

Title	Embedding manifolds in Euclidean space
Author(s)	Thomas, Emery
Citation	Osaka Journal of Mathematics. 1976, 13(1), p. 163-186
Version Type	VoR
URL	https://doi.org/10.18910/11035
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

EMBEDDING MANIFOLDS IN EUCLIDEAN SPACE

EMERY THOMAS*

(Received February 17, 1975)

1. Introduction. We consider here the problem of whether a smooth manifold M (compact, without boundary) embeds in Euclidean space of a given dimension. Our results are of two kinds: first we give sufficient conditions for an orientable n-manifold to embed in R^{2n-2} , and we then give necessary and sufficient conditions for RP^n (=n-dimensional real projective space) to embed in R^{2n-6} . We obtain these results using the embedding theory of A. Haefliger [6].

Recall that by Whitney [37], every *n*-manifold embeds in R^{2n} . Combining results of Haefliger [6], Haefliger-Hirsch [9] and Massey-Peterson [16] one knows that every *orientable n*-manifold embeds in R^{2n-1} (n>4), and if n is not a power of two, every n-manifold embeds in R^{2n-1} . Finally, if n is a power of two (n>4), by [9] and [26] one has: a non-orientable n-manifold embeds in R^{2n-1} if and only if $\overline{w}_{n-1}=0$. Here $\overline{w}_i, i \ge 0$, denotes the (mod 2) normal Stiefel-Whitney class of a manifold M.

We give two sets of sufficient conditions for embedding an *n*-manifold in R^{2n-2} ; in order to use the theory of Haefliger, we assume $n \ge 7$.

Theorem 1.1. Let M be an orientable n-manifold, with $\overline{w}_{n-3+i}=0$, for $i \ge 0$. If either $w_3 \ne 0$, or $w_2 \ne 0$ and $H_1(M; Z)$ has no 2-torsion, then M embeds in R^{2n-2} .

Here w_i denotes the i^{th} mod 2 (tangent) Stiefel-Whitney class of M. A necessary condition for M^n to embed in $R^{2^{n-2}}$ is that $\overline{w}_{n-2}=0$. Note, however, that if n-1 is a power of two, then RP^n does not embed in $R^{2^{n-2}}$, even though $\overline{w}_{n-2}=0$. (In this case $\overline{w}_{n-3} \neq 0$ and $H_1(RP^n; Z)=Z_2$).

By Massey-Peterson [16] one has that $\overline{w}_{n-3+i}=0$, $i \ge 0$, for M^n , provided one of the following conditions is satisfied: $n \equiv 3 \mod 4$; $n \equiv 0$, $2 \mod 4$ and $\alpha(n) \ge 3$; $n \equiv 1 \mod 4$ and $\alpha(n) \ge 4$. Here $\alpha(n)$ denotes the number of one's in the dyadic expansion of the integer n.

Recall that an orientable manifold is called a spin manifold if $w_2=0$. As a complement to Theorem (1.1) we have:

Theorem 1.2. Let M be an n-dimensional spin manifold with $\overline{w}_{n-5+i}=0$,

^{*)} Research supported by the National Science Foundation

 $i \ge 0$. Then M^n embeds in R^{2n-2} , provided that $H_1(M; Z)$ has no 2-torsion when $n \equiv 0 \mod 4$.

Again by [16] and [26] we have: let M^n be a spin manifold with $n \equiv i \mod 8$, $4 \le j \le 7$; then, $\overline{w}_{n-j} = 0$. Thus by (1.2) we obtain: if M^n is a spin manifold with $n \equiv 5$, 6, 7 mod 8, M embeds in R^{2n-2} .

We consider now the problem of embedding RP^n . Quite good results have been obtained by geometric methods. In particular, the work of Mahowald-Milgram [15], Steer [31], and Rees [25] gives a good picture for large values of $\alpha(n)$. However, we now show that for small values of $\alpha(n)$ the known results are not best possible.

Theorem 1.3. Let s be a positive integer, not a power of two. Set n=8s+t, $0 \le t \le 7$. Then RP^n embeds in R^{2n-6} , provided $\alpha(n) \ge 4$ when t=1 or 2.

To my knowledge this is a new result in the following cases (all congruences are mod 8).

$$n\equiv 0,$$
 $2\leqslant \alpha(n)\leqslant 8,$
 $n\equiv 1,$ $4\leqslant \alpha(n)\leqslant 6,$
 $n\equiv 2,$ $4\leqslant \alpha(n)\leqslant 7,$
 $n\equiv 3, 5,$ $4\leqslant \alpha(n)\leqslant 5,$
 $n\equiv 4,$ $3\leqslant \alpha(n)\leqslant 7.$

Combining results of [31] and [25] one has (cf., [12, 5.3]): If $n \equiv 7 \mod 8$, RP^n embeds in $R^{2n-\alpha(n)-3}$; thus, if $n \equiv 6 \mod 8$, RP^n embeds in $R^{2n-\alpha(n)-2}$. Consequently by (1.3) we have:

Corollary 1.4. Let n be an integer such that $n \ge 15$ and $n \equiv 2, 4 \mod 8$. Then \mathbb{R}^{n} embeds in \mathbb{R}^{2n-6} if, and only if,

$$\alpha(n) \geqslant 2$$
, and $n \equiv 0$
 $\alpha(n) \geqslant 4$, and $n \equiv 1, 3, 5, 6, 7$.

Of course, by (1.3), if $n \equiv 2$ and $\alpha(n) \geqslant 4$ or $n \equiv 4$ and $\alpha(n) \geqslant 3$, then RP^n does embed in R^{2n-6} . Note [29], [1], [21], [4], that when $n \equiv 2$ and $\alpha(n) = 3$ or $n \equiv 4$ and $\alpha(n) = 2$, RP^n immerses in R^{2n-6} but not in R^{2n-7} . Thus the following conjecture seems reasonable.

Conjecture 1.5. If $n \equiv 2 \mod 8$ and $\alpha(n) = 3$, or if $n \equiv 4 \mod 8$ and $\alpha(n) = 2$, then RP^n does not embed in R^{2n-6} .

The method of proof developed in this paper also gives one new result for complex projective n-space, $\mathbb{C}P^n$.

Theorem 1.6. Let n be a positive integer with $n \equiv 3 \mod 4$ and $\alpha(n) \geqslant 4$. Then \mathbb{CP}^n embeds in \mathbb{R}^{4n-6} .

For $\alpha(n) \ge 5$ this follows by work of Steer [31].

The specific result of Haefliger that we use is the following. For a topological space X let X^2 denote the product $X \times X$ and let Δ denote the diagonal in X^2 . The group of order 2, Z_2 , acts freely on $X^2 - \Delta$ by interchanging factors; we set $X^* = (X^2 - \Delta)/Z_2$. The projection $p: X^2 - \Delta \to X^*$ is a 2-fold covering map; denote by ξ the associated line bundle and by $S_q(\xi)$ the (q-1) sphere bundle associated to the q-plane bundle $q\xi$. Haefliger proves (see [5] and [6, §1.7]):

Theorem 1.7 (Haefliger). Let M be a smooth n-manifold and let q be a positive integer such that $2q \ge 3(n+1)$. Then M embeds in \mathbb{R}^q if, and only if, the bundle $S_q(\xi)$ has a section.

REMARK. A similar theorem has been proved by Weber [36] for *PL*-manifolds (and semi-linear embeddings) and by J.A. Lees [41] for topological manifolds with locally flat embeddings (assuming 2q > 3(n+1)). Thus Theorems (1.1) and (1.2) can be stated for these categories of manifolds. In connection with Theorems (1.3) and (1.6), note the work of Rigdon [27].

Our method of proof is to use various techniques of obstruction theory to show that the bundle $S_q(\xi)$ has a section. Briefly, the following techniques will occur: (i) indeterminancy, (ii) relations, (iii) naturality, (iv) generating class, (v) Whitney product formulae.

The remainder of the paper is organized as follows: in section 2 we develop some facts about the space M^* . Section 3 is a brief survey of obstruction theory, while in section 4 we give the proofs of Theorems (1.1) and (1.2). In section 5 we prove Theorem (1.3) and in section 6, Theorem (1.6). Finally, sections 7 and 8 contain proofs omitted in previous sections.

2. Properties of M^*

In order to use Theorem 1.7, we need to know the cohomology of M^* , especially mod 2. For the rest of the paper all cohomology will be with mod 2 coefficients unless otherwise indicated.

To compute $H^*(M^*)$ (mod 2 coefficients!) we use another result of Haefliger [7], as reworded by Rigdon [26]. We set (cf., [19]).

$$\Gamma M = S^{\infty} \times_{Z_2}(M^2),$$

where S^{∞} is the unit sphere in R^{∞} , and where Z_2 acts by the diagonal action. Also, let P^{∞} denote the infinite dimensional real projective space, and for a

manifold M let P(M) denote the projective line bundle associated to the tangent bundle.

