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Let R be a unit-regular ring and G a finite subgroup of Aut(R) with |G|~}
€R. This paper is concerned with relationships between the pseudo-rank
functions of the skew group ring R+*G and ones of the fixed subring R°. We
introduce such relationships by studying certain homomorphisms between
K(RxG) and Ky(RE).

In §1, under the assumption that RG is a unit-regular ring and R is a
finitely generated projective left R°-module, we shall investigate the following
two homomorphisms:

w: Ko(RC) — Ky(RxG), defined by w([M])= [RxGeQ zeM]
X Ko(RxG) — Ky(R®), defined by X([4]) = [Hompg,(RxGe, 4)],

where e=|G|™ 3,c¢ g in R*G. Then we shall show that X % is the identity
map and 7 is an order-embedding map.

The maps @, X induce maps p*, A* between P(R*G) and P(R€), where
P(T) (resp. 3,P(T)) is the family of all pseudo-rank functions (resp. extremal
pseudo-rank functions) of a regular ring 7. For any NeP(R*G) with N(e)>0
and any aE R€, we define

W*(N) (@) = N(e)™ Dy(ReGe®oRC a),

where Dy is the dimension function which corresponds to N. For any Q€&
P(RC) and any x< R%G, we define

A¥(Q) (x) = Dgo(zeR) 'Do(Hompg,s(R*Ge, R+xGx)) ,

where Dy is the dimension function which corresponds to . Then we shall
show that p*(IV) (resp. A*(Q)) is a pseudo-rank function of R® (resp. R*G)
and p*\*=identity and p* preserves extremal pseudo-rank functions.

In §2, for a directly finite, left self-injective, regular ring R and an X-
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outer group G, we shall determine all extremal pseudo-rank functions of RxG
from ones of R. It is shown from above results that RxG=<M,(R®) as rings,
where n=|G |, and R=RC[G] as left R°[G]-modules.

In §3, assuming that R is a left and right self-injective regular ring and R
is a finitely generated, projective, left R®-module, we shall show that there
exists a bijection from some subset of Max(R+G) into Max(R®). Using this
result, we obtain that for any Q €9,P(R®), there exists an unique N€9,P(R*G)
with N(e)>0 such that Q(a)=N(e)*N(ae) for any aERC.

1. Relations between P(R+G) and P(R¢)

Given regular ring 7, we use FP(T') to denote the set of all finitely gener-
ated projective left T-modules. For modules 4, B, A<B means that A4 is
isomorphic to a submodule of B and we use 7.4 to denote the direct sum of
n copies of 4.

According to [1, p. 226], we mean by a pseudo-rank function on R is a
map N: R—[0, 1] such that

(1) N(1)=L1.

(2) N(rs)=<N(r) and N(rs)<N(s) for all , s€R.

(3) N(e+f)=N(e)+N(f) for all orthogonal idempotent ¢, fER.

If, in addition

(4) N(r)>0 for all non-zero rER,
then N is called a rank function. We use P(R) to denote the set of all pseudo-
rank functions on R

For a regular ring R, we view P(R) as a subset of the real vector space R¥%,
which we equipped with the product topology [1, Ch. 16 and Appendix]. Then
P(R) is a compact convex subset of R? by [1, Prop. 16, 17]. We use 3,P(R)
to denote the set of all extreme points of P(R). It is known that P(R) is equal
to the closure of the convex hull of §,P(R) by Krein-Milman Theorem.

Again according to [1, p. 232], we mean by a dimension function on FP(T)
is a map D: FP(T)—R™ such that

(1) D(T)=1

(2) If A, BEFP(T) and A<B, then D(A)=<D(B).

(3) D(ADB)=D(A)+D(B) for all A, B€FP(T).

Let D(T) denote the set of all dimension functions on FP(T'). There is a bi-
jection T'z: P(T)—D(T) such that T'(P)(Tt)=P(t) for all PEP(T) and teT
by [1, Prop. 16.8]. For P P(T), we use Dj to denote the dimension function
T(P).

