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Let R be a unit-regular ring and G a finite subgroup of Aut(R) with | G \ 1

This paper is concerned with relationships between the pseudo-rank

functions of the skew group ring R*G and ones of the fixed subring RG. We
introduce such relationships by studying certain homomorphisms between

K0(R*G) and KQ(RG).
In §1, under the assumption that R*G is a unit-regular ring and R is a

finitely generated projective left ΛG-module, we shall investigate the following
two homomorphisms:

μ: K0(RG) -> K0(R*G) , defined by js([M]) = [R*Ge®R*M]

X: K0(R*G) -> KQ(RG) , defined by X([>4]) - JHomΛG(R*G*, A)] ,

where e= \ G\ -1 Σgec g m R*G. Then we shall show that X ~μ is the identity
map and ~μ is an order-embedding map.

The maps /z, X induce maps μ*y λ* between P(R*G) and P(ΛG), where

P(T) (resp. 3βP(Γ)) is the family of all pseudo-rank functions (resp. extremal
pseudo-rank functions) of a regular ring T. For any N^P(R*G) with N(e)>0
and any a^RG, we define

μ*(N) (a) = N(e)~l DN(R*Ge®R*RG a) ,

where DN is the dimension function which corresponds to N. For any
P(RG) and any x^R^G, we define

where Z>Q is the dimension function which corresponds to Q. Then we shall

show that μ*(N) (resp. λ*(0)) is a pseudo-rank function of RG (resp. J?*G)
and ^-*χ*r= identity and μ* preserves extremal pseudo-rank functions.

In §2, for a directly finite, left self-injective, regular ring R and an X-
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outer group G, we shall determine all extremal pseudo-rank functions of R*G
from ones of R. It is shown from above results that R*G^Mn(RG) as rings,
where n= \ G \ , and R^RG[G] as left ^[GJ-modules.

In §3, assuming that R is a left and right self-injective regular ring and jR
is a finitely generated, projective, left ΛG-module, we shall show that there
exists a bijection from some subset of Max(.R*G) into Max(l?G). Using this
result, we obtain that for any Q^deP(RG), there exists an unique N^deP(R*G)
with N(e)>0 such that Q(ά)=N(e)-1N(ae) for any a<=RG.

1. Relations between P(R*G) and P(RG)

Given regular ring T, we use FP(T") to denote the set of all finitely gener-
ated projective left T-modules. For modules A, B, A<B means that A is
isomorphic to a submodule of B and we use n.A to denote the direct sum of
n copies of A.

According to [1, p. 226], we mean by a pseudo-rank function on J? is a
map N: JR-»[0, 1] such that

(1) ΛΓ(1)=1.
(2) N(rs)^N(r) and N(rs)^N(s) for all r, s<=R.

(3) N(e+f)=N(e)+N(f) for all orthogonal idempotent e, f<ΞR.
If, in addition
(4) N(r)>0 for all non-zero r<Ξ#,

then N is called a rank function. We use P(R) to denote the set of all pseudo-
rank functions on R

For a regular ring R, we view P(R) as a subset of the real vector space RR,
which we equipped with the product topology [1, Ch. 16 and Appendix], Then
P(R) is a compact convex subset of RR by [1, Prop. 16, 17]. We use deP(R)
to denote the set of all extreme points of P(R). It is known that P(R) is equal
to the closure of the convex hull of deP(R) by Krein-Milman Theorem.

Again according to [1, p. 232], we mean by a dimension function on FP(T)
is a map D: FP(T)->R+ such that

(1) D(T)=\

(2) If A, -BeFP(Γ) and A<By then D(A)^D(B).
(3) D(A®B)=D(A)+D(B) for all A, BeFP(T).

