

Title	Analytic semigroups generated by elliptic operators in L^1 and parabolic equations
Author(s)	Di Blasio, Gabriella
Citation	Osaka Journal of Mathematics. 1991, 28(2), p. 367-384
Version Type	VoR
URL	https://doi.org/10.18910/10971
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Di Blasio, G.
 Osaka J. Math.
28 (1991), 367–384

ANALYTIC SEMIGROUPS GENERATED BY ELLIPTIC OPERATORS IN L^1 AND PARABOLIC EQUATIONS

GABRIELLA DI BLASIO^(*)

(Received July 19, 1990)

0. Introduction

Parabolic equations in L^p spaces have been studied both by potential theory and by abstract methods mainly when $p > 1$. In this paper we want to continue our previous researchs on the L^1 case ([4], [5]) by using a semigroup approach.

Let Ω be an open bounded subset of \mathbf{R}^n with smooth boundary $\partial\Omega$. We denote by E a second order elliptic operator in Ω and by A_1 the L^1 realization of E with homogeneous Dirichlet boundary conditions. Then it is known (see Amann [1], Pazy [11] and Tanabe [14]) that A_1 is the infinitesimal generator of an analytic semigroup in $L^1(\Omega)$. We set $X = L^1(\Omega)$ and denote by $S(t)$ the semigroup generated by A_1 .

In this paper we establish some new properties for the semigroup $S(t)$. Moreover we give a characterization in term of Besov spaces for the interpolation spaces $D_{A_1}(\theta, 1)$, between the domain of A_1 and $L^1(\Omega)$, defined as (see Butzer and Berens [2] and Peetre [12])

$$(0.1) \quad D_{A_1}(\theta, 1) = \{u \in X : \int_0^{+\infty} \|A_1 S(t)u\|_X t^{-\theta} dt < +\infty\}.$$

This characterization allows us to find new regularity results for the solutions of the following Cauchy problem

$$(0.2) \quad \begin{cases} u'(t) = A_1 u(t) + f(t) \\ u(0) = u_0 \end{cases}$$

where $f \in L^1(0, T; X)$ and $u_0 \in X$. For the connection between the regularity properties of solutions of (0.2) and the interpolation spaces $D_{A_1}(\theta, 1)$ we refer to [4].

The plan of the paper is as follows. In section 2 we prove that the semigroup $S(t)$ satisfies the following estimates, for some $M', M'' > 0$ and $\omega \in \mathbf{R}$,

$$(0.3) \quad \sqrt{t} \|D_i S(t)\|_{L(X)} \leq M' \exp(\omega t) \quad i = 1, \dots, n$$

(*) The work of the author is partially supported by M.P.I. 40% and by G.N.A.F.A.

and

$$(0.4) \quad t \|D_{ih} S(t)\|_{L(X)} \leq M'' \exp(\omega t) \quad i, h = 1, \dots, n$$

where we have set $D_i = \partial/\partial x_i$ and $D_{ih} = D_i D_h$. Properties (0.3) and (0.4) give precise information about the behavior at $t=0$ of the spatial derivatives of semigroup $S(t)$ (and hence about the solutions of (0.2)).

In section 3 we use these estimates and prove, in a very direct way and without using the reiteration property, the following characterization of the interpolation spaces $D_{A_1}(\theta, 1)$, for each $0 < \theta < 1$

$$(0.5) \quad D_{A_1}(\theta, 1) = \begin{cases} W^{2\theta, 1}(\Omega), & \text{if } 0 < \theta < 1/2 \\ u \in B^{1, 1}(\Omega): \int_{\Omega} (d(x, \partial\Omega))^{-1} |u(x)| dx < +\infty, & \text{if } \theta = 1/2 \\ W^{2\theta, 1}(\Omega) \cap W_0^{1, 1}(\Omega), & \text{if } 1/2 < \theta < 1 \end{cases}$$

Here $W^{2\theta, 1}(\Omega)$ denotes the Sobolev space of fractional order, $B^{1, 1}(\Omega)$ denotes the Besov space and $d(x, \partial\Omega)$ the distance from x to $\partial\Omega$. This characterization has been given by Grisvard [6] for the case $p > 1$. If the operator E has C^∞ coefficients and $\theta \neq 1/2$ the characterization (0.5) can be deduced by a result of Guidetti, [8], obtained by complex interpolation methods.

Finally in section 4 we obtain a quite complete description of the regularity of the solutions of the following problem (for which (0.2) is the abstract version)

$$(0.6) \quad \begin{cases} u_t(t, x) = Eu(t, x) + f(t, x), & t > 0, x \in \Omega \\ u(t, x) = 0, & t > 0, x \in \partial\Omega \\ u(0, x) = u_0(x), & x \in \Omega \end{cases}$$

where $f \in L^1([0, T] \times \Omega)$ and $u_0 \in L^1(\Omega)$.

These results for parabolic second order differential equations extend to the case $p=1$ the classical theory for parabolic equations developed by Ladyzenskaja, Solonnikov and Ura'iceva [10] and others, for the case $p > 1$.

1. The spaces $D_A(\theta, p)$ and $(D(A), X)_{\theta, p}$

In this section we recall some definitions and properties concerning interpolation spaces which are needed in the sequel.

a) The spaces $D_A(\theta, p)$

Let X be a Banach space with norm $\|\cdot\|$ and let $A: D(A) \subseteq X \rightarrow X$ be a linear closed operator which generates an analytic semigroup $\exp(tA)$ in X . By this we mean that there exists $\omega \in \mathbb{R}$, $\varphi \in]\pi/2, \pi[$ and $M > 0$ such that the set $Z_\varphi = \{z: |\arg(z - \omega)| < \varphi\} \cup \{\omega\}$ belongs to the resolvent set of A . Moreover for each $z \in Z_\varphi$ we have

$$(1.1) \quad |z-\omega| \|R(z, A)x\| \leq M\|x\|$$

where $R(z, A) = (z-A)^{-1}$. For convenience we assume that A satisfies (1.1) with $\omega=0$ (so that $\exp(tA)$ is a bounded semigroup). This can be always be achieved by replacing A by $A-\omega I$ and $\exp(tA)$ by $\exp(-\omega t) \exp(tA)$.