Let T be a ring with identity element 1 and let G be a finite group of auto-
morphisms of T with |G|'&T. The skew group ring, T*G, is defined to
be a free left T-module with basis {g: g&G} and multiplication given as fol-
lows: ifr, s&T and g, k€ G, then (rg) (sh)=rst""gh ([9]).
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Throughout this paper, put e=|G|™ X,cc g and denote by 6 the map
e(T*G)e—T*¢ which is given by 0[e(3,ec7,8) €]=2,ec H(r,), wWhere #(r)=
|G| X,ec7 for r&T. Then e is an idempotent and 6 is an isomorphism
by [9, Lemma 0.1].

Let R be a unit-regular ring and G a finite subgroup of Au#(R) with |G| ™
€R. In [8], we have studied relationships between P(R%G) and P(R) (resp.
9,P(R+@G) and 0,P(R)). Especially we have shown that all G-invariant P€ P(R)
can be extended to pseudo-rank functions of R*G. In this paper, we shall
study the relation between P(R*G) and P(R®) (resp. 0,P(R+G) and 9,P(R®)).
If R+G and R are Morita equivalent, then K.R. Goodearl has shown under
a general situation that there is a bijection between P(R+G) and P(R°) in [1,
Cor. 16.9]. We shall define maps between P(RxG) and P(R®), which are more
concrete than the Goodearl’s bijection, without the assumption of Morita
Equivalence.

A partially ordered abelian group is an abelian group K equipped with a
partial order < which is translation invariant ([1, p. 202]). The positive cone
of K is the set K*={x&K; x=0}. If the partial order on K is directed (up-
ward or downward), then K is called a directed abelian group. An order
unit in K is an element #>0 such that for any x& K, there exists a positive
integer n for which x<nu. We denote by a pair (G, u) a partially ordered
abelian group with order-unit w.

For a unit-regular ring 7, the Grothendieck group K(7T) is an abelian
group with generators [4], where [A4] is the isomorphism class for A FP(T)
and with relation [APB]=[A4]+[B] ([1, §15]). Every element of K\(T) has
the form [A]—[B] for some 4, BEFP(T). K(T) is a partially ordered abelian
group with order-unit [7T'] and positive cone K,(T)* coincides with {{4]: A€
FP(T)} by [1, Prop. 15.2].

Let R be a unit-regular ring and let G be a finite subgroup of Au#(R) with
|G| *€R. The skew group ring RxG is a regular ring by [5]. Unfortunately
we don’t know whether RxG is unit-regular or not. Therefore, from now
on, we assume that R+G is unit-regular in many cases. We regard RxGe as
a (left R+G, right R°)-bimodule, where e= |G| ™ 33,6 £

There exists a natural functor p; FP(R®)—FP(R+G) given by the rule
w(M)=RxGeQrs M. Then we have a positive homomorphism 7z: K (R°)—
K(Rx@G), defined by m([M])=[p(M)]. Set F={NeP(RxG): N(e)=0}.
Then u also induces a map p*: P(R*G)\F—P(R®) given by the rule
p¥(IN)(@)=N(e) 'Dy(u(RCa)) for any Ne P(R+G)\F and any a € R®, where Dy is
the dimension function which corresponds to N. In fact, since u(R°)=RxGe
®RCa=RxGea, we have Dy(u(RCa))=N(ea). Then p*(N)(a)=N(e)™ N(ea)
for all aeR®. Thus u*(N) is a pseudo-rank function by the isomorphism
0: eRxGe—RC and [1, Lemma 16.2].
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Proposition 1. Let p*: P(R«G)\F—P(R®) be the map given above. If
NeP(R«G)\F is extremal in P(RxQ), then p*(N) is also extremal.

Proof. It is sufficient to prove that
WH(N) (@) A w*(N) (B) = sup{u*(N) (arb): &R
for all a, b R€ by [1, Prop. 19.16]. We compute as follows;
sup{u*(IN) (ard): r& R} = sup{N (earb). N(e)™*: r€ R}
= sup{N (ea.er.eb): r&R°}. N(e)™* .

