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1. Introduction. In this paper giving an extension of the theorem on
Pitman efficiency in Noether [2], we try to compare two sequences of tests
under more general conditions than Noether [2]. Roughly speaking, the idea
of the Pitman efficiency is as follows.

DEerINITION. Given two sequences of tests of the same size of the same
statistical hypothesis, the Pitman efficiency of the second sequence of tests with
respect to the first sequence is given by the ratio n,/n,, where n, is the sample
size of the second test required to achieve the same power for a given alternative
0=mn, ;) as is achieved by the first test with respect to the same alternative
0=mn,(w,) when the sample size n,, Here 7,(w) is a parametric function.

In the paper of Noether [2], it was considered only when (a) the sequence
{T,} of statisics is asymptotically normally distributed, (b) the test ¢, is such
one that ¢,=1 or 0 according as T,>c¢, or T,<c, with some constant c,, and
(c) the alternatives z,(w) are the following one; 7, (0)=0,+n"%(w—6,). In this
paper, however, it is shown that the Pitman efficiency is also calculable under
more general conditions than those.

In Section 2 we investigate on the rate of convergence of alternatives
{m(w)}. Section 3 is devoted to the calculation of the Pitman efficiency.

2. The rates of convergence of alternatives. Throughout this paper
we shall use the following notations. Let ® be a nonempty subset of R' and
0, a fixed inner point of ®. Let K (3 {0}) be a fixed cone in R, and we denote
Q={0+0,; 0€K}(=K+6,) and ®,=0NQ. For each neN={1,2, --:}, let
(X,, A,) be the cartesian product of n copies of a certain measurable space
(X, A). For each 0= © let P, be a probability measure on (X, A). Let Py,
be the product measure of n copies of P,. Let a measure space (Y, B, u) be
given, where Y is a Borel subset of R”, B is the Borel o-field in ¥ and p is the
Lebesgue measure on (Y, B).

DEerFINITIN 1. Let {Q, .; o= Q} ,«n be a squence of families of probability
measures and {Q,; ®=Q} a family of probability measures on (¥, B). Let Q,
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be a nonempty subset of Q. We call that Q,, , converges in law to Q,, uniformly
in Q, if and only if

(2.1) sup 10, #(C)—0,(C)| =0 as n—>co,
for each measuable convex set C in Y.

We use the notation supp(P) for the support of a probability masure P
on (Y, B), i.e., the minimum closed set C in Y such that P(C)=1.

Condition (M). (a) A family of distributions Q, on (Y, B) is dominated
by w and their density is denoted by dQ,/du=g(y: ©).

(b) For any ¢€[0, o) and any ,, 0,EQ, the set {y; g(y: 0,)=c-g(y: 0,)}
is contained in €. Here € is the family of sets C such that C or C€ is repre-
sented as a finite union of mutually disjoint measurable convex sets in Y.

(c) There exists an we=Q\{6,} such that p({supp(Q.,)Nsupp(Qs,)})>0,
where A\B stands for the set {»; w4 and w & B}.

(d) The family {g(y: w); ©=Q} of densities has monotone likelihood ratio
with respect to |w—6,| in the following sense: There exists a real valued
measurable function T'(y) on Y such that, for any w, o’ Q satisfying |o—6,| <
|’ —8,1, the distributions Q, and Q,/ are distinct and the ratio g(y: »)/g(y: )
is a nondecreasing function of T(y).

(e) Q.,, converges in law to Q, whenever w,— w.

By a statistic T, we mean an (A4,, B)-measurable map from X, to Y. For
a finite measure » on (X, A,) and a statistic 7, we denote by »v7,;* the induced
measure by T,.

DeFINITION 2. Let {z,},cn be a sequence of mappings from Q to ©,. A
sequence {7}, of statistics is said to be of type (L) relative to {n,} (or {r,}
is called an accessible sequence of {T,} (a)if P, » Tw' convergesin law to a
certain probability measure Q, on (Y, B) as n tends to infinity uniformly in a
neighborhood of each w=Q, (b) if the family {Q,; 0= Q} of limit distributions
satisfies Condition (M).

