅ}ng from the
electron' pxessuxe work. The lateac effect2) is essentiaHy

                                       'the same with that described i] the present ana!ysis without

the treatment of a time evolution for the resonance field..
t. .t
According to Ref.7t the resonance field saturated by the

dispersion shows the profile given by an Airy function and its

peak amplitude is

                   %.T-/zr3;?L?2/'la (s2?

                                           'where ve is the electron thermal velocÅ}ty. For the eold rest

plasma, wavebreaking appears when the peak amplitude reaches
                                                     '
                                             '           ' M../.".-(t/2itfcl:ft!tiLi>)'e'6?tzbrf ts,23]

as given in Ref.2.
                                                         '                      '     Cornpareing these arnplitudes given by Eqs.(5•21), (5.22),
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and (5.23) and noticing that the most significant effect limits

the peak amplitude to the lowest value, we obtain the follo-

wing condition to the case where the flow effect is most
significaht.

             -zlii' > 3,o (.4, ?v2g

              "e                  > 2,2
              Vd

Note that ve/edL N XDe/L is much smaUer than unity. The

diagram for the competition between these three effects is

shown in Fig.5.6. To know where our plasma is located in this

diagram is a drastic problem associated with hot electron

generation. For the particle code simulation, it seems that

the effect of flow is not included. However, in order to

investigate the steady production of hot electrons, this eEfect

can be expected to play the significant role in the actual

laser produced plasma.
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Chapter 6

Effects of Flow, "i"hermal Conduction,

and Compressibility on Irnplosion Symmetxy



 6.l I.ntroduction

               '     To achieve the laser fusion within pscactical laser
                                              'energy, (IO rv iOO kJ), it is important to compress the fuel
up to lo3 N lo4 times soiid density. Even ig the achieved

covapression by $pherically symmetric implosion is extremely

high, unavoidable departuxes from symmetry limit the achiev-

able cornpTession. These departures from symLmp.etry can arise

from pellet asymmetriesJ from nonuniform laser il!umination,

and frorn hydrodynamic instability. The fusion pellets must
be suffi6iently symmetrÅ}c so that the compression is not

reduced by"nonunuform motion of the pellet surface. Though

      .a requzrement to the pellet surface is severe, it is not
                           'inachievable.
                             '
     The uniformity of laser energy deposition on a spherical

pe!let surface depends on the number of the laser beamsr

intensity distribution, and focusing condition. If any

smoothing ox averaging effects are absent, the nonuniformity
                                                    'of laser flux would lead to marked temperature and hence
                                                   '
pressure variation in the pellet surface, causing non-

uniform acceleration and destroying the spherically symmetric

hydrodynamic motion. The effects of nonuniformity may be,
                                         'however, very markedly alleviated by electron thexmal condi-

tion through the conduction region. According to Ref. I, -

the characteristic srnoothing scale is of the order of thousands
                         :tof Tnicrons for.glass laser case. This scale is much larger

than the pellet radius. Therefore, as long as the thermal

condition is considerable, the conduction tends to make the

pressure at the ablation surface much more symmetric than

liZ



might be expected frorn the laser energy distributipn (wsee

also Ref. 2). This smoothing effect essentially depends on

enrgy transport problem, so that reduction or limitation of

heat transport would reduce the srnoothing effect.

     We now turn to the question of hydrodynamic stability

of the implosion. Principal x-t diagram for the implosion

of a typical target is shown ini Fig. 6.1. The typical

target is constructed by thxee layers; say, fuel, high-Z pushexr

and low-Z ablation. !n 'the light of the classical problem

of Rayleigh-Taylor instability, this instability can occur

at I, XI, and ZTI in Fig. 6.1, and any perturbation of these

surface wil•l grow. At a plane interface the growth rate is

gzven by

               Y = <ctkg)l/2

Where ct [= (pl--p2)/(p"p2)] is an Attwood number, k is the

wave number of the perurbation, and g is the acceleration oE

the corresponding surface. For the instabUities at II and IZZ,

the classical formula may give a coxrect growth rate without

rnodification due to a diffuse boundary effect. However, for

the instabUity at the ablation front (! in Fig. 6.1), this

formu!a may not provide a well appacoximated value fosc growth

rate since there exists the ablating Elow across the front,

.the large thermal conduction, and so on. The stabilSty

analysis to the ablation firont, which is characteristic for

implosions in all Å}nertia.Åíusion schemes, is unavoidable

problem to achieve supercompression.
                                                         4>     On the effect of thermal conduction, Nuckolls et al.

suggested tha't the amplitude of the instability wiil be

restricted by ablative "fire ploishing": any salient high-

!S3
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density region will be neayer to the'  csciti.ca,1 density surface

where heat source exists and wilZ thus be rnore rapidly

ablated. Z.n Refs. 5, 6, and 7, numerical analysis have been

done using .one-dimensional linear perturbation codes in

which the analystic equations govexing fluid dynamics are

transformed into a set of linearized equations govering the
                    '
tÅ}me evaluation of peturbations, decoupled by an expansion

in term of spherical'or Fourieac harmonics. Shiau et al. in

Ref. 5 concluded that t•he ablation surface is not stabilized
                                                      'against small depatures fro!n spherical symmetry. However,
                                                 '
Henderso'n et al. in ReÅí. 6 found that for conditions yelevant

to laser Åíusion experiments the suxface is posit-'vely stable..