If 7 runs over all element of RS, ea.er.eb runs over all generators of aeRxGbe
by §. Then, since N is extremal, we have

sup{N(ea.er.eb); r€R°} = N(ea) \ N(eb)
by [1, Th. 19.16]. Consequently we see that
sup {u*(N) (arb): r€R} = wH(N) (a) A *(N) (b) .

In general, there may not exist any map from P(R®)—P(RxG). Under
the assumption that R is a finitely generated, projective, left R°-module, there
exists such a map ([8]). For the sake of completeness, we shall again define
it. We assume that R is a finitely generated, projective, left Ré-module. For
any AEFP(R+G), define AMA)=Homg,(RxGe, A). Since Homp,s(RxGe,
R«G)==¢RxG=R as left R°-modules, A(4) is a finitely generated, projective,
left R°-module. The functor A\ induces a positive homomorphism

X: Ky(R+G) — K,(R%) defined by the rule; X([4]) = [MA)] .

Since Homy,o(R#Ge, RxG)=<eR*G==R as left R°-modules, we have X([R+*G])=
[z¢R]. We define

A*(Q) (%) = Do(R)™ Do(A (R+Gx))

for any Q< P(RC) and for all x&RxG, where Dy is the dimension function
which corresponds to €. By [8, §3], A*(Q) is a pseudo-rank function on RG.

RemARK 1. Since M(R*Ge)=~eRxGe=RC’, we have the relation that
A¥(Q) (e)=Dq(zeR)™* for all Q= P(R®).

Now we shall determine pseudo-rank functions on R® from ones on RxG.

Theorem 2. Let R be a unit-regular ring, G a finite subgroup of Aut(R)
with |G| €R and RxG a skew group ring of G over R. Put e=|G|™ 2,0 g
and set F={Ne&P(R+G): N(e)=0}. We assume that R+G is a unit-regular
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ring and that R is a finitely generated, projective, left R6-module. Then the fol-
lowing hold ;

(1) 7m: Ko(R€)—Ky(RxG) is an order-embedding map and X m—=identity.

(2) For any QEP(RC), there exists some N&P(Rx*G)\F such that Q(a)
=N(e)™* N(ae) for any acR°.

Proof. (1) First we shall show that for any idempotent a= R, A u(RCa)
=RCa. In fact, we see that

A u(RCa) = Hompg,o(R*Ge, R¥Ge® z¢RCa)
= Homg,;(R*Ge, RxGea)
== eRxGea
= RCa,
using the isomorphism eR*Ge— RC.

Since Ky(RC) (resp. Ky(R%G)) is generated by the set {[I]: I is a principal
left ideal} by [1, Prop. 2.6], we see that X m=identity. For any M, M’ = FP(R°),
we assume that z([M])< m([M’']). By definitions and [1, Prop. 15.2], we see
that p(M)<p(M') andM=x\ p(M)<\ u(M')=M’'. Hence we conclude that
[MI=[M].

(2) For maps p*: P(R*G)\F—P(R®) and A*: P(RS)—P(RxG)\F, we
may show that p* A*=identity. For any Q< P(R®) and any a RS,

w* A(Q) (@) = 2¥(Q) (€)' Dax(or (A (Ra))
= Do(R)-Do(R)™ Do(n \ (Ra))
— Do(R%)
=0@).

ReEMARK 2. By Proposition 1, the restriction map of p* on 9,P(R*G)\F
is a map into 9,P(R®). Unfortunately we can’t prove that it is also an epi-
morphism. We shall prove in §3 that it is an epimorphism for self-injective
regular rings.

Next we shall determine a condition that RxG and R¢ are Morita equiva-
lent.

Proposition 3. Let R be a unit-regular ring and let G be a finite subgroup
of Aut(R) with |G|'€R. We assume that RxG is also a unit-regular ring.
The following conditions are equivalent.

(1) RxGe (resp. eRxQ) s a generator as a RxG-module.

(2) N(e)>0 for all Ne9d,P(R+G).

Proof. (1)=(2). By the assumption of (1), there exists some natural
number & such that R*G<lk-(R%Ge). Then, for any NeP(RxG), we have
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kN(e)=1 and so N(e)>0.