In what follows we denote by $D_A(\theta, p)$ (for $0 < \theta < 1$ and $1 \leq p < \infty$) the space of all elements $x \in X$ satisfying

$$H_{\theta, p}(x) = \left(\int_0^{+\infty} (t^{1-\theta} \|A \exp(tA)x\|)^p t^{-1} dt \right)^{1/p} < +\infty.$$

It can be seen that $D_A(\theta, p)$ are Banach spaces under the norm $\|x\|_{\theta, p} = \|x\| + H_{\theta, p}(x)$. Moreover

$$D(A) \hookrightarrow D_A(\theta, p) \hookrightarrow X.$$

The spaces $D_A(\theta, p)$ were introduced by Butzer and Berens [2] and by Peetre [12]. We refer to [2 Chapter 3.2] for a more detailed description of the properties of these spaces.

b) *The spaces $(X, D(A))_{\theta, p}$*

For our purposes it is convenient to incorporate the spaces $D_A(\theta, p)$ in the theory of intermediate spaces. Let X, X_1 and X_2 be Banach spaces such that $X_i \hookrightarrow X$, $i=1, 2$. We denote the elements of X and X_i by x and x_i and their norm by $\|.\|$ and $\|x_i\|_i$, respectively.

In what follows we set for $t > 0$ and $x \in X_1 + X_2$

$$(1.2) \quad K(t, x) = \inf_{x=x_1+x_2} (\|x_1\|_1 + t \|x_2\|_2).$$

Moreover we denote, for $\theta \in]0, 1[$ and $p \in [1, +\infty[$

$$(1.3) \quad (X_1, X_2)_{\theta, p} = \{x = x_1 + x_2 : \|x\|_{\theta, p} < +\infty\}$$

where

$$(1.4) \quad \|x\|_{\theta, p} = \left(\int_0^{+\infty} (t^{-\theta} K(t, x))^p t^{-1} dt \right)^{1/p}$$

It can be seen that $(X_1, X_2)_{\theta, p}$ are Banach spaces under the norm $\|x\|_{\theta, p}$; moreover we have

$$X_1 \cap X_2 \hookrightarrow (X_1, X_2)_{\theta, p} \hookrightarrow X_1 + X_2.$$

The spaces $(X_1, X_2)_{\theta, p}$ where introduced by Peetre in [12] and are extensively studied. We refer to [2, Chapter 3.2] for a detailed description of the properties of these spaces. Here we are interested in the case where $X_1 = X$ and $X_2 = D(A)$ where $D(A)$ is the domain of a linear closed operator which generates an analytic semigroup in X . In this case the following results can

be proved.

Theorem 1.1. *Let $A: D(A) \subseteq X \rightarrow X$ be the infinitesimal generator of a bounded analytic semigroup on X . Then we have*

$$D_A(\theta, p) \cong (X, D(A)_{\theta, p})$$

Proof. For a proof see e.g. [2, Theorems 3.4.2 and 3.5.3]. ■

The following result turns to be useful in many applications.

Theorem 1.2. *Let A and B generate bounded analytic semigroups in X . If $D(A) \cong D(B)$ then we have*

$$D_A(\theta, p) \cong D_B(\theta, p).$$

Proof. The result is an immediate consequence of Theorem 1.1 and of the definitions (1.2), (1.3) and (1.4). ■

2. Analytic semigroups generated by elliptic operators in Ω

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded set of class C^2 and let E be the second order elliptic operator given by

$$(2.1) \quad Eu = \sum_{i,j=1}^n D_j(a_{ij}(x) D_i u) + \sum_{i=1}^n b_i(x) D_i u + c(x) u.$$

Here we have set $D_i = \partial/\partial x_i$; moreover a_{ij} , b_i and c are given functions satisfying

$$a_{ij} \in C_1(\bar{\Omega}); \quad b_i, c \in C(\bar{\Omega}).$$

Moreover let $A: D(A) \subseteq L^1(\Omega) \rightarrow L^1(\Omega)$ be the operator defined by

$$(2.2) \quad \begin{cases} D(A) = \{u \in C^2(\bar{\Omega}): u(x) = 0, x \in \partial\Omega\} \\ Au = Eu. \end{cases}$$

We denote by A_1 the closure of A in $L^1(\Omega)$

$$(2.3) \quad A_1 = \bar{A}.$$

In what follows we set $X = L^1(\Omega)$ and denote by $\|\cdot\|_1$ the norm in X . Then we have (see [1], [11])

Theorem 2.1. *There exist $\omega', M' \in \mathbb{R}$ and $\varphi' \in]\pi/2, \pi[$ such that setting*

$$Z_{\varphi'} = \{z: |\arg(z - \omega')| < \varphi'\} \cup \{\omega'\}$$

we have that $Z_{\varphi'}$ belongs to the resolvent set of A_1 . Moreover for each $z \in Z_{\varphi'}$ we have

$$(2.4) \quad |z - \omega'| \|R(z, A_1)\|_{L(X)} \leq M'$$

where $R(z, A_1) = (z - A_1)^{-1}$.

The following theorem establishes further properties of the resolvent operator.

Theorem 2.2. *There exist $\omega \geq \omega'$, $M \geq M'$ and $\varphi \in]\pi/2, \varphi']$ such that for each z verifying $|\arg(z - \omega)| < \varphi$ we have*

$$(2.5) \quad |z - \omega|^{1/2} \|D_i R(z, A_1)\|_{L(X)} \leq M.$$

Proof. Assertion (2.5) can be proved using the results of [13] and an argument similar to the one used in [3, Lemma 4.3]. ■

In what follows we assume that A_1 satisfies (2.5) with $\omega = 0$ (if this is not the case then A_1 is replaced by $A_1 - \omega I$). As a consequence of (2.4) (with $\omega = 0$) we have that A_1 generates a bounded analytic semigroup $S(t)$. Then there exist M_0 and M_1 such that

$$(2.6) \quad \|S(t)\|_{L(X)} \leq M_0,$$

$$(2.7) \quad t \|A^1 S(t)\|_{L(X)} \leq M_1.$$

Moreover from (2.5) we can establish further properties for the semigroup $S(t)$. We have

Theorem 2.3. *There exists M_2 verifying*

$$(2.8) \quad t^{1/2} \|D_i S(t)\|_{L(X)} \leq M_2.$$

Proof. Let φ be given by Theorem 2.2 and set $\Gamma = \Gamma^- \cup \Gamma^0 \cup \Gamma^+$, where

$$\Gamma^\pm = \{z = \pm r \exp(i\varphi), r \geq 1\}$$

oriented so that $\operatorname{Im} z$ increases, and

$$\Gamma^0 = \{z = \exp(i\psi), -\varphi \leq \psi \leq \varphi\}$$

oriented so that ψ increases. We have for $t \geq 0$

$$S(t) = \frac{1}{2\pi i} \int_{+\Gamma} \exp(zt) R(z, A_1) dz$$

Setting $z' = zt$ we get

$$S(t) = \frac{1}{2\pi i} \int_{+\Gamma} \exp(z') R(z'/t, A_1) t^{-1} dz'$$

Therefore from (2.5) (with $\omega = 0$) we get

$$\|D_{ij} S(t)\|_{L(X)} \leq \text{const} \int_{\Gamma} \exp(\operatorname{Re} z') |tz|^{-1/2} d|z'| \leq \text{const} t^{-1/2}$$

and the result is proved. ■

To study the spaces $D_{A_1}(\theta, 1)$ we use a further property of the semigroup $S(t)$ which is established by the following lemma. Using Theorem 1.2 we assume for simplicity that the operator E takes the form

$$(2.9) \quad Eu = \sum_{i,j=1}^n a_{ij} D_{ij} u + \gamma u$$

with $\gamma \in \mathbb{R}$ (here $D_{ij} = D_i D_j$).