Moreovert Brueckner et al. in Ref. 7 showed that the ablation

surEace is stable, and they pointed out that the inconsistent

result obtained in Ref. 5 is due to the fact that the tempera-

ture used in the analysis was much lowered for the thermal

conduction effect to be eÅífective to the ablation front

stabilization.
                                         '
     The flow effect on reducing the classical Rayleigh-
                                             8)[raylor growth rate was pointed out by Bodner. He carried
                                                       '
out a model analysis by setting that the ablation front is
                                                    '          'assumed to be discontinuous surface and the flow across this
                    '                                                       '
front is sufficiently subsonic in bQth sides. He [Qund.

that the effect of convectional flow reduces the classical
                                     'gr owth rate to •
                    '                        tt/                y == ,liETt -' ku
               '             '                                                        9)where uo is the upstream flow velocity. Afanasev et al.
                   'also pointed out that the convectional flow will carry the

1?!--
tc/v



i)1/u a

growing pertubations to the stable 'region and the,gxowth of

pertubatipns may be reduced by the 'convedti.on efÅíect.
Recently, cattolO) analysed an ablatipg stabUization by

consideri,ng. Vne diffused, structured abZatipg plasma and he
concluded tha't the most unstable rttodes, k•2L2 kl, are insensitive
                                                       '                                               'to the ablation stabi!ization, where L is the density scale

length at the ablation front.
                                                '
     In summarizing aspects on the ablation front stablityr
 '

esit is convenient to ref'er the schematic repyesentation given
               1)by Boris et al.                   According `Lo Ref. Il, the changes expected

in the dispersion relation from the various effects at

ablation fi-ront are represented schematically in Fig. 6.2.
                          'The upper curve (                  ....--L ) is the case of an ideal density
discontinuity in an incompxessible fluid. When' finite
density gradient scale length are taken into aceount in an

incompressible fluid, the dispersion relation is modified at

short wavelength ( -.r.-.- ). The gyowth rate is essential-
                                     'ly constant and given as y=yiag7i/ at shorter wavelengths,

kit1/L. Addition of convection and finite thermal conduction

tend to reduce 'the growth to zero at sufticiently short

wavelength giving the (----) cuxve shown in the figure. The
                                                     '                                     '                                                    'uppermost solid curve diffe•rs from the dashed curve by the

addition of acceleration term which reduces the gravitation-
al Åíornve to geff=g-d2/dx2(ug/2>•. Moreover, they say.L-thaL:

the lower $olid curve includes the further addition of '

dynamic stabUization for the most dangerous unstable modes.

rt seems to be optimistic to the ablation front stabUity.

However, i.n order to achieve more syrnmetric implosion and
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also controll the stability of the ablatÅ}on tront, morce

investigations to the front stability are needed, especially,
                                              'in the field of theoretical analysis. In this chapter, we

intend to fqrmulate this problem including the effects of

compyessibility, thermal conductionr ablation, and convection.

     I.n Sec. 6.2, the linearized eq'uations governing the

evolution of the small pertuMbations are introduced with
    'inclusion of the energy eguation. Section 6.3 is. devoted

to investigate the thernial conduction, ablation and compress-

ibUity effects. It is concluded that in the case of short

wavelength perturbations, the' thermal conduction effect reduces
                     'the growth "rate whereas ablation effect wonks in stabili,zation.

Zn the case of the longwavelength perturbationr the effect
                                                     '                                                  -of corupressibUity reduces the growth rate, but this effect
iS"hoÅí so effective and the raodification to the ciassicai

value is srnall. Moreover, in contrast to incompressible

Rayleigh-Taylosc formulation, it is found that the source
term causing instabiiities is not prcoportionai to -ss7p.NsitjLi)

but proportional to NS7?sXS7T. Zn Sec. 6.4, attention is focused

                                                             'on the effect of' convective flow adopting a discontinuous

model to the ablation front. It is found that the ablation

front is unstable even if the gravitational filed is absent,
                                                               '
say, the convection effect does not play the role of stabilization

as shown in Refs.'  8, 9, but induces a new type instability.

HoweveT, when the flow velocity exceeds a sonic speed at the

downstream, then it is found that this instability induced
                         'by the convection is stabilized, coupled with the effect oE
 '

compressibility.
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6.2 Basic Equation for Linear Perturbations

     Zn the compressed xegion and/or near the ablation front,

the hydrodynamics weU describe the evolution of the motion

of laser produced plasma. We cascry out the stability analysis

for the evolution oÅí the smtali devÅ}atÅ}ons from the equilibrium

state. Basic Equations which describe the equilibrium state

and also controll the evolution of the perturbations are

                                       '      ' ti/0 i- a7r/O`l()-0 (6D
                                                                '      /0 (,-2----, .bli m? tzLc - -- ij7/)+/08/ . ne)

   ' '  ffdt ts-3-2vp it1de2? + orG-"- 2er + .-'-eex2bg " Q2 - ISi agas)

where p, (bCr and P are the mass density, velocity, and pressure,
respectively and gli means the graritational field coming from

a inertia force in the frarne moving with the ablation front.

