

Title	A decomposition of the space M of Riemannian metrics on a manifold
Author(s)	Koiso, Norihito
Citation	Osaka Journal of Mathematics. 1979, 16(2), p. 423–429
Version Type	VoR
URL	https://doi.org/10.18910/11044
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Koiso, N. Osaka J. Math. 16 (1979), 423-429

A DECOMPOSITION OF THE SPACE *M* OF RIEMANNIAN METRICS ON A MANIFOLD

NORIHITO KOISO

(Received March 6, 1978)

0. Introduction

Let M be a compact C^{∞} -manifold. We denote by \mathcal{M}, \mathcal{D} and \mathcal{F} the space of all riemannian metrics on M, the diffeomorphism group of M, and the space of all positive functions on M, respectively. Then the group \mathcal{D} and \mathcal{F} acts on \mathcal{M} by pull back and multiplication, respectively. D. Ebin and N. Koiso establish Slice theorem [4, Theorem 2.2] on the action of \mathcal{D} .

In this paper, we shall give a decomposition theorem on the action of \mathcal{F} (Theorem 2.5). That is, there is a local diffeomorphism from $\mathcal{F} \times \overline{C}$ into \mathcal{M} where \overline{C} is a subspace of \mathcal{M} of riemannian metrics with volume 1 and of constant scalar curvature τ_g such that $\tau_g=0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Combining the above theorems, we get the following decomposition of a deformation (Corollary 2.9). Let $g \in \overline{C}$ and g(t) be a deformation of g. Then there are a curve f(t) in \mathcal{F} , a curve $\gamma(t)$ in \mathcal{D} and a curve $\overline{g}(t)$ in \overline{C} such that $\delta \overline{g}'(0)=0$, which satisfy the equation $g(t)=f(t)\gamma(t)^*\overline{g}(t)$. (For the operator δ , see 1.)

The author wishes to express his thanks to the referee.

1. Preliminaries

First, we introduce notation and definitions which will be used throughout this paper. Let M be an *n*-dimensional, connected and compact C^{∞} -manifold, and we always assmue $n \ge 2$. For a vector bundle T over M, we denote by H'(T)the space of all H'-sections, where H' means an object which has derivatives defined almost everywhere up to order r and such that each partial derivative is square integrable. Then H'(T) is isomorphic to a Hilbert space and the space $C^{\infty}(T)$ of all C^{∞} -sections becomes an inverse limit of $\{H'(T)\}_{r=1,2,\cdots}$. Therefore such a space is said to be an ILH-space. If a topological space \mathfrak{X} is isomorphic to an ILH-space locally, \mathfrak{X} is said to be an ILH-manifold. For details, see [5]. Let g be an H^s -metric on M. We consider the riemannian connection and use the following notations:

 v_g ; the volume element with respect to g,

R; the curvature tensor,

 ρ ; the Ricci tensor,

(For the standard sphere with orthnormal basis, $R_{121}^2 = R_{1212} < 0$ and $\rho_{11} < 0$.) τ ; the scalar curvature,

(,); the inner product in fibres of a tensor bundle defined by g,

< , >; the global inner product for sections of a tensor bundle over M, i.e., < , >= \int_{U} (,) v_{g} ,

 S^2 ; the symmetric covariant 2-tensor bundle over M,

H'(M); the Hilbert space of all H'-functions,

 $H_{g}^{r}(M)$; the Hilbert space of all H^r-functions f such that $\int_{M} f v_{g} = 0$,

 $H_{\mathfrak{g}}^{r}(S^{2})$; the Hilbert space of all symmetric bilinear H^{r} -forms h such that $\langle h,g \rangle = 0$,

 ∇ ; the covariant derivation,

δ; the formal adjoint of ∇ with respect to \langle , \rangle ,

 δ^* ; the formal adjoint of $\delta | H'(S^2)$,

 $\Delta = \delta d$; the Laplacian operating on the space H'(M),

 $\overline{\Delta} = \delta \nabla$; the rough Laplacian operating on the space $H^r(T_q^p)$,

Hess = ∇d ; the Hessian on the space $H^{r}(M)$,

 \mathcal{F} ; the ILH-manifold of all positive C^{∞} -functions on M,

 \mathcal{F} ; the Hilbert manifold of all positive H'-functions on M,

 \mathcal{M} ; the ILH-manifold of all C^{∞} -metrics on M,

 \mathcal{M}^r ; the Hilbert manifold of all H^r -metrics on M,

 \mathcal{M}_1 ; the ILH-manifold of all C^{∞} -metrics with volume 1,

 \mathcal{M}'_1 ; the Hilbert manifold of all H'-metrics with volume 1.

