

Title	On one-sided QF-2 rings. II
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1980, 17(2), p. 433-438
Version Type	VoR
URL	https://doi.org/10.18910/10992
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON ONE-SIDED QF-2 RINGS II

MANABU HARADA

(Received July 19, 1979)

We have studied the extending property on direct sums of indecomposable modules in [4]. We shall apply those results to projective modules and give characterizations of semi-perfect rings whose projective modules have the extending property of simple module. We shall deal with the dual concept of [5].

1. Preliminaries

Throughout this paper we shall denote a ring with identity by R and every R -module M is a right unitary R -module. By $S(M)$ we denote the *socle* of M . We shall recall the definition of extending property of simple module. If for every simple submodule A_α of $S(M)$ there exists a direct summand M_α of M such that $S(M_\alpha) = A_\alpha$, we say M have the *extending property of simple module*. Let $\{N_\beta\}_I$ be a set of submodules of M . If $\bigcap_{I_1} N_\gamma \supsetneq \bigcap_{I_2} N_\delta$ for subset $I_1 \subsetneq I_2$, $\bigcap_I N_\delta$ is called *irredundant*.

In this paper we shall study the dual properties to those in [5] and so we shall first introduce the dual condition to $(**)$ in [2] and [3].

$(**)^*$ *Every indecomposable projective module contains a unique minimal submodule and is uniform.*

If further every indecomposable left projective module contains a unique minimal submodule, we call R a QF-2 ring following Thrall [7]. Hence, if R satisfies $(**)^*$, we call R a *right QF-2 ring* in this note.

Let M be an R -module. If M is a homomorphic image of projective module with non-essential kernel, we call M a *non-cosmall module* [3] and [6]. Every epimorphism onto non-cosmall module has the non-essential kernel [3]. We have dealt with conditions on non-small modules in [5]. We shall consider the dual or similar conditions to them.

$(*1)^*$ *Every non-cosmall module which is contained in a projective module contains a non-zero projective summand (dual to $(*1)$ in [5]).*

And

(**2) For every finitely generated projective P with essential socle $S(P)$, P/T contains a non-zero projective summand for any submodule $T \subseteq S(P)$.

They are weaker conditions than the following:

(*)* Every non-cosmall module contains a non-zero projective summand [4].

2. Right QF-2 rings

We are only interested in right QF-2 rings in this note and so from now on we always assume that R satisfies (**)* unless otherwise stated. Furthermore, we assume R is semi-perfect [1] and we shall denote the Jacobson radical of R and primitive idempotents by J and e , respectively. Let P be projective. Then $P = \sum \bigoplus P_\alpha$; the P_α is indecomposable. Hence, $S(P)$ is essential in P by (**)* (see [8]).

Lemma 1. Let R be a right QF-2 and semi-perfect ring and e a primitive idempotent. Let $eR \supset eJ^n \cong eJ^{n+k}$ be projectives. Then $eJ^n \approx eJ^{n+k}$ if J is nil or eR is injective.

Proof. Since eJ^n is projective and $S(eJ^n)$ is simple, $eJ^n \approx fR$ for some idempotent f . If $eJ^n \approx eJ^{n+k}$, $fR \approx fJ^k$. This isomorphism is induced by an element in fJf . If J is nil, we have a contradiction. If eR is injective, the isomorphism $eJ^n \approx eJ^{n+k}$ is extended to one on eR . Hence, $eJ^n = eJ^{n+k}$, a contradiction.

Theorem 1. Let R be a semi-perfect and right QF-2 ring with nil Jacobson radical. Then the following conditions are equivalent.

- 1) R satisfies (*1)*.
- 2) Let $\{P_\alpha\}_I$ be a set of direct summands of a projective P such that $P = P_\alpha \oplus P_\alpha'$ and $S(P_\alpha')$ is simple. If $\bigcap_I S(P_\alpha)$ is irredundant, $\bigcap_K P_\alpha$ is a direct summand of P for any finite subset K of I .
- 3) i) For some primitive idempotent e , there exists a positive integer $t(e)$ such that $eR/eJ^{t(e)}$ is a serial module, $eB (= eJ^s, s \leq t(e))$ is projective for any $eR \supset eB \supset eJ^{t(e)}$ and $Z(eC) = eC$ and $eC \subseteq eJ^{t(e)}$ for every non-projective right ideal eC in eR .
ii) $\{eJ^s\}_{e, s=0}^{t(e)}$ is the representative set of indecomposable projectives, where $Z(\)$ means the singular submodule (dual to [5], Theorem 2).

