

Title	A decomposition of the space M of Riemannian metrics on a manifold
Author(s)	Koiso, Norihito
Citation	Osaka Journal of Mathematics. 1979, 16(2), p. 423-429
Version Type	VoR
URL	https://doi.org/10.18910/11044
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Koiso, N.
Osaka J. Math.
16 (1979), 423-429

A DECOMPOSITION OF THE SPACE \mathcal{M} OF RIEMANNIAN METRICS ON A MANIFOLD

NORIHITO KOISO

(Received March 6, 1978)

0. Introduction

Let M be a compact C^∞ -manifold. We denote by \mathcal{M} , \mathcal{D} and \mathcal{F} the space of all riemannian metrics on M , the diffeomorphism group of M , and the space of all positive functions on M , respectively. Then the group \mathcal{D} and \mathcal{F} acts on \mathcal{M} by pull back and multiplication, respectively. D. Ebin and N. Koiso establish Slice theorem [4, Theorem 2.2] on the action of \mathcal{D} .

In this paper, we shall give a decomposition theorem on the action of \mathcal{F} (Theorem 2.5). That is, there is a local diffeomorphism from $\mathcal{F} \times \bar{\mathcal{C}}$ into \mathcal{M} where $\bar{\mathcal{C}}$ is a subspace of \mathcal{M} of riemannian metrics with volume 1 and of constant scalar curvature τ_g such that $\tau_g=0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Combining the above theorems, we get the following decomposition of a deformation (Corollary 2.9). Let $g \in \bar{\mathcal{C}}$ and $g(t)$ be a deformation of g . Then there are a curve $f(t)$ in \mathcal{F} , a curve $\gamma(t)$ in \mathcal{D} and a curve $\bar{g}(t)$ in $\bar{\mathcal{C}}$ such that $\delta\bar{g}'(0)=0$, which satisfy the equation $g(t)=f(t)\gamma(t)^*\bar{g}(t)$. (For the operator δ , see 1.)

The author wishes to express his thanks to the referee.

1. Preliminaries

First, we introduce notation and definitions which will be used throughout this paper. Let M be an n -dimensional, connected and compact C^∞ -manifold, and we always assume $n \geq 2$. For a vector bundle T over M , we denote by $H'(T)$ the space of all H' -sections, where H' means an object which has derivatives defined almost everywhere up to order r and such that each partial derivative is square integrable. Then $H'(T)$ is isomorphic to a Hilbert space and the space $C^\infty(T)$ of all C^∞ -sections becomes an inverse limit of $\{H'(T)\}_{r=1,2,\dots}$. Therefore such a space is said to be an *ILH-space*. If a topological space \mathcal{X} is isomorphic to an ILH-space locally, \mathcal{X} is said to be an *ILH-manifold*. For details, see [5].

Let g be an H^s -metric on M . We consider the riemannian connection and use the following notations:

- v_g ; the volume element with respect to g ,
- R ; the curvature tensor,
- ρ ; the Ricci tensor,
- (For the standard sphere with orthonormal basis, $R_{121}{}^2=R_{1212}<0$ and $\rho_{11}<0$.)
- τ ; the scalar curvature,
- $(\ , \)$; the inner product in fibres of a tensor bundle defined by g ,
- $\langle \ , \ \rangle$; the global inner product for sections of a tensor bundle over M , i.e., $\langle \ , \ \rangle=\int_M (\ , \) v_g$,
- S^2 ; the symmetric covariant 2-tensor bundle over M ,
- $H^r(M)$; the Hilbert space of all H^r -functions,
- $H_g^r(M)$; the Hilbert space of all H^r -functions f such that $\int_M f v_g = 0$,
- $H_g^r(S^2)$; the Hilbert space of all symmetric bilinear H^r -forms h such that $\langle h, g \rangle = 0$,
- ∇ ; the covariant derivation,
- δ ; the formal adjoint of ∇ with respect to $\langle \ , \ \rangle$,
- δ^* ; the formal adjoint of $\delta|H^r(S^2)$,
- $\Delta=\delta d$; the Laplacian operating on the space $H^r(M)$,
- $\bar{\Delta}=\delta\nabla$; the rough Laplacian operating on the space $H^r(T^*_q)$,
- $\text{Hess}=\nabla d$; the Hessian on the space $H^r(M)$,
- \mathcal{F} ; the ILH-manifold of all positive C^∞ -functions on M ,
- \mathcal{F}' ; the Hilbert manifold of all positive H^r -functions on M ,
- \mathcal{M} ; the ILH-manifold of all C^∞ -metrics on M ,
- \mathcal{M}' ; the Hilbert manifold of all H^r -metrics on M ,
- \mathcal{M}_1 ; the ILH-manifold of all C^∞ -metrics with volume 1,
- \mathcal{M}_1' ; the Hilbert manifold of all H^r -metrics with volume 1.