Let D(T) denote the set of all dimension functions on FP(Γ). There is a bi-
jection Γτ: P(T)-*D(T) such that ΓT(P) (Tt)=P(t) for all PeP(Γ) and ttΞT
by [1, Prop. 16.8]. For PeP(T), we use DP to denote the dimension function
ΓΓ(P)

Let T be a ring with identity element 1 and let G be a finite group of auto-

morphisms of T with \G\~l^T. The skew group ring, T*G, is defined to
be a free left T-module with basis {g: gξΞG} and multiplication given as fol-
lows: if ry s<= T and gy h<=ΞG, then (rg) (sh)=rsg~lgh ([9]).
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Throughout this paper, put e= \ G \ ~l Σ^ec g ar*d denote by θ the map
e(T*G)e->TG which is given by θ[e(ΣgξΞG rgg) e]=*ΣgeG t(rg)y where t(r)=
\G\~l^Σg^Gr

g f°r y^T. Then e is an idempotent and θ is an isomorphism
by [9, Lemma 0.1].

Let R be a unit-regular ring and G a finite subgroup of Aut(R) with | G | -1

e/2. In [8], we have studied relationships between P(jR*G) and P(R) (resp.

deP(R*G) and deP(R)). Especially we have shown that all G-invariant P<=P(R)
can be extended to pseudo-rank functions of R*G. In this paper, we shall

study the relation between P(Λ*G) and P(RG) (resp. deP(R*G) and deP(RG)).
If Λ*G and RG are Morita equivalent, then K.R. Goodearl has shown under
a general situation that there is a bijection between P(R*G) and P(RG) in [1,

Cor. 16.9]. We shall define maps between P(Λ*G) and P(RG), which are more

concrete than the GoodearΓs bijection, without the assumption of Morita

Equivalence.

A partially ordered abelian group is an abelian group K equipped with a

partial order ^ which is translation invariant ([1, p. 202]). The positive cone

of K is the set K+= {x^K\ x^O}. If the partial order on K is directed (up-

ward or downward), then K is called a directed abelian group. An order
unit in K is an element z/>0 such that for any xξΞK, there exists a positive
integer n for which x^nu. We denote by a pair (G, u) a partially ordered

abelian group with order-unit u.

For a unit-regular ring 71, the Grothendieck group KQ(T) is an abelian
group with generators [A], where [A] is the isomorphism class for A^FP(T)
and with relation [A®B] = [A]+[B] ([1, §15]). Every element of KQ(T) has
the form [A] — [B] for some A, B<=FP(T). KJ(T) is a partially ordered abelian

group with order-unit [T] and positive cone K0(T)+ coincides with {[A]: A^

FP(Γ)} by [1, Prop. 15.2].

Let R be a unit-regular ring and let G be a finite subgroup of Aut(R) with

I G| "^Λ. The skew group ring R*G is a regular ring by [5]. Unfortunately

we don't know whether R*G is unit-regular or not. Therefore, from now

on, we assume that Λ*G is unit-regular in many cases. We regard R*Ge as

a (left #*G, right ΛG)-bimodule, where e= \ G\-1 Σ*GG£-

There exists a natural functor μ,; FP(ΛG)-^FP(Λ*G) given by the rule

μ(M)=R*Ge®RG M. Then we have a positive homomorphism ~β: K0(RG)-+

K0(R*G), defined by μ([M])=[μ(M)]. Set F={NZΞP(R*G): N(e)=Q}.
Then μ also induces a map μ*: P(R*G)\F-*P(RG) given by the rule
μ^(N)(a)=N(e)-1DN(μ(RGa)) for any N<=P(R*G)\F and any a(=RG, where DN is

the dimension function which corresponds to N. In fact, since μ(RGά)=R*Ge

®RGa^R*Gea, we have DN(μ(RGa))=N(ea). Then μ*(N)(a)=N(e)-1 N(ea)
for all a^RG. Thus μ*(N) is a pseudo-rank function by the isomorphism

θ: eR*Ge->RG and [1, Lemma 16.2].
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Proposition 1. Let μ*: P(R*G)\F-*P(RG) be the map given above. If

N^P(R*G)\F is extremal in P(R*G), then μ*(N) is also extremal

Proof. It is sufficient to prove that

μ*(ΛΓ) (a)f\μ*(N) (ft) - sup{μ*(N) (orb): r<=RG}

for all α, b^RG by [1, Prop. 19.16]. We compute as follows;

sup{μ*(N) (orb): r(ΞRG} = sup{N(earb). N(e

= sup{N(ea.er.eb):