Theorem 2.1 (Haefliger). Given an n-manifold M, there is a commutative diagram of mod 2 cohomology, as shown below, in which each row is an exact sequence $(i \ge 0)$:

$$0 \to H^{i-n}(M) \xrightarrow{\varphi_1} H^i(M \times M) \xrightarrow{\rho_1} H^i(M \times M - \Delta) \to 0$$

$$\uparrow r^* \qquad \qquad \qquad \uparrow q^* \qquad \qquad \uparrow p^*$$

$$0 \to H^{i-n}(P^{\infty} \times M) \xrightarrow{\varphi} H^i(\Gamma M)) \xrightarrow{\rho} H^i(M^*) \to 0$$

$$\downarrow k^* \qquad \qquad \downarrow j^*$$

$$0 \to H^{i-n}(P^{\infty} \times M) \xrightarrow{\varphi_2} H^i(P^{\infty} \times M) \xrightarrow{\rho_2} H^i(P(M)) \to 0$$

All the morphisms in the diagram, except the φ 's, are induced by mappings between spaces. φ_1 and φ_2 can be thought of as Gysin maps. Specifically, given $x \in H^{i-n}(M)$, then

(2.2)
$$\varphi_i(x) = U \cdot (1 \otimes x)$$
, where $U \in H^n(M^2)$

is the mod 2 "Thom class" of M, as given, e.g., by Milnor [20]. φ_2 is computed as follows. Let $u \in H^1(P^{\infty})$ denote the generater. Then, for $x \in H^*(M)$, and $i \ge 0$,

$$(2.3) \varphi_2(u^j \otimes x) = \sum_{i=0}^n u^{i+j} \otimes w_{n-i}(M) \cdot x.$$

The key space in 2.1 is ΓM ; Steenrod [30] has computed the cohomology of this as follows.

Let t be the involution of $M \times M$ which transposes the factors, and set $\sigma = 1 + t^* : H^*(M^2) \to H^*(M^2)$. Let K^* and I^* denote, respectively, the kernel and image of σ . Thus K^* and I^* are graded groups with $I^* \subset K^*$; set $K^* = K/I$.

Using the obvious projection $\Gamma M \rightarrow P^{\infty}$, we regard $H^*(\Gamma M)$ as an $H(P^*)$ -module.

Theorem 2.4 (Steenrod). There is an isomorphism of $H^{\infty}(P^*)$ -modules,

$$H^*(\Gamma M) \approx (H^*(P^{\circ}) \otimes \bar{K}^*) \oplus I^*$$
,

where $H^*(P^{\infty})$ acts trivially on I^* .

Note that \overline{K}^* is zero in odd dimensions. For each $n \ge 0$ we have an isomorphism

$$H^n(M) \approx \overline{K}^{2n}, \qquad x \rightarrow (x)^2$$

where $(x)^2$ denotes the coset of I containing $x \otimes x$.

We now describe the morphisms q^* and k^* in (2.1).

Proposition 2.5.

- (i) $q^*|(\bar{K}^* \oplus I^*) = identity$.
- (ii) $q^*(u^m \otimes (x)^2) = 0$, if m > 0
- (iii) $k^*(I^*) = 0$,
- (iv) $k^*(u^m \otimes (x)^2) = \sum_{i=0}^q u^{m+q-i} \otimes \operatorname{Sq}^i(x)$, if $\deg x = q$.

For the proof, see Haefliger [7] and Steenrod [30].

Note that by 2.5 (iv), $k^*|(H^*(P^{\infty})\otimes \bar{K}^*)$ is injective. Thus, for $y\in H^*(\Gamma M)$,

(2.5) (v)
$$y = 0$$
 if and only if $q^*(y) = 0$ and $k^*(y) = 0$.

Returning to diagram (2.1), the map $r: M \to P^{\infty} \times M$ is simply the inclusion; the morphism ρ_2 is computed as follows. As before, let ξ denote the canonical line bundle over M^* ; set $\eta = j^*\xi$, $v = w_1 \eta \in H^1(P(M))$. Recall (e.g. [11]) that $H^*(P(M))$ is a free $H^*(M)$ -module on 1, $v \cdots v^{n-1}$, with the relation

(2.6)
$$v^n = \sum_{i=1}^n v^{n-i} \cdot w_i(M).$$

Given $x \in H^*(M)$, we have

$$(2.7) \rho_2(u^m \otimes x) = v^m \cdot x, \quad m \geqslant 0.$$

Our goal is to find ways of showing that the obstructions vanish for a section of the bundle $S_q(\xi)$ over M^* . For this we need ways of showing that a class in $H^*(M^*)$ is zero. The following result is useful for this.

Define B^* to be the subspace of $H^*(\Gamma M)$ generated by all classes of the form

(2.8)
$$u^{j} \otimes (x)^{2}$$
, with $j + \deg x < \dim M$.

We set $\lambda = \rho_2 k^* = j^* \rho$, in (2.1), and write $\Lambda^* = \lambda(B^*) \subset H^*(P(M))$. Note that $B^* \cap I^* = 0$.

Proposition 2.9.

- (a) Kernel $j^* = \rho(I^*)$,
- (b) $\rho | I^*$ is injective,
- (c) Image $j^*=\lambda(B^*)$ (= Λ^*),
- (d) ρ maps $B^* \oplus I^*$ isomorphically onto $H^*(M^*)$.

The proof is given in §7.

Set $w=w_1\xi\in H^1(M^*)$. Since $\rho(u)=w$ and $j^*w=v$, we have (by 2.4),

Corollary 2.10. $w \cdot (kernel \ j^*) = 0$.

3. Obstruction theory for sphere bundles

We discuss here the general problem of finding a section to a sphere bundle. At the end of the section we consider the special case posed by Theorem 1.7—the sphere bundle is one associated to a multiple of a line bundle.

Let X be a complex and ω an oriented q-plane bundle over X, $q \ge 8$. We assume that dim $X \le q+5$. Then the (mod 2) obstructions to a section in the associated sphere bundle are the following (see [14], [34]), using the fact that the 4 and 5-stems are zero [35].

$$\chi(\omega) \in H^{q}(X; Z),$$
 $(\alpha_{1}, \alpha_{3})(\omega) \in H^{q+1}(X) \oplus H^{q+3}(X),$
 $(\beta_{2}, \beta_{3})(\omega) \in H^{q+2}(X) \oplus H^{q+3}(X),$
 $\gamma_{3}(\omega) \in H^{q+3}(X).$

In our applications, ω comes from a double cover and so the mod 3 obstruction in dim q+3 is zero ([3], [28]). Also, for such a bundle, $w_{2i+1}(\omega)=0$, $i \ge 0$.

These obstructions have the following indeterminacies: for $j \ge 1$, define $\theta_j \colon H^*(X) \to H^*(X)$ by

$$x \rightarrow \operatorname{Sq}^{j}(x) + w_{j}(\omega) \cdot x$$
.

Then, assuming that $w_1(\omega)=w_3(\omega)=0$,

(3.1) Indet
$$(\alpha_1, \alpha_3) = (\theta_2, \theta_4)H^{q-1}(X; Z)$$
.
Indet $(\beta_2, \beta_3) = (\theta_2, \operatorname{Sq^2Sq^1})H^q(X) + \operatorname{Sq^1}H^{q+2}(X)$,
Indet $(\gamma_3) = \theta_2H^{q+1}(X) + \operatorname{Sq^1}H^{q+2}(X)$.

In the case of the β 's and γ , this is just the indeterminancy obtained by passing from one stage of the Postnikov resolution to the next—not the "full" indeterminancy in the sense of [18]. At one point we will need the full indeterminancy for (β_2, β_3) . Specifically, one can show (see [17], [18]):

Indet
$$(\beta_2, \beta_3)(\omega) = \Psi_{\omega}H^{q-1}(X; Z)$$
,

where Ψ_{ω} is a "twisted" secondary cohomology operation [17], [32] defined on Kernel $\theta_2 \cap$ Kernel $\theta_4 \cap H^{q-1}(X; Z)$, taking values in $H^{q+2}(X) \oplus H^{q+3}(X)$, and with Indet $\Psi_{\omega} = (\theta_2, \operatorname{Sq}^2 \operatorname{Sq}^1) H^q(X) + \operatorname{Sq}^1 H^{q+2}(X)$. Note the simple, but important, fact:

if Kernel
$$\theta_2 \cap \text{Kernel } \theta_4 \cap H^{q-1}(X; Z) = 0$$
,

then

Indet
$$(\beta_2, \beta_3)$$
 = Indet $\Psi_{\omega} = (\theta_2, \operatorname{Sq^2Sq^1})H^q(X) + \operatorname{Sq^1}H^{q+2}(X)$.

A second useful fact about these obstructions is that they satisfy certain universal relations, see [14], [33], [34, 4.2]. Namely

(3.2)
$$\begin{aligned} \theta_2 \alpha_1(\omega) &= 0 \\ \operatorname{Sq}^2 \operatorname{Sq}^1 \alpha_1(\omega) + \operatorname{Sq}^1 \alpha_3(\omega) &= 0 \\ \theta_2 \beta_2(\omega) + \operatorname{Sq}^1 \beta_3(\omega) &= 0, \end{aligned}$$

assuming, as above, that $w_1(\omega)=w_3(\omega)=0$. Moreover, if $w_i(\omega)=0$ for $1 \le i \le 7$, we then have

(3.3)
$$\operatorname{Sq}^{6}\alpha_{1}(\omega) + \operatorname{Sq}^{4}\alpha_{3}(\omega) = 0.$$

Suppose now that Y is a second complex and $f: Y \rightarrow X$ a map. One then has naturality relations for the obstructions: e.g.,

(3.4) (i) If
$$\chi(\omega)=0$$
, then $(\alpha_1, \alpha_3) f^*\omega$ is defined and $f^*(\alpha_1, \alpha_3)(\omega) \subset (\alpha_1, \alpha_3) f^*\omega$.