Proof. 1) \rightarrow 2). Let $K = \{1, 2, \dots, n\}$ be a finite subset of I and put $P(n) = \bigcap_{i=1}^n P_i$. We shall show $P(n)$ is a direct summand of P by the induction on n . If $n=1$, it is clear by the assumption. Put $P = P_n \oplus P_n'$ with P_n' indecomposable and $\pi_n: P \rightarrow P_n'$ the projection. We note $S(\bigcap P_\alpha) = \bigcap S(P_\alpha)$. Since

$S(P(n-1)) = \bigcap_{i=1}^{n-1} S(P_i) \not\subseteq S(P_n)$, $\pi_n(S(P(n-1))) \neq 0$. Hence, $\pi_n(P(n-1))$ is non-cosmall module in P_n' . Then there exists an indecomposable summand P_0 of $\pi_n(P(n-1))$ by 1). Since $S(P_n')$ is simple, $\pi_n(P(n-1)) = P_0$. Therefore, $P(n-1) = P_0' \oplus \ker \pi_n | P(n-1) = P_0' \oplus P(n)$, where $P_0' \approx P_0$. Since $P = P(n-1) \oplus P'$, $P(n)$ is a direct summand of P .

2) \rightarrow 3). Let e be a primitive idempotent. We assume eA is projective and $eB (\subset eA)$ is non-cosmall for right ideals eA and eB . Then there exists a projective module P such that $0 \leftarrow eB \xleftarrow{f} P \leftarrow K \leftarrow 0$ is exact and $S(P) \not\subseteq K$ by the definition (see [3], Proposition 3.1). If $S(P)$ is simple, $K = 0$ and eB is projective. We assume $P = P_1 \oplus \sum_L \oplus P_\alpha$ such that the P_α is indecomposable and $S(P_1)$ is a simple module not contained in K . We put $Q = P \oplus eA$ and $P' = \{x + f(x) \mid x \in P\} \subset Q$. Then $S(P') = (S(P) \cap K) \oplus S((1+f)(P_1))$ and $S(P) = S(P_1) \oplus (S(P) \cap K)$. Since $S(P) \cap S(P')$ is irredundant, $P \cap P' = K$ is a direct summand of Q and hence of P . Accordingly, eB is projective. Now if eJ is non-cosmall, eJ is projective from the above. Hence, eJ contains a unique maximal submodule eJ^2 , since eJ is indecomposable by (**)*. Repeating those arguments, we obtain a unique chain $eR \supset eJ \supset eJ^2 \supset \dots \supset eJ^t$ of projectives and eB is cosmall for any $eB \subseteq eJ^t$ by Lemma 1. Hence, $eB = Z(eB)$ by [3], Proposition 3.2. The remaining part is clear from the construction of eJ^i .

3) \rightarrow 1). Let P be a projective module which contains a non-cosmall module M . Then $P = \sum \oplus e_i J^{t_{ij}}$. Let $\pi_{ij}: P \rightarrow e_i J^{t_{ij}}$ be the projection. Since $M \neq Z(M)$, $\pi_{kl}(M) \not\subseteq Z(e_k J^{t_{kl}}) \subseteq e_k R$ for some k, l . Hence, $\pi_{kl}(M)$ is projective and so $M = \ker \pi_{kl} | M \oplus M'$; $M' \approx \pi_{kl}(M)$.

Corollary. *Let R be semi-perfect. Then R satisfies (**)* if and only if R is right QF-2 and QF-3 and satisfies (*1)*.*

Proof. In the above proof the implication 1) \rightarrow 2) is valid without the assumption on J . Hence, we obtain the corollary by the implication 2) \rightarrow 3), Lemma 1 and [3], Theorems 1.3 and 3.6.