Theorem 2.4. *For each $T > 0$ there exists $M_3 = M_3(T)$ such that for $t \in [0, T]$ we have*

$$t \|D_{ij} S(t)\|_{L(X)} \leq M_3.$$

Proof. Since $\partial\Omega$ is of class C^2 for each $x_0 \in \partial\Omega$ there exists an open ball V_0 centered in x_0 such that $V_0 \cap \partial\Omega$ can be represented in the form

$$x_i = g_0(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n).$$

Now cover $\partial\Omega$ by a finite number of balls V_h ($h = 1, \dots, m-1$) and add an open set V_m such that $V_m \subseteq \Omega$ so as to obtain a covering of Ω . Moreover denote by $\{\varphi_h\}$ a partition of unity subordinate to this covering. Furthermore fix $\sigma > 0$ and denote by u the solution of the problem

$$(2.10) \quad \begin{cases} u'(t) = A_1 u(t) \\ u(0) = S(\sigma) u_0. \end{cases}$$

Setting $u_h = \varphi_h u$ we see that u_h satisfies the problem

$$(2.11) \quad \begin{cases} u'_h(t) = \varphi_h A_1 u(t) = A_1 u_h(t) + B_h u(t) \\ u_h(0) = u_{0,h} \end{cases}$$

where

$$u_{0,h} = \varphi_h S(\sigma) u_0$$

and

$$(2.12) \quad B_h u = - \sum_{i,j=1}^n a_{ij} [D_i(u D_j \varphi_h) + D_i \varphi_h D_j u].$$

Now let $h=m$; since $V_m \subseteq \Omega$ and $u_m = 0$ on $\Omega \setminus V_m$ we have

$$D_h u_m(t) = S(t) D_h u_{0,m} + \int_0^t S(t-s) B_{h,m} u(s) ds$$

where

$$(2.13) \quad B_{k,m} u = \sum_{i,j=1}^n (D_k a_{ij}) D_{ij} u_m + D_k B_m u.$$

Therefore using (2.8) and interpolatory estimates for $\|D_i u\|_1$ we get

$$\|D_{lk} u_m(t)\|_1 \leq \frac{\text{const}}{\sqrt{t}} \|D_k u_{0,m}\|_1 + \int_0^t \frac{\text{const}}{\sqrt{t-s}} \left[\sum_{i,j=1}^n \|D_{ij} u(s)\|_1 + \|u(s)\|_1 \right] ds.$$

Now we have from (2.6) and (2.8)

$$\|D_k u_{0,m}\|_1 \leq c (\|u_0\|_1 + \frac{1}{\sqrt{\sigma}} \|u_0\|_1)$$

and

$$\|u(s)\|_1 \leq M_0 \|u_0\|_1$$

so that

$$\|D_{lk} u_m(t)\|_1 \leq \frac{c(T)}{\sqrt{t\sigma}} \|u_0\|_1 + \int_0^t \frac{\text{const}}{\sqrt{t-s}} \sum_{i,j=1}^n \|D_{ij} u(s)\|_1 ds$$

and hence

$$(2.14) \quad \sum_{i,j=1}^n \|D_{ij} u_m(t)\|_1 \leq c(T) \left[\frac{\|u_0\|_1}{\sqrt{t\sigma}} + \int_0^t \frac{1}{\sqrt{t-s}} \sum_{i,j=1}^n \|D_{ij} u(s)\|_1 ds \right].$$

Further fix $h \in [0, m-1]$. Using local transformation of variables we may assume that $V_h \cap \partial\Omega$ can be represented by $x_n = 0$ (and that for $x \in V_h \cap \Omega$ we have $x_n > 0$). Therefore for $k \neq n$ we have that the function $w_k = D_k u_h$ satisfies

$$w_k(t) = S(t) D_k u_{0,h} + \int_0^t S(t-s) B_{k,h} u(s) ds$$

where $B_{k,h}$ is given by (2.13) with m replaced by h . Hence by a computation similar to the one used above we find for $(l, k) \neq (n, n)$

$$(2.15) \quad \|D_{lk} u_h(t)\|_1 \leq c(T) \left[\frac{\|u_0\|_1}{\sqrt{t\sigma}} + \int_0^t \frac{1}{\sqrt{t-s}} \sum_{i,j=1}^n \|D_{ij} u(s)\|_1 ds \right].$$

Moreover for $(l, k) = (n, n)$ we have from (2.11)

$$(2.16) \quad \begin{aligned} \|D_{nn} u_h(t)\|_1 &= \left\| \frac{1}{a_{nn}(\cdot)} [A_1 u_h(t) - \sum_{(i,j) \neq (n,n)} a_{ij}(\cdot) D_{ij} u_h(t)] \right\|_1 = \\ &= \left\| \frac{1}{a_{nn}(\cdot)} [\varphi_h A_1 u(t) - B_h u(t) - \sum_{(i,j) \neq (n,n)} a_{ij}(\cdot) D_{ij} u_h(t)] \right\|_1. \end{aligned}$$

Hence from (2.15) and (2.16) we find that there exists a constant (again denoted by $c(T)$) verifying

$$\sum_{i,j=1}^n \|D_{ij} u_h(t)\|_1 \leq c(T) \left\{ \frac{\|u_0\|_1}{\sqrt{t\sigma}} + \int_0^t \frac{1}{\sqrt{t-s}} \left[\sum_{i,j=1}^n \|D_{ij} u(s)\|_1 + \|A_1 u(t)\|_1 \right] ds \right\}$$

so that from (2.14) we get

$$(2.17) \quad \sum_{i,j=1}^n \|D_{ij} u(t)\|_1 \leq c(T) \left\{ \frac{\|u_0\|_1}{\sqrt{t\sigma}} + \int_0^t \frac{1}{\sqrt{t-s}} \left[\sum_{i,j=1}^n \|D_{ij} u(s)\|_1 + \|A_1 u(t)\|_1 \right] ds \right\}.$$

Now we have from (2.7) and (2.10)

$$\|A_1 u(t)\|_1 \leq M_1 \|u_0\|_1 \frac{1}{t+\sigma} \leq M_1 \|u_0\|_1 \frac{1}{\sqrt{2t\sigma}}$$

and finally from (2.17) we find that there exists a constant (again denoted by $c(T)$) such that

$$\sum_{i,j=1}^n \|D_{ij} u(t)\|_1 \leq c(T) \left\{ \frac{\|u_0\|_1}{\sqrt{t\sigma}} + \int_0^t \frac{1}{\sqrt{t-s}} \sum_{i,j=1}^n \|D_{ij} u(s)\|_1 ds \right\}.$$

Hence using Gronwall's generalized inequality (see e.g. [9, Chapter 7.1]) we get (for some constant depending on T)

$$\sum_{i,j=1}^n \|D_{ij} u(t)\|_1 \leq c(T) \frac{\|u_0\|_1}{\sqrt{t\sigma}}$$

so that the result follows by taking $\sigma=t$. ■

3. Characterization of interpolation spaces between $D(A_1)$ and $L_1(\Omega)$

Let A_1 be given by (2.1)–(2.3). Then we have the following result.