When we consider the metric space \mathcal{M}^s , the covariant derivation, the curvature tensor and the Ricci tensor with respect to an element g of \mathcal{M}^s will be denoted by ∇_g , R_g or ρ_g . By a deformation of g we mean a C^{∞} -curve $g(t): I \to \mathcal{M}$ such that g(0)=g, where I is an open interval. The differential g'(0) is called an infinitesimal deformation, or simply an *i*-deformation. If there is a 1-parameter family $\gamma(t)$ of diffeomorphisms such that $g(t)=\gamma(t)*g$ then the deformation g(t) is said to be trival. If there is a 1-form ξ such that $h=\delta^*\xi$, then the i-deformation h is said to be trival. On the other hand, an i-deformation h is said to be essential if $\delta h=0$.

Now, we give some fundamental propositions.

Lemma 1.1 [6,11.3]. Let E and F be vector bundles over M and $f: E \to F$ be a fiber preserving C^{∞} -map. If $s > \frac{n}{2}$, then the map $\phi: H^{s}(E) \to H^{s}(F)$ which is defined by $\phi(\alpha) = f \circ \alpha$ is C^{∞} .

Proposition 1.2. If $s > \frac{n}{2}$, then the map $D: \mathcal{M}^{s+1} \times H^{s+1}(T_q^p) \to H^s(T_{q+1}^p)$ which is defined by $D(g, \xi) = \nabla_g \xi$ is C^{∞} .

Proof. Let g_0 be a fixed C^{∞} -metric on M. We define the tensor field T(g) by $T(g)(X, Y) = (\nabla_g)_X Y - (\nabla_{g_0})_X Y$ for an H^s -metric g on M. Then we get

$$(T(g))_{ij}^{k} = \frac{1}{2} g^{kl} \{ (\nabla_{g_0})_i g_{lj} + (\nabla_{g_0})_j g_{li} - (\nabla_{g_0})_l g_{ij} \},$$

and

$$(D(g,\xi))^{i_1\cdots i_p}{}_{j_0\cdots j_q} - (D(g_0,\xi))^{i_1\cdots i_p}{}_{j_0\cdots j_q} \\ = -\sum_{a=1}^k (T(g))^l{}_{j_0j_a} \xi^{i_1\cdots i_p}{}_{j_1\cdots j_{a-1}lj_{a+1}\cdots j_q} \\ + \sum_{b=1}^p (T(g))^{i_b}{}_{j_0k} \xi^{i_1\cdots i_{b-1}ki_{b+1}\cdots i_p}{}_{j_1\cdots j_q}.$$

By the definition of the H^{s} -topology, we know that the map $: g \to (\nabla_{g_0})g$ is a C^{∞} -map from \mathcal{M}^{s+1} to $H^{s}(T_3^0)$. Hence Lemma 1.1 implies that the map: $g \to T(g)$ is a C^{∞} -map from \mathcal{M}^{s+1} to $H^{s}(T_2^1)$. Applying Lemma 1.1 to the above formula, we see that the map $: (T(g), \xi) \to D(g, \xi) - D(g_0, \xi)$ is a C^{∞} -map from $H^{s}(T_2^1) \times H^{s+1}(T_q^p)$ to $H^{s}(T_{q+1}^p)$. But the map $: \xi \to D(g_0, \xi)$ is a continuous linear map from $H^{s+1}(T_q^p)$ to $H^{s}(T_{q+1}^p)$, hence the map $: (T(g), \xi) \to D(g, \xi) \to D(g, \xi)$ is C^{∞} . Thus we see that the map D is a composition of C^{∞} -maps, and so is C^{∞} .

Corollary 1.3. If $s > \frac{n}{2}$, then the map $: (g, f) \to \nabla_g f$ is a C^{∞} -map from $\mathcal{M}^{s+1} \times H^{s+2}(M)$ to $H^s(M)$.