When we consider the metric space \mathcal{M}^s , the covariant derivation, the curvature tensor and the Ricci tensor with respect to an element g of \mathcal{M}^s will be denoted by ∇_g , R_g or ρ_g . By a *deformation* of g we mean a C^∞ -curve $g(t): I \rightarrow \mathcal{M}$ such that $g(0)=g$, where I is an open interval. The differential $g'(0)$ is called an *infinitesimal deformation*, or simply an *i-deformation*. If there is a 1-parameter family $\gamma(t)$ of diffeomorphisms such that $g(t)=\gamma(t)^*g$ then the deformation $g(t)$ is said to be *trivial*. If there is a 1-form ξ such that $h=\delta^*\xi$, then the i-deformation h is said to be *trivial*. On the other hand, an i-deformation h is said to be *essential* if $\delta h=0$.

Now, we give some fundamental propositions.

Lemma 1.1 [6,11.3]. *Let E and F be vector bundles over M and $f: E \rightarrow F$ be a fiber preserving C^∞ -map. If $s > \frac{n}{2}$, then the map $\phi: H^s(E) \rightarrow H^s(F)$ which is defined by $\phi(\alpha)=f \circ \alpha$ is C^∞ .*

Proposition 1.2. *If $s > \frac{n}{2}$, then the map $D: \mathcal{M}^{s+1} \times H^{s+1}(T_q^p) \rightarrow H^s(T_{q+1}^p)$ which is defined by $D(g, \xi) = \nabla_g \xi$ is C^∞ .*

Proof. Let g_0 be a fixed C^∞ -metric on M . We define the tensor field $T(g)$ by $T(g)(X, Y) = (\nabla_g)_X Y - (\nabla_{g_0})_X Y$ for an H^s -metric g on M . Then we get

$$(T(g))_i^k = \frac{1}{2} g^{kl} \{ (\nabla_{g_0})_i g_{lj} + (\nabla_{g_0})_j g_{li} - (\nabla_{g_0})_l g_{ij} \},$$

and

$$\begin{aligned} (D(g, \xi))^{i_1 \dots i_p}_{j_0 \dots j_q} &= (D(g_0, \xi))^{i_1 \dots i_p}_{j_0 \dots j_q} \\ &= - \sum_{a=1}^p (T(g))_i^l j_{0j_a} \xi^{i_1 \dots i_p}_{j_1 \dots j_{a-1} l j_a + 1 \dots j_q} \\ &\quad + \sum_{b=1}^p (T(g))^{i_b}_{j_0 k} \xi^{i_1 \dots i_b - 1 k i_{b+1} \dots i_p}_{j_1 \dots j_q}. \end{aligned}$$

By the definition of the H^s -topology, we know that the map $: g \rightarrow (\nabla_{g_0})g$ is a C^∞ -map from \mathcal{M}^{s+1} to $H^s(T_3^0)$. Hence Lemma 1.1 implies that the map $: g \rightarrow T(g)$ is a C^∞ -map from \mathcal{M}^{s+1} to $H^s(T_2^1)$. Applying Lemma 1.1 to the above formula, we see that the map $: (T(g), \xi) \rightarrow D(g, \xi) - D(g_0, \xi)$ is a C^∞ -map from $H^s(T_2^1) \times H^{s+1}(T_q^p)$ to $H^s(T_{q+1}^p)$. But the map $: \xi \rightarrow D(g_0, \xi)$ is a continuous linear map from $H^{s+1}(T_q^p)$ to $H^s(T_{q+1}^p)$, hence the map $: (T(g), \xi) \rightarrow D(g, \xi)$ is C^∞ . Thus we see that the map D is a composition of C^∞ -maps, and so is C^∞ .

