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1. Introduction

Reprenant les résultats de plusieurs mathématiciens, notament ceux de Lednev [11],
C. Wagschal [15] a donné une nouvelle démonstration de 1’existence et de 1’unicité de
la solution du probléme de Goursat non linéaire dans differents espaces de fonctions,
(holomorphes ou holomorphes par rapport aux variables normales et de classe Gevrey
par rapport aux autres). Dans sa méthode, il applique des opérateurs de Gevrey a
certaines séries majorantes, qui majorent leurs carrés, pour définir certaines algebres de
Banach ou le probleme est réduit a la recheche du point fixe d’une certaine application.
Reprenant un probléme posé par J. L. Lions [14], D. Gourdin et le deuxieme auteur [7]
étendent les résultats de [15] au probleme de Goursat pour des équations de Kirchhoff
généralisées du type

D2u(@,y) = f(2,0. D%u(zp), [ [DPula,y)dy)

Ces équations généralisent les équations de Carrier-Kirchhoff ([1], [9]), modelisant les
déplacements d’une corde élastique vibrante, qui sont du type

Oou N
|£(3,t)| ds)@ =0

v Py E [F
- _ (_ + —
ot? p.-h  2Lp /o

ol L est la longueur de la corde, u(z,t) est le déplacement vertical du point z a
I'instant ¢, p la densité de la matieére, h 1’aire de la section de la corde, P, la tension
initiale de la corde et E' le module de Young de la matiere (voir [5]).

Le but de notre travail est I’étude du probleme de Goursat associé a la famille
d’équations utilisée dans [7]. On établit I’existence et 1’unicité de la solution dans les
espaces de fonctions de classe Gevrey, avec des indices différents pour les variables
normales et les variables co-normales suivant la terminologie de [11] et [7]. A ’aide
des espaces G%d(ﬂ r) introduits dans [15], on définit des algebres de Banach, dont la
construction des normes est inspirée des définitions des quasi-normes introduites dans
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les travaux de J. Leray et L. Waelbroek [13] et J. Leray et Y. Ohya [12], et nous
réduisons alors notre probléme 2 la recherche des points fixes d’une certaine application
qu’on construit.

Dans [4], A. Friedman étudie le probleme dans une classe de fonctions analytiques
réelles qui coincide avec la classe des fonctions de classe Gevrey d’indice un; notre tra-
vail est alors une généralisation de ces résultats au cas des fonctions de classe Gevrey,
et signalons enfin que nos résultats étendent aussi ceux de K. Kajitani [8] qui, pour
des systemes de Leray-Volevich, a établi 1’existence et I'unicité locale, par rapport a
toutes les variables, de la solution du probléme dans les espaces de fonctions de classe
Gevrey avec un méme indice. De méme, ces résultats peuvent aussi étre pris comme
des améliorations des exemples donnés par P. Duchateau dans [3], ou son étude est
faite dans des échelles de Banach abstraites.

2. Définitions-Résultats

Soient p, ¢ € IN*. Les points génériques de IR? et de IR? sont respectivement notés
= (z1,...,%p) et y = (y1,...,yp) et pour une fonction continue u(z,y), D;'u
désigne la primitive de u par rapport a x; s’annulant avec x;.

Soient o un multi-indice et B une partie finie de 1’ensemble

{(,0) €ZP x N9, ||+ 6] <|a| et v<a}
ol |a| désigne la longueur de « et v < « si pour tout i, v; < a; et v # a. On notera

r le cardinal de B, d = inf {s > 1; |y| + s|6] < |a|} et Q un voisinage ouvert borné
de I’origine de IR?. On considére le probléme de Goursat

" {D:u(z,y) = #(z.D%u(e.0), [ IDPu@,)ld)
uey) = 06

ou DBu(z,y) = (Dngu) (v,0)€B’

Pour tout ouvert ¢ x 2 de R} x R, on note C% (U x Q) I’algebre des fonctions
u: U x @ — R admettant des dérivées partielles continues

Diu:UxQ— R, V5eN

G%(U x Q) (voir [15] et [7]) désigne I’algebre des fonctions u € CO® (U x Q) telles
que :

@) 3C>0; V6N, Vo €U, sup|Diu(z,y)| < Cl¥IH161
yeN
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Etant donné un nombre s> 1, on notera G*4(UxQ) I’espace des fonctions u e C>® (U x
Q) telle que : 3C > 0; V6 € N?, VB € INP, Vz € U,

3) sup | Df Dyu(z, y)| < CIPIHIOI+1 gre s
yeQ

Pour U; et U, des voisinages ouverts de R" et s, d et 5 € Ry, G553 (U x QxUy xUsy)
désigne I’ensemble des fonctions f € C®°(U x Q x Uy x Us) telles que:
AC>0; VyeINP, VBe NI, Ve, § e N", V(z,2,7) €U x Uy X Uz,

) sup |[D}DEDEDS f(z,y,z,7)| < CMIFIBIFIHII+1 18 g1d 13 515
YyeEN

En d’autres termes G*%%3(Vx Q) est I’espace des fonctions de classe Gevrey d’indice s
par rapport a x, d’indice d par rapport a y et d’indice 5 par rapport aux autres variables.

