

Title	A remark on conjugacy classes in simple groups
Author(s)	Nobusawa, Nobuo
Citation	Osaka Journal of Mathematics. 1981, 18(3), p. 749-754
Version Type	VoR
URL	https://doi.org/10.18910/11034
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A REMARK ON CONJUGACY CLASSES IN SIMPLE GROUPS

Nobuo NOBUSAWA

(Received January 23, 1980)

Let A be a union of some conjugacy classes in a group. We define a binary operation on A by $a \circ b = b^{-1}ab$. It satisfies that (1) $a \circ a = a$, (2) $(a \circ b) \circ c = (a \circ c) \circ (b \circ c)$ and (3) a mapping $\sigma_a \colon x \to x \circ \alpha$ is a permutation on A. Generally we call a binary system which satisfies the above three conditions a pseudosymmetric set. It is called a symmetric set if (4) σ_a has the order 2 is also satisfied. The set of all nilpotent elements in a Lie algebra is another example of a pseudosymmetric set, where $\sigma_a = \exp(\operatorname{ad} a)$. The purpose of this note is to generalize the main result on the simplicity of a symmetric set given in [2] to the case of a pseudosymmetric set. As applications, three examples of conjugacy classes in simple groups A_n , SL(V) and Sp(V) will be discussed, from which we could derive a new proof of the simplicity of the corresponding groups A_n , PSL(V) and PSp(V).

Generally, let A be a pseudosymmetric set and define $G=G(A)=\langle\sigma_a|a\in A\rangle$, a group generated by σ_a . The above three conditions imply that G is a group of automorphisms of A. Note that if ρ is an automorphism of A, then $\sigma_a{}^{\rho}=\rho^{-1}\sigma_a\rho$. $\{\sigma_a|a\in A\}$ is a union of conjugacy classes in G and hence is a pseudosymmetric set, and the mapping $\sigma\colon a\to\sigma_a$ is a homomorphism of A to the set. When σ is a monomorphism, we say that A is effective. When $A=a^G$ for an element a, we say that A is transitive. Let G' be the commutator subgroup of G. When A is transitive, $G'=\langle\sigma_a^{-1}\sigma_b|a,b\in A\rangle$, since $b=a^\rho$ with some element ρ in G and $\sigma_a^{-1}\sigma_b=\sigma_a^{-1}\rho^{-1}\sigma_a\rho\in G'$ and conversely $\sigma_a^{-1}\sigma_b^{-1}\sigma_a\sigma_b=\sigma_a^{-1}\sigma_c$ with $c=a^{\sigma_b}$. So, in this case, $G=\langle G',\sigma_a\rangle$ for any a. Also note that if A is a union of conjugacy classes in a group K and if A generates K, then $G\cong K/Z(K)$, where Z(K) is the center of K.

Let A and B be pseudosymmetric sets and suppose that there exists a homomorphism f of A onto B. The inverse image $f^{-1}(b)$ for an element b in B is called a coset of f. Let $\{C_i\}$ be the set of all cosets of f. Then $\{C_i\}$ is a system of blocks of imprimitivity of the permutation group G, and if σ and ρ belong to the same coset, then $C_i^{\rho} = C_i^{\sigma}$ for every i. When |B| > 1 and f is not a monomorphism, we say that f is proper. A pseudosymmetric set A with |A| > 2 is called simple if it has no proper homomorphism. Note that if A is simple, then it is transitive. For, consider the canonical homomorphism $a \rightarrow a^G$

750 N. Nobusawa

of A onto $B = \{a^G | a \in A\}$. Since A is simple, |B| = 1 or the mapping is a monomorphism. In the former case, $A = a^G$ is transitive. In the latter case, $a = a^G$ for every a, i.e., G is trivial, which is impossible because |A| > 2 implies that A has a proper homomorphism to the trivial pseudosymmetric set of two elements. The following theorem is established for a symmetric set in [2].

Theorem. Let A be a pseudosymmetric set. If A is simple, then G' is the unique minimal normal subgroup of G. The converse is also true if A is effective and transitive.