(ii) If
$$\chi(\omega) = 0$$
 and $(\alpha_1, \alpha_3)(\omega) \equiv 0$, then $(\beta_2, \beta_3)(f^*\omega)$ is defined and $f^*(\beta_2, \beta_3)\omega \subset (\beta_2, \beta_3)f^*\omega$.

We consider now the special case $\omega = q\xi$, ξ a line bundle over X. We take q even, say q=2s, so that ω is orientable. Let $v=w_1\xi\in H^1(X)$. Also, denote by δ_2 the Bockstein coboundary associated with the exact sequence $Z\xrightarrow{\times 2} Z \to Z_2$. Since $\chi(2\xi) = \delta_2 v$, one has

$$(3.5) \chi(q\xi) = \delta_2(v^{q-1}).$$

To compute $\alpha_1(q\xi)$ (assuming $\chi(q\xi)=0$), we use the theory of "twisted" cohomology operations, as developed in [17] and [32]. Write θ_2 for $\theta_2(q\xi)$. One then has a secondary operation Φ_3 , of degree 3, associated with the following relation (see p. 206 in [32]):

(3.6)
$$\Phi_3: \theta_2 \circ \theta_2 = 0$$
, on integral classes.

Our result is:

Proposition 3.7. Let ξ be a line bundle over X, with $v=w_1\xi$. Suppose that $\chi(q\xi)=0$, for some q=2s, $s\geqslant 2$. If $\theta_2H^{q-1}(X;Z)=\theta_2H^{q-1}(X)$, then $\alpha_1(q\xi)\equiv \Phi_3(\delta_2(v^{q-3}).\ sv^2)$.

This is proved at the end of the section, using the "generating class" theorem of [32].

One final technique we will need is the Whitney product formula for higher order obstructions: see [22] and [34, 4.3]. We keep the notation of 3.7.

Proposition 3.8.

- (i) Suppose that $\chi(q\xi) = 0$. Then $\alpha_1(q+2)\xi \equiv \alpha_1(q\xi) \cdot v^2$, $\alpha_3(q+2)\xi \equiv \alpha_3(q\xi) \cdot v^2 + \alpha_1(q\xi) \cdot v^4$.
- (ii) Suppose that $\chi(q\xi)=0$ and that $(\alpha_1, \alpha_3)(q\xi)\equiv 0$. Then, $\beta_j(q+2)\xi \equiv \beta_j(q\xi)\cdot v^2$, j=2, 3.

Proof of 3.7. Let η denote the canonical oriented 2-plane bundle over $\mathbb{C}P^{\infty}$. The sphere bundle associated to $\mathfrak{s}\eta$ is

$$S^{2s-1} \xrightarrow{i} CP^{s-1} \xrightarrow{\pi} CP^{\infty}$$

where π is homotopic to the inclusion. Let $x=\chi(\eta)\in H^2(CP^\infty; Z)$ denote the Euler class of η . Thus, $\chi(s\eta)=x^s\in H^{2s}(CP^\infty; Z)$. Consider now the first stage in a Postnikov resolution of π .

$$CP^{s-1} \xrightarrow{\pi} CP^{\infty} \xrightarrow{x^s} K(Z, 2s)$$

Let $\alpha \in H^{2s+1}(E)$ denote the second obstruction. Then α arises because of the relation

$$\theta_2(x^s)=0.$$

(Note §§3-5 of [32]). But

$$x^{s} \mod 2 = \theta_{2}(x^{s-1}).$$

Thus, in the language of §5 of [32], x^{s-1} is a "generating class" for α ; and hence, by Theorem 5.9 of [32].,

(*)
$$\alpha \in \Phi_3(p^*x^{s-1}, sx \mod 2).$$

To prove 4.4, let $f: X \to CP^{\infty}$ be a map such that $f^*(x) = \delta_2 v$. Then, $q\xi = f^*(s\eta)$ —since q=2s. By hypothesis, $\chi(q\xi) = 0$ and so f lifts to a map $g: X \to E$. Moreover, $g^*\alpha \in \alpha_1(q\xi)$. But by (*), $g^*\alpha \in \Phi_3((\delta_2 v)^{s-1}, sv^2)$. By the hypotheses of 4.4, α_1 and Φ_3 have the same indeterminacy, and so the theorem is proved.

REMARK. A similar result has been obtained independently by Rigdon [26].

4. Embedding *n*-manifolds in R^{2n-2}

If M is an n-manifold, then M^* has the homotopy type of a (2n-1)-complex, and so to see whether $(2n-2)\xi$ has a section (i.e., by 1.7, whether M embeds in R^{2n-2}) we need only consider $\chi(2n-2)\xi$ and $\alpha_1(2n-2)\xi$. To compute χ we use the following important result of Haefliger [7].

Theorem 4.1 (Haefliger). If M is an n-manifold, then $v^{n+k}=0$ if, and only if, $\overline{w}_{k+i}=0$, $i \ge 0$.

The following result implies Theorem (1.1).

Proposition 4.2. Let M be an orientable n-manifold. If $Sq^2H^{n-2}(M; Z) = H^n(M)$, then $\theta_2H^{2n-3}(M^*; Z) = H^{2n-1}(M^*)$.

We give the proof at the end of the section.

Proof of Theorem 1.1. Since $\overline{w}_{n-3+i}=0$, for $i \ge 0$, it follows from (4.1) and (3.5) that $\chi(q\xi)=0$, where q=2n-2. We will show that $\alpha_1(q\xi)\equiv 0$ by showing that $\operatorname{Sq}^2H^{n-2}(M;Z)=H^n(M)$. For then by (4.2), $H^{2n-1}(M^*)=\operatorname{Indet}\alpha_1(q\xi)$ and hence $\alpha_1(q\xi)\equiv 0$.

Let $\mu \in H^n(M)$ denote the generator. Suppose first that $w_3 \neq 0$. Then there is a class $y \in H^{n-3}(M)$ such that $y \cdot w_3 = \mu$. But by Wu [38], $\mu = y \cdot w_3 = \operatorname{Sq}^2 \operatorname{Sq}^1 y$, and so $\mu \in \operatorname{Sq}^2 H^{n-2}(M; Z)$. On the other hand, suppose that $H_1(M; Z)$ has no 2-torsion. Then by Poincare duality, $H^{n-1}(M; Z)$ has no 2-torsion and so $H^{n-2}(M) = H^{n-2}(M; Z)$ mod 2. Assume that $w_2 \neq 0$, and let $z \in H^{n-2}(M)$ be a class such that $\mu = z \cdot w_2 = \operatorname{Sq}^2 z$. But $z = \hat{z} \mod 2$. for some $\hat{z} \in H^{n-2}(M; Z)$, and so again $\mu \in \operatorname{Sq}^2 H^{n-2}(M; Z)$, which completes the proof of the Theorem.

We turn now to the proof of Theorem (1.2). Since M is a spin manifold, $\operatorname{Sq}^2H^{n-2}(M)=0$, and so we cannot use Proposition (4.2); instead we have the following:

Proposition 4.3. Let M be an n-dimensional spin manifold. If $n \equiv 0 \mod 4$ or if $H_1(M; Z)$ has no 2-torsion, then $\theta_2 H^{2n-3}(M^*; Z) = \theta_2 H^{2n-3}(M^*)$.

Here $\theta_2 = \theta_2(2n-2)\xi$. We give the proof at the end of the section.

Proof of Theorem 1.2. Since $\overline{w}_{n-5+i}=0$ $(i\geqslant 0)$, $\chi(2n-2)\xi=0$, using (3.5) and (4.1), and so $\alpha_1(2n-2)\xi$ is defined. By (4.3) and (3.7), $\alpha_1(q\xi)\equiv \Phi_3(\delta_2(v^{q-3}),sv^2)$, where q=2n-2, s=n-1. Since $\overline{w}_{n-5+i}=0$ $(i\geqslant 0)$, then by 4.1 $v^{2n-5}=v^{q-3}=0$, and so $\alpha_1(q\xi)\equiv 0$, which gives an embedding of M^n in R^{2n-2} , by Theorem (1.7).

Proof of Proposition 4.2. Note that by (2.8), $B^{2n-1}=0$, and hence by (2.9), $H^{2n-1}(M^*)=\rho I^{2n-1}$.

Let $\hat{\xi}$ denote the line bundle over ΓM with $w_1 \hat{\xi} = u$, and let $\hat{\theta}_2 = \theta_2(q\hat{\xi})$. Then,

$$\rho\hat{\theta}_2 = \theta_2\rho, \, \hat{\theta}_2(I^*) = \operatorname{Sq}^2(I^*).$$

To prove (4.2), let $y \in H^{2n-1}(M^*)$ and let $z \in I^{2n-1}$ with $\rho(z) = y$. Then, $q^*z = \sigma(\mu \otimes b)$, for some $b \in H^{n-1}(M)$. By hypothesis, there is a class $\hat{a} \in H^{n-2}(M; Z)$ with $\operatorname{Sq}^2\hat{a} = \mu$. Also, since M is orientable, $b = \hat{b} \mod 2$ for some $\hat{b} \in H^{n-1}(M; Z)$. By analyzing $H^*(\Gamma M; Z)$ (e.g. [2]), one sees that there is a class $\hat{x} \in H^{2n-3}(\Gamma M; Z)$ such that $q^*(\hat{x}) = \hat{a} \otimes \hat{b} + \hat{b} \otimes \hat{a} \in H^{2n-3}(M^2; Z)$, and $\hat{x} \mod 2 \in I^{2n-3}$. Thus,

$$q^*(\operatorname{Sq}^2\hat{x}) = \operatorname{Sq}^2(\hat{a} \otimes \hat{b} + \hat{b} \otimes \hat{a}) = \sigma(\mu \otimes b) = q^*(z).$$

Since z, $\operatorname{Sq}^2 \hat{x} \in I^*$ this means that $z = \operatorname{Sq}^2 \hat{x}$ and so

$$y =
ho(z) =
ho \mathrm{Sq}^2 \hat{x} =
ho \hat{ heta}_2 \hat{x} = heta_2
ho(\hat{x}),$$

as desired.

