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We have studied the extending property on direct sums of indecomposable
modules in [4]. We shall apply those results to projective modules and give
characterizations of semi-perfect rings whose projective modules have the
extending property of simple module. We shall deal with the dual concept of

(5]

1. Preliminaries

Throughout this paper we shall denote a ring with identity by R and every
R-module M is a right unitary R-module. By S(M) we denote the socle of M.
We shall recall the definition of extending property of simple module. If for
every simple submodule 4, of S(]) there exists a direct summand M, of M such
that S(M,)=A,, we say M have the extending property of simple module. Let
{Ng}; be a set of submodules of M. If pNy; DNS for subset I, &1, rI]Ns is

1 . 2

called irredundant.
In this paper we shall study the dual properties to those in [5] and so we
shall first introduce the dual condition to (**) in [2] and [3].

(**)*  Every indecomposable projective module contains a unique minimal
submodule and is uniform.

If further every indecomposable left projective module contains a unique mini-
mal submodule, we call R a QF-2 ring following Thrall [7]. Hence, if R satisfies
(**)*, we call R a right QF-2 ring in this note.

Let M be an R-module. If M is a homomorphic image of projective
module with non-essential kernel, we call M a non-cosmall module [3] and [6].
Every epimorphism onto non-cosmall module has the non-essential kernel [3].
We have dealt with conditions on non-small modules in [5]. We shall con-
sider the dual or similar conditions to them.

(*1)*  Every non-cosamll module which is contained in a projective module
contains a non-zerc projective summand (dual to (*1) in [5]).
And
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(**2) For every finitely generated projective P with essential socle S(P),
P|T contains a non-zero projective summand for any submodule T <S(P).

They are weaker conditions than the following:

(*)* Every non-cosmall module contains a non-zero projective summand [4].

2. Right QF-2 rings

We are only interested in right QF-2 rings in this note and so from now on
we always assume that R satisfies (**)* unless otherwise stated. Furthermore,
we assume R is semi-perfect [1] and we shall denote the Jacobson radical of
R and primitive idempotents by J and e, respectively. Let P be projective.
Then P=3 ®P,; the P, is indecomposable. Hence, S(P) is essential in P by

(**)* (see [8]).

Lemma 1. Let R be a right QF-2 and semi-perfect ring and e a primitive
tdempotent. Let eRDeJ*2e]"** be projectives. Then eJ"A&e]*™* if | is nil or
eR is injective.

Proof. Since eJ" is projective and S(eJ") is simple, e/"~ fR for some
idempotent f. If eJ*~eJ***, fR~ f]J*. This isomorphism is induced by an
element in fJf. If J is nil, we have a contradiction. If eR is injective, the
isomorphism e¢J"~eJ"** is extended to one on eR. Hence, ¢/"=eJ"**, a con-
tradiction.

Theorem 1. Let R be a semi-perfect and right QF-2 ring with nil Jacobson
radical. Then the following conditions are equivalent.

1) R satisfies (*1)*.

2) Let {P.}; be a set of direct summands of a projective P such that P=P,
@DP,’ and S(P,’) is simple. If (‘jS(P,,) is trredundant, (;P.,, is a direct summand

of P for any finite subset K of I.

3) i) For some primitive idempotent e, there exists a positive integer t(e) such
that eR[e]'® is a serial module, eB(=e]*, s<t(e)) is projective for any eRDeBD
e]'® and Z(eC)=eC and eC Se]'® for every non-projective right ideal eC in eR.

i)  {eJ°}..t4 is the representative set of indecomposable projectives, where Z( )
means the singular submodule (dual to [5], Theorem 2).

Proof. 1)—2). Let K={1, 2, -+, n} be a finite subset of 7 and put P(n)=
f_\ P;. We shall show P(n) is a direct summand of P by the induction on n.