If r runs over all element of ΛG, ea.er.eb runs over all generators of aeR*Gbe

by θ. Then, since N is extremal, we have

sup {N (ea.er.eb)', r^RG} = N(ea)/\N(eb)

by [1, Th. 19.16]. Consequently we see that

sup{μ*(N) (orb): r^RG} = μ*(N) (a

In general, there may not exist any map from P(RG)-+P(R*G). Under

the assumption that R is a finitely generated, protective, left ΛG-module, there

exists such a map ([8]). For the sake of completeness, we shall again define
it. We assume that R is a finitely generated, projective, left ΛG-module. For

any A^FP(R*G), define \(A)=HomR*G(R*Ge9 A). Since HomR^G(R^Ge9

R*G)^eR*G^R as left Jf?G-modules, λ(^4) is a finitely generated, projective,

left ΛG-module. The functor λ induces a positive homomorphism

defined by the rule; X([^]) = [\(A)] .

Since Hom^G(jRHcG^, R*G)^eR*G^R as left ΛG-modules, we have X([Λ*G])=

[s*R]. We define

λ*(β) (x) = DQ(R)~l DQ(\(R*Gx))

for any Q^P(RG) and for all x^R*G, where DQ is the dimension function

which corresponds to Q. By [8, §3], X*((?) is a pseudo-rank function on R*G.

REMARK 1. Since \(R*Ge)^eR*Ge^RG, we have the relation that
l for all

Now we shall determine pseudo-rank functions on RG from ones on R*G.

Theorem 2. Let R be a unit-regular ring, G a finite subgroup of Aut(R)

with \G\"l^R and R*G a skew group ring of G over R. Put e= \ G\ "1 Σ^ec^
and set F={N<=P(R*G): N(e)=Q}. We assume that R*G is a unit-regular



PSEUDO-RANK FUNCTIONS 87

ring and that R is a finitely generated, protective, left RG-module. Then the fol-
lowing hold;

(1) τ&: K0(RG)->K0(R*G) is an order-embedding map and X ~μ=identity.

(2) For any Q<=P(RG), there exists some NeP(R*G)\F such that Q(ά)
=N(e)-1N(ae)foranya(ΞRG.

Proof. (1) First we shall show that for any idempotent a^RG, λ μ(RGa)
In fact, we see that

λ μ(RGa) = HomR*G(R*Ge, R*Ge®R*RGa)

^ HomΛ4tG(lZ*G0, R*Gea)

^ eR*Gea

using the isomorphism eR*Ge->RG.

Since K0(RG) (resp. K0(R*G)) is generated by the set {[/]: / is a principal

left ideal} by [1 , Prop. 2.6], we see that X /^identity. For any M, AT e FP(#G),
we assume that ~μ([M])<^μ([M']). By definitions and [1, Prop. 15.2], we see

that μ(M)<μ(M') andM^\μ(M)<\μ(M/)^Mf. Hence we conclude that

(2) For maps μ*: P(R*G)\F-*P(RG) and λ*: P(RG)-+P(R*G)\F, we
may show that μ* \*= identity. For any Q^P(RG) and any

-1 DQ(μ λ

REMARK 2. By Proposition 1, the restriction map of μ* on deP(R*G)\F

is a map into deP(RG). Unfortunately we can't prove that it is also an epi-

morphism. We shall prove in §3 that it is an epimorphism for self-injective
regular rings.

Next we shall determine a condition that R*G and RG are Morita equiva-

lent.

Proposition 3. Let R be a unit-regular ring and let G be a finite subgroup
of Aut(R) with IGI"1^./?. We assume that R*G is also a unit-regular ring.
The following conditions are equivalent.