(see Fig.6.l.) The electron thermal conducttQn is denotect by

the flux <{S> in Eg.(6.3). Here, the above equations are the
                                                          'eguations of continuity (6.1), motion (6.2), and energy (6.3),
                      t.

     We sirnpliÅíy the problem by reglecting the effect of a

spherical geometry and setting the equilibriuTn Tnotion only
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in the x direction and
         '                     'same direction. Then

equilibuciuni state are

 gravi.tational foxce is also i.n

the zeroth order equations for

 the

the

g". = rnd (5, (9L,•)

    ld   7oa",Po='

dvd-x(fY2"o"0o?

g-pt-d.!tcr,72

 -aoA-d-.P,-o

as7

(K, Z)

where subscript O means the zeroth quantities. Fig.6.3 is a

schematic of the typical spatial behaviour of the zexoth

variable in the vicinity oE the ablation front.

     In linearizing Eqs.(6.l) - (6.3), we assume that the

pertuxbed quantjties depend on the time and the transverse

dimension y as

Jz,4
(1. Z/?

=/1(X2 ju/p (fl -e' kX7 (K,7?

where k is

y diirection

then

a

•-

wavenumber of the sinusoidal
  '         .-,
 The linearized equation for

perturbation

Eqs.(6.I> --

in

(6.

 the

3) are
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,'--" c-
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         '" -pt .;bl6 da, 2,-d4 Q.,-t,2,-juZ" lfflfu2edi

                                    , '(5//?
                         'Y{here /Ol, Uxlt uylt Plt Qxl, 9yl, and [ ]l are the tirst order

perturbed guantities and the perturvations for thermal flux

are given by Q= (9xl, Qyl, o). Hereafiter, we take account of

oniy the y-directional, therinal flux peraturvation Qylt and

neglect Qxl. Since the therma! fiux in the diffusion form is
                                                       'given by <it == -KgZ-r (where K is the thermal conductivity and
              -T is the tempescature defined by T = P/p), the perturbed flux

    iQyl iS

     '

             Q/,- -z'fe7 (2,-1• ff? , ts,22?
                                                      '                                        '
                                                            .                       tt                                          'where i2C = K/po is the thermal diffusivity. !n obtaining

Eq.(6.12), we neglected the perturbation for K.
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6.3 Termal Conduction, Ablation, and CompscessÅ}bility Effects
                      '     on Reducipg the classical R-T Growth
                              '                                            '
     By separating the convection eÅífect from the effects oÅí
                                         'the compressibility, theumal conduction, and ablation, we
                                          'consider only the !atex effects in this section. Herer the

convectien and ablation comipg from the zeroth QMder flow are

defined as follows. The forrneac is the effect carrying the
perturbation with the• zexoth flow, which Ss denoted by the term

-J• a.firt in Eqs. (6.8) - (6.li), whexeas the later denotes a dis-

tortion of the eguilibrium state because of the exsistence of

the zero..th flow. The perturbation for the kinetSc energy

denoted by [ ]l in Eq.<6.ll) is neglected in this section,

since we assume the flow is sufficiently sobsonic. Theni

'the right hand sides of Eqs.(6.8) - (6.ll) can be set equal to

zero. The reduced equations are
                '

                                          '               2!2?"ntd, g,+7kZl?,-o , (K13)

                                                      '                                                          '
                      '
               j)ti9. -- 23.4 /e,) -ff/4 =o ,' (E•/g?

                                                              '    (fe271/.iz•i--x+.S ;ZJn? i?, " .-.--Y da.:(z;9.) -k2T, p( '1, ==D

                                                          (K/sc?/

        twhere ,Y -- ir+ duQ/dX, JCPx"lOoUxl, andA=g'- UodNdx Ua •

The perturbed velocity uyl is eliminated using Eg.(6.IO). Herer

A denotes the effective gravitation when the ablation exsists.
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Eliminating the pressuye Pl and the density /01, we get the

fonowing differentia! equatio-n for 9x•

    '
   ptdx2ci,fid(. 9,,-lfzdiquHg. -=o ' of/6?

                        '
whexe

   /i-k21.(a".Y-t.S.-.?/B

   Ci=(2'/1,awt.,!?t(k2a-/?AJ/6 '
   /L7!==zti,,!.Y-.i/.pm.x'•'?..`--3--.-f,.d"ptl•nt,sifez

   3= (feana"/?(a" tSew-(.-> - "k2.t!

EquatÅ}on (6.16) Å}s rewri`Lten Å}n the Sturm-LiouvUÅ}e form.

                     '         '                     '                  '  d-d,(Aspt-d,g.)-Hss.4--o

    r     1ua .,. = .y (-/ X.S dx?