Theorem 3.1. *For each $\theta \in]0,1[$ and $1 \leq p < \infty$ we have*

$$(L^1, D(A_1))_{\theta,p} \cong (L^1, W^{2,1} \cap W_0^{1,1})_{\theta,p}$$

where $L^1 = L^1(\Omega)$, $W^{2,1} = W^{2,1}(\Omega)$ and $W_0^{1,1} = W_0^{1,1}(\Omega)$.

Proof. From Theorem 1.2 it suffices to prove the theorem in the case where A_1 is given by (2.2)–(2.3) where E is given by (2.9) and satisfies (2.5) with $\omega=0$. Now we have

$$W^{2,1} \cap W_0^{1,1} \hookrightarrow D(A_1),$$

therefore using (1.2)–(1.4) we obtain

$$(3.1) \quad (L^1, W^{2,1} \cap W_0^{1,1})_{\theta,p} \hookrightarrow (L^1, D(A_1))_{\theta,p}.$$

Conversely let $u \in (L^1, D(A_1))_{\theta,p}$ and set for $t \in [0, 1]$

$$(3.2) \quad u = u - S(t) u + S(t) u = \int_0^t A_1 S(s) u ds + S(t) u = v_1 + v_2.$$

We have

$$\|v_1\|_1 \leq \int_0^t \|A_1 S(s) u\|_1 ds,$$

moreover $v_2 \in W^{2,1} \cap W_0^{1,1}$ and

$$\begin{aligned} \|v_2\|_{W^{2,1}} &= \|S(t) u\|_1 + \sum_{i,j=1}^n \|D_{ij} [S(t) u - S(1) u + S(1) u]\|_1 \\ &\leq M_0 \|u\|_1 + \sum_{i,j=1}^n \|D_{ij} \int_t^1 S(s/2) A_1 S(s/2) u ds\|_1 + M_3 \|u\|_1 \\ &\leq \text{const} [\|u\|_1 + \int_t^1 s^{-1} \|A_1 S(s/2) u\|_1 ds] \end{aligned}$$

where we used (2.6) and Theorem 2.4. Therefore we obtain for $t \in [0, 1]$

$$\begin{aligned} K(t, u) &= \inf_{u=u_1+u_2} (\|u_1\|_1 + t \|u_2\|_{W^{2,1}}) \\ &\leq \|v_1\|_1 + t \|v_2\|_{W^{2,1}} \\ &\leq \text{const} [t \|u\|_1 + \int_0^t \|A_1 S(s) u\|_1 ds + t \int_t^1 s^{-1} \|A_1 S(s/2) u\|_1 ds]. \end{aligned}$$

Now we have $K(t, u) \leq \|u\|_1$ (choosing $u_1 = u$ and $u_2 = 0$) and hence

$$K(t, u) \leq \text{const} [\min(1, t) \|u\|_1 + \int_0^t \|A_1 S(s) u\|_1 ds + t \int_t^1 s^{-1} \|A_1 S(s/2) u\|_1 ds].$$

Therefore for each $\theta \in]0, 1[$ and $1 \leq p < \infty$ we get

$$\begin{aligned} \int_0^{+\infty} (t^{-\theta} K(t, u))^p t^{-1} dt &\leq \text{const} [\int_0^{+\infty} (t^{-\theta} \min(1, t))^p t^{-1} dt \|u\|_1^p + \\ &\quad \int_0^{+\infty} t^{-1} dt (t^{-\theta} \int_0^t \|A_1 S(s) u\|_1 ds)^p + \int_0^{+\infty} t^{-1} dt (t^{1-\theta} \int_t^{+\infty} s^{-1} \|A_1 S(s) u\|_1 ds)^p], \end{aligned}$$

so that using Hardy inequality (see e.g. [2, Lemma 3.4.7])

$$\int_0^{+\infty} (t^{-\theta} K(t, u))^p t^{-1} dt \leq \text{const} [\|u\|_1^p + \int_0^{+\infty} (s^{1-\theta} \|A_1 S(s) u\|_1)^p s^{-1} ds],$$

and hence from Theorem 1.1

$$(3.3) \quad (L^1, D(A_1))_{\theta, p} \hookrightarrow (L^1, W^{2,1} \cap W_0^{1,1})_{\theta, p}.$$

Hence the desired result follows combining (3.1) and (3.3). ■

Corollary 3.1. *For each $\theta \in]0, 1[$ and $1 \leq p < \infty$ we have*

$$D_{A_1}(\theta, p) \cong (L^1, W^{2,1} \cap W_0^{1,1})_{\theta, p}$$

Proof. The result follows from Theorems 1.1 and 3.1. ■

In view of the study of parabolic equations in $L^1(\Omega)$ (see sect. 4 below) it is convenient to consider the case $p=1$.

Theorem 3.2. *For each $\theta \in]0, 1[$ we have $D_{A_1}(\theta, 1) \cong \overset{\circ}{B}{}^{2\theta, 1}(\Omega)$, where*

$$\overset{\circ}{B}{}^{\theta, 1}(\Omega) = \begin{cases} W^{2\theta, 1}(\Omega), & \text{if } 0 < \theta < 1/2 \\ u \in B^{1, 1}(\Omega) : \int_{\Omega} (d(x, \partial\Omega))^{-1} |u(x)| dx < +\infty, & \text{if } \theta = 1/2 \\ W^{2\theta, 1}(\Omega) \cap W_0^{1, 1}(\Omega), & \text{if } 1/2 < \theta < 1. \end{cases}$$

Here $W^{2\theta, 1}(\Omega)$ denotes the Sobolev space of fractional order, $B^{1, 1}(\Omega)$ denotes the Besov space and $d(x, \partial\Omega)$ the distance from x to $\partial\Omega$.