As the dual to Theorem 2' in [5] we have

Theorem 1'. *Let R be as before. Then the following conditions are equivalent.*

- 1) R is right hereditary.
- 2) Let P be projective and P_i direct summands of P for $i = 1, 2$. Then $P_1 \cap P_2$ is a direct summand of P .
- 3) i) For some primitive idempotent e , eR is uni-serial and eB is projective for any right ideal $eB \subseteq eR$. ii) $\{eB\}_{e,B}$ is the representative set of indecomposable projectives.

In this case R is right artinian.

Proof. 1) \rightarrow 2). We can use the same argument as before.

2) \rightarrow 1). Let P be projective and A a submodule of P . Let $P_1 \xrightarrow{f} A \rightarrow 0$ be an exact sequence with P_1 projective. We put $F = P_1 \oplus P$ and $P'_1 = \{x + f(x) \mid x \in P_1\}$. Then $F = P'_1 \oplus P$ and so $K = \ker f = P_1 \cap P'_1$ is a direct summand of F . Hence, K is a direct summand of P_1 . Therefore, A is projective and R is hereditary.

1) \rightarrow 3). It is clear from Theorem 1.

3) \rightarrow 1). We know from 3) that R is right artinian and $Z(R) = 0$. Hence, every right ideal A contains a projective summand by Theorem 1. Since R is noetherian, A is projective.

Theorem 2. *Let R be a right QF-2 and semi-perfect ring. Then the following conditions are equivalent.*

- 1) *R satisfies (**2).*
- 2) *Every projective module has the extending property of simple module.*
- 3) *i) For some primitive idempotent e there exists a chain of projective right ideals eA_i such that $eR = eA_1 \supset eA_2 \supset \dots \supset eA_t$ and $\text{Hom}_R(S(eA_i), S(eA_j))$ is extended to $\text{Hom}_R(eA_i, eA_j)$ for any pair $i \geq j$, (see [4], Theorem 2).*
ii) $\{eA_i\}_{e,i}$ is the representative set of indecomposable projective such that $S(eR) \approx S(e'R)$ if $e \neq e'$.

Proof. 1) \rightarrow 2). Let P be projective and $P = \sum_I \bigoplus P_\alpha$; the P_α is uniform. Let S be a simple submodule of $S(P)$. Then there exists a finite subset $K = \{1, 2, \dots, n\}$ of I such that $S \subset S(\sum_K \bigoplus P_i)$. If $n = 1$, it is clear. Hence, we assume $S \subsetneq S(\sum_K \bigoplus P_i)$ and put $P(n) = \sum_{i=1}^n \bigoplus P_i$. Then $P^{(n)}/S = P_0 \oplus Q$ and P_0 is projective by 1). Considering an epimorphism $P^{(n)} \rightarrow P/S \rightarrow P_0$, we obtain $P^{(n)} = P_0' \oplus L$; $P_0' \approx P_0$ and $L \supset S$. Since $L = \sum_{i=1}^{n-1} \bigoplus P_i'$, we can use the induction argument.

2) \rightarrow 3). Let eR and fR be uniform projectives with isomorphic socle. Then there exists a monomorphism $f: eR \rightarrow fR$ (or $fR \rightarrow eR$) by [4], Corollary 8, i.e. $eR \lessdot^* fR$ or $fR \lessdot^* eR$ (see [4]). Let eR be a maximal one among uniform projectives P with isomorphic socle with respect to the relation \lessdot^* . Then those P are isomorphic to right ideals eA in eR . Since the relation \lessdot^* is linear on $\{eA\}$, taking repeatedly maximal ones, we get a chain of projective right ideals $eR = eA_1 \supset eA_2 \supset \dots \supset eA_t$. The second condition is clear by [4], Corollary 8.

3) \rightarrow 2). It is clear from [4], Corollary 8.

2) \rightarrow 1). Let $P = P_1 \oplus P_2 \oplus \dots \oplus P_n$ be projective and the P_i uniform. Let $T \subseteq$

$S(P)$ and $T=S_1 \oplus S_2 \oplus \cdots \oplus S_i$; the S_j is simple. Then there exists a direct summand P'_1 of P such that $S(P'_1)=S_1$. Let $P=P'_1 \oplus K_1$. Then $T=S_1 \oplus \pi_1(T)$; $\pi_1: P \rightarrow K_1$. Hence, $S(K_1) \cong \pi_1(T)$ and $P/T \approx P'_1/S_1 \oplus K_1/\pi_1(T)$. Repeating the same argument on $K_1/\pi_1(T)$, finally we obtain $P/T \approx P'_1/S_1 \oplus \cdots \oplus P'_i/S_i \oplus K_i$ and K_i is projective, since $\pi_j(T)=0$ for some $j \leq n$.

