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0. Introduction

Let M be a compact C~-manifold. We denote by ¥, 9 and & the space of
all riemannian metrics on M, the diffeomorphism group of M, and the space of
all positive functions on M, respectively. Then the group 9 and & acts on
M by pull back and multiplication, respectively. D. Ebin and N. Koiso
establish Slice theorem [4, Theorem 2.2] on the action of 9.

In this paper, we shall give a decomposition theorem on the action of &F
(Theorem 2.5). That is, there is a local diffeomorphism from F x C into .H

where C is a subspace of .9 of riemannian metrics with volume 1 and of con-
stant scalar curvature 7, such that 7,=0 or 7,/(n—1) is not an eigenvalue of
A,. Combining the above theorems, we get the following decomposition of a

deformation (Corollary 2.9). Let g&C and g(t) be a deformation of g. Then

there are a curve f(¢) in &, a curve v(¢) in 9 and a curve g(¢) in C such that
82'(0)=0, which satisfy the equation g(¢)=/f(#)v(¢)*g(t). (For the operator 3,
see 1.)

The author wishes to express his thanks to the referee.

1. Preliminaries

First, we introduce notation and definitions which will be used throughout
this paper. Let M be an zn-dimensional, connected and compact C*-manifold,
and we always assmue #=2. For a vector bundle T over M, we denote by H'(T)
the space of all H'-sections, where H” means an object which has derivatives
defined almost everywhere up to order r and such that each partial derivative
is square integrable. Then H’(T) is isomorphic to a Hilbert space and the
space C=(T) of all C=-sections becomes an inverse limit of {H'(T)},,...
Therefore such a space is said to be an ILH-space. If a topological space ¥ is
isomorphic to an ILH-space locally, X is said to be an ILH-manifold. For
details, see [5].
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Let g be an H*-metric on M. We consider the riemannian connection and
use the following notations:

v,; the volume element with respect to g,

R; the curvature tensor,

p; the Ricci tensor,
(For the standard sphere with orthnormal basis, Rj,*=R,,,,<<0 and p;;<<0.)

7; the scalar curvature,

( , ); the inner product in fibres of a tensor bundle defined by g,

<, >; the global inner product for sections of a tensor bundle over M,

e, <, o= (o,

S?; the symmetric covariant 2-tensor bundle over M,

H'(M); the Hilbert space of all H'-functions,

Hy(M); the Hilbert space of all H'-functions f such that SM Jfv,=0,

H}(S?); the Hilbert space of all symmetric bilinear H'-forms 4 such that
<h, 4 >=0,

V; the covariant derivation,

3; the formal adjoint of V with respect to { , >,

8*; the formal adjoint of 8| H"(S?),

A=4d ; the Laplacian operating on the space H'(M),

A=§V; the rough Laplacian operating on the space H'(T%),

Hess=Vd; the Hessian on the space H"(M),

&; the ILH-manifold of all positive C=-functions on M,

S"; the Hilbert manifold of all positive H"-functions on M,

M; the ILH-manifold of all C*~-metrics on M,

M"; the Hilbert manifold of all H"-metrics on M,

M,; the ILH-manifold of all C~-metrics with volume 1,

Mi; the Hilbert manifold of all H -metrics with volume 1.

When we consider the metric space °, the covariant derivation, the cur-
vature tensor and the Ricci tensor with respect to an element g of S}’ will be
denoted by V,, R, or p,. By a deformation of g we mean a C=-curve g(t): I-M
such that g(0)=g, where I is an open interval. The differential g’(0) is called
an infinitesimal deformation, or simply an i-deformation. If there is a 1-parameter
family v(#) of diffeomorphisms such that g(t)= v(f)*¢ then the deformation
g(t) is said to be trival. If there is a 1-form £ such that k=%, then the
i-deformation % is said to be #rival. On the other hand, an i-deformation % is
said to be essential if Sh=0.

Now, we give some fundamental propositions.

Lemma 1.1 [6,11.3]. Let E and F be vector bundles over M and f: E—F
be a fiber preserving C=-map. If s>% , then the map ¢: H(E)—H'(F) which
is defined by ¢p(a)=foa is C*.
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Proposition 1.2. If s>% , then the map D: ' X H*(TH)— H*(T5.,)
which is defined by D(g, £)=VE is C~.