Corollary 1.3. *If $s > \frac{n}{2}$, then the map $: (g, f) \rightarrow \nabla_g f$ is a C^∞ -map from $\mathcal{M}^{s+1} \times H^{s+2}(M)$ to $H^s(M)$.*

Proof. We apply Proposition 1.2 to the formula $: \Delta_g f = -g^{ij} \nabla_i d_j f$.

Corollary 1.4. *If $s > \frac{n}{2}$, then the maps $: g \rightarrow R, \rho, \tau$ are C^∞ -maps from \mathcal{M}^{s+2} to $H^s(T_3^1), H^s(S^2)$ and $H^s(M)$, respectively.*

Proof. The smoothness of the map $: g \rightarrow R$ completes the proof. By easy computation, we get the next formula :

$$\begin{aligned} R(g)_{ijk}^l - R(g_0)_{ijk}^l &= (\nabla_{g_0})_i (T(g))_j^l - (\nabla_{g_0})_j (T(g))_i^l \\ &\quad + (T(g))_{im}^l (T(g))_{jk}^m - (T(g))_{jm}^l (T(g))_{ik}^m. \end{aligned}$$

Thus, applying Proposition 1.2, we see that the map $: g \rightarrow R$ is C^∞ .

Lemma 1.5 [9,(19.5); 1,(2.11) (2.12)]. *Let $g(t)$ be a deformation of g . If we set $h = g'(0)$, then we have the following formulae;*

$$\frac{d}{dt} |_0 \tau_{g(t)} = \Delta \text{tr } h + \delta \delta h - (h, \rho), \quad (1.5.1)$$

$$\frac{d}{dt} |_0 \rho_{g(t)} = \frac{1}{2} \{ \bar{\Delta} h + 2Qh + 2Lh - 2\delta^* \delta h - \text{Hess tr } h \}, \quad (1.5.2)$$

where $2(Qh)_{ij} = \rho_i^k h_{kj} + \rho_j^k h_{ik}$ and $(Lh)_{ij} = R_{ikjl} h^{kl}$.

2. A decomposition of the space \mathcal{M}

We denote by \mathcal{C}' the space of all H^r -metrics with constant scalar curvature and with volume 1. Fix a C^∞ -metric $g_0 \in \mathcal{M}_1$. For an integer $r > \frac{n}{2} + 4$ and $g \in \mathcal{M}_1$, we define a C^∞ -map

$$\sigma'_g : H_{g_0}^r(M) \rightarrow H_{g_0}^{r-4}(M)$$

$$\text{by } \sigma'_g(f) = (n-1)(\Delta_g)^2 f - \tau_g \Delta_g f - \int \{(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f\} v_{g_0}.$$

In fact the map: $(g, f) \rightarrow \sigma'_g(f)$ is a C^∞ -map from $\mathcal{M}_1 \times H_{g_0}^r(M)$ to $H_{g_0}^{r-4}(M)$ owing to Corollary 1.3 and Corollary 1.4. First we show some lemmas.

Lemma 2.1. *If we denote by K' the subset of \mathcal{M}_1 of all metrics $g \in \mathcal{M}_1$ such that σ'_g is an isomorphism, then K' is open in \mathcal{M}_1 .*

Proof. The map $: g \rightarrow \sigma'_g$ is a C^∞ -map from \mathcal{M}_1 to the space $L(H_{g_0}^r(M), H_{g_0}^{r-4}(M))$ of all continuous linear maps from $H_{g_0}^r(M)$ to $H_{g_0}^{r-4}(M)$. On the other hand the set of all isomorphisms is open in $L(H_{g_0}^r(M), H_{g_0}^{r-4}(M))$, hence K' is open in \mathcal{M}_1 .