DEFiNiTION 3. Let {r,},cn be a sequence of mappings from Q) to ®, such
that 7z,(w)—6, as n—>oo for each fixed w=Q. The rate of convergence of {m,}
is defined as the class of sequences {%,},cny of positive numbers such that for
every o €O\ {0,}

(2.2) 0<lim inf &, |7 (w)—0,| =lim sup &, | 7,(0)—0,| < co.
Denote by ¢; the most powerful level o test for testing a simple hypothesis

0y, against an alternative Q,. For a function f and a probability measure
P, E[f; P] stands for the expectation of f under P.
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Lemma 1.  Suppose that the family {Q,} satisfies Condition (M). Let o be
any number satisfying 0<a<1, and w be any point in Q. If a sequence {Q,/ ,}
of probability measures on (Y, B) converges in law to Q,/, then we have

(2.3) lim E[¢,; Qo' ] = E[¢; Q'] -

Proof. First we observe that for any c¢<[0, ) and o, 0,9, the set
{y;8(y: 0,)=c-g(y: w,)}is contained in €. This follows directly from the fact:

{y;8(y: 0)=cg(y: 0)} = {y;g(y:wz)g%g(;v:w,)} if ¢>0
= {y;8(:i@)=28(y: )} if ¢=0.

Since the class € is closed under the formations of complement and finite inter-
section, we have

24)  {y;8(rie) = cg(y: )} €6, {y;8(y: @) >cg(y: )} €€
On the other hand, according to the Neyman-Pearson lemma, ¢ is given by
(2.5) ba(y) =1 if g(y:ew)>cg(y:0,)

=d if g(y:e)=cg(y:0,)

=0 if g(y:w)<cg(y:6,)

where ¢ and d(0=<d <1) are some constants. From (2.4) we have {y; g(y: 0)>
cg(y:0,)} €€ and {y; g(y: 0)=cg(y: 6,)} €€, and hence we have

(2.6)  Lim E[$g; O u] = lim Oy ({y; £(y: @) >cg(y: 6u)})
+d-[lim O ({y; 8(y: @) = c-g(y: 0o)})]
= Qu({y; 8(y: ) >c- g(y: 60)})
+d-0u({y;8(y: ©) = c-g(y: 0)})
= E[¢2; 0./] -
The proof of the lemma is completed.

Denote by B(w: a) the power of the most powerful level ¢ test for testing
Oy, against Q,,; B(ew: a)=E[ds; Q-

Lemma 2. (cf. Lehmann [1]) Let a=(0,1). If {Q.; o = Q} satisfies
Condition (M), then B(w:a)<B(o’: a) whenever w and o' €Q satisfy | w—0,|
<|w'—6,| and B(o’: a)<1.

Denote by ¥ the family of functions Y from [0, o] to [0, co] satisfying
the following conditions (a) to (d).
(a) 4 is monotone decreasing in (¢, o) for sufficiently large ¢>0.
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(b) For any p>0, lim y(px)/yr(x)=ay(p) exists.
(¢) limay(p) = oo, limay(p)=0. (For the sake of convenience we define
P>0 P>

ay(0)=rco and ay(o0)=0.)
(d) ay(p) is a continuous and monotone strictly decreasing function of p.

RemARk. From the properties (a), (b), (c) and (d) mentioned above, it
follows that for any Y and YW

(2.7) ay(1) =1, ay(p) >0 for any 0<p< o0, lim Y(x) =0
and.lim ¥(m)¥(n) = lim ¥ (x)/(x) .

Denote by ¥ the class of the families {,},s, having positive continuous
parameter v of mappings from Q to ©, such that

(2.8) my(w) = O,V (v)(w—0,) if G4+ V(@) (w—6,)E8,

=6, otherwise,
with some &P,

Theorem 1. Suppose that {x.},>, and {x]} >, are two elements of ¥ and
that a sequence {T,} ,cn of statistics is of type (L) relative to {r,}.n and also to
{7t} wen- Then lim [z, (w)—06,)/[7h(0)—0,] exists and positive finite for amy

wEO\{0,}, and hence the rates of convergence of {m,},en and of {mi} .cn coin-
cide with each other.