Proof of Proposition 4.3. Let $\theta_2 = \theta_2(2n-2)\xi$, $\hat{\theta}_2 = \theta_2(2n-2)\hat{\xi}$, as above. Let $x \in H^{2n-3}(M^*)$. Then (see (2.9)), one may choose $b \in H^{2n-3}(\Gamma M)$ so that $\rho(b) = x$ and

$$k^*(b) = u^{n-1} \otimes h + u^{n-2} \otimes \operatorname{Sq}^1 h,$$

for some $h \in H^{n-2}(M)$. Since M is spin, $\operatorname{Sq}^2 h = 0$ and $q * \hat{\theta}_2(b) = 0$. Moreover,

$$k*\hat{\theta}_2(b) = \hat{\theta}_2 k*(b) = \binom{n}{2} u^{n+1} \otimes h + \binom{n-2}{2} u^n \otimes \operatorname{Sq}^1 h.$$

Note that

$$u^{n+1} \otimes h = \varphi_2(u \otimes h) = k^* \varphi(u \otimes h),$$

and $q^*(u \otimes h) = 0$. Set

$$eta = \hat{ heta}_{\scriptscriptstyle 2}(b) - \varphi\Big(\Big(egin{array}{c} n \ 2 \end{array}\Big) (u \otimes h)\Big).$$

Then,

(*)
$$\rho(\beta) = \theta_2(x), \ q^*(\beta) = 0, \ k^*(\beta) = \binom{n-2}{2} u^n \otimes \operatorname{Sq}^1 h.$$

Case I, $n \equiv 0 \mod 4$. If $n \equiv 2$, 3 mod 4, then $\binom{n-2}{2} = 0 \mod 2$ and so $\beta = 0$, which means that $\theta_2(x) = 0$. If $n \equiv 1 \mod 4$, then $u^n \otimes \operatorname{Sq}^1 h = \hat{\theta}_2 \operatorname{Sq}^1 (u^{n-2} \otimes h)$, and $k \operatorname{Sq}^1 (1 \otimes (h)^2) = \operatorname{Sq}^1 (u^{n-2} \otimes h)$. Set

$$\beta' = \beta - \hat{\theta}_2 \delta_2 (1 \otimes (h)^2).$$

Then, $q*\beta'=q*\beta=0$, $k*\beta'=0$, so $\beta'=0$. Thus,

$$\theta_2(x) = \rho(\beta) = \theta \delta_2 \rho(1 \otimes (h)^2) \in \theta_2 H^{2n-3}(M^*; Z);$$

this completes the proof in this case.

Case II, $H_1(M; Z)$ has no 2-torsion. By Poincare duality, $H^{n-1}(M; Z)$ has no 2-torsion and so $\operatorname{Sq}^1H^{n-2}(M)=0$. Thus, in equation (*), $\operatorname{Sq}^1h=0$ and so $\beta=0$. This means that $\theta_2(x)=0$, which completes the proof.

One can deduce other embedding results from (4.2), such as:

Theorem 4.4. Let M be an n-dimensional, non-orientable manifold, such that $\overline{w}_{n-3+i}=0$, $i\geqslant 0$. If $Sq^2H^{n-3}(M)=H^{n-1}(M)$ and if $w_3=w_1^3$, then M embeds in R^{2n-2} .

Note that this gives as a special case the result of Handel [10]: if n=4k+2, $k \ge 2$ then RP^n embeds in R^{2n-2} .*

5. Embedding real projective space

Before proving Theorem (1.3) we develop some preliminary material. For convenience we write P^n for RP^n , $n \ge 1$. In order to use Theorem (1.7), we need some rather detailed information about $H^*(P^{n*})$. We obtain this mainly by studying Λ^* and I^* —see (2.4) and (2.8).

We begin with some notation. In $H^*(P^{\infty} \times P^n)$, we set

$$(5.1) [d, e] = \sum_{i=0}^{e} u^{d-i} \otimes \operatorname{Sq}^{i} x^{e},$$

where d, e are positive integers and x generates $H^1(P^n)$. By an abuse of notation, we use the same symbol to denote the image of [d, e] by ρ_2 : thus, in $H^*(P(P^n))$,

$$[d, e] = \sum_{i=0}^{e} v^{d-i} \cdot \operatorname{Sq}^{i} x^{e}.$$

Note that by (2.5) (iv),

(5.2)
$$k^*(u^d \otimes (x^e)^2) = [d+e, e].$$

Also, from (2.8), (2.9) we have

(5.3) In $H^*(P(P^n))$, Λ^* is spanned by the classes [d, e], where $e \leq d < n$.

In §8 we prove:

Proposition 5.4. In $H^*(P^{\infty} \times P^n)$ and $H^*(P(P^n))$,

$$Sq^{1}[d, e] = d[d+1, e],$$

$$\operatorname{Sq}^{2}[d, e] = {d \choose 2}[d+2, e] + e[d+1, e+1].$$

^{*)} Remark (added in proof). These results overlap some with recent work of D. Bausam (Trans. A.M.S. 213 (1975), 263-303).

Similarly, in $I^* \subset H^*(\Gamma M)$, we write $\sigma(d, e)$ for $\sigma(x^d \otimes x^e)$. By the Cartan formula we have:

Proposition 5.5. Sq¹ $\sigma(d, e) = d\sigma(d+1, e) + e\sigma(d, e+1)$,

$$\operatorname{Sq}^2\sigma(d,\,e) = \left(\begin{array}{c} d\\2 \end{array}\right)\sigma(d+2,\,e) + de\sigma(d+1,\,e+1) + \left(\begin{array}{c} e\\2 \end{array}\right)\sigma(d,\,e+2).$$

Combining (5.4) and (5.5) we prove in §8:

Proposition 5.6.

$$\operatorname{Sq}^{2}H^{4k-1}(P^{n*}) = \operatorname{Sq}^{2}\operatorname{Sq}^{1}H^{4k-2}(P^{n*}).$$

At one point we will need to know something about the integral cohomology of $P(P^n)$. The following result (proved in §8) suffices.

Proposition 5.7. If n is even and $k \equiv 1 \mod 4$, then

$$H^{k}(P^{n*}; Z) = \delta_{n}H^{k-1}(P^{n*}).$$

We now can give the proof of Theorem 1.3. We do this by a series of lemmas that fit together to prove all parts of the Theorem.

Lemma 5.8. Let q be a power of two, $q \ge 8$. Then,

$$\alpha_1(q+4)\xi \equiv 0$$
 in $H^{q+5}(M^*), M = P^{q-1}$.

Proof. Since q is a power of two, $\overline{w}_i(P^{q-1})=0$, i>0, and so by 4.1, $v^q=0$ in $H^q(M^*)$, $M=P^{q-1}$. Thus by (3.5) $\chi(q+4)\xi=0$, and so $\alpha_1(q+4)\xi$ is defined. But by (3.7) and (5.6),

$$\alpha_1(q+4)\xi \equiv \Phi_3(\delta_2 v^{q+1}, 0) \equiv 0$$

since $v^{q+1}=0$. This completes the proof.

Now let s be an integer that is not a power of two, as in (1.3), and set k=s-1, so that

$$8s+t = 8k+8+t, 0 \le t \le 7$$

Let q be the largest power of two such that q/2 < 8s. Then, $q+4 \le 16k+4$, and so using the embedding $P^{8k+15} \subset P^{q-1}$, together with (3.8), we have:

Corollary 5.9.

$$\alpha_{2}(16k+4)\xi \equiv 0$$
 in $H^{16k+5}(M^{*})$, $M = P^{8k+15}$.

Recall the map $j: P(M) \rightarrow M^*$, given in diagram (2.1).

Lemma 5.10. Taking $M=P^{8k+15}$, we have: There is a class a_3 such that

$$(0, a_3) \in (\alpha_1, \alpha_3)(16k+8)\xi$$
 and $j*a_3 = r[8k+10, 8k+1]$, in $H^{16k+11}(P(M))$, $r \in \mathbb{Z}_2$.

Proof. By (5.9), $\alpha_1(16k+8) \xi \equiv 0$; let $a_3 \in H^{16k+11}(M^*)$ be such that $(0, a_3) \in (\alpha_1, \alpha_3)(16k+8) \xi$. To prove (5.10) we show that a_3 can be chosen so that $j^*a_3 = r[8k+10, 8k+1]$, $r \in \mathbb{Z}_2$.

Note that $w_i(16k+8)\xi=0$, $1 \le i \le 7$, and so by (3.2), and (3.3),

$$Sq^{1}a_{3} = 0$$
, $Sq^{4}a_{3} = 0$.