(2)=(1). We shall show that R+GeRxG=R%G. Put H=RxGeRxG.
Assume that H#=R+G. Let f; R*G—R+G/H be a natural epimorphism. Since
RxG|H is also unit-regular, we have that P(R+*G/H) is not empty by [1, Cor
18.5]. By [1, Th. A.6], there exist N'€9,P(RxG[H). We consider the func-
tion N’f. Then N=N'f is an extreme pseudo-rank function on R*G by [1,
Prop. 16.19]). Since HCker(N), N(e)=0. This is a contradiction. Hence
RxGeR+G=Rx*G and we see that RxGe is a generator.

ReMARK 3. In above case, since Endg,s(R*Ge)=<R® R+G and R® are
Morita equivalent. So, A* p*=identity and hence p* induces a bijection from
9,P(R+QG) into 8,P(RC).

2. X-outer automorphisms

In this section, let R be a directly finite, left self-injective, regular ring
and G a finite group of automorphisms of R with |G|eR. It is known
that both R*G and RC are directly finite, left self-injective, regular rings ([12])
and that such rings are unit-regular rings ([1, Th. 9.17]). K.R. Goodearl
has shown that there exists a bijection 9,P(R)—>Max(R) which is defined by
the rule; P—ker (P) and that R/ker(P) is a simple self-injective regular ring with
the unique rank function [4, II. 14.5]. We use repeatedly that fact.

An automorphism g of R is called an X-inner if there exists a non-zero
element xR such that rx=xr¢ for all r&R ([10]). If g is not X-inner, we
call g X-outer. For a subgroup G of Aut(R), we call G X-outer if all g£=1€G
are X-outer. Let Z(R) be the center of R.

First we shall determine the structure of Max(R*G) for an X-outer group
G. The following Lemma has been essentially proved in [5], but we shall
prove it in this note for the sake of completeness. We denote the set of all
central idempotents of a ring T by B(T).

Lemma 4. Let R be a directly finite, left self-injective, regular ring and
G a finite group of automorphisms of R with |G|*€R. We assume that G is
X-outer. Then Max(R*G)={(N ,ecM?)*G: M&Max(R)}.

Proof. Since G is X-outer, Z(R+G) is contained in Z(R)NRC. Hence
B(RxG)CB(R)N RC. First we choose any P& Max(RxG). Put m=P N B(RxG),
then m&Max(B(R+*G)) and P is the unique maximal ideal containing m
by [1, Th. 8.25]. Let m, be a maximal ideal of B(R) containing m. Then
there exists a unique maximal ideal M of R containing m, by [1, Th. 8.25].
Put M= ,ccM?. We note that mC M. By [11, Lemma 4.1], M*G is a finite
intersection of maximal ideals of R*G and P is the unique maximal ideal of
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R*G containing m by [1, Th. 8.25]. Therefore we have P=M*G. Conversely
for any M e Max(R), put m=M N B(R+G). Then we see that me Max(B(R*G)).
Since (N, ecM#)*G is a finite intersection of maximal ideals of R*G by
[11, Lemma 4.1] and containing m, it is a maximal ideal by [1, Th. 8.25].

In [8], we have studied the relation between P(R+G) and P(R). Especial-
ly we can extend a G-invariant pseudo-rank function P on R to one, P¢, on
R+G defined by the rule; P%(x)= | G | Dp(z(R%Gx)) for all x& RxG ([8, Cor. 4]).
If P is not G-invariant, then we consider the trace t{(P)=|G| ™ 3J,ccP*, where
Pe(r)=P(r#"). Now we shall determine all elements in 9,P(R+G), using Lem-
ma 4 and [8, Cor. 4].

Proposition 5. Let R be a directly finite, left self-injective, regular ring
and G a finite group of automorphisms of R with |G| *€R. We assume that
G is X-outer. Then 0,P(R+G)={t(Q)°: Q=9,P(R)}.