3. Corollaries and examples

We shall consider some special cases of rings.

Corollary 1. *If R is a right QF-2 and semi-perfect ring with $Z(R) \supset J$, then R satisfies $(*1)^*$.*

Proof. It is clear from the proof of the implication $3) \rightarrow 1)$ in Theorem 1.

Corollary 2. *If R is a right QF-2 and semi-perfect ring with $J^2=0$, then R satisfies $(*1)^*$.*

Proof. Let $R=\sum \oplus e_i R \oplus \sum \oplus f_j R$, where the e_i and the f_j are primitive and the $f_j R$ is simple. Then $S(R)=\sum \oplus e_i J \oplus \sum \oplus f_j R$. If $e_i J f_j \neq 0$, $e_i J \approx f_j R$. Hence, $e_i J = Z(e_i J)$ or $e_i J$ is projective. Accordingly, R satisfies $(*1)^*$ by Theorem 1.

Corollary 3. *Let R be a right QF-2 and semi-perfect ring with nil Jacobson radical. Then $Z(R)=0$ and $(*1)^*$ is satisfied if and only if R is a right generalized uniserial and right artinian hereditary ring.*

Proof. It is clear from Theorem 1.

EXAMPLES 1. Let $K \subset L$ be fields and put

$$R = \begin{pmatrix} K & 0 & L \\ 0 & L & L \\ 0 & 0 & L \end{pmatrix}.$$

Then R is a right QF-2 and hereditary artinian ring. Hence, R satisfies $(*1)^*$. If $[L:K]=\infty$, R is not left artinian and does not satisfy $(**2)$.

2. Let $C=K \oplus M$; $M=K$, be the trivial extension and put

$$R = \begin{pmatrix} C & C \\ 0 & C \end{pmatrix} ([5], Example 2).$$

Then R is QF-2 and $e_{11}R$ is injective and projective. Hence, R satisfies $(**2)$ by Theorem 2. Put $P=e_1R \oplus e_1R \oplus e_2R$, where $e_i=e_{ii}$. We have a homomorphism e_1R to e_1R by a multiplication of $m (m \in M)$ from the left side and a

monomorphism ρ of e_2R into e_1R . We take an epimorphism

$$(1, m, \rho): P \rightarrow e_1R .$$

Then its kernel $N_1 = \{(x, y, z) | \in P, x+my+\rho(z)=0\}$ is a direct summand of P . Put $N_2 = \{(0, y, z) | \in P\}$ and $N_3 = \{(x, 0, z) | \in P\}$. Then $N_1 \cap N_2 \cap N_3 = 0$. However, $N_1 \cap N_2 = \{(0, 0), (a, b), (0, mb) | a \in M, b \in C\} \approx e_1J$ is not projective. Hence, R does not satisfy (* 1).

References

- [1] H. Bass: *Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. **95** (1960), 466–486.
- [2] M. Harada: *Note on hollow modules*, Rev. Union Mat. Argentina **28** (1978), 186–194.
- [3] ———: *Non-small modules and non-cosmall modules*, Ring Theory of Proc. the 1978 Antwerp Conf.
- [4] ———: *On extending property on direct sums of uniform modules*, to appear.
- [5] ———: *On one-side QF-2 rings I*, Osaka J. Math. **17** (1980), 421–431.
- [6] M. Rayer: *Small and cosmall modules*, Ph. D. Dissertation, Indiana Univ. 1971.
- [7] R.M. Thrall: *Some generalizations of quasi-Frobenius algebras*, Trans. Amer. Math. Soc. **64** (1948), 173–183.
- [8] R.B. Warfield Jr: *A Krull-Schmidt theorem for infinite sums of modules*, Proc. Amer. Math. Soc. **22** (1969), 460–465.

Department of Mathematics
 Osaka City University
 Sugimoto-cho, Sumiyoshi-ku
 Osaka 558, Japan