Proof. Let 7, (0w)=0,+V(n)(w—0,) and =j(w)=0,4'(n)(w0—86,) for suf-
ficiently large n= N, where +, Y =¥. Define p,=+/(n)/yr(n). In order to
prove the theorem it is sufficient to show that lim p,, exists and 0<lim p, < co.

nyc0

First we show that liminf p,>0. Suppose that liminfp,=0 then take a

subsequence {p,} of {p,}such that p, —0. For any point w in Q, let ¢ be the
most powerful level « test for testing Q,, against Q,, and ¢’ that for testing Q4
against Q). Here Qf is the limiting distribution of P, ,T5*. Then from
Lemma 1 and the property of uniform convergence of P, ., ,T5" we have

(2.9) E[¢'; Qi1 = lim E[¢'; Py m; Ta;']
= lim E[¢’; P 0:Cwp, m; Tn_il]

i>oo

= E[¢'; Qs

=,

where w;=60,+ p,(0—0,), 0)(0)=n/(w) and 0(w;)=n,(»;). Thus E[¢'; Ql]=a
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for every w=Q. But this does not hold unless Q={f,} from Lemma 2.
Hence lim inf p,,>0. Similarly we have lim sup p, < oo.

Let lim inf p,=a and lim sup p,=b. Then 0<a=<b< oo, and there exist

subsequences {p,} and {p,;} of {p,} such that p,—a and p,—b. Let o,=
Oy+-paf(0—0b,), w§=0o+p,;(w—0), &=0,+a(w—0,) and &6=6,+b(w—¥0). Then,
again from Lemma 1 and the property of uniform convergence of {P,c; .T%'},
we have for each 0 €

(2.10) E[$: Qs] = lim E[$; Pagup,n T3]
= lim E[¢; P> »,To']

= E[¢; Q]
= lim E[¢; Ps o>, ]

jroo

= lim E[¢; P, 0;(011')-";1‘;;'1]

jroo

= E[¢; Qu]

where 0,(0;)=7 (@), 0i(0)=m/(w), 8;(0)=mnn(w) and 0F(w))=mx(w)). Thus
E[¢; Oz]1=E[¢; Os], and hence form Lemma 2 it follows that [&6—6°|=
|&6—6,|. Therefore, from the definition of & and & we have a=b. This com-
pletes the proof.

3. The relative efficiency of tests. For a number s (0=s=<oo) and
JrEW we denote by py(s) the number satisfying the equation

(3.1) ay(pyfs)) = 5.

Notice that, by the property of ay, the equation (3.1) has a unique solution for
each s satisfying 0=<s=< co.

Lemma3. Let ) and * be two elements of 'V, and c be any positive number.
(@) If Mim (y)(x)=p(0=p=co) then lim x|y=py(p)”",
2,950 z)y.500
where D C (0, o0) X (0, o0) is a set snch that for any M >0 there exists (x, y) in
D satisfying x>M and y>M. (Such a set D will be called a set of D-type in
the following).
Define

3-2) D(c) = {(%, ); ¥X(3)(x) = ¢},
which is not empty and a set of D-type by the properties of r and *.
(b) If }im ¥ () [Yr(x)= o0 then( lim x/y=0.

*,9ED(¢)
5,750
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(c) If lim*(x)[(x)=0 then lim x/y=oco.
Tro0 =, 9)EDE)

(@) If Hm @) =1 O<A<oo) then lim wjy—py(e/r)™

%,9)eD(¢
%, »o

Proof. First, we prove the part (a) of the lemma. Let lim Jr(y)/4r(x)=p,
(*,Y)ED
%, Y300

and let {(x;, ,)};en CD be any sequence such that x;—>co and y;—>co as
i—>oco. Suppose that lim sup y;/x;>py(p), then there exists a number p, such

that p,>py(p) and y,/x;=p, for infinitely many ’s. Therefore we have
(33) £ = lim (o) () STim (o ) ()
=ay(p,)
<ay(py(p)) =7,
which is a contradiction. Thus lim sup y;/x; < py(p). Similary, we have
lirxr: inf y:/%; = py(p). Hence we have,iiril y:/%; = py(p). This completes the

proof of the part (a).
Secondly, we prove the part (b). Let lim y*(x)/Jr(x)=co. Then, from

the equality c=y*(3)¥(®)=[*(»)¥()][¥(y)/ ()] it follows that
(3.4) lim ()@= 0.

