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Abstract
The notion of negative slope algorithm was introduced bye®efczi, C. Holton,
and L. Zamboni in their study of the three letter languagesirgy from three
interval exchange transformations. They characterizanteadly periodic points of
the negative slope algorithm. In this paper, by using thaimahtextension of the
negative slope algorithm, we give a necessary and sufficdendition for purely
periodicity of the negative slope algorithm.

1. Introduction

The negative slope algorithm was introduced by S. Feren€zi,Holton, and
L. Zamboni [1] to discuss the structure of three-intervattenge transformations. It is
a 2-dimensional generalization of the Euclidean algorithihich is arisen from the dy-
namical system associated with three-interval excharagesfiormations. This algorithm
gives an arithmetic construction generating the symbaguence which codes the or-
bit of a point under a three-interval exchange transforomatilt is a kind of muilti-
dimensional continued fractions algorithm and some acrproperties were discussed
in [1]. They showed the following theorem.

Theorem 1.1 ([1]). Suppose iteration by the negative slope algorithm Txofy)
[0, 12\ {(x, y) | x + y = 1} does not stop Then the sequenc€Tk(x, y): k > 0) is
ultimately periodic if and only if x and y are in the same quatidr extension ofQ.

In [2], they characterized three symbolic sequences whiehtlze natural codings
of three interval exchange transformations, a natural ngpdheans that a sequence
(x) =i, i =1, 2, 3 when thd-th iterate ofxo lies in the first, second, third interval
respectively. In [3], they show the necessary and sufficdemdition for three-interval
exchange transformations being weak mixing.

In [4], Ishimura and Nakada introduced 4-dimensional rifapn [0, 1F x (—oo, 0)
which is called the natural extension of the negative sldgerihm.

In this paper, we show the following theorem by using the ratextension of
the negative slope algorithm.

2000 Mathematics Subject Classification. 11J70.



942 K. ISHIMURA AND S. ITO

Main Theorem. Suppose iteration by the negative slope algorithm T(ofy) €
[0, 1P\ {(x,y) | x+y = 1} does not stop Then the sequend@“(x, y): k > 0) is purely
periodic if and only if x and y are in the same quadratic extemf Q and (x*, y*)
is in (—oo, 0 where ¥ denotes the algebraic conjugate of x

Then we recover Theorem 1.1 as a corollary of Main Theorem. therowords, we
give a second proof of Theorem 1.1 by using the natural eiieraf the negative slope
algorithm. In§2, we define the negative slope algorithm and introduce tpeesen-
tation matrices associated with it. We show some propedfesultiplication of their
local inverse and some conditions for existence of the negaiope expansion. In
§3, we introduce the natural extension of the negative sldgerithm and prove Main
Theorem i.e. a characterization for purely periodicity lné hegative slope algorithrm
by using the natural extensich of T. At the last part of¢3, we show Theorem 1.1
as a corollary of Main Theorem.

2. Definitions and basic properties of the negative slope abgithm

2.1. Definitions of the negative slope algorithm. First we introduce a mafg
which is called the negative slope algorithm on the unit sgua [0, 1]. LetX =
[0, 1P\ {(x, y) | x +y =1}, we define a maf on X by

((Xﬂ)//)—l_[(Xﬂ}/l)—l}'(x+;()_1_[(x+;()_l}) if x+y>1

(o [Fom) ww [Fwm)) oo

Using the integer valued functions

X y .
([(Hy)—l] [(x+y)—1D Toxry=1

1-x 1-vy .
([1—<x+y)}’[1—(x+y)D Toxry =1L

-1 if x+y>1
S(X’y)_{+1 if x+y<1,

T(x, y)=

(n(x, ), m(x, y)) =

and

for each &, y) € X, we have a sequence

((81(X, y)v nl(Xv Y), ml(xv y))v (82(X1 Y), nz(X, y)! mZ(Xv y))v s )
We obtain it by

mi(X, y) = m(T*(x, y))

{nk(x, y) =n(T*Y(x, )
ex(X, y) = e(T*1(x, )
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for k > 1. Then we note thamy, mg > 1 for k > 1 and for any sequences(( n;, m;),

i > 1), there existsX, y) € X such that £ (x, y), ni (X, y), m(X, ¥)) = (&i, nj, m;) unless
there existk > 1 such that £, m;) = (+1, 1) fori > k or (g, nj) = (+1, 1) fori > k.