Proof. We apply Proposition 1.2 to the formula ; $\Delta_g f = -g^{ij} \nabla_i d_j f$.

Corollary 1.4. If $s > \frac{n}{2}$, then the maps : $g \rightarrow R$, ρ , τ are C^{∞} -maps from \mathcal{M}^{s+2} to $H^{s}(T_{3}^{1})$, $H^{s}(S^{2})$ and $H^{s}(M)$, respectively.

Proof. The smoothness of the map : $g \rightarrow R$ completes the proof. By easy computation, we get the next formula :

$$R(g)_{ijk}{}^{l} - R(g_{0})_{ijk}{}^{l} = (\nabla_{g_{0}})_{i}(T(g))^{l}{}_{jk} - (\nabla_{g_{0}})_{j}(T(g))^{l}{}_{ik} + (T(g))^{l}{}_{im}(T(g))^{m}{}_{jk} - (T(g))^{l}{}_{jm}(T(g))^{m}{}_{ik} + (T(g))^{l}{}_{im}(T(g))^{m}{}_{ik} + (T(g))^{l}{}_{im}(T(g))^{l}{}_{im}(T(g))^{m}{}_{ik} + (T(g))^{l}{}_{im}(T(g))^{l}{}_{im}(T(g))^{m}{}_{ik} + (T(g))^{l}{}_{im}(T(g))^{l}{}$$

Thus, applying Proposition 1.2, we see that the map $: g \rightarrow R$ is C^{∞} .

Lemma 1.5 [9,(19.5); 1,(2.11) (2.12)]. Let g(t) be a deformation of g. If we set h=g'(0), then we have the following formulae;

$$\frac{d}{dt}|_{0}\tau_{g(t)} = \Delta \mathrm{tr} \, h + \delta \delta h - (h, \, \rho) \,, \tag{1.5.1}$$

$$\frac{d}{dt}|_{0}\rho_{g(t)} = \frac{1}{2} \{\overline{\Delta}h + 2Qh + 2Lh - 2\delta^{*}\delta h - \text{Hess tr } h,\}$$
(1.5.2)
where $2(Qh)_{ij} = \rho_{i}^{k}h_{kj} + \rho_{j}^{k}h_{ik}$ and $(Lh)_{ij} = R_{ikjl}h^{kl}$.

2. A decomposition of the space \mathcal{M}

We denote by C' the space of all H'-metrics with constant scalar curvature and with volume 1. Fix a C^{∞} -metric $g_0 \in \mathcal{M}_1$. For an integer $r > \frac{n}{2} + 4$ and $g \in \mathcal{M}_1'$, we define a C^{∞} -map

$$\sigma_g^r: H^r_{g_0}(M) \to H^{r-4}_{g_0}(M)$$

by $\sigma_{\mathfrak{s}}^{r}(f) = (n-1)(\Delta_{\mathfrak{s}})^{2}f - \tau_{\mathfrak{s}}\Delta_{\mathfrak{s}}f - \int \{(n-1)(\Delta_{\mathfrak{s}})^{2}f - \tau_{\mathfrak{s}}\Delta_{\mathfrak{s}}f\}v_{\mathfrak{s}_{0}}$. In fact the map: $(g,f) \rightarrow \sigma_{\mathfrak{s}}^{r}(f)$ is a C^{∞} -map from $\mathcal{M}_{1}^{r} \times H_{\mathfrak{s}_{0}}^{r}(M)$ to $H_{\mathfrak{s}_{0}}^{r-4}(M)$ owing to Corollary 1.3 and Corollary 1.4. First we show some lemmas.

Lemma 2.1. If we denote by K' the subset of \mathcal{M}_1^r of all metrics $g \in \mathcal{M}_1^r$ such that σ_g^r is an isomorphism, then K' is open in \mathcal{M}_1^r .

Proof. The map : $g \to \sigma_g^r$ is a C^{∞} -map from \mathcal{M}_1^r to the space $L(H'_{g_0}(M), H'_{g_0}^{-4}(M))$ of all continuous linear maps from $H'_{g_0}(M)$ to $H'_{g_0}^{-4}(M)$. On the other hand the set of all isomorphisms is open in $L(H'_{g_0}(M), H'_{g_0}^{-4}(M))$, hence K' is open \mathcal{M}_1^r .

