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Let A be a union of some conjugacy classes in a group. We define a binary
operation on A by aob=bT'ab. It satisfies .that (1) aca=a, (2) (acb)oc=
(aoc)o(boc) and (3) a mapping o,: x—>xoa is a permutation on A. Generally
we call a binary system which satisfies the above three conditions a pseudosym-
metric set. It is called a symmetric set if (4) o, has the order 2 is also satisfied.
The set of all nilpotent elements in a Lie algebra is another example of a pseu-
dosymmetric set, whe.e o,—exp(ad a@). The purpose of this note is to genera-
lize the main result on the simplicity of a symmetric set given in [2] to the case
of a pseudosymmetric set. As applications, three examples of conjugacy classes
in simple groups 4,, SL(V) and Sp(V) will be discussed, from which we could
derive a new proof of the simplicity of the corresponding groups A4,, PSL(V)
and PSp(V).

Generally, let 4 be a pseudosymmetric set and define G=G(4)=<o,|aE
A, a group generated by o,. The above three conditions imply that G is a
group of automorphisms of 4. Note that if p is an automorphism of 4, then
opr=p lo.,p. {o./acsA} is a union of conjugacy classes in G and hence is
a pseudosymmetric set, and the mapping o: a— o, is a homomorphism of 4 to
the set. When ¢ is a monomorphism, we say that 4 is effective. When A=a®
for an element a, we say that A4 is transitive. Let G’ be the commutator sub-
group of G. When 4 is transitive, G'=<o7'0;| a, b= A, since b=a" with some
element p in G and o;'cy=07'p 'o,p EG’ and conversely o7 0} 0,0,=07 0,
with c=a"¢. So, in this case, G={G’, ¢,> for any a. Also note that if 4 is a
union of conjugacy classes in a group K and if A generates K, then G=K/|Z(K),
where Z(K) is the center of K.

Let A and B be pseudosymmetric sets and suppose that there exists a homo-
morphism f of 4 onto B. The inverse image f~'(b) for an element b in B is
called a coset of f. Let {C;} be the set of all cosets of f. Then {C;} is a
system of blocks of imprimitivity of the permutation group G, and if ¢ and
p belong to the same coset, then C{=C7 for every . When |B|>1 and fis
not a monomorphism, we say that f is proper. A pseudosymmetric set A with
| A| >2 is called simple if it has no proper homomorphism. Note that if A4 is
simple, then it is transitive. For, consider the canonical homomorphism a—a®
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of A onto B={a®lacA}. Since A4 is simple, |B|=1 or the mapping is a
monomorphism. In the former case, 4=aC is transitive. In the latter case,
a=a°® for every a, i.e., G is trivial, which is impossible because |4|>2 implies
that 4 has a proper homomorphism to the trivial pseudosymmetric set of two
elements. The following theorem is established for a symmetric set in [2].

Theorem. Let A be a pseudosymmetric set. If A is simple, then G’ is the
unique minimal normal subgroup cf G. The converse is also true if A is effective and
transitive.

Proof. Suppose that A4 is simple. Let K =1 be a normal subgroup of
G, and B the set of all K-orbits. B is a pseudosymmetric set, and there is the
canonical homorphism f: a—a¥. Since K= 1, f is not a monomorphism.
Therefore, |B|=1, which implies that K is transitive on 4. So, for any ele-
ments a and b, a®=b with p in K. Then o,=p 'o,p=0}, and hence o7 'c,EK
as Kisnormal. Thus G'C K, which proves the first part of Theorem. Conver-
sely, suppose that 4 is effective and transitive and that 4 is not simple. We want
to show that there is a normal subgroup K such that 1K <G’. Since 4 is
not simple, there is a proper homomorphism f of A onto B with |B|>2. f
induces a homomorphism f of G to G(B) in a natural way: f(acb)=f(a)o f(b)=
f(a)7C?, or, more generally f(a®)=f(a)’®. Letg be the restriction of f to G'.
Let K be the kernel of 2. Since f is not a monomorphism, there exist @ and b
such that a=+b and f(a)=f(b). Then, f(s,)=f(c;) and hence g(c7's,)=1.
Thus K #1. Note that ¢;'¢,%1 and G’ as A4 is effective and transitive.
On the other hand, let f(c) and f(d) be two elements in B. Since A4 is transitive,
¢"=d with some 7 in G. We may assume that 7 is in G’. For, G=<G', o>
=3¢iG’ and we can replace T by oir. Then, f(c)*=£(c")=£d)=+f(c).
Therefore, g(7)+1 and 7 is not in K. K&EG'.

Corollary. Let A be an effective and transitive pseudosymmetric set. Sup-
pose G'=G. Then A is simple if and only if G is a simple group.

In the following, we show some examples of simple pseudosymmetric
sets. Although it is well known that the corresponding groups G are simple,
we shall show the simplicity of 4 directly, thus giving a new proof of the sim-
plicity of G (once we show G'=G).