Proof. The result follows from Theorems 1.1 and 3.1 and from the characterization of the spaces $(L^1, W^{2, 1} \cap W_0^{1, 1})_{\theta, 1}$ (see Proposition 1 of the Appendix). ■

REMARK. In the case $\Omega = \mathbf{R}^n$ the results of Theorem 3.2 were presented in [5].

4. Parabolic second order equations in L^1

Let E be the operator given by (2.1) and consider the problem

$$(4.1) \quad \begin{cases} u_t(t, x) = Eu(t, x) + f(t, x), & t > 0, x \in \Omega \\ u(t, x) = 0, & t > 0, x \in \partial\Omega \\ u(0, x) = u_0(x), & x \in \Omega. \end{cases}$$

Regularity results for parabolic equations with f in $L^p(0, T; L^q(\Omega))$ and u_0 in $L^q(\Omega)$ are well known in the literature if $1 < p, q < \infty$. In this section we study in a quite complete way also the case $p = q = 1$ by using the abstract results of [4, sect. 8] and Theorem 3.2.

To state our results it is convenient to introduce some notation and definitions. Let Y be a Banach space and let $a < b$ be real numbers. We shall be concerned with the following spaces of Y -valued functions defined on $[a, b]$.

$L^1(a, b; Y)$ is the space of measurable functions u such that $\|u(\cdot)\|_Y$ is integrable in $[a, b]$,

$C(a, b; Y)$ is the space of continuous functions on $[a, b]$,

$W^{1, 1}(a, b; Y)$ is the space of functions u of $L^1(a, b; Y)$ having distributional derivative in $L^1(a, b; Y)$,

$$L^1_+(a, b; Y) = \{u \in L^1(\varepsilon, b; Y), \quad \text{for each } a < \varepsilon < b\},$$

$$W^{1, 1}_+(a, b; Y) = \{u \in W^{1, 1}(\varepsilon, b; Y), \quad \text{for each } a < \varepsilon < b\},$$

$W^{\theta, 1}(a, b; Y)$, $0 < \theta < 1$, is the Sobolev space of functions u of $L^1(a, b; Y)$

such that

$$\int_0^T dt \int_0^T ds \|u(t) - u(s)\|_Y |t-s|^{-1-\theta} < +\infty.$$

Finally $\overset{0}{B}^{2\theta,1}(\Omega)$ is the Besov space introduced in Theorem 3.2 and $D(A_1)$ is the domain of the operator A_1 given by (2.2)–(2.3), i.e.

$$D(A_1) = \{u \in L^1(\Omega) : Eu \in L^1(\Omega)\}$$

where Eu is understood in the sense of distributions.

The following theorems describe the regularity of the solutions of (4.1) when the regularity of f and u_0 increases.

Theorem 4.1. *Let $f \in L^1([0, T] \times \Omega)$ and $u_0 \in L^1(\Omega)$. Then (4.1) admits a unique generalized solution u and we have*

- (i) $u(t, \cdot) \in C(0, T; L^1(\Omega)) \cap L^1(0, T; \overset{0}{B}^{2\beta,1}(\Omega)) \cap W^{\beta,1}(0, T; L^1(\Omega))$,
for each $0 < \beta < 1$,
 $u(t, \cdot) \in W^{\beta-\alpha,1}(0, T; \overset{0}{B}^{2\alpha,1}(\Omega))$, for each $0 < \alpha < \beta < 1$.

Proof. The result follows from [4, Th. 28] and Theorem 3.2. ■

Theorem 4.2. *Let $f(t, \cdot) \in L^1(0, T; \overset{0}{B}^{2\theta,1}(\Omega))$, for some $0 < \theta < 1$. Then for each $u_0 \in L^1(\Omega)$ (4.1) admits a unique solution u and we have*

- i) $u(t, \cdot) \in C(0, T; L^1(\Omega)) \cap L^1_+(0, T; D(A_1)) \cap W^{1,1}_+(0, T; L^1(\Omega))$,
- ii) $u(t, \cdot) \in L^1(0, T; \overset{0}{B}^{2\beta,1}(\Omega)) \cap W^{\beta,1}(0, T; L^1(\Omega)) \cap W^{\beta-\alpha,1}(0, T; \overset{0}{B}^{2\alpha,1}(\Omega))$,
for each $0 < \alpha < \beta < 1$.

If in addition $u_0 \in \overset{0}{B}^{2\gamma,1}(\Omega)$, for some $0 < \gamma < 1$, then we have for $\delta = \min(\theta, \gamma)$

- iii) $u(t, \cdot) \in C(0, T; \overset{0}{B}^{2\beta,1}(\Omega)) \cap W^{\alpha,1}(0, T; \overset{0}{B}^{2\beta,1}(\Omega))$, for each $0 < \alpha, \beta < 1$,
 $\alpha + \beta = 1 + \delta$,
- iv) $Eu(t, \cdot) \in L^1(0, T; \overset{0}{B}^{2\beta,1}(\Omega)) \cap W^{\beta,1}(0, T; L^1(\Omega)) \cap W^{\beta-\alpha,1}(0, T; \overset{0}{B}^{2\alpha,1}(\Omega))$,
for each $0 < \alpha < \delta < 1$,
- v) $u_t(t, \cdot) \in L^1(0, T; \overset{0}{B}^{2\beta,1}(\Omega))$.

Proof. The assertions follow from [4, Th. 29] and Theorem 3.2. ■

Theorem 4.3. *Let $f(t, \cdot) \in W^{\theta,1}(0, T; L^1(\Omega))$, for some $0 < \theta < 1$. Then for each $u_0 \in L^1(\Omega)$ there exists a unique solution u of (4.1) and we have*

- i) $u(t, \cdot) \in C(0, T; L^1(\Omega)) \cap L^1_+(0, T; D(A_1)) \cap W^{1,1}_+(0, T; L^1(\Omega))$,

ii) $u(t, \cdot) \in L^1(0, T; \overset{0}{B}^{2\beta, 1}(\Omega)) \cap W^{\beta, 1}(0, T; L^1(\Omega)) \cap W^{\beta-\alpha, 1}(0, T; \overset{0}{B}^{2\alpha, 1}(\Omega))$,
for each $0 < \alpha < \beta < 1$.

If in addition $u_0 \in \overset{0}{B}^{2\gamma, 1}(\Omega)$, for some $0 < \gamma < 1$, then we have, for $\delta = \min(\theta, \gamma)$

iii) $u(t, \cdot) \in C(0, T; \overset{0}{B}^{2\beta, 1}(\Omega)) \cap W^{\alpha, 1}(0, T; \overset{0}{B}^{2\beta, 1}(\Omega))$,
for each $0 < \alpha, \beta < 1, \alpha + \beta = 1 + \delta$,

iv) $u(t, \cdot) \in L^1(0, T; \overset{0}{B}^{2\beta, 1}(\Omega)) \cap W^{\beta, 1}(0, T; L^1(\Omega)) \cap W^{\beta-\alpha, 1}(0, T; \overset{0}{B}^{2\alpha, 1}(\Omega))$,
for each $0 < \alpha < \delta < 1$,

v) $Eu(t, \cdot) \in W^{\delta, 1}(0, T; L^1(\Omega))$.