If n=1, it is clear by the assumption. Put P=P,@P,” with P,” indecompo-
sable and =,: P—>P,” the projection. We note S(NP,)=NS(P,). Since
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S(P(n—1))=’:élls(Pi)¢S(P,,), 7 (S(P(n—1))%0. Hence, 7,(P(n—1)) is non-

cosmall module in P,’. Then there exists an indecomposable summand P, of
z,(P(n—1)) by 1). Since S(P,’) is simple, z,(P(n—1))=P,. Therefore, P(n—1)
=P,'@ker =,| P(n—1)=P,'DP(n), where P/~P,. Since P=P(n—1)@P’, P(n)
is a direct summand of P.

2)—3). Let e be a primitive idempotent. We assume e4 is projective and
eB(CeA) is non-cosmall for right ideals e4 and eB. Then there exists a pro-

jective module P such that 0<eB iP«—K <0 isexactand S(P)d K by the de-
fintion (see [3], Proposition 3.1). If S(P) is simple, K=0 and eB is projective.
We assume P=PIEB§}@PO, such that the P, is indecomposable and S(P)) is a

simple module not contained in K. We put Q=P®ed and P'= {x+f(x)]
x€P} Q. Then S(P")=(S(P)NK)DS((1+4f)(P,)) and S(P)=S(P,)B(S(P)N
K). Since S(P)NS(P’) is irredundant, PNP'=K is a direct summand of Q
and hence of P. Accordingly, eB is projective. Now if ¢J is non-cosmall, e]
is projective from the above. Hence, e/ contains a unique maximal submodule
eJ? since ef is indecomposable by (**)*. Repeating those arguments, we
obtain a unique chain eRDeJDeJ?D::-DeJ* of projectives and eB is cosmall
for any eBSeJ' by Lemma 1. Hence, eB=Z(eB) by [3], Proposition 3.2.
The remaining part is clear from the construction of eJ‘. ,

3)—1). Let P be a projective module which contains a non-cosmall module
M. Then P=3Pe;J'i. Let =;;: P—e,;J'i be the projection. Since M=
Z(M), (M) Z(e, J'») S e;R for some k,l.  Hence, 7z,(M) is projective and so
M=ker z,,| M®M'; M' ==, (M).

Corollary. Let R be semi-perfect. Then R satisfies (*)* if and only if R
is right QF-2 and QF-3 and satisfies (*1)*.

Proof. In the above proof the implication 1)—2) is valid without the
assumption on J. Hence, we obtain the corollary by the implication 2)—3),
Lemma 1 and [3], Theorems 1.3 and 3.6.

As the dual to Theorem 2’ in [5] we have

Theorem 1'. Let R be as before. Then the following conditions are equiva-
lent.

1) R is right hereditary.

2) Let P be projective and P; direct summands of P for i=1,2. Then PN
P, is a direct summand of P.

3) i) For some primitive idempotent e, eR is uni-serial and eB is projective
for any right ideal eBCeR. ii)i {eB}, s is the representative set of indecomposable
projectives.
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In this case R is right artinian.

Proof. 1)—2). We can use the same argument as before.

2)—1). Let P be projective and A a submodule of P. Let PILA—>O be an
exact sequence with P, projective. We put F=P,@P and P{={x+f(x)]
x€P}. Then F=P{®P and so K=ker f=P,N P} is a direct summand of
F. Hence, K is a direct summand of P,. Therefore, 4 is projective and R is
hereditary.

1)—3). Itis clear from Theorem 1.

3)—1). We know from 3) that R is right artinian and Z(R)=0. Hence, every
right ideal A4 contains a projective summand by Theorem 1. Since R is noe-
therian, 4 is projective.

Theorem 2. Let R be a right QF-2 and semi-perfect ring. Then the follow-
ing conditions are equivalent.

1) R satisfies (**2).

2) Every projective module has the extending property of simple module.

3) i) For some primitive idempotent e there exists a chain of projective right
ideals eA; such that eR=eA DeA,D--+Ded; and Homg(S(ed;), S(ed;)) is
extended to Homg(eA,;, eA)) for any pair >, (see [4], Theorem 2).

i) {ed}.; is the representative set of indecomposable projective such that
S(eR)AS(e'R) if e+e’.