Proof. Suppose that A is simple. Let $K \neq 1$ be a normal subgroup of G, and B the set of all K-orbits. B is a pseudosymmetric set, and there is the canonical homorphism $f: a \rightarrow a^K$. Since $K \neq 1$, f is not a monomorphism. Therefore, |B|=1, which implies that K is transitive on A. So, for any elements a and b, $a^{\rho} = b$ with ρ in K. Then $\sigma_{a^{\rho}} = \rho^{-1} \sigma_{a} \rho = \sigma_{b}$, and hence $\sigma_{b}^{-1} \sigma_{a} \in K$ as K is normal. Thus $G' \subset K$, which proves the first part of Theorem. Conversely, suppose that A is effective and transitive and that A is not simple. We want to show that there is a normal subgroup K such that $1 \neq K \subseteq G'$. Since A is not simple, there is a proper homomorphism f of A onto B with $|B| \ge 2$. induces a homomorphism f of G to G(B) in a natural way: $f(a \circ b) = f(a) \circ f(b) = f(a) \circ f(b)$ $f(a)^{\bar{f}(\sigma_b)}$, or, more generally $f(a^{\rho}) = f(a)^{\bar{f}(\rho)}$. Let \bar{g} be the restriction of \bar{f} to G'. Let K be the kernel of \bar{g} . Since f is not a monomorphism, there exist a and b such that $a \neq b$ and f(a) = f(b). Then, $\bar{f}(\sigma_a) = \bar{f}(\sigma_b)$ and hence $\bar{g}(\sigma_a^{-1}\sigma_b) = 1$. Thus $K \neq 1$. Note that $\sigma_a^{-1} \sigma_b \neq 1$ and $\in G'$ as A is effective and transitive. On the other hand, let f(c) and f(d) be two elements in B. Since A is transitive, $c^{\tau}=d$ with some τ in G. We may assume that τ is in G'. For, $G=\langle G', \sigma_c \rangle$ $=\sum \sigma_c^i G'$ and we can replace τ by $\sigma_c^i \tau$. Then, $f(c)^{\bar{g}(\tau)} = f(c^{\tau}) = f(d) + f(c)$. Therefore, $\bar{g}(\tau) \neq 1$ and τ is not in K. $K \subseteq G'$.

Corollary. Let A be an effective and transitive pseudosymmetric set. Suppose G'=G. Then A is simple if and only if G is a simple group.

In the following, we show some examples of simple pseudosymmetric sets. Although it is well known that the corresponding groups G are simple, we shall show the simplicity of A directly, thus giving a new proof of the simplicity of G (once we show G'=G).

EXAMPLE 1. We consider the alternating group A_n . $(n \ge 5)$ Let A be the conjugacy class of the 3-cycle (1, 2, 3). A consists of all 3-cycles and generates A_n . So, $G \cong A_n/Z(A_n) = A_n$. We shall show that A is simple. Let $\{C_i\}$ be the set of all cosets of a homomorphism of A to a pseudosymmetric set B. Assume that $|C_i| \ge 2$. Note that all C_i have the same cardinality as A is transitive. Let C be one of C_i .

- (1) Suppose that (1, 2, 3) and (1, 2, 4) are both contained in C. It is not hard to check that the pseudosymmetric set C contains all (i, j, k), $1 \le i, j, k \le 4$. Since $(1, 2, 3)^{\sigma} = (1, 2, 4) \in C$ where $\sigma = (3, 4, 5)$, we see that $(1, 2, 4)^{\sigma} = (1, 2, 5)$ is also contained in C due to the definition of a block of imprimitivity of a permutation group. So, C contains all (i, j, k), $1 \le i, j, k \le 5$ by the above argument. Repeating this process, we have C = A.
- (2) Suppose that (1, 2, 3) and $(1, 4, 5) \in C$. Then, $(1, 2, 3)^{\sigma} = (4, 2, 3)$ is contained in C, where $\sigma = (1, 4, 5)$. Thus, by (1), C = A.
- (3) Suppose that (1, 2, 3) and $(2, 1, 3) \in C$. Let $\sigma = (1, 2, 3)$ and $\tau = (2, 1, 3)$. Then both $(2, 4, 5)^{\sigma} = (3, 4, 5)$ and $(2, 4, 5)^{\tau} = (1, 4, 5)$ are contained in $C' = C_i^{\sigma} = C_j^{\tau}$, where C_i contains (2, 4, 5). Then C' = A by (1).
- (4) Suppose that (1, 2, 3) and $(2, 1, 4) \in C$. Let $\sigma = (1, 2, 3)$ and $\tau = (2, 1, 4)$. Then both $(2, 3, 5)^{\sigma} = (3, 1, 5)$ and $(2, 3, 5)^{\tau} = (1, 3, 5)$ are contained in a coset C', and C' = A by (3).
- (5) Suppose that $n \ge 6$ and that (1, 2, 3) and $(4, 5, 6) \in C$. Let $\sigma = (1, 2, 3)$ and $\tau = (4, 5, 6)$. Then both $(2, 3, 4)^{\sigma} = (3, 1, 4)$ and $(2, 3, 4)^{\tau} = (2, 3, 5)$ are contained in a coset C', and C' = A by (2).

