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Introduction

Let (X, Ay Pθ: 0eΘ) be an experiment and B a sub σ-algebra of A. It
is known and can be proved easily [9], that if {Pθ: 0eΘ} is dominated by a
σ-finite measure then pairwise sufficiency of B implies its sufficiency. There
has been attempts to generalise this result and show that even in the undominated
case paiwise sufficiency is related to sufficiency. Pitcher [11] introduced com-
pact statistical structures, Basu and Ghosh [1] discrete statitiscal structures and
finally Hasegawa and Perlman [6] coherent experiments. It is now known
that [4] coherence is equivalent to compactness and the discrete structure a
special case of both. That these concepts are natural generalisation of domina-
tion was established by Dipenbrock [3], who showed that compactness and
coherence are both equivalent to domination by a localizable measure. Their
theorems connecting pairwise sufficiency with sufficiency is of the form "if B is
pairwise sufficient then f] B\/Nθitθz is sufficient".

βltθ2

While experiments dominated by a σ-finite measure are coherent, Rogge
[13] showed that if A is countably generated then any coherent experiment is
necessarily dominated by a σ-finite measure. Thus in countably generated
situations' in particular in the Standard Borel Case, compactness is not more
general than domination by a σ-finite measure. However it is proved in [12]
that, in the Standard Borel case if Pθ's are discrete then pairwise sufficiency is
equivalent to sufficiency. Since Pθ(x) can be thought of as density with respect
to the counting measure, a similar generalisation seems possible. This paper
centres on such a generalisation.

This paper is motivated by the work of Hasegawa.—Perlman and the
theorem of Dipenbrock. We define the notion of weak coherence, Borel locali-
zable and Borel decomposable measures—all standard Borel adaptations of known
concepts. It is then shown that experiments dominated by a Borel localizable
measure satisfying an additional measurability condition are weakly coherent.
For weakly coherent experinents we show that if B is countably generated and
pairwise sufficient then f) B\/NΘ θ is sufficient.

0ι,02
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1. ID this section we fix the notations and state some set theoretic results
used in the sequel.

The pair (S, S) where *S is a set and S a σ-algebra of subsets of S is called
Standard Borel if S is a Bore! subset of a complete separable metric space and
S is the relativized Borel σ-algebra on S. Suppose (S, S) and (Γ, T) are two
standard Borel spaces then (Sx T, Sx T) will denote the product space equipped
with the product σ-algebra. For subsets E of SxΓ, E* will stand for the t-
section {s: (s, t)€ΞE} of E. We need the following facts about standard Borel
spaces, details of which can be found in [8].

( i ) Let (S, S) be a standard Borel space. A subset A of S is Analytic if
it is the projection of a Borel set in SxT for some standard Borel
space T. Further A is Borel in S iff both A and Ac are Analytic,

(ii) Suppose E is a Borel set in Sx T such that Es is countable for all s
in S then the projection of E on S is Borel in S.

(iii) Suppose E is a Borel set in Sx T with Es countable for all s in S then
there are measurable functions gly g2> ••• defined on S taking values
in T such that E= (] {(s, gfc)) :s£ΞS}.

i

2. An experiment consists of a set (X, A) and a family of probability
measures {Pθ: θ^&} on (X, A). Throughout this paper we assume that Θ
is also equipped with a σ-algebra C and further

( i ) (X, A) and (Θ, C) are standard Borel.
(ii) For all A in A, PQ(A) is measurable in Θ.

Such experiments will be called standard Borel experiments.

DEFINITION 2.1. Let (X, A, Pθ: 0eΘ) be an experiment. A sub σ-
algebra B of A is said to be sufficient for (X, A, Pθ: 0eΘ) if given any bounded
A measurable function /, there is a B measurable function /* such that

f* = Eθ(f\B) for all Θ in Θ

B is pairwise sufficient if B is sufficient for (X, Ay Pθι, Pθ2) for every pair θly Θ2

inθ.

DEFINITION 2.2. A family of functions fθ(x) jointly measurable in Θ and x
is weakly pairwise coherent if given Θ1 and Θ2, there is an A measurable function

* such that

/W*) =/«.(*

DEFINITION 2.3. fθ(x) is weakly coherent if there is an ^.-measurable
function f(x) such that
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f(x)=fθ(*)[Pθ] for all θ in Θ.

DEFINITION 2.4. An experiment (X, A, Pθ: 0eΘ) is weakly coherent if

every family of weakly pair wise coherent functions is weakly coherent.
Our interest in weakly coherent experiments is due to the following theorem.