Using (5.3) and (5.4), we have (since $\operatorname{Sq}^1 j^* a_3 = 0$), $j^* a_3 = \sum_{i=0}^4 c_i [8k+6+2i, 8k+5-2i]$, where $c_i \in \mathbb{Z}_2$. Now $\operatorname{Sq}^4(j^* a_3) = 0$, and so the proof of (5.10) is complete when we show:

- A) $Sq^{4}[8k+10, 8k+1] = 0$
- B) Sq⁴ is injective on the subspace spanned by [8k+14, 8k-3], [8k+12, 8k-1], [8k+8, 8k+3], [8k+6, 8k+5].

We will use one more piece of notation: we set $(i, j) = v^i \cdot x^j$ in $H^{i+j}(P(P^n))$. Thus,

$$[8k+10, 8k+1] = (8k+10, 8k+1) + (8k+9, 8k+2) + k(8k+2, 8k+9) + k(8k+1, 8k+10),$$

and so $Sq^{4}[8k+10, 8k+1]=0$, as claimed.

To prove (B), note that

$$Sq^{4}[8k+14, 8k-3] = [8k+14, 8k+1] + \cdots$$

 $Sq^{4}[8k+12, 8k-1] = [8k+12, 8k+3] + \cdots$
 $Sq^{4}[8k+8, 8k+3] = [8k+11, 8k+4] + \cdots$
 $Sq^{4}[8k+6, 8k+5] = [8k+10, 8k+5] + \cdots$

where in each case the terms omitted have a left-hand coordinate smaller than that of the term shown. Thus Sq⁴ is injective as claimed, which completes the proof of (5.10).

REMARK. In doing calculations such as above, we continually use the fact that, by (2.6),

(5.11)
$$(n, 0) = \sum_{i=1}^{n} {n+1 \choose i} (n-i, i), \text{ in } P(P^n).$$

Also, note that $(i,0) \cdot [d, e] = [d+i, e]$.

Lemma (5.10) will suffice to calculate the obstructions (α_1, α_3) in all the cases of Theorem (1.3).

We now jump ahead to compute the obstruction γ_3 .

Lemma 5.12. For $n \ge 15$, if $\gamma_3(2n-6)\xi$ is defined on P^{n*} , then $\gamma_3(2n-6)\xi \equiv 0$.

This follows at once from (3.1), using the following fact, which we prove in §8.

(5.13)
$$H^{2n-3}(P^{n*}) = \theta_2 H^{2n-5}(P^{n*}) + \operatorname{Sq}^1 H^{2n-4}(P^{n*}), \text{ where } \theta_2 = \theta_2 (2n-6) \xi.$$

We now come to the proof of Theorem (1.3): we divide the proof into three cases. As before, set n=8s+t=8k+8+t, $0 \le t \le 7$, s not a power of two.

Case I. $n \equiv 3, 4, 5 \mod 8$.

Let q=8k+15, we do all our calculation on P^{q*} .

(5.14) On
$$P^{q*}$$
, $(\alpha_1, \alpha_3)(16k+16)\xi \equiv 0$.

By (5.10) and the Whitney formula, (3.8), there is a class $a_3 \in H^{16k+17}(P^{q^*})$ such that $(0, a_3) \in (\alpha_1, \alpha_3)(16k+14)\xi$ and $j^*(0, a_3) = (0, r[8k+16,8k+1])$. But by (5.11),

$$[8k+16, 8k+1] = (8k+16, 8k+1)+(8k+15, 8k+2)+$$

 $k(8k+8, 8k+9)+k(8k+7, 8k+10)=0,$

and so $j*a_3=0$. Thus, by (3.8) and (2.10), $(\alpha_1, \alpha_3)(16k+16) \xi \equiv 0$, as desired. We now show

(5.15)
$$(\beta_2, \beta_3)(16k+16)\xi \equiv 0$$
, on P^{q*} , $q = 8k+15$.

Note first that

(C) On
$$P(P^q)$$
, $q=8k+15$,

$$\Lambda^{16k+19} = \operatorname{Sq}^1 \Lambda^{16k+18} + \operatorname{Sq}^2 \operatorname{Sq}^1 \Lambda^{16k+16}.$$

This is a simple calculation using (5.4) and (5.3)-e.g., $[8k+14, 8k+5] = \text{Sq}^1[8k+13, 8k+5]$, $[8k+13, 8k+6] = \text{Sq}^2[8k+11, 8k+5]$. Thus, by (3.1), $j*\beta_3(16k+16)\xi\equiv 0$, on $P(P^q)$. Choose classes $(b_2, b_3)\in (\beta_2, \beta_3)(16k+16)\xi$ such that $j*b_3=0$. Since $\theta_2(16k+16)\xi=\text{Sq}^2$, we have by (3.2), $j*\text{Sq}^2b_2=0$. By (5.3), $j*b_2=\sum_{i=0}^5c_i[8k+9+i, 8k+9-i]$, $c_i\in Z_2$. Using (5.4), one finds that Kernel Sq^2 on Λ^{16k+18} is generated by [8k+12, 8k+6]. Since,

$$Sq^{2}[8k+10, 8k+6] = [8k+12, 8k+6],$$

 $Sq^{2}Sq^{1}[8k+10, 8k+6] = 0,$

this means that one can alter b_2 to a class b_2' (without changing b_3), so that $(b_2', b_3) \in (\beta_2, \beta_3)(16k+16)\xi$ and $j*b_2'=j*b_3=0$. Hence, by (2.9) there are classes $(c_2, c_3) \in I^*$ with $\rho(c_2)=b_2'$, $\rho(c_3)=b_3$. Using (5.5) one easily shows:

(5.16) On
$$\Gamma P^q$$
, $I^{16k+19} = \operatorname{Sq}^1 I^{16k+18} + \operatorname{Sq}^2 \operatorname{Sq}^1 I^{16k+16}$.

This shows that $\rho(c_3) \in \text{Indet } \beta_3$, and so we may choose c_3 to be zero-i.e., $\rho(c_2, 0) \in (\beta_2, \beta_3)(16k+16)\xi$. By (3.2), $\rho(\text{Sq}^2c_2)=0$, and so by (2.9), $\text{Sq}^2c_2=0$. Using (5.5) one finds that on I^{16k+18} , Kernel Sq² is generated by $\sigma(8k+14, 8k+4)$ and $\sigma(8k+12, 8k+6)+\sigma(8k+10, 8k+8)$. Since Sq² $\sigma(8k+14, 8k+2)=\sigma(8k+14, 8k+4)$ and Sq² $\sigma(8k+10, 8k+6)=\sigma(8k+12, 8k+6)+\sigma(8k+10, 8k+8)$, we see that $(b_2, b_3) \in \text{Indet } (\beta_2, \beta_3)$, and so $(\beta_2, \beta_3)(16k+16)\xi \equiv 0$, as claimed.

Combining (5.14), (5.15) and (5.12), we see (cf. §2) that on $(P^{8k+11})^*$ the sphere bundle associated to $(16k+16)\xi$ has a section and hence, by (1.7), P^{8k+11} embeds in R^{16k+16} . Similarly, using (3.8), we see that P^{8k+12} embeds in R^{6k+18} and P^{8k+13} in R^{16k+20} , thus proving Theorem (1.3) in Case I.

Case II. $n \equiv 0 \mod 8$.

We first prove:

(5.17)
$$(\alpha_1, \alpha_3)(16k+8)\xi \equiv 0$$
, on P^{8k+8*} .

By (5.10) there is a class a_3 such that $(0, a_3) \in (\alpha_1, \alpha_3)(16k+8)\xi$ (on P^{8k+8*}) and $j*a_3=r[8k+10, 8k+1], r\in \mathbb{Z}_2$. But by (5.11),

$$[8k+10, 8k+1] = (8k+10, 8k+1) + (8k+9, 8k+2) = 0,$$

which shows that $i*a_3=0$.

We now use the fact [15], [25] that P^{8k+7} embeds in R^{16k+8} ; thus, if $i: P^{8k+7*} \rightarrow P^{8k+8*}$ is induced by the inclusion $P^{8k+7} \subset P^{8k+8}$, we have (by (1.7)), $i^*(\alpha_1, \alpha_3)$ (16k+8) $\xi \equiv 0$ and hence, by (3.1), there is a class $y \in H^{16k+7}(P^{8k+7*}; \mathbb{Z})$ such that

$$(0, i*a_3) \in (Sq^2, Sq^4)(y).$$

Let z be a (mod 2) class in $B^* \oplus I^*$ such that $\rho(z) = y \mod 2$, and let

$$z = b + e, b \in B^*, e \in I^*.$$

We have

$$b = s(u^{5} \otimes (x^{8k+1})^{2}) + t(u^{3} \otimes (x^{8k+2})^{2}) + q(u \otimes (x^{8k+3})^{2}),$$

and so $k^*(b) = \sum_{i=1}^6 r_i(8k+7-i, 8k+i), r_i \in \mathbb{Z}_2$. Consequently,

$$k^*(\operatorname{Sq}^4b) = s_1(8k+10, 8k+1) + s_2(8k+9, 8k+2) + s_3(8k+8, 8k+3), s_i \in \mathbb{Z}_2$$

$$= k^* \varphi(s_1(u^3 \otimes x^{8k+1}) + s_2(u^2 \otimes x^{8k+2}) + s_3(u \otimes x^{8k+3})).$$

Thus, by (2.5) (ii) and (iv),

 $\operatorname{Sq}^4b = 0$, mod Image φ .

