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1. Introduction

Reprenant les resultats de plusieurs mathematiciens, notament ceux de Lednev [11],

C. Wagschal [15] a donne une nouvelle demonstration de Γexistence et de Γunicite de

la solution du probleme de Goursat non lineaire dans differents espaces de functions,

(holomorphes ou holomorphes par rapport aux variables normales et de classe Gevrey

par rapport aux autres). Dans sa methode, il applique des operateurs de Gevrey a

certaines series majorantes, qui majorent leurs carres, pour definir certaines algebres de

Banach ou le probleme est reduit a la recheche du point fixe d'une certaine application.

Reprenant un probleme pose par J. L. Lions [14], D. Gourdin et le deuxieme auteur [7]

etendent les resultats de [15] au probleme de Goursat pour des equations de Kirchhoff

generalisees du type

, ί \DBu(x,y)\2dy}
JΩ '

Ces equations generalised les equations de Carrier- Kirchhoff ([1], [9]), modelisant les

deplacements d'une corde elastique vibrante, qui sont du type

d2ud2u ,Po E ( .du( . | 2 , ,d2u
-^ ~ ("Γ + 7ΓF~ / br-( s^) \ dsϊl^ =dt2 p.h 2Lp 7 0 ds dx2

ou L est la longueur de la corde, u(x,t) est le deplacement vertical du point x a

Γinstant ί, p la densite de la matiere, h Γaire de la section de la corde, PQ la tension

initiale de la corde et E le module de Young de la matiere (voir [5]).

Le but de notre travail est Γ etude du probleme de Goursat associe a la famille

d'equations utilisee dans [7]. On etablit Γexistence et Γunicite de la solution dans les

espaces de fonctions de classe Gevrey, avec des indices differents pour les variables

normales et les variables co-normales suivant la terminologie de [11] et [7]. A Γaide

des espaces G^d(Ω jβ) introduits dans [15], on definit des algebres de Banach, dont la

construction des normes est inspiree des definitions des quasi-normes introduites dans
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les travaux de J. Leray et L. Waelbroek [13] et J. Leray et Y. Ohya [12], et nous

reduisons alors notre probleme a la recherche des points fixes d'une certaine application

qu'on construit.

Dans [4], A. Friedman etudie le probleme dans une classe de fonctions analytiques

reelles qui coincide avec la classe des fonctions de classe Gevrey d'indice un; notre tra-

vail est alors une generalisation de ces resultats au cas des fonctions de classe Gevrey,

et signalons enfin que nos resultats etendent aussi ceux de K. Kajitani [8] qui, pour

des systemes de Leray- Volevich, a etabli Γ existence et Γunicite locale, par rapport a

toutes les variables, de la solution du probleme dans les espaces de fonctions de classe

Gevrey avec un meme indice. De meme, ces resultats peuvent aussi etre pris comme

des ameliorations des exemples donnes par P. Duchateau dans [3], oύ son etude est

faite dans des echelles de Banach abstraites.

2. Definitions-Resultats

Soient p, q G IN*. Les points generiques de R p et de R ς sont respectivement notes

x = (#ι, . . . , Xp) et y — (2/1, . . . , yp) et pour une fonction continue u(x, y), D~^u

designe la primitive de u par rapport a xι s'annulant avec xit

Soient a un multi-indice et B une partie finie de Γ ensemble

{ ( 7 , 5 ) e Z p x l N 9 , |7| + | 5 | < | α | et 7 < a}

oύ |α| designe la longueur de a et 7 < a si pour tout i, 7$ < α^ et 7 φ a. On notera

r le cardinal de B, d = inf {s > 1; |7| + s\δ\ < |α |} et Ω un voisinage ouvert borne

de Γorigine de ]R9. On considere le probleme de Goursat

(

\

u(x,y) = f(x,y,DBu(x,y), j \DBu(x,y)\2dy)

u(x,y) = 0(xa)

Pour tout ouvert U x Ω de IRξ x R£, on note C°'°°(W x Ω) I'algebre des fonctions
u : U x Ω — > R admettant des derivees partielles continues