We show these properties later as Lemma 2.7. By [1] and [4] eethat if &, y) #

(X', ¥) € X, then there exist& > 1 such that

(ek(X, Y), Ni(X, Y), Mi(X, y)) 7 (ex(X, YY), nk(X', YY), mi(X', ).

Next we introduce a projective representationTofas follows. We put
n n—-1 1-n
A¢tpm = mMm-1 m 1-m
-1 -1 1

and

—n —-n+1 n
Acinm=| —-m+1 -—m m
1 1 -1

for m, n > 1. Then we have

1 0 n-1
Acinm=10 1 m-1
1 1 n+m-1
and
0 1 m
-1 —
A(fl’n’m)— 1 0 n
1 1 n+m-1

aX

We identify %, y) € X to (ay) for « #0. Then we identifyT (x, y) to
o

X

wammwmmm(y
1

and its local inverse is given by

-1
Aex,y).m(x,y).my(x,9):
In this way, we get a representation of, {) € X by

-1 -1 -1
A(81,n1,m1) A(Ezynzymz) A(Sayna,ms) T
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and T is defined as a multiplication by, n, m,) from the left and acts as a shift on
the set of infinite sequences of matrices

-1 - - _
{A(81,ﬂ1,m1)A(Szyﬂz,mz)A(Ssynz,mz) T ‘ ek = £1, ng, me > 1 for k > 1}'

For a given finite sequencee(( ny, my), (2, N2, M), ..., (e, Nk, My)), we define a
cylinder set of lengthk by

((811 ni, ml)i (821 Ny, m2)1 L (8k1 N, mk))
= {(X! y) eX | (Si (X1 y)! ni(X, y)! mi(X! y)) = (Ei! n;, mi)! 15 i < k}

For simplicity, we write A for this cylinder set.
For (X, y) € Ax, we denoteTk(x, y) as

X
A(€k,nk,mk) T A(81vn1,m1) ( y)
1

and its local inversel,, as

-1 -1
A(Sl:nl:ml) e A(8k,ﬂk,mk)'

We put
[3 3 3
pl pf0 pf
— a1 -1 — 3 K 3
Y= Aginmy  Aonomy = ri) ré) ré)
K K K
a’ o qff
for any sequence £(, ny, my), (2, N2, My), ..., (ex, Nk, Mx)), K> 1. Then it is easy to

see thatpi(k) andri(k) are non-negative integers aqﬁ‘) is positive integer for =1, 2, 3,
k > 0. Since

y X .
{<(X+y)—1' (x+y)_1>-(x, y) e X, x+y>1}

_ l-vy 1-x _
_{(1—(X+Y)’ 1—(X+y)>'(x' yex, x+y<1}

={(X,y):xX' =1,y =1},

we see that
Tj{(x, y) € X:ek(X, Y) = ek, Mk(X, Y) =N, me(X, y)=mg, 1<k<j}=X

for any {(ex, Nk, M), 1<k < j}, ex = £1, ng, Mg > 1 without the boundary oX.
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In the following, we show some properties for entriesdof,. After that we give
the conditions for X, y) € X when iteration by the negative slope algorithm &f ¥)
stops. Finally, we give the condition for existence of anamgion of §, y) € X by
the negative slope algorithm.

2.2. Properties of the negative slope algorithm.

Lemma 2.1. For entries ofW,,, we have

K K
pﬁ):p§’+81---8k
(=10 ey

k k
o = .

