

Title	On the Schur indices of the finite unitary groups
Author(s)	Ohmori, Zyozyu
Citation	Osaka Journal of Mathematics. 1978, 15(2), p. 359-363
Version Type	VoR
URL	https://doi.org/10.18910/11030
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ohmori, Z.
Osaka J. Math.
15 (1978), 359-363

ON THE SCHUR INDICES OF THE FINITE UNITARY GROUPS

ZYOZYU OHMORI

(Received March 15, 1977)
(Revised September 29, 1977)

Introduction

Let \mathbf{F}_q denote the finite group of characteristic p with q elements. We consider the finite unitary group $U(n, q^2)$ of rank n relative to the quadratic extension $\mathbf{F}_{q^2}/\mathbf{F}_q$. For a complex irreducible character χ of a finite group, the Schur index of χ with respect to the field \mathbf{Q} of rational numbers is defined to be the minimal degree among all the extensions $K/\mathbf{Q}(\chi)$ such that χ is realizable in K . Here $\mathbf{Q}(\chi)$ is the extension of \mathbf{Q} generated by the values of χ . We denote this index by $m_{\mathbf{Q}}(\chi)$. In this paper, we shall determine the Schur indices of all the complex irreducible characters of $U(n, q^2)$ for sufficiently large p and q . Our main result is the following theorem.

Main Theorem. *Assume that p and q are sufficiently large. Then the Schur index of any complex irreducible character of $U(n, q^2)$ with respect to the field of rational numbers is one.*

REMARK. If $n \leq 5$, it is enough only to assume $p \neq 2$ (see §2).

The theorem follows from

Theorem A (R. Gow [3], p 112). *For any complex irreducible character χ of $U(n, q^2)$, $m_{\mathbf{Q}}(\chi)$ divides 2.*

Theorem B. *The values of any complex irreducible character of $U(n, q^2)$ on unipotent elements are rational integers and its Schur index divides these values.*

This will be proved in Section 4.

Theorem C. *Assume that p and q are sufficiently large (if $n \leq 5$, this assumption can be dropped out). Then for any complex irreducible character χ of $U(n, q^2)$, there is a unipotent element u of $U(n, q^2)$ such that $\chi(u)$ is equal to the p -part of the degree of χ up to sign.*

This will be proved in Section 2.

I wish to thank Professor R. Hotta for giving me his preprint and for his kind advice.

NOTATION. \mathbf{Q} is the field of rational numbers. All characters are complex ones. A *character* of a finite group means a non-negative integral linear combination of irreducible characters of the group.

1. The Schur index

To determine the Schur indices of irreducible characters of $U(n, q^2)$, we shall use the following property of the index.

Lemma 1.1. ([1], (70.21)). *Let H be a finite group and let ξ be a character of H which is realizable in \mathbf{Q} . Then, if χ is an irreducible character of H , $m_{\mathbf{Q}}(\chi)$ divides the intertwining number (ζ, χ) .*

2. Ennola's conjecture implies Theorem C

In [2], V. Ennola stated the following conjecture (cf. [8]).

Conjecture of Ennola. *The system of irreducible characters of $U(n, q^2)$ coincides with that of irreducible C -functions, which are obtained from the irreducible characters of the general linear group $GL(n, q)$ by the simple formal change that q is everywhere replaced by $-q$.*

This is checked by himself in [2] for $n \leq 3$ and by S. Nozawa [8], [9] for $n=4, 5$. Recently, G. Lusztig, B. Srinivasan, R. Hotta, D. Kazhdan and T.A. Springer have proved the conjecture for sufficiently large p and q (See [5], [7]). Thus Theorem C follows from Theorem C of [10], which is the counterpart for $GL(n, q)$.

3. Some lemmas on representation theory of algebraic groups

Let G be a connected, reductive linear algebraic group defined over \mathbf{F}_q and F the corresponding Frobenius endomorphism. Then G^F is the finite group of \mathbf{F}_q -rational points in G . Let Z denote the centre of G . Throughout this section, we shall assume that Z is connected and that p is not a bad prime for G for all the simple components of G .

Lemma 3.1. *Let S be a Sylow p -subgroup of G^F . Then, if λ is a linear character of S , $Ind_S^{G^F}(\lambda)$ is a character of G^F which is realizable in \mathbf{Q} .*

For a proof, see [11], Cor. 2.3..

Corollary 3.2. *If χ is an irreducible character of $U(n, q^2)$ of degree coprime to p , then $m_{\mathbf{Q}}(\chi)$ is equal to 1.*

Proof. Since the centre of the unitary group is connected, (3.2) follows from the main theorem of [11].

Recall that an element x of G (G is reductive) is called *regular* if $Z_G(x)$ (=the centralizer of x) has the minimal dimension.

Lemma 3.3. (i) G^F contains a regular unipotent element of G .

(ii) The set of regular unipotent elements in G^F form a single conjugacy class.

This is well known.

Corollary 3.4. Any character of G^F takes rational integral values on regular unipotent elements.

Proof. If u is a regular unipotent element in G^F , for any integer k coprime to p , u^k is also regular; u and u^k are conjugate in G^F (by (3.3)). Then (3.4) follows from [10], (1.1) lemma or from [4], Lemma 2.

Lemma 3.5. If U is an F -stable maximal unipotent subgroup of G and ρ is an irreducible character of U^F of degree greater than one, we have that $\rho(u)=0$ for any regular unipotent element u in U^F .

Proof. Since the image of U in G/Z is isomorphic to U , we may assume that Z is trivial. Then (3.5) follows from Theorems A, A' of [6].