Théoréme 2.1. Pour tout 5 < s et pour toute fonction f € GSH33(U x Q x Uy x
Uy), le probleme de Goursat (1) admet une solution de classe G>*(U' x Q) unique au
voisinage de I’origine de RP.

Avant de démontrer ce théoreme nous allons introduire de nouvelles algebres de
Banach qu’on construira a I’aide des algebres Go’d, définies dans [15] et utilisées dans
[7], en nous inspirant de la construction des semi-normes de [12].

3. Résultats préliminaires

3.1. Les espaces G%;d(ﬂ r) [15]

Soient ¢ € (R})P, ¢ € (RY)? et R > 0, on note

p
QR:quﬂz{erR”, §-|x|:Z§i]xi|§R}xQ

=0

t o "
_ -1 N _ ot .
et on pose pg(t) = K 9(1—{), ou 0(t) = nEZO CFSE est la fonction de Lax [10] et
K une constante positive pour laquelle on a §2 < K6 au sens des séries majorantes.

DEFINITION 3.1.  On note G%d(ﬂ r) 1’espace des fonctions u € C%*°(Qp) telles
que pour une constante C' > 0,

()  WEN', Voel, sup |DSu(z, )| < CC°l8|* DPlpg(€ - |z).
ye
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Si on prend ||ullo la borne inférieure des constantes C' > 0 vérifiant (5), alors
G%%(r) muni de la norme ||.|| = ||.||o est une algebre de Banach et on a les propriétés

suivantes.

Proposition 3.1 ([7], [15]).

ePour tout ¢ € (R%)9 et tout u € GY%(QR), il existe Ry > 0 telle que:
+ ,

VR’ €]0, Ro), V€ € (R%)?, u € GR (Qr).
ePour tout 0 < R' < R, G%*(r) C G4 (Qp).

Proposition 3.2 ([15]). Pour tout (v,8) € (—IN)P x IN? tel que |y| + d|d6| <0,
il existe une constante C.y 5 > 0 telle que I'opérateur D) DS est continu de G%d(ﬂ R)
dans G(I)id(QR) et de norme inférieure ou égale a C., s€7¢SR1-191,
3.2. Les algebres g;j‘é (Qr)
Considérons le sous espace g;ji& (Qg) des fonctions u € C*°(QR) telles que
30 >0;¥8 € NP, DPueG%%QR) et ||DPullo < O+ )8

Donc u € QZZ(QR) signifie que : 3C > 0; VB € NP, V§ € INY, Vx € U,

©) sup |Df Dyu(z, y)| < CVPIHB]1°¢° |61~ D¥lpp (& - |2)
yeN

On définit sur QEZ(QR) Iapplication ||.|| par

|DZullo
Yu € QE%(QR), Nl = Z ﬂli-H
peN”

Proposition 3.3. Muni de cette application, Q;Z(Q R) est une algébre de Banach.

Preuve.
a./ Pour Montrer que Q;é(ﬂ r) est une algebre, on utilise la formule de Leibnitz

i
et le fait que Z (ﬂ) < 28,
u<p
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b./ Pour montrer que I’application ||.|| est une norme sur g}si’é(Q r), on utilise la
relation (6) et le fait que ||.||o est une norme.

c./ Pour montrer que ||.|| est une norme d’algebre, on utilise le fait que B! >
(B — p)'u! et les formules du produit de séries.

d./ Montrons dans ce qui suit, que g;i(ﬂ r) muni de cette norme est complet.

Soit (us), N une suite de Cauchy dans g;’é(ﬂ r), alors d’aprés la définition de
II-ll, pour tout 3 € IN? la suite (Dfun)neN est une suite de Cauchy dans G%d(QR)
qui est complet, donc pour tout 5 € (IN?)*, il existe ug € G%d(QR) telle que:

. . 0,d
JLT?;LODQU,I =ug et nlgngoun =v dans GR°(QR)

Pour terminer la preuve de la proposition 3.3, on démontre les lemmes qui vont suivre.
Lemme 3.1. Pour tout 3 € NP, DBy = ug.