From the above, we can conclude that A is simple.

EXAMPLE 2 (For Examples 2 & 3, see [1]). Let V be a vector space over a field K. Let $\tau_{a,f}$ be a transvection: $x \rightarrow x - f(x)a$, where $a \neq 0$ and f is a nonzero linear function such that f(a) = 0. A pseudosymmetric set A is defined as follows. When dim $V \geq 3$, let A be the set of all transvections. It is known in this case that A is a conjugacy class in SL(V) and generates SL(V). When dim V = 2, let τ be a transvection represented by a matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ with respect to some basis of V, and let A be the conjugacy class of τ in SL(V). We show that A generates SL(V) in this case. Then A is seen to be transitive. For $\lambda \neq 0$, we have

$$\begin{bmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 & \lambda^2 \\ 0 & 1 \end{bmatrix} \in A.$$

If char(K) ± 2 or if K is finite, then $\mu = \alpha^2 - \beta^2 - \gamma^2$ has solutions α , β and γ in K for any given μ as we see easily. Then,

$$\begin{bmatrix}1&\alpha^2\\0&1\end{bmatrix}\begin{bmatrix}1&\beta^2\\0&1\end{bmatrix}^{-1}\begin{bmatrix}1&\gamma^2\\0&1\end{bmatrix}^{-1}=\begin{bmatrix}1&\mu\\0&1\end{bmatrix}\in\!\langle A\rangle.$$

Then, also,

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & \mu \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\mu & 1 \end{bmatrix} \in \langle A \rangle.$$

We see that $\langle A \rangle = SL(V)$ in this case. Next, assume that char(K) = 2 and K

is infinite. Then,

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in A.$$

Hence,

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \in \langle A \rangle.$$

For any non-zero μ ,

$$\begin{bmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{bmatrix} = \begin{bmatrix} 1 & \mu^{-2} \\ \mu^2 & 0 \end{bmatrix} \in \langle A \rangle.$$

Hence,

$$\begin{bmatrix}1&\mu^{-2}\\\mu^2&0\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix}=\begin{bmatrix}\mu^{-2}&1\\0&\mu^2\end{bmatrix}\in\!\langle A\rangle.$$

Therefore,

$$\begin{bmatrix} \mu^{-2} & 1 \\ 0 & \mu^2 \end{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mu^{-2} & 1 \\ 0 & \mu^2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \lambda(\mu^{-4} - 1) \\ 0 & 1 \end{bmatrix} \in \langle A \rangle.$$

Since K is infinite, $\lambda(\mu^{-4}-1)$ can be any non-zero element in K. As in the first case, we can show $\langle A \rangle = SL(V)$. So, we can also conclude that for any $\langle a \rangle$ there exists $c \in \langle a \rangle$ and f such that $\tau_{c,f} \in A$ if dim V=2.