Proof. The assertions follow from [4, Th. 30] and Theorem 3.2. ■

Appendix

We want to give here the proof concerning the characterization of the intermediate spaces $(L^1(\Omega), W^{2,1}(\Omega) \cap W_0^{1,1}(\Omega))_{\theta,1}$, for $0 < \theta < 1$, which has been used in section 3. If Ω is of class C^2 using local change of coordinates it suffices to consider the case $\Omega = \mathbf{R}_+^n$ where

$$\mathbf{R}_+^n = \{x = (x', x_n) : x' \in \mathbf{R}^{n-1}, x_n > 0\}.$$

If $\theta \neq 1/2$ this characterization can be deduced from known results (see e.g. [2, Th. 4.3.6]) but we give here a direct proof for all $0 < \theta < 1$ in order to make the paper self-contained.

In what follows we denote by $B^{r,1}(\mathbf{R}_+^n)$, for $0 < r \leq 1$, the Besov spaces defined as

$$B^{r,1}(\mathbf{R}_+^n) = \{u \in L^1(\mathbf{R}_+^n) : H_r(u) = \int_{\mathbf{R}_+^n} dy \int_{\mathbf{R}_+^n} dx |u(x) + u(y) - 2u\left(\frac{x+y}{2}\right)| |x-y|^{-n-r} < +\infty\}$$

endowed with the norm

$$\|u\|_{B^{r,1}} = \|u\|_1^+ + H_r(u)$$

where $\|\cdot\|_1^+$ denotes the norm in $L^1(\mathbf{R}_+^n)$, whereas for $1 < r < 2$ we define

$$B^{r,1}(\mathbf{R}_+^n) = \{u \in W^{1,1}(\mathbf{R}_+^n) : D_j u \in B^{r-1}(\mathbf{R}_+^n)\}$$

with the norm

$$\|u\|_{B^{r,1}} = \|u\|_1^+ + \sum_{i=1}^n H_{r-1}(D_i u).$$

It is known that if $r \neq 1$ we have $B^{r,1}(\mathbf{R}_+^n) = W^{r,1}(\mathbf{R}_+^n)$, the usual Sobolev spaces of fractional order.

Proposition 1. *We have $(L^1(\mathbf{R}_+^n), W^{2,1}(\mathbf{R}_+^n) \cap W_0^{1,1}(\mathbf{R}_+^n))_{\theta,1} = \overset{\circ}{B}{}^{2\theta,1}(\mathbf{R}_+^n)$, where*

$$\overset{\circ}{B}{}^{2\theta,1}(\mathbf{R}_+^n) = \begin{cases} W^{2\theta,1}(\mathbf{R}_+^n), & \text{if } 0 < \theta < 1/2 \\ u \in B^{1,1}(\mathbf{R}_+^n) : \int_{\mathbf{R}_+^n} (x_n)^{-1} |u(x)| dx < +\infty, & \text{if } \theta = 1/2 \\ W^{2\theta,1}(\mathbf{R}_+^n) \cap W_0^{1,1}(\mathbf{R}_+^n), & \text{if } 1/2 < \theta < 1. \end{cases}$$

In proving Proposition 1 we need some preliminary result. Set

$$N_+(t, u) = \sup_{0 < |y| < t, x_n > 0} \|u(\cdot) + u(\cdot + 2y) - 2u(\cdot + y)\|_1^+$$

and

$$\|u\|_{\theta,1}^+ = \int_0^{+\infty} t^{-1-2\theta} N_+(t, u) dt + \|u\|_1^+ + \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx.$$

Then for each $\theta \in]0, 1/2]$ it is easily checked that

$$(1) \quad \begin{aligned} & \int_{\mathbf{R}_+^n} dy \int_{\mathbf{R}_+^n} dx |u(x) + u(y) - 2u\left(\frac{x+y}{2}\right)| |x-y|^{-n-2\theta} \\ & \leq \text{const} \int_0^{+\infty} t^{-1-2\theta} N_+(t, u) dt. \end{aligned}$$

Moreover we have the following result.

Lemma 1. *Let us denote by $X_{\theta,1}$ the Banach space corresponding to the norm $\|\cdot\|_{\theta,1}^+$. Then*

$$X_{\theta,1} = \overset{\circ}{B}{}^{2\theta,1}(\mathbf{R}_+^n).$$

Proof. Given $u \in L^1(\mathbf{R}_+^n)$, let us introduce the function $U \in L^1(\mathbf{R}^n)$ defined as

$$U(x) = \begin{cases} u(x), & \text{if } x_n > 0 \\ -u(x', -x), & \text{if } x_n \leq 0. \end{cases}$$

Furthermore set, for $\theta \in]0, 1[$

$$\|U\|_{\theta,1} = \|U\|_1 + \int_0^{+\infty} t^{-1-2\theta} N(t, U) dt$$

where $\|\cdot\|_1$ denotes the norm in $L^1(\mathbf{R}^n)$ and

$$N(t, U) = \sup_{0 < |y| < t} \|U(\cdot) + U(\cdot + 2y) - 2U(\cdot + y)\|_1.$$

Then (see [2, Prop. 4.3.5])

$$(2) \quad \|\cdot\|_{\theta,1} \cong \|\cdot\|_{B^{2\theta,1}}$$

where $B^{2\theta,1} = \overset{\circ}{B}{}^{2\theta,1}(\mathbf{R}^n)$. Moreover one easily obtains, for each $\theta \in]0, 1[$ (here by

c, c', c'', c_i , we denote various constants)

$$(3) \quad |||U|||_{\theta,1} \leq c \ |||u|||_{\theta,1}^+ \leq c' [|||U|||_{\theta,1} + \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx]$$

and

$$(4) \quad |||U|||_{B^{2\theta,1}} \leq c'' [|||u|||_{B^{2\theta,1}} + \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx]$$

where $B_+^{2\theta,1} = B^{2\theta,1}(\mathbf{R}_+^n)$. Now let $\theta < 1/2$; we have (see [7, Th. 1.4.4.4])

$$(5) \quad \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx \leq \text{const} \ |||u|||_{W^{2\theta,1}}.$$

Therefore from (1), (2), (3) and (4) we get, for $\theta \leq 1/2$

$$\begin{aligned} |||u|||_{\theta,1}^+ &\leq c_1 [|||U|||_{B^{2\theta,1}} + \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx] \leq c_2 [|||u|||_{B^{2\theta,1}} + \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx] \\ &\leq c_3 |||u|||_{\theta,1}^+ \end{aligned}$$

which, together with (5), proves the assertion if $\theta \leq 1/2$.