(1) R*Ge (resp. eR*G) is a generator as a R*G-module.
(2) N(e)>0for all

Proof. (1)=Φ>(2). By the assumption of (1), there exists some natural

number k such that R*G<k (R*Ge). Then, for any N^P(R*G), we have
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(2)==>(1). We shall show that R*GeR*G=R*G. Put H=R*GeR*G.
Assume that //Φ JR*G. Let/; R*G-*R*G/H be a natural epimorphism. Since
R*G/H is also unit-regular, we have that P(R*GIH) is not empty by [1, Cor

18.5]. By [1, Th. A.6], there exist N' <=deP(R*GIH). We consider the func-
tion N'f. Then N=N'f is an extreme pseudo-rank function on JR*G by [1,
Prop. 16.19]. Since Hdker(N)y N(e)=0. This is a contradiction. Hence
R*GeR*G=R*G and we see that R*Ge is a generator.

REMARK 3. In above case, since EndR^G(R^Ge)^RG

ί R*G and RG are
Morita equivalent. So, λ* μ*= identity and hence μ* induces a bijection from
deP(R*G) into deP(R°).

2. JΓ-outer automorphisms

In this section, let R be a directly finite, left self-injective, regular ring
and G a finite group of automorphisms of R with |G|-1£:-R. It is known
that both R*G and RG are directly finite, left self-injective, regular rings ([12])
and that such rings are unit-regular rings ([1, Th. 9.17]). K.R. Goodearl
has shown that there exists a bijection 3eP(Λ)->Max(12) which is defined by
the rule; P-*ker (P) and that Rjker(P) is a simple self-injective regular ring with
the unique rank function [4, II. 14.5]. We use repeatedly that fact.

An automorphism g of R is called an .XT-inner if there exists a non-zero
element x^R such that rx=xrg for all r^R ([10]). If g is not .XT-inner, we
call g ^ί-outer. For a subgroup G of Aut(R), we call G JY-outer if all £Φ 1 eG
are .XT-outer. Let Z(R) be the center of R.

First we shall determine the structure of Max(jR*G) for an .XT-outer group
G. The following Lemma has been essentially proved in [5], but we shall
prove it in this note for the sake of completeness. We denote the set of all
central idempotents of a ring T by B(T).

Lemma 4. Let R be a directly finite, left self-injective, regular ring and
G a finite group of automorphisms of R with IGI"1^!?. We assume that G is
X-outer. Then Max(Λ*G)={(n*eGM*)*G:

Proof. Since G is JΓ-outer, Z(jR*G) is contained in Z(R)Γ\RG. Hence

B(R*G)dB(R)ΓiRG. First we choose anyPeΞMax(Λ*G). Put m=PΓ(B(R*G),
then meMax(β(J?*G)) and P is the unique maximal ideal containing m
by [1, Th. 8.25]. Let mQ be a maximal ideal of B(R) containing m. Then
there exists a unique maximal ideal M of R containing mQ by [1, Th. 8.25].
Put M= Π 8<=GM

g. We note that mdM. By [11, Lemma 4.1], M*G is a finite
intersection of maximal ideals of R*G and P is the unique maximal ideal of
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R*G containing m by [1, Th. 8.25]. Therefore we have P= M*G. Conversely
for any Me Max(Λ), put m=M Π B(R*G). Then we see that m €Ξ Max(jB(Λ*G)).

Since (Π^ec^F)*^ *s a fin^6 intersection of maximal ideals of R*G by
[11, Lemma 4.1] and containing m, it is a maximal ideal by [1, Th. 8.25].

In [8], we have studied the relation between P(R*G) and P(R). Especial-
ly we can extend a G-invariant pseudo-rank function P on R to one, PG, on
Λ*G defined by the rule; PG(x)= \ G \ ~lΐ> P(R(R*Gx)) for all x£ΞR*G ([8, Cor. 4]).
If P is not G-invariant, then we consider the trace t(P)= | G | -1 *ΣgξΞGP

g, where

P*(r)=P(rg~1). Now we shall determine all elements in QeP(R*G), using Lem-

ma 4 and [8, Cor. 4].