Lemma 2.2. Let \overline{C} be the subset of \mathcal{M} of all metrics g with constant scalar curvature τ_g such that $\tau_g=0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Then $C^r \cap \mathcal{M} = \overline{C}$.

Proof. Let $g \in \overline{C}$. Then $g \in C' \cap \mathcal{M}$, and so it is sufficient to prove that $g \in K'$. If $f \in \text{Ker } \sigma'_g$ then $(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f$ is a constant. By integration we see

$$(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f = 0$$
.

But here $\tau_g = 0$ or τ_g is not an eigenvalue of Δ_g . Hence $\Delta_g f$ is a constant, and so the assumption that $f \in H_{g_0}^r(M)$ implies f=0. Thus we see σ'_g is injective. On the other hand $\operatorname{Im} \{(n-1)(\Delta_g)^2 - \tau_g \Delta_g\} = H_g^{r-4}(M)$ implies σ'_g is surjective. Therefore $\overline{C} \subset C^r \cap K^r \cap \mathcal{M}$, and by the definition of \overline{C} and K^r we see $\overline{C} \supset C^r \cap K^r \cap \mathcal{M}$.

Lemma 2.3.⁽¹⁾ $C^r \cap K^r$ is an submanifold of \mathcal{M}_1^r .

Proof. We define a C^{∞} -map $\widetilde{\Delta \tau} : \mathcal{M}_1^r \to H^{r-4}_{g_0}(M)$ by

$$\widetilde{\Delta\tau}(g) = \Delta_g \tau_g - \int \Delta_g \tau_g v_{g_0} \,.$$

Then $\mathcal{C}' = (\widetilde{\Delta \tau})^{-1}(0)$. By differentiation we get

⁽¹⁾ A.E. Fischer and J.E. Marsden [8, Theorem 3] show that the space $\mathbf{R} \cdot \overline{C}$ becomes a submanifold of \mathcal{M} .

Decomposition of the Space ${\mathcal M}$

$$T_{g}(\widetilde{\Delta\tau})(h) = \Delta'_{(g,h)}\tau_{g} + \Delta_{g}\tau'_{(g,h)} - \int \{ (\Delta'_{(g,h)} + \Delta_{g}\tau'_{(g,h)} \} v_{g_{0}}$$

Let $g \in \mathcal{C}^r$. Then we get

$$\Delta'_{(g,h)}\tau_g = \frac{d}{dt}|_0\Delta_{g+th}\tau_g = 0.$$

If h is conformal, i.e., there is $f \in H_{\mathfrak{s}}^{r}(M)$ such that h=fg, by substituting to the formula (1.5.1) we get

$$\tau'_{(g,fg)} = (n-1)\Delta_g f - \tau_g f.$$

Thus we get $T_{g}(\Delta \tau)$ $(fg) = \sigma'_{g}(f)$, and $T_{g}(\Delta \tau)$ is surjective. This implies, by implicit function theorem, $\mathcal{C}^{r} \cap K^{r}$ is a submanifold of \mathcal{M}_{1}^{r} , and so of \mathcal{M}^{r} .

Lemma 2.4. Define a C^{∞} -map $\chi' : \mathcal{F}' \times (\mathcal{C}' \cap K') \to \mathcal{M}'$ by $\chi'(f,g) = fg$. If $g \in \overline{\mathcal{C}}$ then $T_{(f,g)}\chi'$ is an isomorphism.

Proof. Injectivity. We see

$$(T_{(f,g)}\chi^r)(\phi,h)=fh+\phi g.$$

If $fh+\phi g=0$, then $\tilde{\phi}g\in \operatorname{Ker} T_g(\Delta \tau)$, where $\tilde{\phi}=-\phi/f$. Hence

$$\Delta_{g} \operatorname{tr}_{g}(ilde{\phi}g) + \delta_{g} \delta_{g}(ilde{\phi}g) - (ilde{\phi}g,
ho_{g})_{g} = 0$$
 ,

therefore $(n-1)\Delta_{\varepsilon}\tilde{\phi}-\tau_{\varepsilon}\tilde{\phi}=0$. But here $g\in \bar{C}$, which implies $\tilde{\phi}=0$, and so h=0, $\phi=0$.