Since I^* =kernel k^* , we have $\operatorname{Sq}^4I^*\subset I^*$. A simple calculation shows that $\operatorname{Sq}^4I^{16k+7}=0$, in $H^*(\Gamma P^{8k+7})$. Consequently, $\operatorname{Sq}^4z=0$, mod image, φ and so

$$i*a_3 = \operatorname{Sq}^4 y = \rho(\operatorname{Sq}^4 z) = 0.$$

Recall that back on P^{8k+8*} , $j*a_3=0$. Hence there is a class $d \in I^{16k+7}$ (on ΓP^{8k+8}), with $\rho(d)=a_3$; since i*d also is in I*, and since $\rho(i*d)=i*a_3=0$, it follows that i*d=0. Thus, $d=r\sigma(8k+8, 8k+3)$, $r\in Z_2$. But by (3.2), since $\alpha_1\equiv 0$,

$$\rho(\mathrm{Sq}^{1}d)=\mathrm{Sq}^{1}a_{3}=0,$$

and hence, $\operatorname{Sq}^1 d = 0$. Since $\operatorname{Sq}^1 \sigma(8k+8, 8k+3) = \sigma(8k+8, 8k+4) \neq 0$, this shows that r = 0, and so $a_3 = 0$, completing the proof of (5.17).

By (5.17), $(\beta_2, \beta_3)(16k+8)\xi$ is defined, on P^{8k+8*} . We now show:

$$(5.18)$$
 $j*(\beta_2, \beta_3)(16k+8)\xi \equiv 0.$

This follows easily from (3.1), (3.2) and (5.3). We leave the details to the reader.

Finally, by (2.10) and (3.8), (5.18) implies that $(\beta_2, \beta_3)(16k+10)\xi \equiv 0$, and so, by (5.12) and (1.7), P^{8k+8} embeds in R^{16k+10} , as desired. This completes the proof for Case II.

Case III. $n \equiv 1, 2 \mod 8, \alpha(n) \geqslant 4$.

We do all the argument on P^{8k+10} ; set m=8k+10. The first result is:

$$(5.19)$$
 $(\alpha_1, \alpha_3)(16k+10)\xi \equiv 0$, on P^{m*} .

As before, by (5.10), there is a class a_3 such that $(0, a_3) \in (\alpha_1, \alpha_3)(16k+8)\xi$ (on P^{m*}) and $j*a_3=r[8k+10, 8k+1]$ in $H^{16k+11}(P(P^m))$, $r \in \mathbb{Z}_2$. Thus by (3.8), $j^*(\alpha_1, \alpha_3)(16k+10)\xi \equiv (0, r[8k+12, 8k+1])$. Let $l: P^{m-1*} \to P^{m*}$, $l: P(P^{m-1}) \to P(P^m)$ denote the maps induced by the inclusion $P^{m-1} \subset P^m$. We now use the fact that P^{8k+9} immerses in R^{16k+10} , see [23]. (It is at this point that we require $\alpha(n) \geqslant 4$.) Thus the bundle $l^*i^*(16k+10)\xi$ has a (nowhere zero) section on $P(P^{m-1})$, by Haefliger-Hirsch [8]. Consequently, by (3.1),

(*)
$$(0, r[8k+12, 8k+1]) \in (\theta_2, \operatorname{Sq}^4)H^{16k+9}(P(P^{8k+9}); Z).$$

Using (5.11) one sees that [8k+12, 8k+1] = [8k+8, 8k+5] on $P(P^{8k+9})$. Moreover, by (5.4), θ_2 is an injection on Kernel Sq¹ \cap $H^{16k+9}(P(P^{8k+9}))$, $\theta_2 = \theta_2(16k+10)\xi$. Since $[8k+12, 8k+1] \neq 0$, it follows from (*) that r=0. Thus, $j*a_3=0$ and so $j*(\alpha_1, \alpha_3)(16k+8)\xi \equiv 0$; consequently, by (3.8) and (2.10), $(\alpha_1, \alpha_3)(16k+10)\xi \equiv 0$, on P^{m*} , which proves (5.19).

The obstruction $(\beta_2, \beta_3)(16k+10)\xi$ is consequently defined, and we now show:

(5.20)
$$j^*(\beta_2, \beta_3)(16k+10)\xi \equiv 0$$
, on $P^{m^*}, m=8k+10$.

The first step is to show:

A) We may choose classes
$$(b_2, b_3) \in (\beta_2, \beta_3)(16k+10)\xi$$
 so that $j^*(b_2, b_3) = (r[8k+6, 8k+6], 0), r \in \mathbb{Z}_2$.

Note that

$$j*b_2 = r[8k+6, 8k+6] + s[8k+7, 8k+5] + t[8k+8, 8k+4] + q[8k+9, 8k+3],$$
$$j*b_3 = c[8k+7, 8k+6] + d[8k+8, 8k+5] + e[8k+9, 8k+4],$$

where the coefficients all lie in Z_2 . Since

$$Sq^{1}[8k+7, 8k+5] = [8k+8, 8k+5],$$

 $Sq^{2}Sq^{1}[8k+7, 8k+3] = [8k+9, 8k+4],$ and
 $Sq^{2}Sq^{1}[8k+5, 8k+5] = [8k+8, 8k+5] + [8k+7, 8k+6],$

we see that b_3 can be chosen so that $j*b_3=0$. Thus, by (3.2), $j*(\theta_2b_2)=0$, where $\theta_2=\theta_2(16k+10)\xi$. Using (5.4) and (5.11) one finds that this implies: s=0, t=q. But $\theta_2[8k+8, 8k+2]=[8k+9, 8k+3]+[8k+8, 8k+4]+[8k+6, 8k+6]$. Hence, b_2 can be altered (without changing b_3) so that $j*b_2=r[8k+6, 8k+6]$, as claimed.

To complete the proof of (5.20), we use the map $i: P^{m-2*} \to P^{m*}$. In Case II we proved that $i^*(\beta_2, \beta_3)(16k+10)\xi \equiv 0$ on P^{m-2*} , and so $i^*(b_2, b_3) \in \Psi_{\omega}H^{16k+9}(P^{m-2*}; Z)$, (see discussion following (3.1)), where $\omega = (16k+10)\xi$. Now by (5.7), a class in $H^{16k+9}(P^{m-2*}; Z)$ is determined by its mod 2 reduction. Suppose then that y is in domain Ψ_{ω} , and let $\bar{y}=y \mod 2$. Then (see §3), $\operatorname{Sq}^1\bar{y}=0$, $\theta_2\bar{y}=0$, $\operatorname{Sq}^4\bar{y}=0$. But a calculation shows that

$$H^{16k+9}(P^{m-2*}) \cap \text{Kernel Sq}^1 \cap \text{Ker } \theta_2 \cap \text{Ker Sq}^4 = 0,$$

and so $\bar{y} \mod 2=0$. Thus, y=0, and so by §3,

$$i*(b_2, b_3) \in \text{indet } \Psi_{\omega} = (\theta_2, \operatorname{Sq^1Sq^1})H^{16k+10}(P^{m-2*}) + \operatorname{Sq^1}H^{6k+12}(P^{m-2*}).$$

Also, by what we have already proved, $j*i*(b_2, b_3)=(r[8k+6, 8k+6], 0)$, in $P(P^{m-2})$. Thus, there is a class $y \in H^{16k+10}(P^{m-2*})$ with $\theta_2(j*y)=r[8k+6, 8k+6]$. A simple calculation using (5.4) shows that this is possible only if j*y=0 and r=0. Hence, back on P^{m*} , $j*(\beta_2, \beta_3)(16k+10)\xi\equiv 0$, as claimed.

Therefore, by (3.8) and (5.11), $(\beta_2, \beta_3)(16k+12)\xi \equiv 0$ on P^{m*} , and hence on P^{m-1*} . Thus by (5.12) and (1.7), P^n embeds in R^{2n-6} , for n=8k+9 and 8k+10, completing the proof of Theorem (1.3).

6. Embedding complex projective space

Our goal is to show that if n=4s+3, s not a power of two, then \mathbb{CP}^n embeds in \mathbb{R}^{4n-6} . We do this by showing that the sphere bundle over \mathbb{CP}^{n*} , associated to $(4n-6)\xi$, has a section. Since the methods here are very similar to those used in §5, we only sketch the proof.

We use the following notation: $y \in H^2(\mathbb{CP}^n)$ denotes the generator, and in $H^*(P(\mathbb{CP}^n))$ we set

$$[d, 2j] = \sum_{i=0}^{j} v^{d-2i} \cdot \operatorname{Sq}^{2i}(y^{j}).$$

As before, $\Lambda^* \subset H^*(P(\mathbb{CP}^n))$ denotes $j^*H^*(\mathbb{CP}^{n*})$, and as in (5.3) we have:

(6.1) The classes [d,2i] generate Λ^* , where $2i \leq d \leq 2n-1$.

