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Introduction

Let F, denote the finite group of characteristic p with ¢ elements. We
consider the finite unitary group U(n, ¢°) of rank # relative to the quadratic
extension Fpz/F,. For a complex irreducible character X of a finite group,
the Schur index of X with respect to the field @ of rational numbers is defined
to be the minimal degree among all the extensions K/Q(X) such that X is
realizable in K. Here Q(X) is the extension of @ generated by the values of
X. We denote this index by mgy(X). In this paper, we shall determine the
Schur indices of all the complex irreducible characters of U(r, ¢°) for sufficiently
large p and ¢g. Our main result is the following theorem.

Main Theorem. Assume that p and q are sufficiently large. Then the
Schur index of any complex irreducible character of U(n, ¢*) with respect to the
field of rational numbers is one.

Remark. If #<5, it is enough only to assume p=2 (see §2).
The theorem follows from

Theorem A (R. Gow [3], p 112). For any complex irreducible character X
of U(n, ¢%), mo(X) divides 2.

Theorem B. The values of any complex irreducible character of U(n, ¢%)
on unipotent elements are rational integers and its Schur index divides these values.

This will be proved in Section 4.

Theorem C. Assume that p and q are sufficiently large (if n<5, this assump-
tion can be dropped out). Then for any complex irreducible character X of U(n, ¢°),
there is a unipotent element u of U(n, ¢°) such that X(u) is equal to the p-part of
the degree of X up to sign.

This will be proved in Section 2.
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NoOTATION. Q is the field of rational numbers. All characters are complex
ones. A character of a finite group means a non-negative integral linear com-
bination of irreducible characters of the group.

1. The Schur index

To determine the Schur indices of irreducible characters of U(zn, ¢7), we
shall use the following property of the index.

Lemma 1.1. ([1],(70.21)). Let H be a finite group and let & be a character
of H which is realizable in Q. Then, if X is an irreducible character of H, mg(X)
divides the intertwining number (¢, X).

2. Ennola’s conjecture implies Theorem C

In [2], V. Ennola stated the following conjecture (cf. [8]).

Conjecture of Ennola. The system of irreducible characters of U(n, ¢%)
coincides with that of irreducible C-functions, which are obtained from the irreducible
characters of the general linear group GL(n, q) by the simple formal change that q
is everywhere replaced by —q.

This is checked by himself in [2] for #<3 and by S. Nozawa [8], [9] for
n=4, 5. Recently, G. Lusztig, B. Srinivasan, R. Hotta, D. Kazhdan and
T.A. Springer have proved the conjecture for sufficiently large p and g (See
[5], [7]). Thus Theorem C follows from Theorem C of [10], which is the
counterpart for GL(n, gq).

3. Some lemmas on representation theory of algebraic groups

Let G be a connected, reductive linear algebraic group defined over F, and
F the corresponding Frobenius endomorphism. Then G¥ is the finite group of
F,-rational pointsin G. Let Z denote the centre of G. Throughout this section,
we shall assume that Z is connected and that p is not a bad prime for G for all
the simple components of G.

Lemma 3.1. Let S be a Sylow p-subgroup of G¥. Then, if N is a linear
character of S, Ind$"(\) is a character of G which is realizable in Q.

For a proof, see [11], Cor. 2.3..

Corollary 3.2. If X is an irreducible character of U(n, ¢%) of degree coprime
to p, then mo(X) is equal to 1.
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Proof. Since the centre of the unitary group is connected, (3.2) follows
from the main theorem of [11].

Recall that an element x of G (G is reductive) is called regular if Z (x) (=the
centralizer of x) has the minimal dimension.

Lemma 3.3. (i) GF contains a regular unipotent element of G.
(ii) The set of regular unipotent elements in G* form a single conjugacy class.

This is well known.

Corollary 3.4. Any character of GF takes rational integral values on regular
unipotent elements.

Proof. If u is a regular unipotent element in G7, for any integer k coprime
to p, u* is also regular; » and #* are conjugate in G¥ (by (3.3)). Then (3.4)
follows from [10], (1.1) lemma or from [4], Lemma 2.

Lemma 3.5. If U is an F-stable maximal unipotent subgroup of G and p
is an trreducible character of U of degree greater than one, we have that p(u)=0
for any regular unipotent element u in UF.

Proof. Since the image of U in G/Z is isomorphic to U, we may assume
that Z is trivial. Then (3.5) follows from Theorems A, A’ of [6].

Remark. In (3.5), the assumption that Z is connected is not needed.

4. Proof of Theorem B

Let G=U, (=GL,) be the unitary group of rank # defined over F,. The
Frobenius F is given by F((x;,))='(x{;)"'. We also introduce an endomor-
phism F, of U, defined by Fy((x;;))=(x%;). Then Ujo=GL(n, ).

Lemma 4.1. Two elements of U(n, ¢°) are conjugate in U(n, ¢°) if and only
if they are conjugate in GL(n, ¢*).

For a proof, see [12], 1.3.6.; also see [2].
Now we prove Theorem B. Let u be a unipotent element of Uy, p=(u,,
Koy *** ) the corresponding partition of # and P, the standard parabolic sub-
group of U, corresponding to  i.e.
Ay
AZZ

P, = 0 ; Aie Uy,

*

A,
Then L=U, X+ X Uy, which is embedded diagonally into P,, is an F-stable
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Levi-subgroup of P; in particular, L is reductive and connected. Let u, be an
F-stable regular unipotent element of L (such element exists by (3.3)) and let
u, be the Jordan canonical form of u. We may assume that u, belongs to L.
Since the centre of L is connected and since u, is a regular unipotent element of
L, u, and u, are conjugate in LFfo=GL(u,, @)X - X GL(u,, ¢°). (Note that u,
and u, are rational over F;?). Then u and u, are conjugate in GL(n, ¢°); by
(4.1), they are conjugate in Uy* We may assume u to be . Let U be the
unipotent radical of the F-stable Borel subgroup of L containing #. Then U
is F-stable and contains . Now let X be an irreducible character of Uf. Then
we have that

X|UF =S ay a3 byep,

where the first summation is over all the linear characters of UF and the second
summation is over all the non-linear irreducible characters of UF. By (3.5),
we have

X(u) = g ay\u) .

F F F F
Since a,=(X, Ind J%(\)) and Ind | %(n)=Ind J%(Ind > (1)) is realizable in @

by (3.1), we see by (1.1) that mg(X) divides a@,. We can rewrite the above ex-
pression as

X(u)/mg(X) = 33 (ar/mq(X))-N(u) -

In this expression, the right hand side is an algebraic integer. Then, to prove
Theorem B, it suffices to show that X(u) is rational. But any character of L
takes a rational integral value on u(by (3.4)) and the restriction of X to L is a
non-negative integral linear combination of irreducible characters of L¥; hence
X(u) is an integer. This completes the proof of Theorem B.
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