Preuve. D’aprés la proposition 3.2, pour tout 3 € IN? I’opérateur D est con-
tinu de G%’d(QR) dans G%’d(QR), donc

lim D;°DPu, = D;%(ug) dans G%*(QR)

n—o00

Comme

D% (DBun(,y)) = un(z,¥) = ¥ Culy)z*DE ™ u,(0,)
lul <18l

et lim DPu, = ug dans G%d(QR), de la définition de la norme ||.||o on déduit que:
n—o0

Y u, limOC“:c"Df"‘un(O,y) = C,z*ug-,(0,y) dans G%’d(QR)
n—
par suite

lim un = D;Pug + Y Cuzup_u(0,9)
|nl<|B|

et comme lim u, = v dans G%d(Q r), de I'unicité de la limite on obtient
n—oo

v = D;BUB + Z Cu.’L'”Uﬂ_M(O, y)
[ul<|Bl
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En appliquant 1’opérateur D?, sachant que D?z* = 0 pour tout |u| < |3, on obtient
Df v =1ug

ce qui achéve la preuve du lemme 3.1. ]

. _ s,d
Lemme 3.2. nﬂ)m+oo Uy, = v dans gRé(QR).
Preuve. (uy)n étant une suite de Cauchy dans g;g(Q R), alors

Ve >0, 3N, € N; Vn, n’ > N¢y  lup —un || <€
. 0,d .
et comme pour tout 3 € IN? nﬁnioo DPu, = DBy = ug dans G*(Qr), alors:
Ve >0, VB € NP, INg. > N.; Vn > Ng, |DPu, —DPolo<e

Ainsi, pour € > 0 et n > N,

Z “Dfun - DQUHO

llun —oll = grT

BeIN? ’
_ HDgun - DguNﬁ,e + DguNﬁ,s - DgU”O

peIN?
> | D, — DBun, ,llo N |D2un,, — DEvljo
- N ﬂ!s+1 ﬂ!s-}—l

seIN®

€ 1
< 2 Z Bls+1 — 2 Z Bls+1
peIN? BeIN®

ce qui acheve la preuve du lemme 3.2 et de la méme celle de la proposition 3.3. [

3.3. Relations entre les espaces G*¢(Q2R) et gfé’i (Qr)

Lemme 3.3. Pour tout { € (R*.)? et tout u € G>4(QR), il existe Ry > 0 tel que

0< R <Ry=>u€gy(Qm), VEe(RLP.

Preuve. Soit u € G%¢(Qg), donc: 3C > 0; VB € INP, V6 € INY, Vz € Up,

sup |DE Du(z,y)| < CIAIFIOIFL g1s|5)1d
Yy
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En posant Cy = (C + €2) et en remarquant que

18]
(Co)B1+1 161 > (C°)6+1|5“d)(l(l)|5|( [! )

~ DPlpp(¢-|z[) \K \R/ (1+4])?
et
(Co)lPHt > (1 4 4])2
on trouve
(Co)li+1|s)1e 2 o\ [8] (2 d-1
m < (GyR)°H(CHK)|6]!

et pour R’ assez petit, pour que C?R’ < . éng ¢;» pour tout £ € (R%)? on a
<i<q
¥z €U, sup|DZDju(z,y)] < GBI (CEK) Do (€ - [2)
Yy

d’ol on déduit que: 3C > 0;V(3 € INP, V§ € IN?, Vx € Up,

sup | DS DSu(z,y)| < C1PH1 81515141 ¢P DIl (¢ - |])
yeN

ce qui implique, d’aprés (5), que D%u € G%*(Qg/) pour tout B € IN? et que || DBul|o <
CPIB1e, donc u € G (QUmy). O

Lemme34. Pour O< R <Rona:

G54 (Qr) C G (Qr/)

Preuve. Soit u € Q;é(QR), d’aprés (6) on a: 3C > 0; VB € IN?, V§ € INY,

Vz € Up, sup|DEDSu(z,y)| < CIPHBIC0|5)1" 1 DIlpR (€ - |z|)
yeN

La fonction @R étant analytique sur | — R, R, alors pour tout R’ tel que 0 < R’ < R,
il existe C' > 0 telle que

V|t| < R/, |D*pg(t)| < C**k!
par suite
Vz € Ug, sup|Dju(z,y)| < CPI+![5|¢
yeQ

d’ou le lemme. O
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4. Preuve du Théoréme 2.1

En faisant le changement d’inconnue v = D®u, sachant que D 'u(z, y)l z; =0
= 0, le probleme (1) est équivalent &