(5ne7'
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We obtain

re1a tion

the

(6.5>

L,S- ff

folloiwpg form

(ie 7- fe2cY/i -? -1

for

2o

S by using

}-(tt

the zeroth

. 3247/(i- .Z 4t?

        '
(K,!9?

     B'y multiplying Eq.(6.l8) by the compiex conjugate Y?x

and integrating over the x space from the negative infinite

positive infinite, the following variational formulation is

obtained.

    ni. /.oof,kSAptk.-X&iptl'te2y.izi2sdx

to

/o"
- be

   o

fc

fT

(/Cf- fr
    -tl-x/tkzra

/-k ti7k2ra

/"tgfta

l d9x
f' lz a) "kf

/IEIi.,?, ( Z l,)

sdx
(K20?

(5s21)

where we used the' Eact tha't S(?. is bounded at tC>0 . We
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 '

neglected the first term in H of Eq.(6.i7), because the

variation and/or the jurnp of the derivative for To is sufficiently

srnall withi'n our inteyest. In the'  above formular fc and fT

provide the modifications. due to the compressibUity and

thermal conduction, repectively. rt is obvious frorn Eg. <6.20)
that the region where A.{t;211x >o is un'stabie. ' -

     Thus, by rnaking use of Eq. (6.18) or (6.20) the stabUity

analysis proceeds. Wg here consider the two limiting case.s

One is the case of much shortesc y-directional wavelength than

the scale length L of the zeroth ordeac variables (diffuse boundary

problem), and the othex in the case of rauch longer wavelength

(discontinuous boundary prob!em).

.t. ..

Case--A (kL >> l)

     When the y-directional wavelength is much shorter than the

scale length ]) of the zeroth variables, the unstable mode may be

localized over the unstable scegion and local appxoximation may

                                                             'be good fior tk}e analysis. In this lirnilSng case, Eq.(6.l8>

reduces to the approximate foxm

                                                 '
    44x!EntLsc?()"i/('7•iitl}7t7k"•S.!''tlddxi'rfi?k2ffx=o

                                         '
                                               '
!n this equation, the spatial extent of the wave function

directly depends on the unstable source termt which is given
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by the term propotional to ,4'dtarsblx . Near the a,blation

front, the temperature varies vexy rapidly, while the

pressure is kept nealy constant. Thus, the variation of Po in

Eq.(6.22)' can be neglected.

     Let us set the temperature profile as

                                                       '                                              '                                                                '                                                    '         7,l 'ad.1' ==,L! nd Ri(dl? • (K23?

                                                       '
            '
                                                                  '                        '
where L is the ninimum local scale length of the temperature

profile, which may be given y xhe scale length near the

thermal wave front, and o( is sorne value corresponding to the

width of the ablation structure. Then, Eq. (6.22) reduced to

   ddxi 9.. (fÅí4... 6/ twe2dx?;}/?k?ff -o (s,2gb?

                                                            '             -                      '                                                               '
                                             '
The solution of this eigenvalue problem is given in the textbook
of Landau and Lifshitzl2). And the eigenvalue isi in this case,

expressed as
              '                             '
     '>.;2-"k?2' 4d2( 1"(kg.A,k4;.ozL ,k.2. --(le2mp72(K•2S-?



 ll] A1>igd

whesce n=O, 1, 2, 3, ...,. The ,most unstable mode is obtained

when n=O. This is evident setting ?"'= 7"' in the above
                         'equation. The' relation(6.25) provide us with the,growth rate
                                                            ' ?r. For iarge k, Eq.(6.25> rnay be apprcoximated to the foUow-

ing guadratic equation

ii2. .i kZ7f!. ,A "--- 0
(5,2J?

or simply

   A d"o
fk2M a?(

(IK,2jZ>

It is found from these results that the effect of thermal

conduction.reduces the growth rater not stabilizes the

instability, and the effect of the ablation gives the reduced
gravitational force 9-4,i;,----t<O i'nstead of g and also plays

                                      'a characteristic rele to cut the unstable mode spectrum when
 flitl4e is sufficientiy iarge.

                                                           '     !f we neglect the effect of therrnal conduction, Eq. (6.26)
              '                             '

                                                           '            el'=.ff/L-tpmtO (ti2cfL?t



                                                               lif

This points out that the wen-known growth rate JJ2TJJT/L IQ>

is nceduced by dathx. due to the additional ablation effect.

       '

Case-B (kL (f< l) . ,
     When the y-dixectiona! wavelength k is sufficiently large

corapared with the scale lengih of the zeroth order variable

near the ablation front, then the unstable mode extends on the
spatial scale of not L but rather k-1. when this is the caser

the problem becomes that for the discontinuous eguUibxium state.