Dδ

yu : U x Ω — > R, Vί G N ς

GQ'd(U x Ω) (voir [15] et [7]) designe I'algebre des fonctions u G C°'°°(^ x Ω) telles
que :

(2) 3C > 0; Vί G N 9 , MX G W, sup \D*u(x,y)\ <
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Etant donne un nombre s> 1, on notera Qs'd(UxΩ) Γespace des functions ueC°°(Ux
Ω) telle que : 3C > 0; Vί G IN9, V/3 G N p , Vx G W,

(3)

Pour Wi et U2 des voisinages ouverts de R r et s, d et s G R + , C/8'd'5'5(WxΩxWι xW2)
designe Γensemble des functions / G C°°(U x Ω x U\ x U%) telles que:
3C > 0; V7 G N p , V/3 G IN9, Ve, 5 G EsΓ, V(x, z,τ)eUxlίιX W2,

(4)

En d'autres termes ί/ s 'd ' s ' s(VxΩ) est Γespace des functions de classe Gevrey d'indice s
par rapport a x, d'indice d par rapport a y et d'indice s par rapport aux autres variables.

Theoreme 2.1. Pour tout s < s et pour toute function f G ̂ 5'd>s'5(ZY x Ω x U\ x
U<ι)y le probleme de Goursat (1) admet une solution de classe Qs^d(U' x Ω) unique au
voisinage de Γorigίne de 1R .̂

Avant de demontrer ce theoreme nous allons introduire de nouvelles algebres de

Banach qu'on construira a Γaide des algebres G^ , definies dans [15] et utilisees dans

[7], en nous inspirant de la construction des semi-normes de [12].

3. Resultats preliminaires

3.1. Les espaces G^ d (Ω Λ ) [15]

Soient ξ G (IR+)P, C £ (^t)q et R > 0, on note

p

i=0

0 0 +n

et on pose φR(t) = K~lθ(—\ oύ θ(t) = ^ y —^ est la function de Lax [10] et

K une constante positive pour laquelle on a 02 <̂C # 0 au sens des series majorantes.

DEFINITION 3.1. On note G^d(ΩR) Γespace des functions u G C f°'0 0(ΩΛ) telles

que pour une constante C > 0,

2/eΩ
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Si on prend ||u||o la borne inferieure des constantes C > 0 verifiant (5), alors

G^(ΩR) muni de la norme ||.|| — ||.||o est une algebre de Banach et on a les proprietes

suivantes.

Proposition 3.1 ([7], [15]).

•Pour tout ζ G ( R + ) 9 et tout u G G°' d (Ω β ), il existe RQ > 0 telle que:

•Pour tout 0 < R' < R, G ^ ( Ω β ) C G°'d(Ωβ,)

Proposition 3.2 ([15]). Pour tout (7,5) G (-IN)* x IN9 tel que [7] + d|J| < 0,

/5ί̂  w«£ constante CΊj > 0 te//e ̂ M^ Γoperateur D^Dy est continu de G^ (Ωβ)

^ ( Ω β ) ^r & noπw^ inferieure ou egale a CΊ^ζδR~^-^.

3.2. Les algebres g*^ (ΩΛ)

Considerons le sous espace ί7#^(Ω#) des functions u G C°°(Ωβ) telles que

3C > O V/3 G N p , D^M G G^ d (Ω Λ ) et ||£>£u||0 < C l / 3 | + 1 | ^ | ! s

Done u G 0 j ^ ( Ω Λ ) signifie que : 3C > 0; V/3 G 1NP, V<J G N 9 , Vx G WΛ,

(6) sup|I3fZ?ίti(x,y)| < C^^l^lVlίl^-'^'^ίί W)

On definit sur ί ? j ( Ω # ) Γapplication | | | . | par

Proposition 3.3. Muni de cette application, £7# ̂ (Ωβ) ^ ί wn̂  algebre de Banach.