Lemma 2.2. *Let $\bar{\mathcal{C}}$ be the subset of \mathcal{M} of all metrics g with constant scalar curvature τ_g such that $\tau_g = 0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Then $\mathcal{C}' \cap K' \cap \mathcal{M} = \bar{\mathcal{C}}$.*

Proof. Let $g \in \bar{\mathcal{C}}$. Then $g \in \mathcal{C}' \cap \mathcal{M}$, and so it is sufficient to prove that $g \in K'$. If $f \in \text{Ker } \sigma'_g$ then $(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f$ is a constant. By integration we see

$$(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f = 0.$$

But here $\tau_g = 0$ or τ_g is not an eigenvalue of Δ_g . Hence $\Delta_g f$ is a constant, and so the assumption that $f \in H_{g_0}^r(M)$ implies $f = 0$. Thus we see σ'_g is injective. On the other hand $\text{Im } \{(n-1)(\Delta_g)^2 - \tau_g \Delta_g\} = H_{g_0}^{r-4}(M)$ implies σ'_g is surjective. Therefore $\bar{\mathcal{C}} \subset \mathcal{C}' \cap K' \cap \mathcal{M}$, and by the definition of $\bar{\mathcal{C}}$ and K' we see $\bar{\mathcal{C}} \supset \mathcal{C}' \cap K' \cap \mathcal{M}$.

Lemma 2.3.⁽¹⁾ *$\mathcal{C}' \cap K'$ is a submanifold of \mathcal{M}_1 .*

Proof. We define a C^∞ -map $\widetilde{\Delta\tau} : \mathcal{M}_1 \rightarrow H_{g_0}^{r-4}(M)$ by

$$\widetilde{\Delta\tau}(g) = \Delta_g \tau_g - \int \Delta_g \tau_g v_{g_0}.$$

Then $\mathcal{C}' = \widetilde{(\Delta\tau)}^{-1}(0)$. By differentiation we get

(1) A.E. Fischer and J.E. Marsden [8, Theorem 3] show that the space $R \cdot \bar{\mathcal{C}}$ becomes a submanifold of \mathcal{M} .

$$T_g(\widetilde{\Delta\tau})(h) = \Delta'_{(g, h)}\tau_g + \Delta_g\tau'_{(g, h)} - \int \{(\Delta'_{(g, h)} + \Delta_g\tau'_{(g, h)})\} v_{g_0}.$$

Let $g \in \mathcal{C}'$. Then we get

$$\Delta'_{(g, h)}\tau_g = \frac{d}{dt}|_0 \Delta_{g+th}\tau_g = 0.$$

If h is conformal, i.e., there is $f \in H'_g(M)$ such that $h = fg$, by substituting to the formula (1.5.1) we get

$$\tau'_{(g, fg)} = (n-1)\Delta_g f - \tau_g f.$$

Thus we get $T_g(\widetilde{\Delta\tau})(fg) = \sigma'_g(f)$, and $T_g(\widetilde{\Delta\tau})$ is surjective. This implies, by implicit function theorem, $\mathcal{C}' \cap K'$ is a submanifold of \mathcal{M}' , and so of \mathcal{M} .

Lemma 2.4. Define a C^∞ -map $\chi' : \mathcal{C}' \times (\mathcal{C}' \cap K') \rightarrow \mathcal{M}'$ by $\chi'(f, g) = fg$. If $g \in \bar{\mathcal{C}}$ then $T_{(f, g)}\chi'$ is an isomorphism.

Proof. Injectivity. We see

$$(T_{(f, g)}\chi')(f, h) = fh + \phi g.$$

If $fh + \phi g = 0$, then $\tilde{\phi}g \in \text{Ker } T_g(\widetilde{\Delta\tau})$, where $\tilde{\phi} = -\phi/f$. Hence

$$\Delta_g \text{tr}_g(\tilde{\phi}g) + \delta_g \delta_g(\tilde{\phi}g) - (\tilde{\phi}g, \rho_g)_g = 0,$$

therefore $(n-1)\Delta_g \tilde{\phi} - \tau_g \tilde{\phi} = 0$.

But here $g \in \bar{\mathcal{C}}$, which implies $\tilde{\phi} = 0$, and so $h = 0$, $\phi = 0$.