Now we are in a position to show that A is simple. Let $\{C_i\}$ be the set of all cosets of a homomorphism where $|C_i| \ge 2$. First, we prove that there is a coset C which contains two elements $\tau_{a,f}$ and $\tau_{b,g}$ such that $f(b) \neq 0$. For it, let σ and ρ be two elements in some coset. There is a hyperplane H such that $H^{\sigma} \neq H^{\rho}$, since otherwise $\sigma \rho^{-1}$ fixes every line and hence $\sigma = \rho$ as both σ and ρ are transvections. So, we can choose an element c in H such that $c^{\sigma} \notin H^{\rho}$. Let h be a linear function defining H; $H = H_h = \{x \mid h(x) = 0\}$. Let $a=c^{\rho}$, $b=c^{\sigma}$, $f=h^{\rho}$ and $g=h^{\sigma}$. Let $C=C_{i}^{\sigma}$, where C_{i} is a coset containing $\tau_{c,h}$. Note that we can make $\tau_{e,h} \in A$ if dim V=2 by the above remark. Note also $C_i^{\sigma} = C_i^{\rho}$ as σ and ρ belong to the same coset. C satisfies the above condition. For, $f(b)=h^{\rho}(b)=h(b^{\rho-1})\pm 0$ as $b \in H^{\rho}$. C contains $\tau_{c,h}^{\rho}=\tau_{a,f}$ and $\tau_{c,h}^{\sigma}=\tau_{b,g}$. Next, we prove that, for every line $\langle d \rangle$, C contains an element $\tau_{d',*}$ such that $d' \in \langle d \rangle$. For it, we may assume that $d \in \langle a \rangle \cup \langle b \rangle$. If $d \in H_f$, we can choose φ is SL(V) such that φ is the identity on H_f and that $b^{\varphi} \in \langle d \rangle$. Note that $f(b) \neq 0$ implies $b \notin H_f$. φ fixes $\tau_{a,f}$ as it is a unimodular linear transformation acting identically on H_f . Therefore, $C^{\varphi} = C$. Since $\tau_{b,g}^{\varphi} \in C$, we can let $d' \! = \! b^{\varphi}$. If $d \! \in \! H_f$ and $d \! \in \! H_g$, we can choose ξ in SL(V) such that ξ is the identity on $H_{\mathfrak{g}}$ and that $d^{\xi} \notin H_f$. Since ξ fixes $\tau_{b,\mathfrak{g}}$ this time, $C^{\xi} = C$. From the above, we can find d_0 such that $\tau_{d_0,*} \in C$ and that $d_0 \in \langle d^{\ell} \rangle$. So, in this case, let $d'=d_a^{\zeta^{-1}}$. Finally, suppose that $d \in H_f \cap H_g$. In this case, we can choose ζ in SL(V) such that ζ induces a unimodular linear transformation on H_f , $a^{\zeta}=a$ and $d^{\zeta} \notin H_g$. It follows that $\tau_{a,f}^{\zeta}=\tau_{a,f}$ since $\zeta \in SL(V)$ and its restriction on H_f is a unimodular linear transformation of H_f . Hence, $C^{\zeta}=C$. Then, as above, we can show the existence of a required element d'. It is now easy to conclude that C=A. For, let $\tau_{d',*}$ be given as above. $\tau_{d,f}$ and $\tau_{d',*}$ are commutative as $d' \in \langle d \rangle$. For every d, $\tau_{d,f}$ leaves C fixed. Since A is transitive, this implies C=A. We have proven that A is simple.

Example 3. Suppose that V has a non-singular symplectic metric (x, y). Let $\sigma_{a\lambda}$ be a symplectic transvection: $x \rightarrow x + \lambda(x, a)a$, where a is a non-zero element in V and λ is a non-zero element in K. We define a pseudosymmetric set A by $A = \{\sigma_{a,1} | a \in V^* = V - \{0\}\}$. We want to show that A generates Sp(V) and that A is simple. In order to show that A generates Sp(V), first suppose that char $(K) \neq 2$ or that K is finite. Since $\sigma_{\lambda a,1} = \sigma_{a,\lambda^2}$ and $\sigma_{a,1}^{-1} = \sigma_{a,-1}$, we can show that $\langle A \rangle$ contains all $\sigma_{a,\mu}$ as in Example 2. Thus, $\langle A \rangle = Sp(V)$ in this case, since $\sigma_{a,\mu}$ generate Sp(V). Next, suppose that char(K)=2 and that K is infinite. We reduce our problem to the case of dim 2 and solve it. To show $\sigma_{a,\lambda} \in \langle A \rangle$, consider $V' = \langle a, a' \rangle$, a hyperbolic plane. Let $V = V' \oplus V''$ be an orthogonal decomposition. Then $\sigma_{a,\lambda} = \sigma'_{a,\lambda} \oplus 1_{V''}$, where $\sigma'_{a,\lambda}$ is a symplectic transvection on V'. Now, Sp(V')=SL(V')=PSL(V') because K is infinite and char(K)=2. (See [1], p. 174.) If we let $A' = \{\sigma'_{c,1} | c \in V'^*\}$, then $\langle A' \rangle$ is a normal subgroup of SL(V') and hence $\langle A' \rangle = Sp(V')$, since the latter is a simple group by the above. This implies that $\sigma_{a,\lambda} \in \langle A' \rangle \oplus 1_{v''} \subset \langle A \rangle$. Thus, A generates Sp(V).