Proof. Let g, be a fixed C~-metric on M. We define the tensor field
T(g) by T(g)(X, YV)=(V,)xY —(V,,)x Y for an H'-metric g on M. Then we get

(T, = — 8 (Vi (Ve 85— (Vehgis}

and (D8, E) 7 iy — (D80 E))172 o,
h : .
- *E(T(g))lfoja Ellm,pir"ja—11fa+1"‘/0
2 e
2T () jop £ omiori™in;
By the definition of the H’-topology, we know that the map :g—(V,)g is a
C=-map from M+ to H(T3). Hence Lemma 1.1 implies that the map: g—T(g)
is a C~-map from H'*' to H*(T3). Applying Lemma 1.1 to the above for-
mula, we see that the map : (T(g), &)—D(g, £)—D(g, &) is a C~-map from
HT3)x H*\(T%) to H'(T%.,). But the map : £—>D(g,, &) is a continuous

linear map from H**(T%) to H*(T%.,), hence the map: (T(g), £)—D(g, &) is C*.
Thus we see that the map D is a composition of C~-maps, and so is C*.

Corollary 1.3. If s>% , then the map : (g,f)—>V,f is a C~-map from
M X H (M) to HY(M).

Proof. We apply Proposition 1.2 to the formula ; A, f =—g"Vd, f.

Corollary 1.4. If s>% , then the maps : g—R, p, T are C>-maps from H°*+*
to H*(T3), H'(S?) and H*(M), respectively.

Proof. The smoothness of the map : g—R completes the proof. By
easy computation, we get the next formula :

R(g)ije'—R(20)izi' = (V) T(8)) 4= (Vo) (T(8)) it
H(T(@) in(T(@))" 5—(T(&)) ;m(T(8)) " -
Thus, applying Proposition 1.2, we see that the map : g—R is C~.

Lemma 1.5 [9,(19.5); 1,(2.11) (2.12)]. Let g(t) be a deformation of g.
If we set h=g'(0), then we have the following formulae;

4\ gryto = Atr 14380~ (h, ) (15.1)
Bd; loPyto = %{Kh+2Qh+2Lh—28*8h—Hess tr .} (15.2)

where 2(Qh);;= p;*hy;+ p*hyy, and (Lh);;=R;,;,h* .
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2. A decomposition of the space .M
We denote by C” the space of all H-metrics with constant scalar curvature
and with volume 1. Fix a C~-metric g, M,. For an integer r> —Z-—l—‘l-

and g € M1, we define a C*-map
oy + Hy(M)—H *(M)

by o3(f)= (1= 1)(AF f— A, f—[{n— 12,2 — 7,8, fYoe,
In fact the map: (g, f)—o( f) is a C=-map from M; X H} (M) to H;;*(M) owing
to Corollary 1.3 and Corollary 1.4. First we show some lemmas.

Lemma 2.1. If we denote by K" the subset of Mi of all metrics g M
such that o is an isomorphism, then K" is open in Mj.

Proof. The map : g—oj is a C~-map from ] to the space L(H} (M),
H;>*(M)) of all continuous linear maps from H (M) to H} *(M). On the other
hand the set of all isomorphisms is open in L(Hj (M), H *(M)), hence K"
is open Mj.

Lemma 2.2. Let C be the subset of M of all metrics g with constant scalar
curvature T, such that 7,=0 or T,/(n—1) is not an eigenvalue of A,. Then
C'NK’'NM=C.

Proof. Let g&C. Then g’ N M, and so it is sufficient to prove that
geK’. If feKer g; then (n—1)(A,)? f—7,A, f is a constant. By integration
we see

(n_—l)(Ag)zf_TgAgf: 0.

But here 7,=0 or 7, is not an eigenvalue of A,. Hence A,f is a constant,
and so the assumption that feH[ (M) implies f=0. Thus we see o} is
injective. On the other hand Im {(n—1)(A,)’—7,A,} =H*(M) implies o}
is surjective. Therefore CCC"N K" N M, and by the definition of C and K’ we
see COC'NK"N M.

Lemma 2.3.) "N K" is an submanifold of “Mj.
Proof. We define a C*-map AT : i—=H (M) by
AT(g) = A7, _SAngvA’o :

Then C"=(A7)™(0). By differentiation we get

(1) A.E. Fischer and J.E. Marsden [8, Theorem 3] show that the space R-C becomes a
submanifold of JH.
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Tg(AT)(h) = A’(g, h)-rg—l_ AgT'(g, h) _g {(Al(g, h)+AgT’(g, h)} vgo .
Let geC’. Then we get

d
A’(g, WTg= _I OAg+lh Tg= 0.

dt

If & is conformal, i.e., there is f € Hy(M) such that h=fg, by substituting to
the formula (1.5.1) we get

T’(g.fg) = (n_l)Agf—Tgf'

Thus we get T,(A7) (fe)=oi(f), and T,(A7) is surjective. This implies, by
implicit function theorem, C'"N K" is a submanifold of ., and so of M.

Lemma 2.4. Define a C*-map X' : F*'x(C'NK")—> M by X'(f,g)=/g.
If g&C then T, yX' is an isomorphism.

Proof. Injectivity. We see

(T, oX') s h) = fht-g .