) we,) = f@,, Do), [ 1DM o))
oll A est une partie finie de I’ensemble

{(v,6) € (-IN)? x N% |y +d|6] <0, ety+#0}
Le developpement de Taylor d’ordre un nous donne

®)  f@y,27)=f(2,4,0,00+ Y 2Fo(z,4,2,7) + Y 75Go(x,y,2,7)

oc€EB oc€B
et
F@unt) = f@u )+ 3 (o — ) Fal@,y, 2,7, )
(9) oc€EB
+Z - 1)Go(z,y,2,2',7,7")
oc€EB

o les fonctions F,, G,, F, et G, sont de classe Gevrey d’indice s par rapport a
z, d’indice d par rapport 2 y € Q2 et d’indice § par rapport aux autres variables au
voisinage de I’origine.

Proposition 4.1 ( [6] p.138, [12] p.136, [13] p.146).  La composée de deux fonc-
tions de classe Gevrey d’indice s est une fonction de classe Gevrey d’indice s.

Corollaire 4.1.  Pour tout a > 0, il existe une constante C > 0 telle que pour

toutes fonctions u et v’ dans la boule B(0,a) C g;‘é(QR), pour tout o € INP et pour
tout (z,y) € Qr, on a les quatres inégalités suivantes:

Dz [Py (2. (o), [ ID*ute)Pay) || < ot
L Q

Dz 6o (2.0 D4utan), [ ID*ulai)ay) || < clar
L Q

D2 [Fy (2., D%u(a,), D ), [ 10%ute)Pay, [ D4 )|
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< C]a|+1a!s

D [Go (=9, D*ulw, ), DM (z0), [ 1D ulz Py, [ |DAu'<z,y>|2dy)”
Q
_<_Cla'+10é!s

Preuve. f(z,y,z,7) étant de classe Gevrey d’indice 5 < s, les inégalités de ce
corollaire sont une conséquence directe de la proposition 4.1, et I’indépendance de la
constante C par rapport aux fonctions u et v’ provient du fait que (voir [2]) la dérivée

D(f (x,v(x))] de la fonction composée g(z) = f (z,v(x)) est une combinaison
linéaire a coefficients constants par rapport a f et v de termes :

gBA(T) = [DfDZf(z,y)]yzv(z) T D2 *Pluy ()
k.p

ol k parcourt ’ensemble {1,...,r}, pour lesquelles v > 0, p parcourt I’ensemble des
valeurs 1,. .., vk, A(k, p) est le multi-indice (A (k, p), ..., A-(k, p)) vérifiant la relation

ﬂ+Z)\(k,p):a.

k,p

Tenant compte du fait que les dérivées D) (ke )vk (z) sont majorées en norme par une
fonction de a, on trouve le résultat. ]

REMARQUE 4.1. 1l est claire que les normes de ces fonctions dans G(I)%d(QR)
sont inférieures ou égales aux mémes constantes respectives.

Proposition 4.2.  Pour tout (v,8) € (—IN)P x IN? tel que |y|+d|d]| <0, il existe
une constante C., 5 > 0 telle que :

5 . ns,d s,d
DIDy : G e(Qr) — Gg¢(Qr)
soit linéaire continue et de norme inférieure ou égale a C%J{VC‘sR_M_ML
( C’est une conséquence de la proposition 3.2.)

Posons

Lu = f(w,y,DAU(w,y),/QIDAU(SU,ydey)
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11 est alors claire que la recherche des solutions de (1) revient a la recherche des points
fixes de 1’application £, ce qui nous ameéne a essayer d’établir que 1’application £ est
une contraction.

Proposition 4.3.  Pour toute fonction f € G>%%3(U x Q x Uy x Us) et pour tout
¢ € (R%)? fixé, il existe Ry > 0 et ag > 0 tels que: ¥ R €]0, Ro[, Ya > ag, 3¢, €
(RY)P; V€ > &,

L(B(0,a)) C B(0,a) C G5%(Qm)

et

3C €)0,1[, Yu,u' € B(0,a), |||Cu— Ld||| < COl|lu— ||

Preuve. ! Soient ( € (R})? et R > 0 tels que Ur C U et soient a > 0
et u € B(0,a) C g;’j‘é(QR). Pour tout o = (,8) € A on pose 2z, = DgDzu et

= / DY D2u(z, y)|dy.
Q

En utilisant la proposition 4.2 on obtient

lzollo < &(€)llullo

7o llo < e(@)llullg

et pour tout 3 € IN? on a:
(10) 122 l0 < e(©)II DZullo

Par ailleurs, en utilisant la formule de Leibnitz on obtient

D27, = Y (i) [ (D2 Dfute, 1)) (D2 Dju(z, )iy
rw<pB @

et comme ||.||o est une norme d’algebre, a I’aide de la proposition 4.2 on obtient aussi

m

(1) 1D2 7,0 SE(ﬁ)Z (ﬂ

u<p

)ID%ullo (DS ull

Majorons dans ce qui suit la norme de Lu.