Before we show the simplicity of A, we show that A is transitive. V^* is clearly a pseudosymmetric set by $a \circ b = a^{\sigma_{b,1}}$. A mapping $f: a \to \sigma_{a,1}$ is a homomorphism of V^* onto A, and $f^{-1}(\sigma_{a,1}) = \{\pm a\}$. It suffices to show that V^* is transitive. Fix a, and let x be an arbitrary element in V^* . If $(a, x) \pm 0$, then $a+x=a^{\sigma_{x,\lambda}}$, where $\lambda=(a,x)^{-1}$. Therefore, a+x belongs to the G^* -orbit of a where $G^*=G(V^*)$. Then x belongs to the G^* -orbit of a+x, which is equal to the G^* -orbit of a, since $(a+x,-a)\pm 0$ and (a+x)+(-a)=x. If (a,x)=0, we can choose y such that $(a,y)\pm 0$ and $(y,x)\pm 0$. For, let $V'=\langle a,a'\rangle$ as before. If $(a',x)\pm 0$, let y=a'. If (a',x)=0, let $\langle x,x'\rangle$ be a hyperbolic plane which is orthogonal to V'. Let y=a'+x'. Thus, x is in the G^* -orbit of y, which is equal to the G^* -orbit of a. We have shown that a is transitive. Now we are in a position to prove that a is simple. Let a is the set of cosets as before, where a is a in the a is simple. Let a is one of a in the a is a in the a in the a in the set of cosets as before, where a is a in the a in th

(1) Suppose that C^* contains a and b such that $(a, b) \neq 0$. Since $C^{*\sigma_{b,\lambda}} = C^*$ for any λ as $\sigma_{b,\lambda}$ fixes b, C^* contains all $a + \mu b$. So, more generally, C^*

754 N. Nobusawa

contains $\alpha a + \beta b$ for any α and β . For any c in V^* , $(\alpha a + \beta b, c) = 0$ for some $\alpha a + \beta b$ in V^* , which implies that $\sigma_{c,\lambda}$ leaves $\alpha a + \beta b$ fixed. Therefore, C^* is left fixed by any $\sigma_{c,\lambda}$. Since V^* is transitive, this implies $C^* = V^*$, or C = A. A is simple in this case.

- (2) Suppose that C^* contains a and b such that (a, b) = 0 and $a \notin \langle b \rangle$. Then, we can express $b = \alpha a + d$ with a non-zero element d in V'', where $V = V' \oplus V''$ (orthogonal), since (a, b) = 0 and $a \notin \langle b \rangle$. Now, let c be an element in V'' such that $(d, c) \neq 0$. Since $\sigma_{c,\lambda}$ fixes a, C^* is left fixed by $\sigma_{c,\lambda}$. Then, $b^{\sigma_{c,\lambda}} \in C^*$, which implies that $b + c \in C^*$. Since $(b, b + c) \neq 0$, we have C = A by (1).
- (3) Suppose that C^* contains a and αa , where $\alpha \neq \pm 1$. Let b be an element such that $(a, b) \neq 0$. Let C_i^* be a coset which contains b. Then, $C_i^{*\sigma_{a,1}} = C_i^{*\sigma_{aa,1}}$, which contains $d = b^{\sigma_{a,1}} = b + (b, a)a$ and $e = b^{\sigma_{aa,1}} = b + \alpha^2(b, a)a$. Since $d \notin \langle e \rangle$, we can apply (1) or (2) and get that $\{C_i\} = \{A\}$, or A is simple.

REMARK. If we consider PSL(V) and PSp(V), the "effective" condition is satisfied.

References

[1] E. Artin: Geometric algebra, Interscience, New York, 1961.

[2] H. Nagao: A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352.

Department of Mathematics University of Hawaii Honolulu, Hawaii 96822 U.S.A.