ExamprLe 1. We consider the alternating group A4,. (n>5) Let A be
the conjugacy class of the 3-cycle (1, 2, 3). A consists of all 3-cycles and
generates 4,. So, G=A4,/Z(A,)=A4,. We shall show that 4 is simple. Let
{C;} be the set of all cosets of a homomorphism of 4 to a pseudosymmetric
set B. Assume that |C;| >2. Note that all C; have the same cardinality as 4
is transitive. Let C be one of C;.
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(1) Suppose that (1, 2, 3) and (1, 2, 4) are both contained in C. It is not
hard to check that the pseudosymmetric set C contains all (7, j, &), 1<4, j, k<4.
Since (1, 2, 3)"=(1, 2, 4)€C where ¢=(3, 4, 5), we see that (1, 2, 4)"=(1, 2, 5)
is also contained in C due to the definition of a block of imprimitivity of a per-
mutation group. So, C contains all (z, , k), I <1, j, k<5 by the above argument.
Repeating this process, we have C=A4.

(2) Suppose that (1, 2, 3) and (1, 4, 5)€C. Then, (1, 2, 3)"=(4, 2, 3) is con-
tained in C, where ¢=(1, 4, 5). 'Thus, by (1), C=A4.

(3) Suppose that (1, 2, 3) and (2, 1, 3)€C. Let o=(1, 2, 3) and 7=(2, 1, 3).
Then both (2, 4, 5)"=(3, 4, 5) and (2, 4, 5)"=(1, 4, 5) are contained in
C'=C7=C7, where C; contains (2, 4, 5). Then C'=A4 by (1).

(4) Suppose that (1,2, 3) and (2, 1,4)€C. Let 0=(1, 2, 3) and 7=(2, 1, 4).
Then both (2, 3, 5)"=(3, 1, 5) and (2, 3, 5)"=(1, 3, 5) are contained in a coset
C’, and C'=4 by (3).

(5) Suppose that z>6 and that (1, 2, 3) and (4, 5, 6)C. Let o=(1, 2, 3)
and 7=(4, 5, 6). Then both (2, 3, 4)"=(3, 1, 4) and (2, 3, 4)"=(2, 3, 5) are
contained in a coset C’, and C’'=4 by (2).

From the above, we can conclude that A is simple.

ExampLE 2 (For Examples 2 & 3, see [1]). Let V be a vector space over
a field K. Let 7, ; be a transvection: x—>x—f(x)a, where a=0 and f is a non-
zero linear function such that f(a)=0. A pseudosymmetric set 4 is defined as
follows. When dim 7 >3, let A be the set of all transvections. It is known in
this case that 4 is a conjugacy class in SL(V) and generates SL(V). When

dim V=2, let 7 be a transvection represented by a matrix [(1) i] with respect to

some basis of V, and let 4 be the conjugacy class of 7 in SL(V). We show
that 4 generates SL(V) in this case. Then A4 is seen to be transifive. For A =0,

we have
BT - ¥ e
0 »J Lo1dlo Al Lo )
If char(K)=+2 or if K is finite, then p=a?—B%—¥? has solutions &, B and ¥
in K for any given u as we see easily. Then,

o 16 7T T 7T = [o5]=co

[ o] oy ol - [ )=

We see that <A>=SL(V) in this case. Next, assume that char(K)=2 and K

Then, also,
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is infinite. Then,

T -1 s

o 1l1 ol = [ o]=

For any non-zero p,

[ 0 1'r1 1 7 0 _ 1 M—z]
L0 Ifl] [1 0][0 ,u;l] = [MZ 0 e<4>.
(1 p2[0 17 et 1
Lu? 0 ][1 0] - [0 M2]6<A>'
Therefore,

p 2 1ML AT 1777 AT 1 A(p™t—1)
K ;ﬁ][o i ,ﬁ] o 3] =[o ™" )=
Since K is infinite, A(z"*—1) can be any non-zero element in K. As in the
first case, we can show <A>=SL(V). So, we can also conclude that for any <{a>
there exists c&<a) and f such that 7, ;€4 if dim V=2.

Now we are in a position to show that 4 is simple. Let {C;} be the
set of all cosets of a homomorphism where |C;| >2. First, we prove that there
is a coset C which contains two elements 7, , and 7, , such that f(b) +=0. For
it, let o and p be two elements in some coset. There is a hyperplane H such
that H’ +H?", since otherwise op™' fixes every line and hence o=p as both
o and p are transvections. So, we can choose an element ¢ in H such that
c’éeH®. Let h be a linear function defining H; H=H,= {x|h(x)=0}. Let
a=c*, b=c’, f=h" and g=h". Let C=CY, where C; is a coset containing 7 .
Note that we can make 7, ,€A if dim V=2 by the above remark. Note also
C7=C¥ as o and p belong to the same coset. C satisfies the above condition.
For, f(b):h"(b)=h(b"_1)#0 as b H". Ccontains 7¢,==7,, and 77 ,=1,;,.
Next, we prove that, for every line <d>, C contains an element 7, 4 such that
d'e{d). For it, we may assume that d&<{apU<b>. If d€H,;, we can
choose @ is SL(V) such that @ is the identity on H, and that $*{d)>. Note
that f(b) #0 implies beEH,. ¢ fixes 7, as it is a unimodular linear trans-
formation acting identically on H;. Therefore, C*=C. Since 7§ ,&C, we
can let d'=b*. If d€H; and d& H,, we can choose £ in SL(V) such that
£ is the identity on H, and that d®¢c H,. Since & fixes 7, , this time, Ct=C.
From the above, we can find d, such that 7, ,&C and that d,&<{d%)>. So, in