Surjectivity. The equation $\operatorname{Im} T_{(f,g)} \chi' = fT_g(\mathcal{C}') + H'(M)g$ shows that $\operatorname{Im} T_{(f,g)} \chi'$ is closed in $H'(S^2)$. Hence, if $T_{(f,g)} \chi'$ is not surjective then there exists a non-zero element \overline{h} in $H'(S^2)$ orthogonal to $fT_g(\mathcal{C}')$ and H'(M)g. We set

$$K_g(h) = \Delta_g(\Delta_g \operatorname{tr}_g h + \delta_g \delta_g h - (h, \rho_g)_g).$$

Then we get $T_g(\mathcal{C}') = \text{Ker } T_g(\Delta \tau) = \text{Ker } T_g(\Delta \tau) = \text{Ker } K_g$. On the other hand K_g has surjective symbol. Hence [2, Corollary 6.9] implies that $H'(S^2)$ has the decomposition

$$H'(S^2) = \mathbf{R}g \oplus T_g(\mathcal{C}^r) \oplus \operatorname{Im} K_g^*,$$

where K_g^* is the formal adjoint of K_g . $f\bar{h}$ is orthogonal to $T_g(\mathcal{C}')$ and H'(M)g, hence $f\bar{h} \in \mathrm{Im}K_g^*$. If we set $f\bar{h} = K_g^*(\psi)$, then we see

$$f \, ar{h} = (\Delta_g)^2 \psi +
abla_g
abla_g \Delta_g \psi - \Delta_g \psi
ho_g \, .$$

Since $f \bar{h}$ is orthogonal to H'(M)g, we see

$$0 = \operatorname{tr}_{g}(f\bar{h}) = (n-1)(\Delta_{g})^{2}\psi - \tau_{g}\Delta_{g}\psi.$$

By the assumption that $g \in \overline{C}$, we see $\Delta_g \psi = 0$ and so $f \overline{h} = 0$, which contradicts the assumption that $\overline{h} \neq 0$.

Theorem 2.5.⁽²⁾ The space \overline{C} is an ILH-submanifold of \mathcal{M} and the map $\chi : \mathcal{F} \times \overline{C} \rightarrow \mathcal{M}$ is a local ILH-diffeomorphism into \mathcal{M} , where χ is defined by $\chi(f,g) = fg$.

(For the notation ILH, see [5, pp. 168-169].)

REMARK 2.6. J.L. Kazdan and F.W. Warner [3, Theorem 1.1] show that \overline{C} is not empty.

REMARK 2.7. When n=2, this result is classical. That is, any metric g is conformal to some metric with constant scalar curvature.

Proof. We fix a sufficiantly large integer r. By Lemma 2.2, Lemma 2.4 and the inverse function theorem there is an open neighbourhood W' of $\mathcal{F} \times \overline{C}$ in $\mathcal{F}' \times (C^r \cap K')$ such that $\chi' | W'$ is a local diffeomorphism. We denote by \overline{C}' the set of all metrics $g \in C' \cap K'$ such that there is an H'-function f such that $(f,g) \in W'$. For an integer $s \ge r$ we set $\overline{C}^s = \overline{C}^r \cap \bigcap_{i=r}^s (C^i \cap K^i)$. We easily see that $\overline{C}^s \supset \overline{C}^{s+1}$ and, by Lemma 2.1, that \overline{C}^s is open in $C^s \cap K^s$. Moreover we see $\bigcap_{s=r}^{\infty} \overline{C}^s = \overline{C}$ by Lemma 2.2, and thus we can define an ILH-structure on \overline{C} as $\overline{C} = \lim \overline{C}^s$.

Next we shall prove that the map $\chi^r | \mathscr{D}^s \times \overline{\mathcal{C}}^s : \mathscr{D}^s \times \overline{\mathcal{C}}^s \to \mathscr{M}^s$ is a local diffeomorphism. Lemma 1.1 implies the smoothness of this map. To prove the smoothness of the inverse map, we choose an open covering $\{W_{\alpha}^r\}$ of W^r such that $\chi^r | W_{\alpha}^r$ is a diffeomorphism. We apply the following lemma to $(\chi^r | W^r)^{-1}$.