G, »eDn(c)
%, Yyoco

Let {(x;, y;)}:ien ©D(c) be any sequence such that x;—oco and y; oo as i—oo,
Suppose that lim inf y,/x;=p,< oo, then ay(p,+1)>0 from (2.7). But, taking

account of (3.4) we have

(3.5) ay(pot1) = lim ¥((pot 1)) ()
< lim (i) ) ()
= lim_ (y)f()

*,9)eD()
%,% 300

=0.
This is a contradiction. Thus have lim inf y,/x;= oo, and hence the part (b)

was proved.
Obviously, the part (c) follows from the part (b).
Finally we prove the part (d). Let lim y*(x)/yr(x)=x, 0<A<oo. Define

P¥(x)[Y(x)=\, then A,—\ as x—co. By the definition of D(c) we have
Y (y)r(x)=c/n, for any (x, y)=D(c). Since ¢/r, converges to ¢/, from the
part (a) of this lemma we have
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(3.6) (:, ;lggmx/y = py(c/A)7".

This completes the proof of the part (d).
The proof of the lemma is completed.

The following lemma is easily seen, and the proof will be omitted.

Lemma 4. Suppose that a family {Q,; 0oEQ} of probability measures on
(Y, B) satisfies Condition (M). Let o be any number such that 0<a<1, and let
B(w: a) be as in Lemma 2. Then the function: wo—B(w: &) is continuous on Q.

In the followings we shall consider two sequences {7,} and {T3}} of
statistics of type (L) relative to {z,}.,cn and to {zi¥},.en, respectively, where
{7} >0 and {z¥},s, are elements of ¥. Assume that Py nT3'—Q, and
Prroy T = Q¥ in law as n— oo uniformly in a neighborhood of each w&Q.
Denote by ¢ and ¢* the most powerful level « tests for testing Q, against Q,
and Qf against O, respectively. The power of the tests ¢ and ¢* are denoted
by B(w:a) and B*(w: a) respectively. Suppose that we are now concerned
with testing the null hypothesis =8, versus the alternative 0®,\ {6,}. Let
ae(0, 1) be fixed. Define

(3.7) D({T.}, {T#, {=.}, {=¥})
=.. g)EED({T,.}, (TH, =}, &5} 0, o),

where K (=K({0.}, {0¥})) = {(@,, ©,)EQXQ; a<B(w,: a) = B*(w,: a)<1},
and D({Tn_} s ATEY, {ma}, {78} 04, 0))= {(n,, n,); n,>0, n,>0, Ty (0,) =
¥ (@)} (=D).

In the following the notation #,, #n, means some positive numbers (not necessarily
integers).

REMARK. (1) By Lemma 4, K is not empty for any pair {Q,; «€Q} and
{0¥; = Q} of families of probability measures satisfying Condition (M).
(2) D is aset of D-type.

Theorem 2. lim _n,/n,, whenever it exists, does not depend on the choice of
#,n,)ED
" myren

the elements {r.} .,V and {z¥},s.=V such that {T,} and {T¥} are of type
(L) relative to {m,} ey and {n}} .o n respectively.

Proof. Let the sequence {7,} be of type (L) also relative to {z}},>,E¥.
Assume that P, ,T7'— Q! in law as n—co uniformly in a neighborhood of
each w=Q. Denote by B’(w: &) the power of the most powerful level « test
for testing Qj, against Q. In order to prove our theorem, it is sufficient to
show that
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(3.8) lim =n,/n,= lim _n/n,,
pnED’ (#),m)ED
n,%,p00 7,0

where D’=D({T.,}, {T¥}, {=i}, {#z¥}).
Let 7y(0)=0,+Y(v)(w—6,) and 7l(w)=0,+'(v)(0—80,) for sufficiently large
»>0. From Theorem 1 we have

(3.9) i W/n)(n) =@,  0<a<oo.
Thus from (2.7) we have
(3.10) Lim /' (x)/yp(x) = a .

For each 0w, let #(w)=0,+a(w—6,). Define (0),=0,4 (' (v)/(v))(0—0,)
for each »>0 and w= Q. Then, for each w=Q

(3.11) m)(w) = my((w),) , and (o), = 7(w) as v — oo.
Hence from the assumption, we have
(3.12) P«;cm),nTEl — Q! and P‘t;,((a)),,)_anTl — Qzwy A8 B —> 00

in law for each 0 € Q.
Therefore Q=03 and hence

(3.13) B(0: a) = B(#(w): a) fro ech 0wE=Q.