In the discontinuous prob!em, the Souucce which gives rise to

the instability is localized at the discontinuous surface,

while the unstable mode extends over the upperdense (region I)

.and lowerdence (region !I) regions where the growth variable

are almost homogenious respectively. For kL 4 l, by

neglecting the effects of the ablation and the thermal con-

duction, the varSational form given by Eq.(6.20) reduces to

                                             '    ,s" -/.mp,,.fl 4/f2io i9KZ'Z'iii ...,.t? (52i7

                                         '           /ooCxi(!t "/,./r7..-, 1.".9xIZ . igf,

              '                                             '                                 '                                      '                 '                                        '                                          '                         '                      t/
The coracesponding growth rate will be calculated

maximizaticn method for the given test function

Let us set the' wave function a.s the form

 using

as followsi.



       pt          (/-.sXxiC';f>,f2l;,"k,k;,Z?t/,-'LCk.1+,E.!a?.,;S.

                                           '

                        '                   '  '                                             'Here, we made use of the fact that the numexator of Eq.(6.29)
involves a delta function given by 0t7Pr,2ttx at the discontinuQus

surface, x= b. The maxÅ}ndzation for r2 in Eq. (6.3o with

respect to Kl and K2 provÅ}des us with the well approxirnated

growth rate. With the corresponding values -
             i({(/ = k (/"" t2rki,?/2

                      ' (K•Si.2.,,)
             k.- /e

we obtain the fouowing growth rate in the case where Ro/ >> 2o2

                                                                . 4ij.                                                               /jv
                                                                 '

        yx-"-gofjiill;(,2j i;g (""'

                                            '                                            'in the upperdense region Cx < O> and the lowerdense region

(x >O), respectively. Moyeovesc, Åíor simplicity, we assume

that the temperatures T' ol in x <O, To2 in x >7 O, satisÅíy the

relation Tol(< To2 and the pressuxe Po varies very gradually
in space compaved with k-l. ri"hen, the integrations of Eq.(6.2g)

may be carried out to give

                                                    '   ,x2pt k2S(iip -j}-fj}/rk27sT, ,' 1? i1 (rzi. "rel? ge,?



le/
l- t

   7.2=.i! (/t, /. tt /lz/kara,?k7 (gt'S?

         '                                t.
                                          '                                             '                                                           '                                  '               'This results show that when k is sufficiently small satisfing
th.e yelation if/k Stt,ot (sound speed in the upperdense region)r

then disturbances oÅí the unstable mode cannot propagate xapidlyr '

therefore the exlent of this pertuxbation at the uppeTdense

regeion is reduced to that obtained in Eq.(6.32), and the

corresponding growth rate is aiso ureduced as obvious from

Eq.(6.33). rt is found, however, that the 3reduction of the
incompressible growth rate 7'tsrk due to the compxessibility

effeet is not so drastic even when 7'2) k2Z.I, as long as

4)t2(rei2 ZJz . And it may be rathex important that when the

extent of the unstable mode is laucge, the zeucoth eguilibriurn

state in the upperdense (x < e> and the lowerdense (x > O)

regions may be distorted due to the gravitational force so

that the variations of Po, To, and Po ove]r the extent of the

unstable mode should be taken into account for the integrations

in Eq. (6.29).

     The effect of the cornpressibility on aceducing the

c!assical growth rate is not so drastic by itselfr but as
                             'shown in the ÅíoUowing section, this effect plays a signiticant

role together with the gonvection eÅífect.
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 6.4 Effect of Convection on Stabiliza,tion and Destabilizqtion

                                                        '                                                              '
      In this section, we consider the discontinuous problem

 to the ablaticn front stability (.see Fig.6.4) including the

 effects oE convention and coTe.pressibility but excluding the
                                                              '
 effect oE the thermal conduction which is not essential for the

 discussion of this section. The effect of. ablatlon is also
                ' not essential in such a dÅ}scontinuous rnodel. For sirnplicityt

 we do not consider the eneacqy equatior} (6•ll) and set PiToPl•

 This assumption is reasonable for reqion U, where the thermal

 conduction is larqe enouqh to qive the temperature perturbation
                                                     ' Tl == Ot but not for reqion !, w!.eace the adial atic assumption

 Pl==5/3TolOl is rather resonable. However, this effect does not

 change the following discussion so thuch that we set Pl==TolOl

=hereafter. [Vhen, Eqs. (6.8) - (6.10) for the perturbations

 are rewritten as

   (2(.- S(."o - u,k?/?, iL /4, dd. I!., -•ttag `7/, -".,Sff

                                      '              '

Ektdd-,-."a-Aptoa-d-Å~?a./+z,Td4x2,-tltdx2'!ipt--uea.tbut7

              '

                                        '                                              '         gU+ "o,E.42L!/, -i'fe 7. re == o

=0

geÅë7

(KSY-?

  '

ge57
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F-g. 6.4 Geometry for jump conditions to the ze'roth quantities.
                '    The flbw velocity, •temperaturer 'density, and Mach

     nurnbers are defined by uol, Tol,polr and Ml in the .
                  tt    upperdense region I, while uo2, To2, Po2, and M2 in
                                    '     the lowexdense region IX.
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                      '
     We assume that the gravitational Eorce is nQt so ptrong

to distort the zeroth variables and hence the instability mode

in the regions I and rl. Thus, by neglecting the spatial ',
variaticns of the zeroth variables in the both regions, the '

characteristic equation for the unstable mode is

                          '  (ju "ok?((a,2"1.?<! i+l/"ek-k21. i"/7=0 (5S77

                               t-
                                             '
               '                                                                 '

where }C = d/dx. AfteT solving thÅ}s equations, the perturbed

mode is given by the foxm proportional to exp (2(X ). In

region Z with high density, !ow temperature, and suÅíficiently

subsonic flow, the rneaningful solution of Eq.(6.37) is '

     ,XN'==((/-7`-tt,,;2,?/'Z-f-,iLz,/t/li;f.liii.lll,?'`tfJ,le (----k,) (ess?