Finally, we set s=k+1, so that n=4k+7. The first step in the proof of (1.5) is to show:

(6.2) the obstruction $(\alpha_1, \alpha_3)(16k+12)\xi$ is defined and there are classes $(a_1, a_3) \in (\alpha_1, \alpha_3)(16k+12)\xi$ such that

$$j*a_1 = r[8k+13, 8k] + s[8k+9, 8k+4]$$

 $j*a_3 = s[8k+11, 8k+4], r, s \in \mathbb{Z}.$

This is proved using (3.1) and (3.2). Now $w_4(16k+12)\xi \neq 0$, while $w_i(16k+12)\xi = 0$, for $1 \leq i \leq 7$, $i \neq 4$. Thus, one has a relation analogous to (3.3):

$$\operatorname{Sq}^{6}a_{1}+\theta_{4}a_{3}=0.$$

Using this on (6.2) one finds that s=0 (in (6.2)). But by a formula analogus to (5.11), [8k+15, 8k]=0, and hence $j*(\alpha_1, \alpha_3)(16k+14)\xi \equiv 0$, using (3.8). Therefore, by (2.10) and (3.8), $(\alpha_1, \alpha_3)(16k+16)\xi \equiv 0$.

The next step is to show:

(6.3)
$$(\beta_2, \beta_3)(16k+22)\xi \equiv 0.$$

Starting with classes $(b_2, b_3) \in (\beta_2, \beta_3)(16k+18)\xi$, one finds that by using the indeterminancy of β_2 (i.e., θ_2), b_2 can be chosen so that $j*b_2=r[8k+12, 8k+8]$. And by (3.2), one has $j*b_3=s[8k+13, 8k+8]$. But

$$[8k+14, 8k+8] = [8k+15, 8k+8] = 0,$$

and so $j^*(\beta_2, \beta_3)(16k+20)\xi \equiv 0$. Consequently, by (2.10) and (3.8), (β_2, β_3)

 $(16k+22)\xi\equiv 0$, as desired.

By an indeterminancy argument (use θ_2) one shows that $j*\gamma_3(16k+22)\xi\equiv 0$. But $I^{16k+25}=0$, and so by 2.9, $\gamma_3(16k+22)\xi\equiv 0$, which means by (1.7) that CP^n embeds in R^{2n-6} .

7. The cohomology of M^*

This section contains the proofs that were omitted in sections 2 and 4. We begin with the proof of Proposition (2.9.)

(a) Kernel
$$j^* = \rho(I^*)$$
.

This follows at once from the exactness of (2.1), given that kernel $k^*=I^*$ (see (2.5)).

(b) $\rho | I^*$ is injective.

Set $D^*=H^*(P^{\infty})\otimes \bar{K}^*$, see (2.4). Note that $D^*\cap I^*=0$ and that $\varphi(u^i\otimes x)\in D^*$, if i>0 and $x\in H^*(M)$. Suppose that $e\in I^*$ with $\rho(e)=0$. Then, by (2.1) and the above remarks, $e=\varphi(1\otimes y)$, for some $y\in H^*(M)$. By (2.5) and (2.1), since $e\in I^*$,

$$0 = k^*(e) = k^*\varphi(1 \otimes y) = \varphi_2(1 \otimes y).$$

But φ_2 is injective, and so y=0, which proves e=0, as claimed.

(c) Image
$$j^* = \lambda(B^*) = \Lambda^*$$
.

Note that by (2.3), Image $\varphi_2 = u^n \otimes H^*(M) \oplus u^{n+1} \otimes H^*(M) \oplus \cdots$, where $n = \dim M$. Thus, if we set $C = \sum_{i=0}^{m-1} u^i \otimes H^*(M)$, we have that ρ_2 maps C isomorphically onto $H^*(P(M))$. Set $C = C \cap \rho_2^{-1}(\operatorname{Image} j^*)$. Note that $k^*(B^*) \subset C$ and hence $k^*(B^*) \subset C$, we show:

$$(*) k*(B*) = \tilde{C},$$

which proves (c). Moreover, by (*), λ maps B^* isomorphically onto Image j^* and hence $\rho | B^*$ is an inverse to j^* , which proves (d), in (2.9).

To prove (*) all we need show is that k^* maps B^* onto \tilde{C} . This is a consequence of the following:

Proposition 7.1. Given $y \in H^*(\Gamma M)$, there is a class $b \in B^*$ such that $\lambda(b) = \lambda(y)$.

Before proving this we develop some preliminary material. Given a class y in $H^*(\Gamma M)$ we associate with it a unique class in $H^*(P^{\infty}) \otimes \overline{K}$, called the leading term of y. Suppose that degree y=d, and set $s=\lfloor d/2\rfloor$. Then we can write $y=\sum_{i=1}^{n} u^{d-2i} \otimes (x_i)^2 + l$, where $l \in I$ and where degree $x_i=i$, $0 \le i \le s$. Let j be

the integer such that $x_j \neq 0$ and $x_i = 0$ for i < i. We define leading term $y = u^{d-2j} \otimes (x_j)^2$. If y = l, we set leading term y = 0.

We will need the following key fact.

(7.2) Let $x \in \overline{H}^q(M)$, $x \neq 0$, and let j be a non-negative integer. Then, leading term $\phi(u^j \otimes x) = u^{n-q+j} \otimes (x)^2$.

Proof. Write d=n+q+j, and set $s=\lfloor d/2\rfloor$. There are classes $l\in I$ and $y_i\in K^{2i}$ such that

$$\phi(u^j \otimes x) = \sum_{0}^{s} u^{d-2i} \otimes y_i + l.$$

Also, by 2.3,

$$\phi_2(u^j \otimes x) = \sum_{i=0}^n u^{n+j-i} \otimes w_i M \cdot x = \sum_{i=0}^n u^{d-q-i} \otimes w_i M \cdot x.$$

Thus the term in $\phi_2(u^j \otimes x)$ with highest power of u is $u^{d-q} \otimes x$. But $\phi_2 = k^* \phi$, and so $y_i = 0$ for i < q and

$$k^*(u^{d-2q} \otimes y_q) = u^{d-q} \otimes x + \text{terms with lower degree in } u.$$

Using 2.5 (iv), and recalling that $\operatorname{Sq}^0(x) = x$, we have $y_q = (x)^2 \pmod{I}$, which implies that

leading term
$$\phi(u^j \otimes x) = u^{d-2q} \otimes (x)^2$$

= $u^{n-q+j} \otimes (x)^2$,

as claimed. This completes the proof of (7.2).

Proof of 7.1. Let $y \in H^*(\Gamma M)$. Since $\lambda(I)=0$, we may suppose that $y \in H^*(P^{\infty}) \otimes \overline{K}$. Let leading term $y=u^k \otimes (x)^2$, where $k \ge 0$ and degree x=q, say. If k+q < n, then $y \in B^*$ and there is nothing to prove, so suppose that $k+q \ge n$. Let $y_1=\phi(u^{k+q-n}\otimes x)$. Then, by (2.1)

$$\lambda(y) = \lambda(y-y_1).$$

But by (7.2), y and y_1 have the same leading term, and so

leading term
$$(y-y_1) = u^{k_1} \otimes (x^{(1)})^2$$
,

where $k_1 \leq k-2$ and $k_1+2 \deg x^{(1)} = \deg y$. Thus,

$$k_1 + \deg x^{(1)} < k + \deg x$$
.

Continuing in this way we obtain classes y_1, y_2, \dots, y_r , say, such that

$$\lambda(y) = \lambda(y - (y_1 + \dots + y_r)), \text{ and } y - (y_1 + \dots + y_r) \in B^*,$$

thus completing the proof of (7.1) and hence of (2.9).

8. The cohomology of P^{n*}

This section contains the proofs that were omitted in §5. We begin with the following useful fact.

Lemma 8.1. Let $d \in H^q(\Gamma P^n)$, q > 0, and let $k^*(d) = \sum_{i=0}^q a_i (u^{q-i} \otimes x^i)$, where $a_i \in \mathbb{Z}_2$. If $a_i = 0$ for $2i \leq q$, then $k^*(d) = 0$.

This is an immediate consequence of (5.2). Using this we have:

Proof of 5.4. We do the proof in $H^*(P^{\infty} \times P^n)$, giving the details only for Sq^2 . Suppose then that d and e are positive integers with $d \ge e$. Note that

$$Sq^{2}[d+4, e] = Sq^{2}(u^{4} \cdot [d, e]) = u^{4} \cdot Sq^{2}[d, e],$$

and so to prove (5.4) we may assume $e \le d \le e+3$, since $\binom{d}{2} \equiv \binom{d+4}{2} \mod 2$. Now for $j \ge 0$, $[e+j, e] \in \text{Image } k^*$, by (5.2). Also, if $d \le e+3$, we find that

$$\operatorname{Sq}^{2}[d, e] + \binom{d}{2}[d+2, e] + e[d+1, e+1] = \sum a_{i}(u^{i} \otimes x^{j}),$$

where the sum is over all, i+j=d+e+2 and where $a_i=0$ for $i \ge i$. Thus by (8.1), $\operatorname{Sq}^2[d, e] + \binom{d}{2}[d+2, e] + e[d+1, e+1] = 0$ as claimed.

The proof for Sq1 is similar, using the fact that

$$Sq^{1}[d+2, e] = Sq^{1}(u^{2} \cdot [d, e]) = u^{2} \cdot Sq^{1}[d, e].$$

Hence, we need only take d=e, e+1.

REMARK. A proof for Sq¹ is given in [40], and [2, section 7]; note also [13].