Lemma 2.8 [4, Lemma 2.8]. Let E and F be vector bundles over M associated to the frame bundle of M. Then there exists a canonical linear map $\eta^*: H^0(E) \to H^0(E)$ for a diffeomorphism η of M. Let A be an open set of H'(E) and $\phi: A \to H'(F)$ be a C^{∞} -map which commutes with any η^* . If we set $A^s = A \cap H^s(E)$ for $s \ge r$, then $\phi(A^s) \subset H^s(F)$ and the map $\phi | A^s : A^s \to H^s(F)$ is C^{∞} .

If we set $\operatorname{Im}(X' | W_{\alpha}') = A$ and $(X' | W_{\alpha}')^{-1} = \phi$, then ϕ is a C^{∞} -map from A into $H'(M) \times H'(S^2)$ which commutes with the action of the diffeomorphism group \mathcal{D} of M. Hence Lemma 2.8 implies that the map

⁽²⁾ J.P. Bourguignon [7, VIII. 8. Proposition] shows that $\tau : \mathcal{M} \to \mathcal{F}$ is a submersion around a metric $g \in \mathcal{M}$ such that τ_g is not non-negative constant.

$$(\chi^r | W^r_{\alpha})^{-1} | A^s : A^s \rightarrow H^s(M) \times H^s(S^2)$$

is C^{∞} . But here $\mathcal{F}^s \times \overline{C}^s$ is a submanifold of $H^s(M) \times H^s(S^2)$, hence the map $(\mathfrak{X}^r | W^r)^{-1} | A^s : A^s \to \mathcal{F}^s \times \overline{C}^s$ is C^{∞} . Thus \mathfrak{X}^s is a local diffeomorphism and $\mathfrak{X} = \lim_{t \to \infty} \mathfrak{X}^s$ is an ILH-diffeomorphism, which implies that \overline{C} is an ILH-submanifold of \mathcal{M} .

Corollary 2.9. Let $g=f\overline{g}$, where $f \in \mathcal{F}$ and $\overline{g} \in \overline{C}$. If g(t) is a deformation of g with sufficiently small domain of t, then there exist a 1-parameter family of positive functions f(t) on M, a 1-parameter family of diffeomorphisms $\gamma(t)$ of M and a deformation $\overline{g}(t)$ in \overline{C} such that $f(0)=f, \delta \overline{g}'(0)=0$ and $g(t)=f(t)\gamma(t)*\overline{g}(t)$.

Proof. By Theorem 2.5, g(t) is decomposed into $f(t)\tilde{g}(t)$, where $\tilde{g}(t)$ is a deformation in \bar{C} . Applying Slice theorem [4, Theorem 2.2] to $\tilde{g}(t)$, we get $\tilde{g}(t) = \gamma(t)^* g(t)$, where $\bar{g}(t)$ is a deformation such that $\delta g'(0) = 0$. Also we easily see that $g(t) \in \bar{C}$ for each t.

The author wishes to express his thanks to Professor J.P. Bourguignon for his kind informations concerning with Lemma 2.3 and Theorem 2.5.

OSAKA UNIVERSITY

References

- M. Berger: Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. 4^e serie 3 (1970), 285-294.
- [2] D.G. Ebin: The manifold of riemannian metrics, Global Analysis (Proc. Sympos. Pure Math.) 15 (1968), 11-40.
- [3] J.L. Kazdan and F.W. Warner: Scalar curvature and conformal deformation of riemmanian structures, J. Differential Geometry 10 (1975), 113-134.
- [4] N. Koiso: Non-deformability of Einstein metrics, Osaka J. Math. 15 (1978), 419–433.
- [5] H. Omori: On the group of diffeomorphisms of a compact manifold, Global Analysis (Proc. Sympos. Pure Math.) 15 (1968), 167–183.
- [6] R.S. Palais: Foundations of non-linear functional analysis, Benjamin, New York, 1968.
- [7] J.P. Bourguignon: Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.
- [8] A.E. Fischer and J.E. Marsden: Manifolds of riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484.
- [9] A. Lichnerowicz: Propagateurs et cummutateurs en relativité générale, Inst. Hautes Etudes Sci. Publ. Math. 10 (1961), 293-344.