Surjectivity. The equation $\text{Im } T_{(f, g)}\chi' = fT_g(\mathcal{C}') + H'(M)g$ shows that $\text{Im } T_{(f, g)}\chi'$ is closed in $H'(S^2)$. Hence, if $T_{(f, g)}\chi'$ is not surjective then there exists a non-zero element \bar{h} in $H'(S^2)$ orthogonal to $fT_g(\mathcal{C}')$ and $H'(M)g$. We set

$$K_g(h) = \Delta_g(\Delta_g \text{tr}_g h + \delta_g \delta_g h - (h, \rho_g)_g).$$

Then we get $T_g(\mathcal{C}') = \text{Ker } T_g(\widetilde{\Delta\tau}) = \text{Ker } T_g(\Delta\tau) = \text{Ker } K_g$. On the other hand K_g has surjective symbol. Hence [2, Corollary 6.9] implies that $H'(S^2)$ has the decomposition

$$H'(S^2) = \mathbf{R}g \oplus T_g(\mathcal{C}') \oplus \text{Im } K_g^*,$$

where K_g^* is the formal adjoint of K_g . $f\bar{h}$ is orthogonal to $T_g(\mathcal{C}')$ and $H'(M)g$, hence $f\bar{h} \in \text{Im } K_g^*$. If we set $f\bar{h} = K_g^*(\psi)$, then we see

$$f\bar{h} = (\Delta_g)^2\psi + \nabla_g \nabla_g \Delta_g \psi - \Delta_g \psi \rho_g.$$

Since $f\bar{h}$ is orthogonal to $H'(M)g$, we see

$$0 = \text{tr}_g(f\bar{h}) = (n-1)(\Delta_g)^2\psi - \tau_g\Delta_g\psi.$$

By the assumption that $g \in \bar{\mathcal{C}}$, we see $\Delta_g\psi = 0$ and so $f\bar{h} = 0$, which contradicts the assumption that $\bar{h} \neq 0$.

Theorem 2.5.⁽²⁾ *The space $\bar{\mathcal{C}}$ is an ILH-submanifold of \mathcal{M} and the map $\chi : \mathcal{F} \times \bar{\mathcal{C}} \rightarrow \mathcal{M}$ is a local ILH-diffeomorphism into \mathcal{M} , where χ is defined by $\chi(f, g) = fg$.*

(For the notation ILH, see [5, pp. 168–169].)

REMARK 2.6. J.L. Kazdan and F.W. Warner [3, Theorem 1.1] show that $\bar{\mathcal{C}}$ is not empty.

REMARK 2.7. When $n=2$, this result is classical. That is, any metric g is conformal to some metric with constant scalar curvature.

Proof. We fix a sufficiently large integer r . By Lemma 2.2, Lemma 2.4 and the inverse function theorem there is an open neighbourhood W' of $\mathcal{F} \times \bar{\mathcal{C}}$ in $\mathcal{F}' \times (C' \cap K')$ such that $\chi'|W'$ is a local diffeomorphism. We denote by $\bar{\mathcal{C}}'$ the set of all metrics $g \in C' \cap K'$ such that there is an H' -function f such that $(f, g) \in W'$. For an integer $s \geq r$ we set $\bar{\mathcal{C}}^s = \bar{\mathcal{C}}' \cap \bigcap_{i=r}^s (C^i \cap K^i)$. We easily see that $\bar{\mathcal{C}}^s \supset \bar{\mathcal{C}}^{s+1}$ and, by Lemma 2.1, that $\bar{\mathcal{C}}^s$ is open in $C^s \cap K^s$. Moreover we see $\bigcap_{s=r}^{\infty} \bar{\mathcal{C}}^s = \bar{\mathcal{C}}$ by Lemma 2.2, and thus we can define an ILH-structure on $\bar{\mathcal{C}}$ as $\bar{\mathcal{C}} = \lim_{\leftarrow} \bar{\mathcal{C}}^s$.

Next we shall prove that the map $\chi'| \mathcal{F}^s \times \bar{\mathcal{C}}^s : \mathcal{F}^s \times \bar{\mathcal{C}}^s \rightarrow \mathcal{M}^s$ is a local diffeomorphism. Lemma 1.1 implies the smoothness of this map. To prove the smoothness of the inverse map, we choose an open covering $\{W'_\alpha\}$ of W' such that $\chi'|W'_\alpha$ is a diffeomorphism. We apply the following lemma to $(\chi'|W')^{-1}$.