LetN9={A<ΞA:Pβ(A)=Q}.

Theorem 2.1. Let (X, A, Pθ: θ^θ) be a weakly coherent experiment. If a
countably generated sub σ -algebra B of A is pairwise sufficient then B= [)B\/NΘ

is sufficient.

Proof. Let / be any bounded measurable function. Get fθ(x) a jointly
measurable version of Eθ(f \ B) (see proposition 2.3 in [14]). Since B is pairwise
sufficient, fθ(x) is weakly pairwise coherent. Now since (X, A, Pθ: 0eΘ) is
weakly coherent there is an A measurable function /* such that

/*(*)= Λ(*)[PJ for all θ in Θ.

Since for each θ,fθ(x) is ^-measurable, f*(x) is ByNθ measurable for each θ.

REMARK. Since B is pairwise sufficient

Therefore in the above theorem one can assert that f) ByNθitθ2 is itself suffi-
θl,β2cient.

3. In this section we introduce Borel localizable and Bore! decomposable

measures. These notions correspond to the well known (see for enstance [15])
localizable and strictly localizable measures, and unlike them Borel localizability
turns out to be equivalent to Borel decomposability.

DEFINITION 3.1. Let (Xy A) be a standard Borel space. A measure m on
(X, A) is Borel localizable if there is a standard Borel space (Ty T] and a Borel
subset E of TxX satisfying

(i) Q<m(Et)<oo

( ii ) *! Φ t2 then m(EΊ (Ί E**) = 0
(iii) for all A in A, m(A)= Σ m(A Π E*)

t^T

(iv) If B is a Borel subset of E, then {B* : t e T} has an m essential supremum
in A.

DEFINITION 3.2. A Borel localizable measure m on a standard Borel space
is Borel decomposable if there is an E satisfying (i), (ii) and (iii) of Definition

3.1 and also
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(ii)' /!Φί2 then E
Any set E satisfying (i), (ii)' and (iii) will be referred to as a Borel decomposition

We note that in case of Borel decomposability condition (iv) of Definition
3.1 is automatically satisfied. For if E is a Borel decomposition of (X, A, m) then

for any Borel set Bc:E, \JB* is itself Borel and acts as an essential supremum of

Theorem 3.1. If (X} A, m) is Borel localizable then it is Borel decomposable.

Proof. Since m is Borel localizable there is an E satisfying

( i ) 0<X£')<°°
( ϋ ) tί 4= t2 then m(Etι Π E'*) = 0
(iii) m(A)=^m(Af\Et)

(iv) for every Borel set J5c Ey {B*: t^T} has an essential supremum in A.
We will construct an £"*, Borel subset of TxX, such that

(i) for all

(ii) £*
It is easy to see then that E* will serve as a Borel decomposition of (X, A, m).
Let {C:, C?, •••} be a countable algebra generating T. For each / define Ft=

ess sup E*. We now define J?* by
/e<7f

E*1 = Π F,- U Ff
3

Then £* is Borel in TxX and satisfies the required properties.

EXAMPLES of Borel decomposable measures.
(i) (X, A) standard Borel and m a σ-finite measure an (X, A). Choose

T=N and {En: n^N} any decomposition of (X, A) into sets of
positive finite measure.

(ii) (X,A) standard Borel; m counting measure. Choose T=X and E
to be the diagonal in ^Γx X.

(iii) -Y=[0,l]x[0,l], A Borel σ-algebra on X. (Γ, Γ)=([0, 1], Borel
cr-algebra) m(A)= 2 λ(^) where λ is the Lebsgue measure on [0, 1].

Let m be a Borel decomposable measure on (X, A) and E be a Borel decom-
position of (X, Ay m). For each ί, let mt be the measure m restricted to E*.

DEFINITION 3.3. We say that m is strongly Borel decomposable if there
is a Borel decomposition E of (X, A, m), such that for all B in A.

t -> mt(B) = m(B Π E*) is measurable in t.

Note that examples (i), (ii) and (iii) above are indeed strongly decomposable.
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Example (ii) can be modified to get a decomposable but not strongly decom-
posable measure. For this choose a non measurable positive function φ and
set m(x)=φ(x).

DEFINITION 3.4. An experiment (X, A, Pθ: θ eθ) where (X, A) and (θ, C)
are standard Borel is dominated by a strongly Borel decomposable measure m if

( i ) For each θ in Θ Pθ is dominated by m and — - exists.
dm

(ii) {Pθ: θ<=θ}=m i.e. PΘ(A)=Q for all θ in Θ if['m(A)=Q.
We have assumed "strong" Borel decomposability rather than Borel de-

composability to ensure the measurability of certain functions. This is ex-
emplified by the following lemma.