Proposition 5. Let R be a directly finite, left self-injective, regular ring
and G a finite group of automorphisms of R with \G\~l^R. We assume that
G is X-outer. Then Qf(R*G)={t(Q)G:

Proof. For any N^deP(R*G\ we see that ker(N)<=Mzx(R*G) by
[4, II. 14.5]. By Lemma 4, we have that ker(N)=(f\ g(ΞGM

g)*G, where

MeMax(Λ). We choose Q<=QeP(R) such that ker(Q)=M. Since ker t(Q)=
Γ\geGM

g/kert(Q)G^>(ngGGM
g)*G. Hence we have ker (t(Q)G)=ker (N) and

hence t(Q)G=N. Conversely for any Q^deP(R), we proved above that
ker (t(Q}G) is a maximal ideal of R*G. Thus t(Q)G is extremal by [4. II. 14.5].

Lemma 6. Let R be a directly finite, left self-injective, regular ring and
G a finite group of automorphisms of R with \G\~l^R. We assume that G is
X-outer. Then the following hold:

(1) N(e)=n~lfor all N<=ΞQeP(R*G\ where n=\G\.

(2)

Proof. By Proposition 5, we have N=t(Q)G for some Qe QeP(R). Since
R*Ge^R as a left jf?-module, N(e)=t(Q}G(e)=n"1 by [8, Corollary 4]. Con-
sequently we have R*G^n(R*Ge) as a left ^G-module by [2, Cor. 2.7].
Hence R*G^Mtt(RG), because eR*Re^GG.

Now, using Lemma 6, we shall prove an interesting result concerning with
"a normal basis" of R over RG.

Proposition 7. Let R be a directly finite, left self-injective, regular ring
and G a finite group of automorphisms of R with IGI"1^^?. We assume that
G is X-outer. Then R^RG[G] as RG[G]-modules.

Proof. We can easily see that R*GeR*G=R*G by Lemma 4. Then
R*Ge is a generator as a J2*G-module and R is a finitely generated, protective,
left ΛG-module. We know that there exist maps //,*: P(R*G)^P(RG) and
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λ*: P(RG)-+P(R*G) such that λ* μ*=identity, μ* λ*=identity and both maps
are also bijection on the extremal boundary by §1. Especially we have an
important relation that λ*(Q) (e)=DQ(R)'1 for all QtΞP(RG). Therefore any

Qe3,P(ΛG), we have X*(Q)e9eP(#*G) and λ*(Q) (e)=DQ(R)~l by the above
remark. Put n=\G\. By Lemma 6, we have DQ(R)=n for all Q(ΞdeP(RG).
Then by [2, Cor. 2.7], we see that ^R^n.RG.

Next, we consider R as a left jR*G-module by the rule: (Σgς=Grg£)r==

*Σg(=Grgrg Since it is known that R^R*Ge as Λ*G-modules, we have that R*G
^n.R as J2*G-modules by Lemma 6. Let S=RG[G] be an ordinary group
ring of G over JRG, which is a left self-injective, regular, subring of J?*G. Since
R^n.RG as left jRG-modules, we have that R*G^n.S as left S-modules. On
the other hand, since R*G^*n.R as left jR*G-modules, we have that n.R^n.S
as left S-modules. By [1, Th. 10.34], we can conclude that R^S as left S-
modules.

3.

K.R. Goodearl and D, Handelman have introduced the ΛΓ* -metric which
is induced by P(R) for a regular ring R. In this section, we shall study the
bijectiveness of the map μ*ι 9eP(R*G)->deP(RG) for a self-injective regular
ring Λ, using the ΛΓ* -metrics of -R*G, R and RG.

Let T be a unit-regular ring. We assume that for a given non-zero xE±Ty

there exists P^P(T) such that P(#)>0. For each #eΓ, according to [7],
we define

= sup{P(x):

Thus N$(x) is a real number, and O^A/"ί(Λ?)^l. JV? induces a metric J* on
T given by the rule J*(,r, y)=N*(x — y), which we call the N* -metric and T
becomes a topological ring with respect to Λff -metric. If T is complete with
respect to ΛΓ^ -metric, T is called AΓ^-complete. It is known that regular rings
with bounded index of nilpotence and K0-continuous regular rings are N*-
complete [3, Th. 1.3 and Th. 1.8]. We define ker (P(T))= Π peP(Γ) ker (P).