Finally let $\theta > 1/2$. If $u \in W^{2\theta,1}(\mathbf{R}_+^n) \cap W_0^{1,1}(\mathbf{R}_+^n)$ then $U \in W^{2\theta,1}(\mathbf{R}^n)$ and (5) holds (see [7, Th. 1.4.4.4]). Therefore from (2), (3), (4) and (5)

$$|||u|||_{\theta,1}^+ \leq c_1 [|||U|||_{W^{2\theta,1}} + \int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx] \leq c_4 |||u|||_{W^{2\theta,1}}.$$

Conversely let $u \in X_{\theta,1}$; from (2) and (3) we get

$$|||U|||_{W^{2\theta,1}} \leq c_5 |||U|||_{\theta,1} \leq c_6 |||u|||_{\theta,1}^+$$

so that $u \in W^{2\theta,1}(\mathbf{R}_+^n)$ and

$$|||u|||_{W^{2\theta,1}} \leq |||U|||_{W^{2\theta,1}} \leq c_6 |||u|||_{\theta,1}^+.$$

Finally the assertion $u \in W_0^{1,1}(\mathbf{R}_+^n)$ follows from the fact that $u \in W^{1,1}(\mathbf{R}_+^n)$ and

$$\int_{\mathbf{R}_+^n} (x_n)^{-2\theta} |u(x)| dx < +\infty$$

implies that $u(x', 0) = 0$. ■

Proof of Proposition 1. For simplicity in notation we restrict ourselves to the case $n=2$. The method of the proof will lead the way for all $n \geq 1$.

In what follows we denote by Q_t , for $t > 0$, the subset of \mathbf{R}_+^2 defined as

$$Q_t = \{x \in \mathbf{R}_+^2 : 0 \leq x_i \leq \frac{t}{4\sqrt{2}}, i = 1, \dots, 2\},$$

moreover we set $c = (4\sqrt{2})^4$. Furthermore, given $u \in L^1(\mathbf{R}_+^2)$, we denote by v_1 and v_2 the functions defined as

$$v_1 = \int_{Q_t} dy \int_{Q_t} u(x+2(y+z)) dz = \frac{1}{16} \prod_i \int_{x_i}^{x_i+t/2\sqrt{2}} dy_i \int_{y_i}^{y_i+t/2\sqrt{2}} u(z) dz_i$$

and

$$v_2 = \int_{Q_t} dy \int_{Q_t} 2u(x+y+z) dz = 2 \prod_i \int_{x_i}^{x_i+t/4\sqrt{2}} dy_i \int_{y_i}^{y_i+t/4\sqrt{2}} u(z) dz_i.$$

Moreover set $w_1 = ct^{-4}(v_1 - v_2)$, $w_2 = ct(t+x_2)^{-5}(v_1 - v_2)$ and $u_1 = u + w_1 - w_2$, $u_2 = -w_1 + w_2$. Then we have that $u = u_1 + u_2$ with $u_1 \in L^1(\mathbf{R}_+^2)$ and $u_2 \in W^{2,1}(\mathbf{R}_+^2) \cap W_0^{1,1}(\mathbf{R}_+^2)$. Furthermore, using the fact that $y_2 + z_2 \leq t(2\sqrt{2})^{-1}$, we get

$$(6) \quad \|u + w_1\|_1^+ \leq \frac{c}{t^4} \int_{\mathbf{R}^2} dx \int_{Q_t} dy \int_{Q_t} |u(x) + u(x+2(y+z)) - 2u(x+y+z)| dz \\ \leq N_+(t, u)$$

and

$$\|w_2\|_1^+ \leq c't \int_{Q_t} dy \int_{Q_t} dz \int_{\mathbf{R}} dx_1 \left\{ \int_{y_2+z_2}^{+\infty} \frac{|u(x)|}{|t+x_2 - (y_2+z_2)|^5} dx_2 + \right. \\ \left. \int_{2(y+z_2)}^{+\infty} \frac{|u(x)|}{|t+x_2 - 2(y_2+z_2)|^5} dx_2 \right\} \\ \leq c't \int_{Q_t} dy \int_{Q_t} dz \int_{\mathbf{R}} dx_1 \left[\int_{y_2+z_2}^t \frac{|u(x)|}{t^5} dx_2 + \int_t^{+\infty} \frac{|u(x)|}{x_2^5} dx_2 \right]$$

where c' denotes a constant. Therefore setting

$$L(t, u) = \int_{\mathbf{R}} dx_1 \left[\int_0^t |u(x)| dx_2 + t^5 \int_t^{+\infty} \frac{|u(x)|}{x_2^5} dx_2 \right]$$

we obtain

$$(7) \quad \|w_2\|_1^+ \leq c'L(t, u).$$

Concerning u_2 we have

$$(8) \quad \|u_2\|_1^+ \leq c' \|u\|_1^+.$$

Moreover, to estimate $\|D_{h,h} u_2\|_1^+$, let us note that

$$D_{h,h} v_1 = \int_{x_i}^{x_i+t/2\sqrt{2}} dy_i \int_{y_i}^{y_i+t/2\sqrt{2}} \\ [u(z_i, x_h + t/\sqrt{2}) - 2u(z_i, x_h + t/2\sqrt{2}) - u(z_i, x_h)] dz_i$$

where $i \neq h$. Moreover

$$D_{1,2} v_1 = \int_{x_1}^{x_1+t/2\sqrt{2}} dz_1 \int_{x_2}^{x_2+t/2\sqrt{2}} \\ dz_2 [u(z_1, z_2 + t/2\sqrt{2}) - 2u(z_1 - t/4\sqrt{2}, z_2 + t/4\sqrt{2}) \\ + u(z_1 - t/2\sqrt{2}, z_2) - u(z_1 - t/2\sqrt{2}, z_2 + t/2\sqrt{2}) \\ + 2u(z_1 - t/4\sqrt{2}, z_2 + t/4\sqrt{2}) - u(z_1)].$$

Thereofre for each h, k we get

$$(9) \quad \|D_{h,k} w_1\|_1^+ \leq c't^{-2} N_+(t, u).$$

Now we have $\|D_{1,1} w_2\|_1^+ \leq \|D_{1,1} w_1\|_1^+$ so that (9) holds for $h=k=1$ with w_1 replaced by w_2 . Furthermore

$$\begin{aligned} \|D_{2,2} w_2\|_1^+ &\leq ct \int_{\mathbf{R}_+^2} \left[\frac{1}{(t+x_2)^5} |D_{2,2}(v_1-v_2)(x)| + \frac{1}{(t+x_2)^6} |D_2(v_1-v_2)(x)| \right. \\ &\quad \left. + \frac{1}{(t+x_2)^7} |(v_1-v_2)(x)| \right] dx = I_1 + I_2 + I_3. \end{aligned}$$