Proof. For any N&3,P(R*G), we see that ker(N)eMax(RxG) by
[4, II. 14.5]. By Lemma 4, we have that ker(N)=(N ,ccM#)*G, where
MeMax(R). We choose @ <0,P(R) such that ker(Q)=M. Since ker {(Q)=
N gecM?[ker (Q)°D (N zeccM?)*G. Hence we have ker (¢(Q)¢)=ker (N) and
hence #(@)°=N. Conversely for any Q&09,P(R), we proved above that
ker (t(Q)°) is a maximal ideal of R*G. Thus #(Q)C is extremal by [4. II. 14.5].

Lemma 6. Let R be a directly finite, left self-injective, regular ring and
G a finite group of automorphisms of R with |G| '€R. We assume that G is
X-outer. Then the following hold:

(1) N(e)=n"" for all N=0o,P(R+Q), where n=|G|.

(2) R+xG=M,(R°).

Proof. By Proposition 5, we have N=¢(Q)¢ for some Q<9,P(R). Since
RxGe=R as a left R-module, N(e)=¢(Q)%(e)=n"" by [8, Corollary 4]. Con-
sequently we have RxG=n(RxGe) as a left R+G-module by [2, Cor. 2.7].
Hence R¥G==M,(RC), because eR*Re=G°.

Now, using Lemma 6, we shall prove an interesting result concerning with
‘“a normal basis” of R over R°.

Proposition 7. Let R be a directly finite, left self-injective, regular ring
and G a finite group of automorphisms of R with |G| *€R. We assume that
G is X-outer. Then R=R°[G] as R°[G]-modules.

Proof. We can easily see that R«GeR¥G=R+G by Lemma 4. Then
R«Ge is a generator as a R¥G-module and R is a finitely generated, projective,
left RS-module. We know that there exist maps p*: P(R%G)—P(R®) and



90 J. Kabo

A¥: P(R6)—P(R+G) such that A* p*=identity, u* A*=identity and both maps
are also bijection on the extremal boundary by §1. Especially we have an
important relation that A¥(Q) (e)=Dqo(R)™* for all Q= P(R®). Therefore any
Q<0,P(R°), we have Z\*(Q)€0,P(RxG) and A¥*(Q) (¢)=Dqo(R)™* by the above
remark. Put #=|G|. By Lemma 6, we have Do(R)=n for all @ =9,P(RS).
Then by [2, Cor. 2.7], we see that zeR=<n.R.

Next, we consider R as a left RxG-module by the rule: (X,eq7,8) 7=
Dlgecr 7% Since it is known that R=RxGe as R*G-modules, we have that R+xG
=n.R as R+xG-modules by Lemma 6. Let S=R¢[G] be an ordinary group
ring of G over R, which is a left self-injective, regular, subring of R*G. Since

=n.R¢ as left R°-modules, we have that RxG'=n.S as left S-modules. On
the other hand, since R¥G=2n.R as left R¥G-modules, we have that n.R=n.S
as left S-modules. By [1, Th. 10.34], we can conclude that R=S as left S-
modules.

3. N*-metric

K.R. Goodearl and D. Handelman have introduced the N*-metric which
is induced by P(R) for a regular ring R. In this section, we shall study the
bijectiveness of the map wp*: 8,P(R*G)—08,P(R°) for a self-injective regular
ring R, using the N*-metrics of R*G, R and RC.

Let T be a unit-regular ring. We assume that for a given non-zero x& T,
there exists PEP(T) such that P(x)>0. For each x&T, according to [7],
we define

Ni#(x) = sup{P(x): PEP(T)} .

Thus N#(x) is a real number, and 0SN#¥(x)<1. N¥ induces a metric d* on
T given by the rule d*(x, y)=N#(x—y), which we call the N¥-metric and T
becomes a topological ring with respect to N¥-metric. If T is complete with
respect to Nf-metric, T is called Nf-complete. It is known that regular rings
with bounded index of nilpotence and R,-continuous regular rings are NF¥-
complete [3, Th. 1.3 and Th. 1.8]. We define ker (P(T))= N perr) ker (P).

Lemma 8. Let R be a unit-regular ring with ker (P(R))=0 and G a finite
subgroup of Aut(R) with |G| 'R and let R«xG be a skew group ring of G over R.
We assume that RxG is a unit-regular ring and R is a finitely generated projective
left R-module. Then the following hold.