Proof of 5.6. Since $H^*(P^{n*}) = \rho H^*(\Gamma P^n)$, and since $H^*(\Gamma P^n)$ is determined by k^* and q^* , (5.6) will follow when we show:

(8.2) (i)
$$\operatorname{Sq}^{2}k^{*}H^{4k-1}(\Gamma P^{n}) = \operatorname{Sq}^{2}\operatorname{Sq}^{1}k^{*}H^{4k-2}(\Gamma P^{n})$$

(ii) $\operatorname{Sq}^{2}q^{*}I^{4k-1} = \operatorname{Sq}^{2}\operatorname{Sq}^{1}q^{*}I^{4k-2}$.

Now (i) follows at once from (5.4), while (ii) may be proved by an inductive argument using (5.5). We omit the details.

To prove (5.6), let $y \in H^{4k-1}(\Gamma P^n)$. By (8.2) (i), we may choose $d \in H^{4k-2}(\Gamma P^n)$ so that $k^*(\operatorname{Sq^2Sq^1}d) = k^*(\operatorname{Sq^2}y)$. Set $\mathcal{G} = y - \operatorname{Sq^1}d$. By (8.2)(ii), there is a class $e \in I^*$ such that $q^*(\operatorname{Sq^2Sq^1}e) = q^*\operatorname{Sq^2}\hat{y}$. Since $\operatorname{Sq^2Sq^1}I^* \subset I^*$ and $k^*I^* = 0$, we see that $k^*\operatorname{Sq^2Sq^1}(d+e) = k^*\operatorname{Sq^2}y$, $q^*\operatorname{Sq^2Sq^1}(d+e) = q^*\operatorname{Sq^2}y$, and hence $\operatorname{Sq^2}y = \operatorname{Sq^2Sq^1}(d+e)$, completing the proof of (5.6).

We will need the following well-known fact in the proof of (5.7).

Lemma 8.3. Let X be a space and k a positive integer such that $H^k(X; Z)$ is finitely generated and has no odd torsion. Then, $H^k(X; Z) = \delta_2 H^{k-1}(X; Z_2)$ if, and only if,

Kernel
$$Sq^1 = Image Sq^1$$
 on $H^k(X; \mathbb{Z}_2)$.

Proof of 5.7. Note that $Sq^1I^*\subset I^*$, and since k is odd, $Sq^1B^k\subset B^{k+1}$. Thus by (8.3), (5.7) is proved when we show:

$$\operatorname{Sq}^{1}B^{k-1} = \ker \operatorname{Sq}^{1} \cap B^{k}, \operatorname{Sq}^{1}I^{k-1} = \operatorname{Ker} \operatorname{Sq}^{1} \cap I^{k}.$$

Since $\lambda: B^* \approx \Lambda^*$ (see 2.9), we do the argument for B^* in Λ^* . Define $V \subset \Lambda^*$ to be the subspace spanned by generators [d, e], with $e \leq d \leq n-2$. Since n is even (in 5.7), $\operatorname{Sq}^1 V \subset V$, by (5.4). Let k (in 5.7) be written, k=4s+1. We assume k > n, since this is the only case of interest to us. Then,

$$\Lambda^{k} = \{[n-1, k-n+1]\} \oplus V.$$
 But $\operatorname{Sq}^{1}[n-1, k-n+1] = [n, k-n+1] = [n-1, k-n+2] + v,$ where $v \in V.$

(We use here 5.11 and the fact that k-n+1 is even.) Thus $Sq^1[n-1,k-n+1] \notin V$ and so Ker $Sq^1 \cap \Lambda^k = \text{Ker} Sq^1 \cap V$. An easy calculation shows that Ker $Sq^1 \cap V \subset Sq^1 \Lambda^{k-1}$. Finally, since

$$k*\operatorname{Sq}^{1}(1\otimes(x^{r})^{2})=q*\operatorname{Sq}^{1}(1\otimes(x^{r})^{2})=0,$$

where r=(k-1)/2, we see that $\operatorname{Sq}^1B^{k-1}\subset B^k$ and hence $\operatorname{Ker} \operatorname{Sq}^1\cap B^k=\operatorname{Sq}^1B^{k-1}$, as claimed. Similarly, one shows that $\operatorname{Sq}^1I^{k-1}=\operatorname{Ker} \operatorname{Sq}^1\cap I^k$, thus proving (5.7).

Proof of (5.13). For this it suffices to show:

$$\mathrm{Sq}^{2}I^{2n-5} + \mathrm{Sq}^{1}I^{2n-4} = I^{2n-3},$$

 $\theta_{2}\Lambda^{2n-5} + \mathrm{Sq}^{1}\Lambda^{2n-4} = \Lambda^{2n-3},$

recalling that $\theta_2 = \operatorname{Sq}^2$ on I^* . Now the first equation follows by a straightforward calculation (consider the cases, n odd and n even); for the second equation, note that Λ^{2n-3} is generated by [n-1, n-2]. But if n is odd, then $\operatorname{Sq}^1[n-2, n-2] = [n-1, n-2]$, while if n is even, one shows that $\theta_2[n-2, n-3] = [n-1, n-2]$. This completes the proof of (5.13).

University of California, Berkeley

References

- [1] J. Adem and S. Gitler: Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana 9 (1964), 37-50.
- [2] D. Bausum: Embeddings and immersions of manifolds in Euclidean space, thesis, Yale Univ., 1974.
- [3] A. Copeland and M. Mahowald: The odd primary obstructions..., Proc. Amer. Math. Soc. 19 (1968), 1270-1272.
- [4] S. Gitler: The projective Stiefel manifolds, II, Topology 7 (1968), 47-53.
- [5] A. Haefliger: Differentiable embeddings, Bull. Amer. Math. Soc. 67 (1961), 109– 112.
- [6] A. Haefliger: Plongements differentiable dans le domaine stable, Comment. Math. Helv. 37 (1962), 155-176.
- [7] A. Haefliger: Points multiples d'une application et produit cyclique reduit, Amer.
 J. Math. 83 (1961), 57-70.
- [8] A. Haefliger and M. Hirsch: *Immersions in the stable range*, Ann. of Math. 74 (1962), 231-241.
- [9] A. Haefliger and M. Hirsch: On the existence and classification on differentiable embeddings, Topology 2 (1963), 125-130.
- [10] D. Handel: An embedding theorem for real projective spaces, ibid. 7 (1968), 125-130.
- [11] D. Husemoller: Fiber Bundles, McGraw-Hill, New York, 1966.
- [12] I. James: Two problems studied by H. Hopf, Lecture Notes in Mathematics, No. 279, Springer-Verlag, Berlin, 1972, 134-174.
- [13] L.L. Larmore: The cohomology of (Λ²X, ΔX), Canad. J. Math. 5 (1973), 908–921.
- [14] M. Mahowald: On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
- [15] M. Mahowald and J. Milgram: Embedding real projective spaces, Ann. of Math. 87 (1968), 411-422.
- [16] W. Massey and F. Peterson: On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana 8 (1963), 1-13.
- [17] J.F. McClendon: Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183-214.
- [18] J.F. McClendon: Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17.
- [19] J. Milgram: Unstable Homotopy from the Stable Point of View, Lecture Notes in Math., No. 368, Springer-Verlag, Berlin, 1974.
- [20] J. Milnor and J. Stasheff: Characteristic Classes, Annals of Math. Studies, No. 76, Princeton Univ., Press, Princeton, 1974.
- [21] F. Nussbaum: Non-orientable obstruction theory, thesis, Northwestern Univ., 1970.
- [22] F. Peterson and N. Stein: Secondary characteristic classes, Ann. of Math. 76 (1962), 510-523.
- [23] D. Randall: Some immersion theorems for projective spaces, Trans. Amer. Math. Soc. 147 (1970), 135-151.
- [24] D. Randall: Some immersion theorems for manifolds, ibid. 156 (1971), 45-58.
- [25] E. Rees: Embeddings of real projective spaces, Topology 10 (1971), 309-312.

- [26] R. Rigdon: Immersions and embeddings of manifolds in Euclidean space, thesis, Univ. of Calif., Berkeley, 1970.
- [27] R. Rigdon: p-equivalences and embeddings of manifolds, Proc. London Math. Soc. to appear.
- [28] R. Rigdon: to appear.
- [29] B. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 137-153.
- [30] N. Steenrod and D. Epstein: Cohomology Operations, Annals of Math. Studies, No. 50, Princeton Univ, Press, Princeton, 1962.
- [31] B. Steer: On the embeddings of projective spaces in euclidean space, Proc. London Math. Soc. 21 (1970), 489-501.
- [32] E. Thomas: Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217.
- [33] E. Thomas: Seminar on Fiber Spaces, Lecture Notes in Math., No. 13, Springer-Verlag, Berlin, 1966.
- [34] E. Thomas: Whitney-Cartan product formulae, Math. Z. 118 (1970), 115-138.
- [35] H. Toda: Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, No. 49, Princeton Univ. Press, Princeton, 1962.
- [36] C. Weber: Plongements de polyèdres dans le domaine metastable, Comment. Math. Helv. 42 (1967), 1-27.
- [37] H. Whitney: The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math. 45 (1944), 220-246.
- [38] W. Wu: Classes caracteristique et i-carres d'une variete, C.R. Acad. Sci. Paris 230 (1950), 508-511.
- [39] G. Yo: Cohomology operations and duality in a manifold, Sci. Sinica 12 (1963), 1469-1487.
- [40] G. Yo: Cohomology mod p of deleted cyclic product of a manifold, ibid. 12 (1963), 1779-1794.
- [41] J.A. Lees: A classification of locally flat imbeddings of topological manifolds (preprint).