If fh+pg=0, then g Ker T, (A7), where =—a¢[f. Hence
Ag trg($g)+535g($g)_($ga pg)g =0,

therefore (n—1)A ,¢—7,6=0.
But here g, which implies $=0, and so k=0, ¢$=0.

Surjectivity. The equation ImT(, X =fT (C")+ H'(M)g shows that
ImT; X' is closed in H'(S?). Hence, if T, ,)X" is not surjective then there
exists a non-zero element  in H'(S?) orthogornal to fT (C") and H'(M)g. We set

K (h) = A(Atr h+8,8—(h, p,),) -

Then we get T (C")=Ker Tg(ErS=Ker T, (At)=Ker K,. On the other hand
K, has surjective symbol. Hence [2, Corollary 6.9] implies that H’(S?) has the
decomposition

H'(S?) = Rg®T (C")PIm K *,

where K * is the formal adjoint of K,. f# is orthogonal to T ,(C") and H'(M)g,
hence fheImK *. If we set fh=K ,*(y), then we see

fﬁ = (Ag)z‘l’—}—vgngg‘I’—Ag‘l’pg .
Since f & is orthogonal to H'(M)g, we see
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0= tr(fh) = (n—1)(A)Y—T, A .

By the assumption that g&C, we see A =0 and so fh=0, which contradicts
the assumption that %=0.

Theorem 2.5.® The space C is an ILH-submanifold of M and the map
X: FXC—>M is a local ILH-diffeomorphism into M, where X is defined by
X(f. 8)=fe-

(For the notation ILH, see [5, pp. 168-169].)

RemARk 2.6. J.L. Kazdan and F.W. Warner [3, Theorem 1.1] show that
C is not empty.

ReMARK 2.7. When n=2, this result is classical. That is, any metric g is
conformal to some metric with constant scalar curvature.

Proof. We fix a sufficiantly large integer . By Lemma 2.2, Lemma
2.4 and the inverse function theorem there is an open neighbourhood W’ of
FxCin F X (C"NK") such that X" | W is a local diffeomorphism. We denote by
C’ the set of all metrics g&C" N K" such that there is an H’-function f such that

(f,g)€W’. For an integer s=7 we set C'=C" N (j (C'NKY). We easily see
that C° DC**! and, by Lemma 2.1, that C° is open in C° N K*. Moreover we see

fjé’*:é by Lemma 2.2, and thus we can define an ILH-structure on C as C=
lim C*.

Next we shall prove that the map X |F*x C*: F*x C°— M’ is a local
diffeomorphism. Lemma 1.1 implies the smoothness of this map. To prove
the smoothness of the inverse map, we choose an open covering {W,} of W~
such that X"|W7, is a diffeomorphism. We apply the following lemma to
X 1wnH—.

Lemma 2.8 [4, Lemma 2.8]. Let E and F be vector bundles over M associ-
ated to the frame bundle of M. Then there exists a cannonical linear map
n* : HY(E)—HYE) for a diffeomorphism n of M. Let A be an open set of
H'(E) and ¢ : A—>H'(F) be a C~-map which commutes with any n*. If we set
A =ANH'(E) for s=r, then (A’ H*(F) and the map ¢| A’ : A*—H(F)is C=.

If we set Im(X"|W)=A and (X"| W) '=¢, then ¢ is a C~-map from A4
into H'(M)x H'(S?) which commutes with the action of the diffeomorphism
group 9 of M. Hence Lemma 2.8 implies that the map

(2) J.P. Bourguignon [7, VIII. 8. Proposition] shows that r : SH— & is a submersion around
a metric gEM such that 7, is not non-negative constant.
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(X | W) A° : A—H(M)x H(S?)

is C=. But here F*xC* is a submanifold of H*(M)x H*(S?), hence the map
(X | WA : AA—>F°xC* is C~. Thus X° is alocal diffeomorpnhism and
X=lim X’ is an ILH-diffeomorphism, which implies that  is an ILH-submani-
fold of .

Corollary 2.9. Let g=fg, where f € F and g=C. If g(t)is a deformation
of g with sufficiently small domain of t, then there exist a 1-parameter family of
positive functions f(t) on M, a 1-parameter family of diffeomorphisms v(t) of M and
a deformation g(t) in C such that f(0)=f, 82'(0)=0 and g(t)=f(t)v(t)*2(%).

Proof. By Theorem 2.5, g(t) is decomposed into f(t)g(t), where g(t) is
a deformation in C. Applying Slice theorem [4, Theorem 2.2] to Z(f), we
get g(t)="(2)*2(t), where g(t) is a deformation such that §g’(0)=0. Also we

easily see that g(¢)eC for each ¢.

The author wishes to express his thanks to Professor J.P. Bourguignon
for his kind informations concerning with Lemma 2.3 and Theorem 2.5.
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