Proof. 1)—2). Let P be projective and P=>}@P,; the P, is uniform.
I

Let S be a simple submodule of S(P). Then there exists a finite subset K=
{1,2, -+, n} of I such that SCSQIPP;). If n=1, it is clear. Hence, we
K

assume SSS(SVDP,) and put P(n)=3)DP;. Then P™/S=P,@®Q and P,
K i=1
is projective by 1). Considering an epimorphism P™—P/S—P,, we obtain
P"»=P,/PL; P/~P, and LDS. Since L=”Z—IEBP,~’, we can use the induc-
i=1

tion argument.

2)—3). Let eR and fR be uniform projectives with isomorphic socle. Then
there exists a monomorphism f: eR—fR (or fR—¢R) by [4], Corollary 8, i.e.
eR<*fR or fR<*¢R (sece [4]). Let eR be a maximal one among uniform pro-
jectives P with isomorphic socle with respect to the relation <*. Then those
P are isomorphic to right ideals e4 in eR. Since the relation <<* islinear on
{ed}, taking repeatedly maximal ones, we get a chain of projective right
ideals eR=eA,DeA,D -+ DeA,. The second condition is clear by [4], Corollary
8.

3)—2). Itis clear from [4], Corollary 8.

2)—1). Let P=P,®P,P---BP, be projective and ithe P; uniform. Let TS



ONEe-siDED QF-2 Rings 11 437

S(P) and T=S,BS,P:--PS;; the S; is simple. Then there exists a direct
summand P," of P such that S(P,")=S,. Let P=P,’@®K,. Then T=S8,®
m(T); m: P-K,. Hence, S(K,)2x(T) and P/T~P,'|S,®K,|/=(T). Repeat-
ing the same argument on K,/=;(T), finally we obtain P/T~P,'/S;® .- P
P;/[S;/®K; and K, is projective, since z;(T)=0 for some j<n.

3. Corollaries and examples

We shall consider some special cases of rings.

Corollary 1. If R is a right QF-2 and semi-perfect ring with Z(R)D ], then
R satisfies (* 1)*.

Proof. It is clear from the proof of the implication 3)— 1) in Theorem 1.

Corollary 2. If R is a right QF-2 and semi-perfect ring with J*=0, then R
satsifies (* 1)*.

Proof. Let R=2>De,RDIDf;R, where the e; and the f; are primitive
and the f,R is simple. Then S(R)=2De,JOIIDf;R. If ¢, ]Jf;+0, e, ]~
fiR. Hence, e;J=Z(e;]) or e,] is projective. Accordingly, R satisfies (* 1)* by
Theorem 1.

Corollary 3. Let R be a right QF-2 and semi-perfect ring with nil Jacobson
radical. Then Z(R)=0 and (* 1)* is satisfied if and only if R is a right generalized
uniserial and right artinian hereditary ring.

Proof. It is clear from Theorem 1.
Exampres 1. Let K CL be fields and put

KO0L
R=|0LL
\ 0 0 L

Then R is a right QF-2 and hereditary artinian ring. Hence, R satisties (* 1)*.
If [L: K]=oo, R is not left artinian and does not satisfy (** 2).

2. Let C=K®M; M=K, be the trivial extension and put

R= i g) ([5], Example 2).

Then R is QF-2 and e, R is injective and projective. Hence, R satisfies (** 2)
by Theorem 2. Put P=e,R@e,RPe,R, where e;=e;. We have a homo-
morphism &R to ¢,R by a multiplication of m(m& M) from the left side and a
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monomorphism p of ¢R into ¢,R. We take an epimorphism
(1,m, p): P—eR.

Then its kernel N,={(x, y, 2)| €P, a+my+p(2)=0} is a direct summand of
P. Put N,={(0,y,2)| P} and N;={(x,0,2)|=P}. Then N,NN,NN,=0.
However, N;NN,={(0,0), (a,b), (0,mb)|acM, b=C}~e J is not projective.
Hence, R does not satisfy (* 1).
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