REMARK. In (3.5), the assumption that Z is connected is not needed.

4. Proof of Theorem B

Let $G=U_n$ ($=GL_n$) be the unitary group of rank n defined over \mathbb{F}_q . The Frobenius F is given by $F((x_{ij}))={}^t(x_{ij}^q)^{-1}$. We also introduce an endomorphism F_0 of U_n defined by $F_0((x_{ij}))=(x_{ij}^{q^2})$. Then $U_n^{F_0}=GL(n, q^2)$.

Lemma 4.1. Two elements of $U(n, q^2)$ are conjugate in $U(n, q^2)$ if and only if they are conjugate in $GL(n, q^2)$.

For a proof, see [12], I.3.6.; also see [2].

Now we prove Theorem B. Let u be a unipotent element of U_n^F , $\mu=(\mu_1, \mu_2, \dots, \mu_s)$ the corresponding partition of n and P_μ the standard parabolic subgroup of U_n corresponding to μ i.e.

$$P_\mu = \left\{ \begin{pmatrix} A_{11} & & & & \\ & A_{22} & & * & \\ & & \ddots & \ddots & \\ 0 & & & & A_{ss} \end{pmatrix}; A_{ii} \in U_{\mu_i} \right\}.$$

Then $L=U_{\mu_1} \times \dots \times U_{\mu_s}$, which is embedded diagonally into P_μ , is an F -stable

Levi-subgroup of P ; in particular, L is reductive and connected. Let u_0 be an F -stable regular unipotent element of L (such element exists by (3.3)) and let u_μ be the Jordan canonical form of u . We may assume that u_μ belongs to L . Since the centre of L is connected and since u_μ is a regular unipotent element of L , u_μ and u_0 are conjugate in $L^{F_0} = GL(\mu_1, q^2) \times \cdots \times GL(\mu_s, q^2)$. (Note that u_0 and u_μ are rational over \mathbf{F}_{q^2}). Then u and u_0 are conjugate in $GL(n, q^2)$; by (4.1), they are conjugate in U_n^F . We may assume u to be u_0 . Let U be the unipotent radical of the F -stable Borel subgroup of L containing u . Then U is F -stable and contains u . Now let χ be an irreducible character of U_n^F . Then we have that

$$\chi|_{U^F} = \sum_{\lambda} a_{\lambda} \cdot \lambda + \sum_{\rho} b_{\rho} \cdot \rho,$$

where the first summation is over all the linear characters of U^F and the second summation is over all the non-linear irreducible characters of U^F . By (3.5), we have

$$\chi(u) = \sum_{\lambda} a_{\lambda} \cdot \lambda(u).$$

Since $a_{\lambda} = (\chi, \text{Ind}_{U^F}^{U_n^F}(\lambda))$ and $\text{Ind}_{U^F}^{U_n^F}(\lambda) = \text{Ind}_{L^F}^{U_n^F}(\text{Ind}_{U^F}^{L^F}(\lambda))$ is realizable in \mathbf{Q} by (3.1), we see by (1.1) that $m_{\mathbf{Q}}(\chi)$ divides a_{λ} . We can rewrite the above expression as

$$\chi(u)/m_{\mathbf{Q}}(\chi) = \sum_{\lambda} (a_{\lambda}/m_{\mathbf{Q}}(\chi)) \cdot \lambda(u).$$

In this expression, the right hand side is an algebraic integer. Then, to prove Theorem B, it suffices to show that $\chi(u)$ is rational. But any character of L^F takes a rational integral value on u (by (3.4)) and the restriction of χ to L^F is a non-negative integral linear combination of irreducible characters of L^F ; hence $\chi(u)$ is an integer. This completes the proof of Theorem B.

TOKYO METROPOLITAN UNIVERSITY

References

- [1] C.W. Curtis and I. Reiner: *Representation theory of finite groups and associative algebras*, John Wiley and Sons, Interscience, New York, 1962.
- [2] V. Ennola: *On the characters of the finite unitary groups*, Ann. Acad. Sci. Fenn. **323** (1963), 1-34.
- [3] R. Gow: *Schur indices of some groups of Lie type*, J. Algebra **42** (1976), 102-120.
- [4] J.A. Green, G.I. Lehrer and G. Lusztig: *On the degrees of certain group characters*, Quart. J. Math. Oxford (2) **27** (1976), 1-4.
- [5] R. Hotta and T.A. Springer: *A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups*, to appear.

- [6] G.I. Lehrer: *Adjoint groups, regular unipotent elements and discrete series characters*, Trans. Amer. Math. Soc. **214** (1975), 249–260.
- [7] G. Lusztig and B. Srinivasan: *The characters of the finite unitary groups*, to appear.
- [8] S. Nozawa: *On the characters of the finite general unitary group $U(4, q^2)$* , J. Fac. Sci. Univ. Tokyo **19** (1972), 257–293.
- [9] _____: *On the characters of the finite general unitary group $U(5, q^2)$* , J. Fac. Sci. Univ. Tokyo **23** (1976), 23–74.
- [10] Z. Ohmori: *On the Schur indices of $GL(n, q)$ and $SL(2n+1, q)$* , J. Math. Soc. Japan **29** (1977), 693–707.
- [11] _____: *On the Schur indices of reductive groups*, Quart. J. Math. Oxford (2) **28** (1977), 357–361.
- [12] T.A. Springer and R. Steinberg: *Conjugacy classes* (Springer Lecture Notes Series 131), Springer-Verlag, New York/Berlin, 1970, 167–266.