(1)  ker (P(R+G))=0 and

N}‘*G(r)éN%(r)é IGlN}S*G(r)

for allrER.
(2) There exists a natural number t such that
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N#(@) < Ne(a) <tN}(a)

for all acRC. Consequently, the topology defined by N Ee-metric are coincide
the topology induced by N §-metric on RC.

Proof. (1) For any PEP(R), let t(P)=|G|™ 3,ec P?, which is a G-
invariant pseudo-rank function. By [8, Cor. 4], the extension #(P)C is a pseudo-
rank function on R*G and #(P)°|,=t#(P). For xcker (P(R+@G)), we assume
that R«Gx=@;Rr; as R-modules. Then #(P)(x)= |G|~ X3; t(P)(r;) by [8, Cor.
4] and so #(P)(r;)=0 for all 2. Since P(r;)< |G|t(P)(r;) by definition, we see
that P(r;)=0 for all 7 and so that ;=0 for all 7 by assumption. Next, for any
rER, we see that

P()< |GIHP) () =| GIHPY() < |G| N wolr)

for any r&R. Therefore N¥(r)< |G| N¥4c(r).

(2) Since R is also a finitely generated, projective, left RS-module by
assumption, let R<C2.(R€) for some t>0. Then Do(R)<t for all @ =P(R®).
Using Theorem 2, we see that for @ = P(R®) and any a= RS,

Q(a) = p*(0*(Q)) (@)
= A%(@Q) (6)7'A*(Q) (ea)
=Dq(R)-2*(@) (2)
<tN¥(a).

Thus we see that N¥e(a) <tN¥(a) for all a=RS.

Let T+G be a skew group ring of a finite group G over a ring T such that
|G| €T and put e=|G| ™ X,ecg. M. Lorenz and D.S. Passmann [11] and
S. Montgomery [9] have studied the relation between prime ideals of TG,
T and T¢. Now we shall study maximal ideals of T*G and T, using the man-
ners of [9].

We denote by Spec,(T+G) the set of all prime ideals of 7*G not contain-
ing e and let I(7T*G)=the set of all ideals of 7%G not containing e. There
exists a natural map ¢: I(7T%G)—the set of all ideals of 7 defined by the
rule p(M)=0(eMe), where §: eT+*Ge—T°C is the isomorphism introduced in
§1. In[9], it is shown that ¢ induces a bijection from Spec,(7*G) to Spec(T°).
Therefore ¢ also induces a bijection ¢’ : Spec,(T'*G)—>Max(T€), where Spec,(T*Q)
is the set of {M&Spec,(T*G): M is maximum in Spec,(7T*G)}. The follow-
ing lemma is needed in later propositions.

Lemma 9. Let T be a ring and G a finite subgroup of Aut(T) with |G|™*
&T. The following conditions are equivalent.
(1) All peSpec,(T+G) are maximal ideals.
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(2) For any meMax(T°), there exists some M&Max(T) such that M N TC
Cm.

Proof. (1)=(2). For any me&Max(T¢), we choose p& Spec,(T*G) such
that ¢'(p)=m. By the assumption of (1) and [11, Lemma 4.2], pN T'= N ,ec M*
for some Me&Max(T). Since (N,ec M?4)*GCp, we see that MNT%=
¢'((N gec Me)xG)C @' (P)=m.

(2)=(1). For any peSpec,(T*G), put m=¢'(p) and choose M Max(T)
such that MNT¢cCm. Since M=n gec M# is G-invariant, we see that Mx+G
=;g; for some maximal ideals g;(i=1, .-+, #) of T*G by [11, Lemma 4.1].
Let g;(i=1, -+, 5) be the set of all primes in {g; /=1, -+, £)} not containing e.

Since ¢(N 7 §;)=p(M+G)=MN T Cm=¢'(p), we see that N5 g;Cp by
[9, (3) of Lemma 0.2]. By primeness of p, g;Cp for some 7 and so g;=p by
the maximality of g;.