Proof. By simple calculation, we see that

1 0 n—1 1 1
01 m-1 -1 |=@H=D| -1},
1 1 ntrm-1 0 0
0 1 m 1 1
1 0 n —1|=(1| -1
1 1 ntm-1 0 0
So we have
1 1
A(;,ln,m) 1|=¢| -1
0 0
Then we see that
1 1
-1 -1 —
Aernm)  Aeenemo| —1 ] Te1 e -1
0 0

for k > 1. Therefore, we obtain

K _ &

Pi”— P2 e1- - - 6k

NOREFICIN [ O
K K

ot — g% 0

We next give an approximation ok ¢ y) for x, y € X.
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Lemma 2.2. For x, y € X, we have

© 4 0 1
(X+Y)_<p3 (k)r3 )‘
O3 q

K) (K) "
28
Proof. By taking a determinant of,,, we have
(K (k) (k)
S A (W R (0 ®
(k) () K | = k| "2 3 | _ W)L 3 K| "1 2
7 T3 =P w K 2| 0 LK 3 g0 q®
K 1) K a; U3 a; U3 a; a2
0" Oy O3
From Lemma 2.1, the right hand side is equal to
(K) (k) (k) (k) (K) (k)
(p(k) +5k) r,y” rj p(k) r;” —ok ry p(k) r;” —ok ry
2 K 3 2 K 3 3 K 3
(0 qf a0 ¥ a0 o
wheredy, = &1 - - - g¢. Since detl,, =1, we have
k) (K k) (K k) (K k) (K)\ —
(1) (r3%as” - r%a;%) + (p2ag” — pgPqp?) = 1.

Substitutingp® = p + 5, r¥ =r® — 5 andq® = q¥ for (1), we see that

e (r1%05” —rsay”) + (p{0g” — play?) = 1.

From (1) and (2), we have

K K 3 K :k 3 ]
Kk Kk k Kk k)

For (x, y) € X, we put &, Yk) = TX(X, y), k> 1. Then we see that

K K K
ax pl? pl pfd Xk
ay | =] r® O 9 w
3 K 3
o qg) C{é) C]é) 1
for « #0. Then we obtain
(k) (k)

(4) X = P1 "Xk * pg() Y + P3

3 K k)’
o + oSy +
rf% +rPy +rd

) y= :
A%+ oy + o
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Sinceq % - 0 for k > 1, the denominators of the above two equations are not equal
to 0. From p(k) = p(k) + 8k, r(k) = r(k) 8¢ and qik) = qg‘), we have

B4+ 20+ 418
2 (Xk +yi) + Q3

(6) X+y=

Then we see the following.

(0 4 00
(X + y) - ( p ® )
s

[t e o) _ (o115

A (% + yi) + a?
- ‘ o+ rf? | —(o0/a) (6 +ri%) + (0 +r0) | _ (p
qé“) (k)(Xk +Yi) + q(k) Q:(:,k)
From (1) and (3), we see that the second line is equal to
1 1 1 1
qék)qék) (k) (k)(Xk +y) + q(k) q(k)q(k)
This is the assertion of this lemma. O

From (3) and from this lemma, we deduce the following apprations.

() 41

3
qi( )

2

(K 5®

Pi
<
0 "0z

@) (x+y)—

fori =1, 2.
Lemma 2.3. We put(Xc, k) = TX(x, y), k > 1 for (x, y) € X and have

¥ (x+y) — (p¥ +r¥) /g
(k) x+y)— (pP +1D) /g

Xkt Yk = —

where ;{)) ¥ and r(k), i =1, 2, 3,are entries of¥,,.



948 K. ISHIMURA AND S. ITO

Proof. We consider the inverse df,,. We put &, Yk) = TK(x, y), k > 1 for
(X, y) € X. Then we have