Now we get

$$I_1 + I_3 \leq \|D_{2,2} w_1\|_1^+ + c't^{-2} \|u\|_1^+ \leq c't^{-2} [N_+(t, u) + \|u\|_1^+]$$

where we used (9). Furthermore, proceding as in (7), we obtain

$$I_2 \leq c't^{-2} L(t, u).$$

Therefore

$$(10) \quad \|D_{2,2} w_2\|_1^+ \leq c't^{-2} \{ \|u\|_1^+ + N_+(t, u) + L(t, u) \}.$$

Finally in a similar way we get

$$(11) \quad \|D_{1,2} w_2\|_1^+ \leq c't^{-2} \{ N_+(t, u) + L(t, u) \}.$$

Summarizing using (6)–(11) we obtain that given $u \in L^1(\mathbf{R}_+^2)$, we can write $u = u_1 + u_2$ with $u_1 \in L^1(\mathbf{R}_+^2)$ and $u_2 \in W^{2,1}(\mathbf{R}_+^2) \cap W_0^{1,1}(\mathbf{R}_+^2)$ and

$$\|u_1\|_1^+ \leq N_+(t, u) + c'L(t, u)$$

and

$$\|u_2\|_2^+ \leq c't^{-2} [(1+t^2) \|u\|_1 + N_+(t, u) + L(t, u)]$$

where $\|\cdot\|_2^+$ denotes the norm in $W^{2,1}(\mathbf{R}_+^2)$. Therefore (see (1.2)) there exists c_1 such that

$$(12) \quad K(t^2, u) \leq c_1 [N_+(t, u) + \min(1, t^2) \|u\|_1^+ + L(t, u)].$$

Conversely let $u = u_1 + u_2$ with $u_1 \in L^1(\mathbf{R}_+^2)$ and $u_2 \in W^{2,1}(\mathbf{R}_+^2) \cap W_0^{1,1}(\mathbf{R}_+^2)$. Then we have

$$(13) \quad \min(1, t^2) \|u\|_1^+ \leq K(t^2, u)$$

and

$$(14) \quad N_+(t, u) \leq N_+(t, u_1) + N_+(t, u_2) \leq 4 \|u_1\|_1^+ + t^2 \|u_2\|_2^+ \leq 4 K(t^2, u)$$

the third estimate following by

$$u(x) - 2u(x+y) + u(x+2y) = 2 \int_0^{|y|} ds \int_0^s d\sigma \frac{\partial}{\partial s} \frac{\partial}{\partial \sigma} u(x+(s+\sigma)) \frac{y}{|y|}.$$

Furthermore

$$\begin{aligned} (15) \quad L(t, u) &\leq \|u_1\|_1^+ + \int_{\mathbf{R}} dx_1 \left[\int_0^t dx_2 \int_0^{x_2} dy_2 \int_{y_2}^{+\infty} d\xi_2 |D_{22} u_2(x_1, \xi_2)| + \right. \\ &\quad \left. t^5 \int_t^{+\infty} \frac{1}{x_2^5} dx_2 \int_0^{x_2} dy_2 \int_{y_2}^{+\infty} d\xi_2 |D_{22} u_2(x_1, \xi_2)| \right] \\ &\leq \|u_1\|_1^+ + ct^2 \|D_{22} u_2\|_1^+ \end{aligned}$$

so that

$$L(t, u) \leq c K(t^2, u).$$

Finally from (12)–(15) we obtain that there exists c_2 such that

$$K(t^2, u) \leq c_1 [N_+(t, u) + \min(1, t^2) \|u\|_1^+ + L(t, u)] \leq c_2 K(t^2, u).$$

Therefore

$$\begin{aligned} \int_0^{+\infty} t^{-1-\theta} K(t, u) dt &= 2 \int_0^{+\infty} t^{-1-2\theta} K(t^2, u) dt \leq c'_1 \left[\int_0^{+\infty} t^{-1-2\theta} N_+(t, u) dt + \|u\|_1^+ \right. \\ &\quad \left. + \int_0^{+\infty} t^{-1-2\theta} L(t, u) dt \right] \leq c'_2 \int_0^{+\infty} t^{-1-\theta} K(t, u) dt. \end{aligned}$$

Now

$$\int_0^{+\infty} t^{-1-2\theta} L(t, u) dt = \text{const} \int_{\mathbf{R}_+^2} (x_2)^{-2\theta} |u(x)| dx,$$

therefore the desired result follows from Lemma 1. ■

ACKNOWLEDGEMENT. The author thanks the referee for helpful comments.

References

- [1] H. Amann: *Dual semigroups and second order linear elliptic boundary value problem*, Israel J. Math., **45** (1983), 225–254.
- [2] P.L. Butzer, H. Berens: *Semigroups of operators and approximation*, Springer, Berlin, 1967.
- [3] P. Cannarsa, V. Vespi: *Generation of analytic semigroups in the L^p topology by elliptic operators in \mathbf{R}^n* , Israel J. Math., **61** (1988), 235–255.
- [4] G. Di Blasio: *Linear parabolic evolution equations in L^p -spaces*, Ann. Mat. Pura e Appl., IV (1984), 55–104.
- [5] G. Di Blasio: *Characterization of interpolation spaces and regularity properties for holomorphic semigroups*, Semigroup Forum **38** (1989), 179–187.
- [6] P. Grisvard: *Equations différentielles abstraites*, Ann. Scient. Ec. Norm. Sup., **2** (1969), 311–395.

- [7] P. Grisvard: Elliptic problems in non smooth domains. Monographs and Studies in Math., 24, Pitman, London, 1985.
- [8] Guidetti: *On interpolation with boundary conditions* (Preprint).
- [9] D. Henry: Geometric theory of semilinear parabolic equations, Lect. Notes in Math. 840, 1981.
- [10] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uralceva: Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, 1968.
- [11] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, 1983.
- [12] J. Peetre: On an equivalence theorem of Taibleson. (unpublished manuscript), Lund, 1964.
- [13] B. Stewart: *Generation of analytic semigroups by strongly elliptic operators*, Trans. Am. Mat. Soc. 199, 1974, 141-162.
- [14] H. Tanabe: *On semilinear equations of elliptic and parabolic type*, in Functional Analysis and Numerical Analysis, Japan-France Seminar, Tokyo and Kyoto, 1976, (H. Fujita, ed.), Japan Society for the Promotion of Sciences, 1978, 455-463.

Dipartimento di Matematica
Università di Roma
P. le A Moro 5
00185 Roma
Italy