Lemma 8. Let R be a unit-regular ring with ker (P(R))=0 and G a finite
subgroup of Aut(R) with \G\~l^R and let R*G be a skew group ring of G over R.
We assume that R*G is a unit-regular ring and R is a finitely generated projective
left RG -module. Then the following hold.

(1) ker (P(Λ*G))=0 and

forallr^R.
(2) There exists a natural number t such that
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for all a^RG. Consequently, the topology defined by N^β-metric are coincide

the topology induced by N%-metric on RG.

Proof. (1) For any P(=P(R), let t(P)=\G\'1'Σβ&P^ which is a G"
invariant pseudo-rank function. By [8, Cor. 4], the extension t(P)G is a pseudo-
rank function on R*G and t(P)G\R= t(P). For x^ker (P(R*G)), we assume
that R*Gx^ ®iRr{ as Λ-modules. Then t(P)G(x)= \ G Γ1 Σ, f(P)fa) by [8, Cor.
4] and so *(P)(r,)=0 for all i. Since P(r,)^ |G|f(P)(r,) by definition, we see
that P(r, )— 0 for all / and so that r, =0 for all / by assumption. Next, for any

we see that

r) =

for any r<=R. Therefore
(2) Since Λ is also a finitely generated, protective, left .RG-module by

assumption, let R<t.(RG) for some ί>0. Then DQ(R)^t for all Q(ΞP(RG).
Using Theorem 2, we see that for Q^P(RG) and any

Thus we see that Nί&(a)^tNί(a) for all

Let T*G be a skew group ring of a finite group G over a ring Γ such that
|G| -1e Γ and put e=\G\ ~l Σgecg M Lorenz and D.S. Passmann [11] and
S. Montgomery [9] have studied the relation between prime ideals of Γ*G,
T and TG. Now we shall study maximal ideals of T*G and ΓG, using the man-
ners of [9].

We denote by Sρecβ(T#G) the set of all prime ideals of Γ*G not contain-
ing e and let Ie(T*G)=the set of all ideals of T*G not containing e. There
exists a natural map φ: Iβ( T*G)-^the set of all ideals of ΓG, defined by the
rule φ(M)=θ(eMe), where θ: eT*Ge->TG is the isomorphism introduced in
§ 1. In [9], it is shown that φ induces a bijection from Sρece( Γ*G) to Spec(ΓG).

Therefore φ also induces a bijection φ' : Spece(r*G)->Max(rG), where Sρece(Γ*G)
is the set of {MeSpec,(T*G): M is maximum in Spec,(T*G)>. The follow-
ing lemma is needed in later propositions.

Lemma 9. Let T be a ring and G a finite subgroup of Aut(T) with \G\~l

e T. The following conditions are equivalent.

(1) All t>eSpec,(Γ*G) are maximal ideals.
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(2) For any τweMax(ΓG), there exists some MeMax(Γ) such that Mf} TG

dm.

Proof. (1)=K2). For any meMax(ΓG), we choose peSpec,(Γ*G) such
that φ'(p)=m. By the assumption of (1) and [11, Lemma 4.2], t> Γl T= ΓΊ ,ec Mg

for some MeMax(T). Since (Γ\gζ=G M8)*Gd$, we see that MΠ TG=

(2)=>(1). For any peSpec^Γ^G), put m=φ'(\)) and choose MeMax(Γ)
such that Mil TGCm. Since Jf= Π^G M* is G-invariant, we see that M*G
= Γ\iQi for some maximal ideals g, (/=l, •••, t) of Γ*G by [11, Lemma 4.1].
Let 8, (ι'=l, •••, s) be the set of all primes in {g, (/=!, •••, £)} not containing e.

Since φ(Π f 8f )=Φ(^*G)=Λίn 71GC»ι=φ'(t)), we see that nίβ. c:t> by
[9, (3) of Lemma 0.2]. By primeness of p, 8,-Cϊ) for some / and so Qi=$ by
the maximality of 8,

Next, for a self-injective regular ring R, we shall consider a condition
satisfying (2) of Lemma 9. We note that R* G and RG are also self-injective
regular rings by [12].