Lemma 1. Assume that (X,A,PΘ:Θ^Θ) is dominated by a "strongly"
Borel decomposable measure m and let E be a strong Borel decomposition of (X} A,m).
Then for each Borel subset B of Θx Γx X, the following functions are measurable
in (θ, t).

( i ) (θ, O-^CB ') where Bθ>*= {x: (θ, t} *)eJ5f> .
(ii) (θ,t)-*m(& *{\E*).

Proof, (i) Let M= {Bdθx TxX: PΘ(BΘ <) is measurable in (θ,t)}.
M contains all rectangles, is closed under finite disjoint unions and is further

a monotone class. Consequently M contains all Borel sets in Θx TxX.
(ii) Let M'--={Bc:θχTxX: m(Bθ'tΠEt) is measurable in (θ, t)} .
That M' contains all rectangles follows from 'strong' decomposability of m.

Mr is closed under finite disjoint unions. Further, since for all t, m(Et)<ooy Mr

is also a monotone class.

Lemma 2. Let D=l(θ, t, x) : Pθ(Et) > 0 and x e E*} and Dl be the projection
of D to the &xX space. Then the function θ-*m(DθιΓ\A) is meausrable in θ for
every Borel subset A of X.

Proof. D is Borel in ΘxTxX. (by lemma 1). Further, for each (0, #)
there is at most one t such that (0, t, oc)^D. Therefore D1 is Borel in θxX.

Let A=f(M:Λ(£')>0}
D2 is a Borel set in Θ X T such that each θ section of D2 is at most countable.

Therefore (see section 1) there are measurable functions gι,g2, '••• defined on Θ,
taking values in T such that

D2= {(<
ί = l

Fix any A in A. Define a sequence of functions φι(0), φ2(0), -"by
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if

if

if g.(θ)*gl(θ) for ί=l,

= 0 otherwise.

Then m(AΓ(Dΐ)= Σ Φn(θ) which is measurable in θ.

Theorem 3.2. If (X, A, Pθ: 0 e Θ) is dominated by a strongly Borel
I'D

decomposable measure m, then there is a version of — -(x) which is jointly measurable
dm

in θ and x.

Proof. Let D= {(θ, t, x): PΘ(E')>0 and x<= E*} and Dl be the projection
of D to the Θ X X space. Then Dλ has the following properties.

(i) PΘ(DΘ

1)=1 for all θ in θ
(ii) m(Dl) is σ-finite for all θ in Θ.

To see (ii) note that £>?= (J El and {t: Pθ(£'ί)>0} is at most countable.

Pe(E')>o
Now fix finite algebras An, generating A and denote the atoms

Define

where Φ'j(θ) are obtained from^fl),^^)) •" of lemma 2 as follows. Fix some
ξ outside T and declare E(=φ.

=S«(Θ) if g.(θ)Φg,(θ) for ι=l, 2, ...,»-!

= ζ otherwise.

Then by a well known theorem (see [10]), since m is finite on E^θ\ /„(%) con-
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J7J

verges] to —^ . Since, for each ny fθ(x) is jointly measurable in (θy x), fe(x)
dm

defined by

fθ(x) = limfβ(x) if it exists

= 0 otherwise

is a required version.

We use the next lemma in the proof of the theorem that follows it.

Lemma 3. Let D be a Borel subset ofθxT whose projection on T is whole
of T Suppose g is measurable function defined on D which is constant on each t
section of D, then

is measurable in t.

Proof. {t: g*(t)>a} = Pτ[{(θ, t): g(θ, t)>a} Π D]

{t: g*(t)<a} = Pτ[{(θ, t): g(θ,

where Pτ is the projection on the Γ-space. Thus being projections of Borel
sets {t:g*(t)>a} and {£:#*(?)<#} are both Analytic and consequently Borel,

[See section 1], Hence g* is T measurable.

Theorem 3.3. If (X, A,PΘ:Θ^Θ) is dominated by a strongly Borel decom-

posable measure then it is weakly coherent.

Proof. Let m be the dominating measure and E be a strong Borel decom-
j p

position. By theorem 1, we choose a jointly measurable version of — -.
dm

Denote by S, l(θ,x):
I dm

Suppose fθ(x) is weakly pairwise coherent, then by letting fe(x) to be zero

outside Sy it is possible to extend fθ(x) as a weakly pairwise coherent family of

functions on (X, A, PQ\

where Θ= {α, >0: Σ Λ, = l }xθxΘ

and PΘ = Σ afβt.