                                     '             -     '                                                   ttand in region II with low density, high temperature, and sub-

                                           '
                        ,,i>it,

             A/ == ot a.. (4`if?
       K'/Tj(i.i;2Lltft,.)k--(/"iLi2'2.ij•ll;..)A'7k(='fo.)

                                            ' (sqo?
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where Ml and M2 are the Mach numbercs at the region I and )ggion
                     'U, respectiveZy,.Xt is noted that the' extent of the pertur-

bation in region I given by Eq.(6.38) is identical to that

given by•Kl in Eg.(.6.32), say, the Tnoditication of the

spatial extent is mainly due to the compressibility in the

regeon Z, whereas in the region !Z, a new rnode X == - X/Uo2

which is due to ciscect efEect of convection appearst and the

surface mode(.6.40) is d-v•astically modified, when the flow is

supersonict M2 > l.

     Accoyding to these three mode$, the amplitudes of the

perturbations in the vicinity of the dSscontinuous suriace are

obtained from Eqs.(6.34) -- (6.36) as

at x = -O

  aXl-th

  U,>ii ==

 if ==

in region

   ax/ ptM

  "/! ==

  R, =:

.,,`4

   •k
 gk, .A

W G4'(ktfes 'Mi)/?

 Z, and

  3-e

  z' lf3-8- z' Rtbl.. e

 "tto<i?`f2(tJajloilllo."M2?3

(5,szl?

aue?
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atx=+o in region u, respectively. Here, Cotf/Z.ii and
 C..e=/Ziil ,and k?1 and k2 are Xof Egs(6.38) and <.6.4o),

respectiveiy. A is the amplitude of the x-directional perturbed
                                                       tt                                                   'velocity for the mode(6.38). B and C are amplitudes of the

rnodes (6.40> and (.6.39>, respectively. Note that the perturbation
              'corxavsponding to the mode(6.39) is a transverse oner say,
                                            tt Pl = O. The perturbations have been specified by the tree

constants A, B, and C as described above. !n order to obtain

the dispasion relation to Luhe unstable mode we use the Åíollowing
           '
consevation laws gÅ}ven by integrating Egs(6.34) - (6.36) across

the pertuMbed discontinuous surface. [Vhe intergral are
carried but over the intinitesimal range Åírorn Y-o to 1;+o,

where lg means the x-diredtional displacement of the discontinuous

surface. Then the consevation laws of rnass, x-rnomentum, and

y-momentum flows are

                                         '                           `,Lo (IlifftSlr/31,)
      (rf ", +e (",, -fs?7 == o
                         --o
                     '
                          '                                                          '
 (rf",Z"2ts bu, vv.-, -2,'", fs tl? - sv yZ,'V==o ' (6• Åëpa7

                            +0         t(('rtcl),>iii --7e-• z'/!:l?"agZ, -=0 (KÅëJ-7-

                     /tt         +o         in.o means the' Poisson bracket. When the thermal con-where [ ]

duction Å}s invt.luded, to fi.nd.out relation between g and the

other 1-st order quantities becomes the most irnportant problem to
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get a correct dispersion yelation, sÅ}nce the discontinuous
                                                        'surface cor]responds to that of the temper'atuxe pvofUe for
                       '
the ablation front. However, in the present case, where the

eEfect oÅí thermal conduction is excluded and attention is

limited to the cornpression and convection effectsr the tem-

perature dÅ}$continuÅ}ty follows the perturbation in the
                                                 '                                              'mpperdense region, because in this region the thaymal per-
                                           'turbation follows that of the other quantities. Theacefore,
       '
we set that

        . y-M /, la./df /ntx=-o

                  "/A , (6a7

    BY
(6•46)r

sybstituting Eqs.(6.41)and <6.42) into Egs.(6,43) -

we obtain the following dispersion relation

l

M.Z 51X2•MiiX

    ny
t,ÅíMIIi2(i".2Z2t7,,-kek,XlMg

/y.2-M, afaj?`Åí -y

!-M.2

/t

-- M,

u,
M.2

lnv.27--S--.

fzX

/

k
k.

0

M, $V./2

=0

(ss`7?
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                                          'where Å~ = l)'"/kCol and the jump relatipns for zeroth quantities

across the discontinuous surface are used under the assumytin
          'Ml ((( le When we obtain the solution to the dispersion xela-
                   'tion Eq.(6.47>, we consider the foXlowipg three cases;

(I) Ml, M2 << 1, '(ZI) Ml <r( l, M2 (-tvr' l, a.nd

(U!) Ml <t< 1, M2 > l.