Preuve.

a./ Pour Montrer que G^ΛΩR) est une algebre, on utilise la formule de Leibnitz

etle fait que

μ<β
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b./ Pour montrer que Γapplication |||.|| est une norme sur ^β'l(Ωβ), on utilise la
relation (6) et le fait que | |. | |0 est une norme.

c./ Pour montrer que | . | est une norme d'algebre, on utilise le fait que β\ >
(β — μ)lμl et les formules du produit de series.

d./ Montrons dans ce qui suit, que GR^ΩR) muni de cette norme est complet.

Soit (wn)n€JN u n e su* te ^ Cauchy dans C/|^(Ωβ), alors d'apres la definition de

|||.|||, pour tout β G 1NP la suite (D%un)n€fi est une suite de Cauchy dans G^ d (Ω β )

qui est complet, done pour tout β G (1NP)*, il existe Uβ G G^d(fi#) telle que:

liπi Dβun — UQ et lim un — v dans G?pd(Ωfl)
π->>oo n-> oo Λ

Pour terminer la preuve de la proposition 3.3, on demontre les lemmes qui vont suivre.

Lemme 3.1. Pour tout β G N p , D%υ = uβ.

Preuve. D'apres la proposition 3.2, pour tout β G N p Γoperateur D~β est con-

tinu de G£ d (Ω Λ ) dans G^ d (Ω Λ ), done

lim D~βDβ

xun = D~β(uβ) dans

Comme

\μ\<\β\

et lim D%un — Uβ dans G^d(Ω j R), de la definition de la norme ||. | |0 on deduit que:

Vμ, lim Cμx
μDξ-μun(Q,y) = Cμx

μuβ-μ(0,y) dans
n — >0

par suite

lim un = D~βuβ + 5 ^ Cμx
μUβ,-μ(Q,y)

*-^
\V\<\β\

et comme Km wn = v dans G^ d (Ω β ), de Γunicite de la limite on obtient
-

Cμx
μuβ-μ(Q,y)

M<\β\
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En appliquant Γoperateur D%, sachant que D% xμ = 0 pour tout \μ\ < \β\, on obtient

D%v = uβ

ce qui acheve la preuve du lemme 3.1. Π

Lemme 3.2. lim un = υ dans ^ i l ίΩβ) .
n — > +oo ' ς

Preuve. (un)n etant une suite de Cauchy dans GR^ΩR), alors

Vε > 0, 3Nε G IN; Vn, n1 > 7Vε, \\\un - un>\\ < ε

et comme pour tout β G 1NP Urn D%un — D@υ — Uβ dans Gp d (Ωβ), alors:
n — > +oo

Vε > 0, V/3 € ΊNP, 3ΛΓ0ιε > ΛΓε; Vn > Nβ,e, \\Dβ

xun - D0

xv\\0 < ε

Ainsi, pour ε > 0 et n > Nε,

n - Dxv\\0
Un β\s+l

μ'

e\s+1

V - ||£>gUn-J>gtiΛfg.,||θ

—

- 2
 A^ "βϋπ ^ 2 ε

ce qui acheve la preuve du lemme 3.2 et de la meme celle de la proposition 3.3. Π

3.3. Relations entre les espaces Qs ' d (Ω β ) et Q8^ (ΩΛ)

Lemme 3.3. Pour tout ζ e (JR+)q et tout u e ^ s ' d ( Ω β ) , ι7 ĵcw/β β 0 > 0 tel que

Preuve. Soit u G S β ' d (Ω Λ ) , done: 3C > 0; V/3 G N p , Vί G N 9 , Vx G ZYβ,
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En posant CO = (C + e2) et en remarquant que

et

on trouve

et pour .β' assez petit, pour que C2R' < inf ζ- , pour tout ξ G (1R1)P on a

Vx G WΛ/,
2/6Ω

d'oύ on deduit que: 3C > 0; V/3 G 1NP, VJ e N 9 , Vx G WΛ,

sup\DζDδ

yu(x,y)\ < CM+lβ\°\δ\ld-l

ce qui implique, d'apres (5), que D^u G G^d(Ωβ/) pour tout β G N p et que |

£Gs(nR>). α

Lemme 3.4. Pour 0 < R' < R on α :