Therefore we will assume without loss of generality that {Pθ: 0eΘ} is closed

under countable convex combinations. We will also assume for simplicity

/β(*)=/j,(*).
We will briefly describe the idea of the proof. On each E*, PQ is a family
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of measures dominated by, in fad, equivalent to the finite measure mt. There-
fore there is some θ' such that Pθ'=mt. Also since IBg(x)IEt(x) is coherent,

/B0(#)/E;'(tf) will be a PΘ equivalent version of IBQΊEt for all θ. Our proof shows
that B^ on E* can be defined independently of θ' and also can be done me-
easurably in t. Having got B*'s we piece them together to get a B.

We now give the details of the proof. Define h on D2= {((9, t):

by
θ

V '
It is then measurable in ((9, /) and therefore, D0{(θ, t): h(θ, /)=!} is Borel in
ΘxΓ.

Note that (θ,t)^D0 iff Pθ is equivalent to m on £"'. By a theorem of
Halmos-Savage [5], for every t there is at least one θ such that (θ, t)^DQ. It
can be easily seen that IEtIBe=--IEtIBe' [Pθ] if (0', *)eZ>0:

As before choose ^ln finite algebras generating .A and let A\, A2

n, ~,Ak

n

w

denote the atoms of An. For fixed (θ, t) in DQ

IB9(X)IEt(x) = lim

We will show that for each i and rc, js independent of (9
t t P

and is further a measurable function of ί. Towards this first note that, since IBβ
is paiirwise coherent

IB9IE* =

and hence

On D0 look at the function g(θ, t) = . Then #(0, /) is
/w(^4? Π 5 )

measurable in (0, ί) and is constant on each ί-section of D0. By lemma 3
g*(t)= supg(θ, t) is measurable in ΐ. Since g*(t) =g(θ, t) for (0, t)^DQ our claim

**
is established.

Therefore for each (ι», M^n^n^)^^^^ ig a measurable func-
w(^4i n £" )

tion of only t and #. Hence the function ft(x) defined by

I x x if the limit existsn

= 0 Otherwise
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is also measuiable in (t, x). Further since for each tQ there is some ΘQ such

that(00,f0)eZ)0

/,(*) - IBθo(x)IE< = IBe(x)IE*(x)[Pθ] for all θ.

We can now define f(x)= Σ/f(#) ΓE'(*) and then

f(x) = IBe(x)[Pθ] for all θ in Θ.

This completes the proof of the theorem.

Combining Theorem 2.1 and 3.3 we get

Theorem 3.4. If (X, A, Pθ: 0eΘ) is dominated by a strongly Borel

decomposable measure, then for any countably generated σ-algebra B which is

pairwise sufficient, the completion B— f j B\/Nθitθ2 is sufficient.
θι,θ.2

REMARK. Suppose B is countably generated and pairwise sufficient and

further if m admits a decomposition E such that for each £, Et is B measurable,

then B is itself sufficient. This follows from the construction of ft(&) and a

theorem of Blackwell [2], In fact this is precisely what happens in the discrete

case. For in the discrete case given a countably generated pairwise sufficient

σ-algebra B, it is easy to see that the atoms of B are countable. Hence for T

one can take the Quotient space of atoms of B, and for each t take E* to be the

Z-atom. T is in general Analytic. However Theorem 3.3 goes through even

when T is Analytic.

We will now give an example to show that Theorem 3.4 cannot be im-

proved in the sense that while B is sufficient B itself may not be.

EXAMPLE. -Y=[0, l]x[0, 1] A: Borel σ-algebra on X

Θ=[0, 1]U {2} C: Borel σ-algebra on Θ

for 0e[0, 1]: P0=Lebesgue measure on {Θ}X[0, 1]

P2=Lebesgue measure on the diagonal in X.

To construct m, take Γ=[0, 1] U {2}.

For fe[0,l] define E'= {t} X [0, 1] - {(/, t)}

t=2 E'=diagonal in [0, 1] X [0, 1]

We now define m by m(A)= Σ \(A*)+\'(AΓ\D) where λ is the Lebesgue
/e[o«ι]

measure on [0, 1] and λ' the Lebesgue measure on the diagonal.

In this example, the σ-algebra of vertical Borel sets, i.e. sets of the. form

Bx [0, 1], is pairwise sufficient but not sufficient.
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