Case-I (Ml, M2 <(< l) '

     In general, the ablation itont satisfies the condition
                                                  'for the upstream. First of all, we here consider the case whexe

the flow is also sufficiently subsonic in the lowerdense region.

In this case, as long as the gravitational force is not so strong.

.the imcompncessible condition provides us with a good approxima-

tiont which wiU become appear from the resultant growth rate.

By setting kl == k, k2 = -k, the dispersion relation(6.47)

reduces to the following graduratic form.

(a.!vv,.? /2t ire/ "o, "o. X- k",, a,.(d"(zil- - t/.? - fe (u,.---bl., )J7 ---- 0

                                              '                                                   '                                        '                                                         r5,va?

                                                          '
This dispersion relation is identical to that obtained by
                                                         '                            'Lapdaul3). In the circumstance where uol <t< uo2, Eg• (6•48)

yields

               1pt' le2"k2laa.. twf?
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     Xt is significant to emphasi'se that a new type in.stability

appears at the ablation front due to the convection and the

ablation front js unstable even if the gravitational field

is absent' . This result is inconsistent wi.th ,those of Bodner8)

                                               '                                                           'and Afanas'ev et al9>. ' ' '' '
                                           '

'

              '
 '                                                             '
Case-U (Ml<<l, M2 <N 1)

                                                     '
     When the downstreariR ve]ocity apprÅ}aches sound speed, as is

apparent from the previous result, the growth rate of thisinsta-

bility i.ncreases. Xn this case, the assumption oE ivacompressible

fluid is not adequate in the region I. In region !1, the flow'

effect distorts the perturbalation mode. We make use of the

approximate Eorm

               ki'= /-r'X2•k

               k2 ---' (/--/4.2?]i2Sk

fox kl and k2

         Xz

      ld      1-- X2

In this case,

to obtain the dispersion relation
           '              '                           '
      '
      /--M.2 S. M,2
  "ny 1-M.Z 'k Z./ t (/.- M.2?E'z

the essential fea'ture for the qualitative dis-
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noted that the effect of convection gives rise to the,growth

                   Ix "vO(L)].rate of orderc' nc                Ol
          '                             '
       '
         .
Case-XU (Ml, << 1, M2 > l)

                                                   '
     As apparent from Eq.(6.40), the evanisent wavenumbenc

in the region ZI (k2) becomes a coraplex value and exhibit$ an

osciUating decay property, when the flow velocity gxows up

to a supersonic one in this region. The dispersion relationt

in this case, may be shown by the forrn
                              '
 '        -/-i>,x(2. =, //l14tz,2skS,l, + z' M(3.S

                                     '
When the gyavÅ}tational force is absent, it is readUy verify

that the growth rate x given by this relation becomes a pure

imaginary value for M2 > l. This indicates that the unstable
                                         'mode is stabilized by the convectional effect when the flow

velocity exceeds a sonic speed. This is a dxastic result due

to the exsistence of the convective flow across the discontinuous

surface. More rigorous result to Eq.(6.47) is shown in Fig.6.5

When the gravitationa! foyce is not so strong, the gravitational

instability Å}s also attenuated by the convection effect'. - '
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iili.OW,th.•.r.a.t.e.Sl'lll".?.I,t:;=lll:?ersio" reiation Eq. (6.47)

Heret Xr, Xs aye the real and imaginary parts of the

growth rate X (=y/kCol)• Even when the gravitational

force exsists, the real growth rate <Xr) is reduced

eompared with that given by the classical Rayleigh-

Taylor instability in the interesting region where

g/kTol<<l.

// 1
lb/
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6.5 Conclusion and Discussion

                                           '                                                     '     The stability anaiyses to the accelerating ablation

iront havg been carried out, focusing our attention on the.

compressibility, thermal conduction, ablation, and convection
                                     '                                              'effdcts.. The conventional linearization method was ernployed

to describ the evolution of the perturbations in the continuityr

mornen"Lum, and energy equations. It was found that these coupled

eguations reduces to the second order linear differential

equationr when the convection effect is neglected. Moreover,

in thiS case the tractable variational representation to the

gxowth rate was also obtained. As the resuits, it was found

that (1) the source term which causes instabUities is not

proportional to -VP•wP but proportional to •M)sWT, when the

'energy equation is included in the analyses; (2> the y-

directional thermal conduction reduces the growth rate, but

does not stabilize the instabilities; (3) the ablation effect
  '
play the signlficant role that it reduces the gravitatÅ}on to
the smaller value, geff =g- uog-xUor and also stabilize the

                                                            '                                   tt   'shortwavelength pertuxbations by providing the growth rate
          '
with the additional negative term -duo/dxr and (4) the effect

of compressibility beco;snes important fox longer wavelength

perturbations, but it is not so drastic as long as the com-
         '                                      'pressibility is efÅíective only in the upper dense xegion but

not in the under-dense region• (.This condition is satisfied
                                           '                             'for the lase inplosion ' i' .n. general.>