Preuve. Soit u e α ^ d ( Ω Λ ) , d'apres (6) on a: 3C > 0; V/J € N p , V5 e N 9 ,

Vx € WΛ, sup \D% Dδ

yu(x, y)\ < C^^β^ζ^δ^D^φ^ξ \x\)
y€Ω

La fonction ψR etant analytique sur ] — R, R[, alors pour tout R' tel que 0 < R' < R,

il existe C > 0 telle que

V|ί| < Λ', \DkψR(t)\ < Ck+1kl

par suite

2/GΩ

d'oύ le lemme. D
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4. Preuve du Theoreme 2.1

En faisant le changement d'inconnue v = Dau, sachant que D~*u(x,y)\χ. _

= 0, le probleme (1) est equivalent a

(7) u(x,y) = f(x,y,DAu(x,y), ί \DAu(x,y)\*dy)
Jv,

oύ A est une partie finie de Γ ensemble

{(7,<S)€(-N)pxN«; | 7 | + d | ί | < 0 , et 7 φ 0}

Le developpement de Taylor d'ordre un nous donne

(8) f(x, y, z, τ) = /(z, y, 0, 0) + ] P zσFσ(x, y, z,τ)+Σ TσGσ(x, y, z, r)

et

/(x, y, z, r) = /(x, y, z1, r'} + )Γ (zσ - ^^)Fσ(x, y, z, 2/, r, r')

(9)
(τσ - τ;)Gf

σ(x, j/, z, z', r, τ')

oύ les fonctions F σ , G σ , F σ et G σ sont de classe Gevrey d'indice 5 par rapport a

x, d'indice d par rapport a y G Ω et d'indice s par rapport aux autres variables au

voisinage de Γorigine.

Proposition 4.1 ( [6] p.138, [12] p.136, [13] p.146). La composee de deux fonc-

tions de classe Gevrey d'indice s est une function de classe Gevrey d'indice s.

Corollaire 4.1. Pour tout a > 0, il existe une constante C > 0 telle que pour

toutes fonctions u et u' dans la boule /3(0,α) C ί/j^(Ωβ), pour tout a € N p et pour

tout (x,y) G Ωβ, on a les quatres inegalites suivantes:

Fσ(x,y,DAu(x,y), ί \DAu(x,y)\2dy)]
^ Jti J\

<

<D« \Gσ(x,y,D
Au(x,y), ί \DAu(xjy)\2dy]\\

I ^ Jn y j |

r r I

D°\Fσ(x,y,DAu(x,y),DΛu'(x,y), / \DAu(x,y)\2dy, / \DΛu'(x,y)\*dy)]\
L v Jίi JΩ

 / J I
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DZ [Gσ(x,y,DAu(x, y), DAu'(x, y), jf \DAu(x,y)\2dy, £ \DAu'(x,y)\2dy)] I

Preuve. f(x,y,z,τ) etant de classe Gevrey d'indice s < s, les inegalites de ce

corollaire sont une consequence directe de la proposition 4.1, et Γindependance de la

constante C par rapport aux fonctions u et u' provient du fait que (voir [2]) la derivee

Dχ[f(x,v(x))} de la fonction composee g(x) = f(x,υ(x)j est une combinaison

lineaire a coefficients constants par rapport a / et v de termes :

9βtΊtX(x) = [DZD^(x,y)}y=v(x}*l[D^vk(x)
k,P

oύ k parcourt Γensemble {!,..., r}, pour lesquelles 7^ > 0, p parcourt Γensemble des

valeurs 1, . . . , 7^, λ(k, p) est le multi-indice (λι(fc, p), . . . , λr(fc, p)) verifiant la relation

k,p

Tenant compte du fait que les derivees Dχ'p'vk(x) sont majorees en norme par une

fonction de α, on trouve le resultat. Π

REMARQUE 4.1. II est claire que les normes de ces fonctions dans G ^ d ( Ω β )

sont inferieures ou egales aux memes constantes respectives.