Now, suppose that the following two equations (3.14) and (3.15) hold at the
same time:

(3.14) B(o,: a) = B'(01: a) = B*(w,: a)
and

(3.15) Ta0) = mig(od) = moa(,) -
Then, taking account of (3.13), from (3.14) we have
(3.16) B(o,: a) = B(7(w]): a) .
Hence, from Lemma 2 we have

(3.17) lo—0o| = | Z(w])—0,] .

On the other hand, (3,15) implies

(3.18) Fm)(wi—0) = ¥ (m)(wi—00).

From (3.11) we have z/(wf)=m,((®}).), and (o1),— 7(w]) as n{—>oco. Thus,
from (3.17) and (3.18) we have
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(3.19) Y(n,) | Z(w1)— 05| = Yr(n1)| (01);— 6ol -

Therefore

(3.20) im s (m)m) = 1.
("11.',?'2)51)’

By Lemma 3. (a) we then have

(3.21) lim _nfn}=1.
ny,")ED
o/, mpen’

Hence we have

(3.22) lim nin,= lim_mn/n,.
("1:- n,)eD’ ,,7)eD
n/,nyro0 ",y pc0

This completes the proof of the theorem.

Let a=(0, 1) be a fixed number, and let {¢,},-y and {$p*}.cn be two
sequences of tests such that

(3.23) lim E[¢,; Py, »] = lim E[¢; Py, ] = ¢ .
Let T be a class of families {y,},>, of mappings from Q to ©,.

DeFINITION 4.  The T-asymptotic relative efficiency of {¢p¥} with respect to
{#.} is defined to be

(3.24) f({1}, {9} : T) = lim [n) 8],

if the right hand side of (3.24) exists and has the same value for any {v,} and
{7v¥} in T, and any two points  and o* in Q\{6,}, and any two sequences
{n;} ;en and {n¥};cy of positive numbers such that #; $ co and ¥ 1 oo and that

(3.25) Vu(@) = vh(w)  for every i€ N, and
(3.26) f‘ff} E[btx1; Powr,tn1] = lj_g} E[¢15 Porcwn,tat1]
(0:(0) = Va(), OF(*) = 7iy(0*))
where the limits in both sides of (3.26) exist and equal neither zero nor one.

Here for a real number a we denote by [4] the maximum integer less than or
equal to a.

Theorem 3. Suppose that (a)r,(w)= 0,4+ (¥)w—0,) and n¥(w)=~0,+
V*w)w—80,) for sufficiently large v>0, (b) lvim V@) P (r)=AM0=A= o), and
(©)Q*= Quw) (0EQ) where n(w)=0,+c(w—0,) with some ccR'. Let W¥(a) be

the set of families {r.},>, €Y such that {z,}..n is an accessible sequence of
{T,}scn- Then we have
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(3.27) e({0*(TH} s {D(T)} = W(a)) = py(lecl/A) 7"

Proof. Let B ($(Tx): wa(@)=E[$(T}); Prywr,w] a0d B ($*(TH): mi(w))=
E[¢*(T¥); Pascwr,n] for each o=Q. From Lemma 1 we have

(3:28)  Bu¢(Th): ma(®)) = Blw: ) and B, ($*(T¥): mi(w)) = B¥(w: @)
as n— oo, for each Q. From our assumption we have

(3.29) B¥(w: a) = B(z(w): a) for each 0= .