1Toute fonction de ¢ tendant vers 0 quand £ tend vers I'infini sera notée &(£).
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De (7)ona:

NLulll < l1f(2,5,0,0)]]]
+|H Z 2o Fy(z,y, D;ZDzu(ac,y),/Q [D;’Dgu(a:,y)l2dy)H|
oc€EA

‘*"H Z 76Go(T,Y, DlDzu(.’c, y),/QIDgDzu(x, y)|2dy)m
oc€EA

donc

el < 7 o2 (;!ﬁ’lo’o)HO

pgeIN?
|3 () P22) (D2 #Futo 0, 0%, [ 104tz )P))|
+Z Z = Bls+1 - :

o€A geIN?
1> (ﬁ)(D“Ta)(Dﬁ 4G, (z,y, DPu /|DAu(x )P)|,
-I-Z Z = Bls+1

o€EA ﬁE]NP

Du corollaire 4.1 et de sa remarque on déduit que:

Z CIAlI+1g1s

T BIs+1
BeIN® A
! D2, C'IE—qu(ﬂ_ I
+Za€A Zﬁe]N” Zuﬁﬂ m(é’_“)! || D% z0]0 e ©)

WLull] <

Bl |IDE7,||oC"EHIF (B — ple
XYY o

o€A geN” u<p

Clﬂl+15v8 o e
et comme Z = CeP” et B! > pl(B — p)! pour tout < 3, a Iaide des

|s+1
geIN”?
majorations (10) et (11) on trouve
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DHul|o C'1B—ul+1
Cull| < Ce© + 57 € 57 R-11-19 I
lllCulll < Ce ; S6C°R ZPZ P e
4 BeIN? u<B
= () D2l 1102l 1
+3° 3 [ (€567 R ) § 1S - crlo—ul+
plst (B —p)!

ogEA ﬂe]Np n<p
donc

D# C'1B—pl+1
Lull] < CePC+ZS(§) Z Z I Hﬂlo .
cEA BeIN? u<p 22 w)!

(| Dwl| ||Du nullo C1B-kI+1

+ Z 5(6 Z Z n|s+1 9 ﬂ 77)!5+01 (IB /J,)

g€EA seIN? n<u<B

et en utilisant ’expression du produit des séries on obtient

[[1£ull| < Ce*® + 0" Y~ e(@)llull + C'e”" Y e(€)llull®

oc€EA o€EA

Par suite |||Lu||| < a pourvu que:

CePC + C'erC’ Z e(€)a+ C'e?® Z e€)a’*<a

o€EB o€EB

ce qui est vrai pour @ > CePC et ¢ assez grand.

Montrons la deuxi¢me partie de la proposition 4.3.
Pour u et «’ dans B(0, a), en utilisant (9), le corollaire 4.1 et les inégalités (10) et (11)
on obtient

ﬁ —Uu
leu— cull| < Crer® S ee) 3 IR2Ce—Wllo

ls—i—l
oEA ﬁele A

’ D - Dﬂ DBy
roocue) o 3 12l 5o el bevil)
oc€EA seIN? seIN?

donc:

llCu — L'l < C'er [Z @M~ + D e@lw — o)l (lull + IIIU’III)}

ogEA ocEA
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d’oli on déduit que I’application £ est une contraction stricte dans la boule fermée
B(0,a) dés que :

CardA.C'e"° e(£)(1+ 2a) < 1

ce qui achéve la démonstration de la deuxiéme partie de la proposition 4.3 . ]

Suite de la preuve du théoreme 2.1.

Le théoréme du point fixe assure 1’existence de la solution de 1’équation (7) dans
g;gic(QR), donc dans G*4(Qp/) d’apres le lemme 3.4.

Pour Iunicité dans G*%(Qg), si on suppose qu’on a deux solutions u et u’ € G*%(QR)
alors d’apres le lemme 3.3, il existe Ry tel que pour R < Ry; u et u’' sont dans
g;j’é(Q r) et on choisit R suffisament petit de telle sorte que u et u' soient deux points
fixes de I’application contractante £ dans une boule fermée de QEZ(Q Rr), donc u = u'.

0
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