Lemma 2.8 [4, Lemma 2.8]. *Let E and F be vector bundles over M associated to the frame bundle of M . Then there exists a canonical linear map $\eta^* : H^0(E) \rightarrow H^0(E)$ for a diffeomorphism η of M . Let A be an open set of $H'(E)$ and $\phi : A \rightarrow H'(F)$ be a C^∞ -map which commutes with any η^* . If we set $A^s = A \cap H^s(E)$ for $s \geq r$, then $\phi(A^s) \subset H^s(F)$ and the map $\phi|A^s : A^s \rightarrow H^s(F)$ is C^∞ .*

If we set $\text{Im}(\chi'|W'_\alpha) = A$ and $(\chi'|W'_\alpha)^{-1} = \phi$, then ϕ is a C^∞ -map from A into $H'(M) \times H'(S^2)$ which commutes with the action of the diffeomorphism group \mathcal{D} of M . Hence Lemma 2.8 implies that the map

(2) J.P. Bourguignon [7, VIII. 8. Proposition] shows that $\tau : \mathcal{M} \rightarrow \mathcal{F}$ is a submersion around a metric $g \in \mathcal{M}$ such that τ_g is not non-negative constant.

$$(\chi' | W'_a)^{-1} | A^s : A^s \rightarrow H^s(M) \times H^s(S^2)$$

is C^∞ . But here $\mathcal{F}^s \times \bar{\mathcal{C}}^s$ is a submanifold of $H^s(M) \times H^s(S^2)$, hence the map $(\chi' | W')^{-1} | A^s : A^s \rightarrow \mathcal{F}^s \times \bar{\mathcal{C}}^s$ is C^∞ . Thus χ^s is a local diffeomorphism and $\chi = \lim_{\leftarrow} \chi^s$ is an ILH-diffeomorphism, which implies that $\bar{\mathcal{C}}$ is an ILH-submanifold of \mathcal{M} .

Corollary 2.9. *Let $g = f\bar{g}$, where $f \in \mathcal{F}$ and $\bar{g} \in \bar{\mathcal{C}}$. If $g(t)$ is a deformation of g with sufficiently small domain of t , then there exist a 1-parameter family of positive functions $f(t)$ on M , a 1-parameter family of diffeomorphisms $\gamma(t)$ of M and a deformation $\bar{g}(t)$ in $\bar{\mathcal{C}}$ such that $f(0) = f$, $\delta\bar{g}'(0) = 0$ and $g(t) = f(t)\gamma(t)^*\bar{g}(t)$.*

Proof. By Theorem 2.5, $g(t)$ is decomposed into $f(t)\bar{g}(t)$, where $\bar{g}(t)$ is a deformation in $\bar{\mathcal{C}}$. Applying Slice theorem [4, Theorem 2.2] to $\bar{g}(t)$, we get $\bar{g}(t) = \gamma(t)^*\bar{g}(0)$, where $\bar{g}(0)$ is a deformation such that $\delta\bar{g}'(0) = 0$. Also we easily see that $\bar{g}(t) \in \bar{\mathcal{C}}$ for each t .

The author wishes to express his thanks to Professor J.P. Bourguignon for his kind informations concerning with Lemma 2.3 and Theorem 2.5.

OSAKA UNIVERSITY

References

- [1] M. Berger: *Quelques formules de variation pour une structure riemannienne*, Ann. Sci. Ecole Norm. Sup. 4^e serie **3** (1970), 285–294.
- [2] D.G. Ebin: *The manifold of riemannian metrics*, Global Analysis (Proc. Sympos. Pure Math.) **15** (1968), 11–40.
- [3] J.L. Kazdan and F.W. Warner: *Scalar curvature and conformal deformation of riemannian structures*, J. Differential Geometry **10** (1975), 113–134.
- [4] N. Koiso: *Non-deformability of Einstein metrics*, Osaka J. Math. **15** (1978), 419–433.
- [5] H. Omori: *On the group of diffeomorphisms of a compact manifold*, Global Analysis (Proc. Sympos. Pure Math.) **15** (1968), 167–183.
- [6] R.S. Palais: Foundations of non-linear functional analysis, Benjamin, New York, 1968.
- [7] J.P. Bourguignon: *Une stratification de l'espace des structures riemanniennes*, Compositio Math. **30** (1975), 1–41.
- [8] A.E. Fischer and J.E. Marsden: *Manifolds of riemannian metrics with prescribed scalar curvature*, Bull. Amer. Math. Soc. **80** (1974), 479–484.
- [9] A. Lichnerowicz: *Propagateurs et cummutateurs en relativité générale*, Inst. Hautes Etudes Sci. Publ. Math. **10** (1961), 293–344.