Thus, by Lemma 2 it holds that

(3.30) a<B(o,: a) = B*w,: a)<1 implies |o,—68,|=]c||w,—b,| .
On the other hand,

(B31)  mufw,) = wh(w,) implies Yo(m,)(w,—0h) = ¥H(m)(w,—0,)

We note here that in (3.31) n, and n, are not necessarily integers. Combining

- (3.30) with (3.31), we have
(3.32) le[r(n)) = ¥(n,)

for any (n,, n)eD. Hence DCD( lc|), where D(|c|)= {(n;, n,); n,>0, n,>0,
V¥(n,)[yr(n,)=|c|}. We then have by Lemma 3,

(3.33) lim_n/n, = lim #n/n, = py(lc|/A)".
), 1)ED (npmydED( )
Pafig>ree By Bgro0

We note here that by Theorem 2 the left hand side of (3.33) does not depend on
the choice of {7}, ¥(a) and {#¥},,,&¥(a). Thus, taking account of (3.28)
the left hand side of (3.33), by definition, gives W(a)-asymptotic relative
efficiency of {¢p*(T¥)},cn with respect to {¢(7T,)}.en. This completes the
proof of the theorem.

REMARK. Theorem 3 extends the result in Noether [2] as follows. If a
sequence {7} of statistics satisfies the conditions A, B, C and D in [2], then
the sequence f',,:[T,,—a,,]/b,, of statistics is of type (L) relative to m,(0)=
O,+n"%w—0,) where a,=E[Ty; Py, ], by=[E[(Tn—a,)’; Po, ]] and & is some
positive number. Furthermore, the family {z,}, 7,(0)=0,+v"%(0—§,), belongs
to ¥ and the family of limit distributions of P o>,n TA',I ! is a normal family on
R' with mean ¢(wo—6,)”/m! and variance 1, where ¢ is a positive number and m
a positive integer. Therefore, if two sequences {T,} and {T}} of statistics
satisfy the conditions of the theorem given in [2], then the asymptotic relative
efficiency in Pitman’s sense of {$}},cn with respect to {¢,},en can be calculat-
ed according to Theorem 3. Here ¢, and ¢} are the tests considered in [2].

Finally we shall give two examples which are not standard case.
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ExampLE 1. Let ®=0,=(—1, 1), Q=R" and 6,=0. For each 0=®© let
P, be a distribution on R' such that r xdPy=a(0)= |0|[log |0]| *]* and

Sw (x—a(0))’dPy=>5(0). Assume that b() is positive and continuous with res-

pect to 6 in a neighborhood of 0 in ®,. Suppose that the random variables
X,, X,, .-, X,, are independently and identically distributed according to P,.
Let T,=(X,+X,+--+X,)/n'”* and z,(w)=w/(n-logn)* then P, ,T=" con-
verges in law to the normal distribution N(—w/\/ 2, 5(0)) uniformly in a
neighborhood of w. Therefore {T,} is of type (L) relative to {z,}, and the rate
of convergence of {z,(w)} is {p.(n-logn)”’} where {p,} is any sequence of
positive numbers satisfying 0<1i£n °i“nf p,,élinnl sup p,< co.

ExampLE 2. Let ®=(0, o) and Q=80,=[6,, =) where 0, is a fixed point
of ®. Let P, be the uniform dstribution on [0, 6], and let the random variables
X, X,, -, X, be independently and identically distributed according to P,.
Let {n,,} »=; be a sequence of positive integers such that n,<n,<-:-+—oco. For
each n N, denote by m(n) the number m satisfying n,,<n<n,,,,, We assume
that, for some positive number ¢, m(n)/n—>c as n—>oco. Denote by X, » the
maximum of X, X,, --, X, We now consider two sequences of statistics
{T,} and {T}}, and two seqences of alternatives {rz,} and {z}} such that
T,=0,4+1(Xep,n—05)y T¥=T o, and 7 (0)=7¥(0)=0,+(1/n)(w—6,). Let Q,
be the distribution with the density dQ,/du=(1/6,) exp [(y—w)/6,] (Y= w), =0
(y>w). We then have

lim P, ¢, »T7' = Q, (in law),
(3.34) >
}'im“ Prrcar,n TE ™ = QOucay (in law)

uniformly in a neighborhood of each weQ where z(w)=0,+¢(w—80,). There-
fore the sequences {7} and {T}} are of type (L) relative to {=,} and to {z#},
respectively. The rate of convergence of {z,} is {p,-n} where {p,} is any
sequence of positive numbers satisfying O<1i£n inf p,,élinﬂx Sup py< oo, Since

ay(p)=p~?, we have e({p*(T¥)}, {¢(T)}: ¥(a))=c where ¢ and ¢* are the
most powerful level a tests for testing Q, against O, and QfF against QF,
respectively.
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