     In order to Å}nvestSgate the'eonvectioLn- eÅífects, the
                                                          '
stability anaiysis was carried out by assumipg ablation front
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discontinuous. It was Cound that this eÅífiect causes

the new type in$tabUity without the. gravitational force in
                             'this case of subsonic fZow. However this Tnode is stable for

the case'where the flow is supersonic at the downstream. These
                               '                                                           'results are essential for the stability of the ablation frcont

where the Åílow velocity varies from subsonic to supersonic in
                                                          '                                                        'space with the Einite transition xegion. ThereSore, in order to

discuss some quantitative aspects to the practical stability

problems of the ablation front, it is necessary to extendthis
                                  'analygis to the diffused boundaucy model. Xn this case, the

other effects described above will inevitablly coupXe to this

problem directly. This problem is now in investigation and

results will be presented near feature.
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Conclusions
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     In the present paperi the implosion and abla,tion mechanisrns
                                                      'were investigated in Chap.2 and 3 and its stability was also

considered in Chap.6. For the absorption and transport problems,
                                   'Chaps. 4 and 5 were devoted to analyses of the lineaT conver-

sÅ}on and the transport of the hoti electrons. . -
                                            '                                             '
     In Chap.2, the stationary de[lagration structure was

investigated using the one fluid two temperature hydrodynamic

equations. The width oÅí this deflagnation is given by
Ax--o.32 (M/rn)1/2 l ' in teriLns of the elGctron rnean fyee path
                   ep
at the rear, l . "ihe structure near the ablation front shows
              ep
a good agreement with that of the well-known thermal wave.

The deflagration is characterized by the steep gradients of

the densityr flow velocity, and temperatures and also by the

almgst constant pysesure. The density at the Chapman-Jouguet

point is Eound to be important for compression, because the

implosion efficiency is proportional to the square root of

this density.

     In Chapter 3, the self-simUar ablating rnotion was

investigated using the same equations employed in Chap.2,

when the absobed laser ene-cgy increases with the form
                        'Iab " ÅëotB• [ehe time dependect dynaraics of the ablation

phenomena i$ obtained uniguely by the use of the energy con-

servation !aw. It is pointed out that the acesponse between
                      'the absorbed power and the ab!ation pressure is different in
    'time, and in order to maintain the constant pressure the
increase of the absorbed power in proportion to "/5 is necegsary.

In contrast to the case of the $taisionary model analysis, the

self-similasc solution soes not shown any singularity at the
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sonicpoint and it gives us the reasonable structure over the

expanding region.
                                    '     Zn Chapter 4, the electxostatic field generation and the

corresponding hot electron heat Elux reduction were Snvestigated

includipg the appearance of the ion wave turbulence neaac the '

cut-off. The collisionless Vlasov equation for hot selections
      '               'and fiuid equations with the anomalous ccllision.effects fox

cold electrons were used. As the xesultst it is found that a
                'large electrostatic potential, say, IeÅë/Thl = l or 2 is built

up and only about IO O-. k'spherical) or 20 9o (plane) of the free
      .                                                         ttstreaming flux limit can penetrate into the core xegion.

     In 6hapter 5, the resenant!y dxiven plasrua wave was investi-

gated to the case where plasma flow exsists through the

resonance point. Maxwell equation and the momentum equation

of the cold electron fiuid were used, and to avoid the non-

lineaecity coming from the convection, the Lagrangian description

was employed for the laxge am-plitude wave oscillation. it is

pointed out that wavebreaking appears predominantly in the
                                     'underdense region, and when the current velocity is suffi-
ciently large ' the resonance field amplitude is limited by the

flow effect without occurenL'"e of wavebeaking.
                                                    '     In Chapteuc 6, the stability analyses to the acceierating
                                                          'ablation front was shown, focusing our attention on the comp-
pressibUity, t' hermal conducU'on, ablation, and convection

eEfects. [Phe hydrodynalpic.equations including the energy

equation were used. It is poined out thqt the inclusion of

the temperature perturbation provides us with the instability

souee proportional to "7,P•NVT , not --X9P"7!O . The efEect
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of thermal conduction reduces the growth rate ofi the smqU
                                                      '                                       'wave!ength pertuxbation, while the 'ablation effect play the
                                'role of not only redicing the. growth rate but also cutting

the unstable spectrum for sufficiently large wavenumber .
                             '                                '                                                            'perturbation. The effect of convection is found to be drastic
                                             '                                               '                                          'foy the ablation front stability. When the flow across the
                                     '  '                '                                              'abÅ}ation front is subsonic, Li his effect causes a new type
                                tt                              '                                                        'instabUity even when the gravx'tational force is absent.

On the otherhand, when the flow becomes supersonic in the
                                                         'downstream, this convection instability becomes stable, and

instability is caused only by the gravitational force.

     Throughout these investi•gations,the ablation ph. enomena,

which play the foundamental role in the implosion process,
                                           '            'becarne clear, and the stabUity of the ablation Eront was

also clarified. In conection with the hot electron generation,

the effect of the flow on influencing the linear conveFsion

processes and the hot electron transport inhibition due to the

self-generated electrostatic field were also pointed out.
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