Next, for a self-injective regular ring R, we shall consider a condition
satisfying (2) of Lemma 9. We note that RxG and R€ are also self-injective
regular rings by [12].

Proposition 10. Let R be a left and right self-injective, regular ring and
G a finite subgroup of Aut(R) with |G|'€R. If R is a finitely generated pro-
jective left RC-module, then, for any me&Max(RC), there exists M & Max(R) such
that M0\ R°Cm.

Proof. By [5, §1II], there exist subgroups H,, -:-, H, of G and orthogonal
central idempotents e, -, ¢, of R such that
(1) for any f€ B(R) such that fe;=f, the stabilizer of f is equal to H; and the
distinct conjugates of f are mutually orthogonal,

(2) ef+--+ef=1, where ef is the sum of all distinct conjugates of ¢,

(3) (Rep)ti=(Re)C.

It follows from the assumption that the pair (R, RC) satisfies (2) of Lemma 8.
Then each (Re;, (Re;)?i) also satisfies the same one. Therefore it needs only
to prove the assertion in the case that any f&B(R) is G-invariant.

First we consider the topology 7, induced by N¥-metric on R¢ as a sub-
space. Put X=9,P(R).

(1) a is dense in N pex(a-+(ker(P) N RC)) with respect to 7, for any proper
ideal a.

In fact, for a€R, we define a function z(a): X—[0, 1] by the rule:
7(a)(N)=N(a). Thenz(a)is a continuous map by the definitions on the topology
of X (See, [7]). We choose any xE N pex(a+(ker(P) N R°)) and for each P X,
we put x=ap+yp, where apEa and y,cker(P)NRC. For any real number
E>0, U(yp)=n(y»)"}([0, €-27']) is a open set for each y, and it contains P.
Then we have
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X= UpexU(yp) .

We note that X is Boolean space by [1]. By compactness and the partition
property, there exist finitely many U(yp,) i=1, -+, t corresponding to yp, and
mutually disjoint clopon sets W;C U(y;p,) such that X=UiW;. For the set
{W;: i=1, .-, t}, there exists mutually orthogonal central idempotents {e;:
i=1, -+, t} of R such that W;={N&X: N(e¢;)=1} by [1]. Since ¢;€R° (=1,
e+, 1), a=23)¢;+ap, is contained in a. For any PE X, there exists only one
W; such that PEW,. Then we see that P(¢;)=1 and P(e;)=0, for all j=+:
and so we see that

Pla—2) = (Zjs: Plej ap)))+P((ei—1) ap)+P(yr)
< P(ys,)
< €271,

As a result, N¥(a—x)<<€ 27'<é&.

(2) For any meMax(RC), m= N pex(m—+(kerP N RE)).

In fact, since R¢ is complete with respect to the topology 7, defined by
N#e-metric by [3, Th. 1.8], m is closed with respect to 7, by [3, Th. 1.13 and
Cor. 1.14]. Since 7,=7, by Lemma 8, m is closed with respect to 7. Then
we can conclude that m= N pex(m-+(ker(P) N R€)) by (1).

(3) For any meMax(RC®), there exists some P&X such that
m—+-(ker(P)NR®)£=RC by (2) and so m=m-(ker(P) N R)Dker(P)NRC. By
[4, I1. 14.5], ker(P) is a maximal ideal of R.

Theorem 11. Let R be a left and right self-injective regular ring and G
a finite subgroup of Aut(R) with |G| *€R. Assume that R is a finitely generated
projective left RC-module. Let u*, N* be the maps defined in §1. Then
w*: 0,P(RxG)\F—0,P(R°) is a bijection and (p*)™'=n\*.

Proof. We shall consider the following diagram:

*

8.P(R+G)|F —~— 9,P(R®)

b

Spec.(R+G) ——> Max(R°)

where 7z;(i=1, 2) is the map defined by =;i(IN)=*ker (N). By Lemma 9 and
Proposition 10, any pe&Spec,(R*G) is a maximal ideal and so z; (i=1, 2) is
a bijection by [4, II. 14.5]. It is easy to prove that the above diagram is com-
mutative. Then we have that x* is a bijection and (u*)™'=2\*.
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