Proposition 4.2. Pour tout (7, δ) G (-1N)P x N g tel que \^\ + d\δ\ < 0, U existe

une constante CΊ^>ΰ telle que :

soίt lineaire continue et de norme infέrieure ou egale a CΊ^ξΊζδ

( C'est une consequence de la proposition 3.2.)

Posons

Cu = f(x,y,DAu(x,y), ί \DAu(x,y)\2dy]
JΏ.
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II est alors claire que la recherche des solutions de (1) revient a la recherche des points

fixes de Γapplication £, ce qui nous amene a essayer d'etablir que Γapplication C est

une contraction.

Proposition 4.3. Pour toute function f G <7β»d»δ»5(W x Ω x U\ x U^) et pour tout

ζ G. (fl+)ς fixe, il exίste RQ > 0 et α0 > 0 tels que: V R G]0, Λ0[, Vα > α0, 3£α G

3C G]0,1[, Vu,u1 G β(0, α), Ill/Λi — £t/ | | | < C\\\u — u'\\\

Preuve. 1 Soient ζ G (R+) ς et R > 0 tels que UR C U et soient α > 0

et u G β(0,α) C £ ^ ( Ω β ) . Pour tout σ = (7,5) G A on pose zσ = D^Dδu et

/" 7 <5 2

7 Ω
 x y

En utilisant la proposition 4.2 on obtient

IMo<ε(ONIo

l|τσl|o<ε(θlHI§
et pour tout β G N p on a:

Par ailleurs, en utilisant la formule de Leibnitz on obtient

/μ\ r

DχTσ~;^β^h(DΊχ "Dvu(x'y]](D*μ Ί°yu(χ^dy
et comme ||.||o est une norme d'algebre, a Γaide de la proposition 4.2 on obtient aussi

(Π)

Majorons dans ce qui suit la norme de Cu.

1 Toute function de ξ tendant vers 0 quand ξ tend vers Γinfini sera notee ε(ξ).



PROBLEMS DE GOURSAT 945

De (7) on a :

•ί
,/

JΩ
done

< Σ

+ΣΣ β\s+l

ΣQ<

Du corollaire 4.1 et de sa remarque on deduit que:

ιι s Σ

<β μ\(β-μ)\

et comme V ^ . ' , - CepC et β\ > μ\(β - μ)\ pour tout μ < β, a Γaide des
/ ^ L/.

p ^ '
majorations (10) et (11) on trouve
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Σ Σ

done

IIMI <

et en utilisant Γ expression du produit des series on obtient

Par suite |||£ι&||| < α pourvu que:

ce qui est vrai pour a > CepC et ξ assez grand.

Montrons la deuxieme partie de la proposition 4.3.

Pour u et u' dans β(0, α), en utilisant (9), le corollaire 4.1 et les inegalites (10) et (11)

on obtient

Σ Σ
done:

< C " e p C " 5(0 !!(«-• IK III)
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d'oύ on deduit que Γapplication C est une contraction stricte dans la boule fermee
β(0, α) des que :

CardA.C'epC'ε(ξ)(l + 2a)<l

ce qui acheve la demonstration de la deuxieme partie de la proposition 4.3 . Π

Suite de la preuve du theoreme 2.1.

Le theoreme du point fixe assure Γexistence de la solution de Γequation (7) dans

£β',t(Ωfl)> d o n c d a n s £ M ( Ω β ' ) d'apres le lemme 3.4.

Pour Γunicite dans £ s ' d ( Ω β ) , si on suppose qu'on a deux solutions u et u' G Qs'd(ΩR)

alors d'apres le lemme 3.3, il existe RQ tel que pour R < RQ\ u et u1 sont dans

£/fl^(Ω#) et on choisit R suffisament petit de telle sorte que u et u' soient deux points

fixes de Γapplication contractante C dans une boule fermee de ̂ ' ^ ( Ω β ) , done u = u'.
D
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