Hence,

Hence,
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this case, let d'=d:"". Finally, suppose that d€H,NH,. In this case, we
can choose § in SL(V) such that ¢ induces a unimodular linear transformation
on H,, af=a and d°¢H,. It follows that 75 =7, ; since {&SL(V) and its
restriction on H is a unimodular linear transformation of H,;. Hence, C*=C.
Then, as above, we can show the existence of a required element d’. It is
now easy to conclude that C=A4. For, let 7, 4 be given as above. 7, and
T « are commtative as d'€{d>. For every d, 7, ; leaves C fixed. Since 4
is transitive, this implies C=A4. We have proven that 4 is simple.

ExampLE 3. Suppose that V" has a non-singular symplectic metric (x, y).
Let o,, be a symplectic transvection: x—x--X\(x, a)a, where a is a non-zero
element in V and \ is a non-zero element in K. We define a pseudosymmetric
set 4 by A={o,,lacV*=V—{0}}. We want to show that 4 generates
Sp(V) and that 4 is simple. In order to show that 4 generates Sp(V), first
suppose that char (K) =2 or that K is finite. Since o), =0, ,? and Ci=04 1
we can show that {4 contains all o, as in Example 2. Thus, <A>=Sp(V)
in this case, since o, . generate Sp(V). Next, suppose that char(K)=2 and
that K is infinite. We reduce our problem to the case of dim 2 and solve it.
To show o, ,&<{4), consider V'=<a, a’), a hyperbolic plane. Let V=V'dV"”
be an orthogonal decomposition. Then o, =0/ D1y, where o7, is a sym-
plectic transvection on V’'. Now, Sp(V')=SL(V')=PSL(V’) because K is
infinite and char(K)=2. (See [1], p. 174.) If we let A'={cl.|cEV'*}, then
<{A"> is a normal subgroup of SL(V") and hence {A'>=Sp(V"), since the latter
is a simple group by the above. This implies that o,,&<{4>@1,»C<{A4).
Thus, 4 generates Sp(V).

Before we show the simplicity of 4, we show that 4 is transitive. V* is
clearly a pseudosymmetric set by acbk=a’s1. A mapping f:a—o,; is a
homomorphism of V* onto 4, and f™(a,,)={+a}. It suffices to show that
V* is transitive. Fix a, and let x be an arbitrary element in V*. If (a, x) =0,
then a+x=a"+, where A=(q, x)"*. Therefore, a-+-x belongs to the G*-orbit
of a where G*=G(V*). Then x belongs to the G*-orbit of a+x, which is
equal to the G*-orbit of a, since (a+x, —a)=+0 and (a+x)+(—a)=x. If
(a, x)=0, we can choose y such that (a, )0 and (y, x)==0. For, let V'=
{a,a"y as before. If (a’, x) =0, let y=a'. If (a’, x)=0, let <x, x> be a hyper-
bolic plane which is orthogonal to V’. Let y=a'+x’. Thus, x is in the G*-
orbit of y, which is equal to the G*-orbit of a. We have shown that 4 is
transitive. Now we are in a position to prove that 4 is simple. Let {C;} be
the set of cosets as before, where |C;|>2. Let C¥=f"YC¥). Let C* be one
of C¥.

(1) Suppose that C* contains a and b such that (a, b) +0. Since C*“sa=C*
for any A as o, fixes b, C* contains all a+pb. So, more generally, C*
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contains aa+Bb for any o and 8. For any c¢ in V*, (aa+Bb, ¢)=0 for some
aa+Bb in V*, which implies that o, , leaves aa+Gb fixed. Therefore, C* is
left fixed by any o, Since V* is transitive, this implies C*=V*, or C=A.
A 1s simple in this case.

(2) Suppose that C* contains a and b such that (a, 5)=0 and a€<{s>. Then,
we can express b=aa+d with a non-zero element d in V", where V=V'®V"”
(orthogonal), since (a, b)=0 and a&<b>. Now, let ¢ be an element in V"
such that (d,c) +0. Since o, , fixes g, C* is left fixed by o, ». Then, "2 € C¥,
which implies that b4+-c=C*. Since (b, b+c)+0, we have C=4 by (1).

(3) Suppose that C* contains a and aa, where a=-+1. Let b be an element
such that (a, )=+0. Let C¥ be a coset which contains 6. Then, C¥7s1=
C¥7ae1, which contains d=>56"%1=b+(b, a)a and e=b"ss1 =b+a*b, a)a. Since
de<e>, we can apply (1) or (2) and get that {C;}= {4}, or 4 is simple.

RemArk. If we consider PSL(V) snd PSp(V'), the “effective” condition is
satisfied.
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