Proposition 10. Let R be a left and right self-injective, regular ring and
G a finite subgroup of Aut(R) with \G\~l^R. If R is a finitely generated pro-
jective left Rc '-module, then, for any meMax(72G), there exists MeMax(Λ) such

Proof. By [5, §11], there exist subgroups Hly •••, Hs of G and orthogonal
central idempotents ely , es of R such that
(1) for any f^B(R) such that /£,•=/, the stabilizer of/ is equal to Hi and the
distinct conjugates of /are mutually orthogonal,

(2) £?+••• +£? = 1, where eG is the sum of all distinct conjugates of eiy

(3) (Λ*)'ί=(jfe?y.
It follows from the assumption that the pair (Λ, RG) satisfies (2) of Lemma 8.
Then each (Re^ (Re{)

Hi) also satisfies the same one. Therefore it needs only
to prove the assertion in the case that any f^B(R) is G-invariant.

First we consider the topology τl9 induced by ATI-metric on RG as a sub-
space. Put X= deP(R).

(1) α is dense in (Ί p&χ(&+(ker(P) Γ\RG)) with respect to τl for any proper
ideal α.

In fact, for a^R, we define a function π(ά): J£->[0, 1] by the rule:
π(ά)(N)=N(a). Then π(a) is a continuous map by the definitions on the topology
of X (See, [7]). We choose any x<= Π PGχ(a+(ker(P) ΓΊ RG)) and for each Pe X,
we put x=aP

JryPy where aPξΞCί and yP£Ξker(P)Γ\RG For any real number
£>0, U(yP)=π(yP)~1([Oy £ '2"1]) is a open set for each yp and it contains P.
Then we have
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We note that X is Boolean space by [1]. By compactness and the partition
property, there exist finitely many U(yP.) /—I, •••, t corresponding to yp. and
mutually disjoint clopon sets W{ C U(yPt) such that X— \J{Wi. For the set
{Wi\ i=\, •••, /}, there exists mutually orthogonal central idempotents fe:
ί=l, -, t} of R such that W{= {NzΞX: N(et)=l} by [1]. Since e^RG (i=l,
•••, ί), fl^Σί^ tfpί is contained in α. For any P^X, there exists only one
Wf such that P^W{. Then we see that P(e )=l and P(ej)=Q, for all jΦ/
and so we see that

(a-x) = (Σ,Φί P(6j *Py))+P((*f-l) aPi)+P(yPί)

As a result, N$(a—x)<6 2-1<£.
(2) For any m e Max(ΛG), w= Π P(ΞX(m+(kerP Π ΛG)).

In fact, since ΛG is complete with respect to the topology τ2 defined by
JV>-metric by [3, Th. 1.8], m is closed with respect to τ2 by [3, Th. 1.13 and
Cor. 1.14]. Since τl=r2 by Lemma 8, m is closed with respect to rx. Then
we can conclude that m= Π P^x(m+(ker(P) (Ί RG)) by (1).

(3) For any m^Max(RG), there exists some P^X such that

m+(ker(P)Γ\R°)*RG by (2) and so m=m+(ker(P)Γ\RG)^>ker(P)Γ(RG. By
[4, II. 14.5], ker(P) is a maximal ideal of R.

Theorem 11. Let R be a left and right self-ίnjective regular ring and G
a finite subgroup of Aut(R) with \ G \ -1 e R. Assume that R is a finitely generated
projectίve left RG-module. Let μ,*, λ* be the maps defined in §1. Then
μ*: deP(R*G)\F->deP(RG) is a bijectίon and (μ*)-1^*.

Proof. We shall consider the following diagram:

d,P(R*G)/F -?—* 9eP(RG)

where 7r, (/=l, 2) is the map defined by m(N]=ker (N). By Lemma 9 and

Proposition 10, any peSρec^(Λ*G) is a maximal ideal and so π{ (i=l, 2) is
a bijection by [4, II. 14.5]. It is easy to prove that the above diagram is com-
mutative. Then we have that μ* is a bijection and (μ,*)"1— X*.
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