K K K\ L
-~ 0 P p{d X
aye | =1 1 1P P y
K K Kk
o o ¥ q¥ 1

for « # 0. By taking the cofactor matrix o¥,,, the inverse is equal to

K 3 K K 3 K
rg) g ‘pé) | [l p¥
3 K Tl Ak K K 3
¢ o g’ o’ |rf? rf
(k) (k) (k) (k) (k) (k)
gl " rs ‘pl P3 P Ps
I N ( K K K T LK K
‘ a? of | o of ry g
3 Kk Kk 3 Kk Kk
i 0 el e | e e
3 K 3 Kk (3 k
¥ off af o | [ rf
Then we have
k) (K k) (K k) (K k) (K k). (K k). (K
© w20 = ra)xr (—pay) + pap)y + (pPrs? — piory)
k) (K k) (K k) (K k) (K k). (K k). (K)\’
(r1%a” —re%at%)x + (=p{lap? + pay?)y + (prf? — pri”)
k) (K k) (K k) (K K) (K k). (kK k). (kK
= 0 +ral)xc+ (pllas? — piPal?)y + (—phfrs? + i)

k) (K k) (K k) (K k) (K k). (k k). (k)\ *
(r1%az” —ra?)x+ (=p{Pae? + pal%)y + (P — piri’)
By Lemma 2.1, we have the following.

(e1- - - gk)qék)x +(eq - - 8k)q§k)y —(e1--- SK)(pék) + rék))

—(e1- - @)qPx — (61 - - 2Py + (o1 - - - &) (PF +1 )
a (x+y) — (p¥ +1$) /g

=% . u
% (x +y) — (3 +r¥) /g

Xe + Yk =

2.3. The case where the negative slope algorithm stopsNext we define what
means that the iteration by the negative slope algoriihraf (X, y) € X stops.

DEFINITION 2.4. We denotek-th iteration by the negative slope algorithin of
(x,y) € X as &« Vi) = TK(x, y). Then we say iteration by the negative slope algorithm
T of (x,y) € X stops if there exist& > 0 such thatx,, =0 or yx, =0 or Xy, + Yk, = 1.

This implies that iteration by the negative slope algoritimof (x, y) € X stops
if there existskg > 0 s.t. K, Yi,) € 0X. From this definition, we get the following
propositions.
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Proposition 2.5. If iteration by the negative slope algorithm T 6f, y) € X stops
then (x, y) satisfies one of the following equations

(p+1)x+py=q,
px+(p+1)y=q,
pX+py=q
for some integer® < q < 2p.
Proof. We putk-th iteration by the negative slope algorithin of (x,y) € X

as f, k) = TK(x, y). Supposex = 0, then we get the following equation from (8)
in Lemma 2.3.

K) (K K) (K k) (K k) (K k), (K k), (K
0= (%5 —r§905%)x + (- paf? + pPaf?)y + (pr§? — pLrfY).
By (1) in Lemma 2.2, we obtain

(p+1)x+py=q

wherep = — p(zk)qék) + pgk)qg(), q=- pgk)rék) + pgk)rék). Since
_a-py
X = oF 1 e [0, 1],

we see that the following two cases.
() f0=qg—-py=p+tl, then

O<py=<g=(y+lp+1=<2p+1l
(i) f0>qg—py>p+1, then
O>py>q=(y+1l)p+1=>2p+1>2p.

Similarly, we obtainpx+(p+1)y =0 (0<q < 2p) for yx =0.
Supposexk + Yk = 1, then we get the following by (6) in Lemma 2.2.

(07 +ag%) (x +y) = () + p57) + (157 +17).
Since 0< x+y < 2, we complete the proof. ]

In the following, we show the sufficient condition for the rthiequation in Propo-
sition 2.5.
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Proposition 2.6. If (X, y) € X satisfies the following equation

px+py=q

for any integer9 < q < 2p, then there exists N 0 such that the sequen€&X(x,y): k> 0)
terminates at k= N for the negative slope algorithm.T

Proof. Supposéx+y—1| =t;/tg < 1 for (X, y) € X wheret;/ty is an irreducible
fraction. Then by the negative slope algorithm, we see that

X1 +y1—1] = <1

to
t1

to
2 (rulx, )+ mute, )| =
wheret,/t; is also an irreducible fraction. Recursively, we get

ti+2
[Xis1+ ¥ie1 — 1 = — <

5 (ax, y) + Ml y))‘ -

ti +1 ti +1

whereti.,/t+1 is an irreducible fraction. Sincdtj|: i > 0) is a decreasing integer se-
quence, there exists > 0 s.t.ty =0. This implies that the sequenc&*(x, y): k > 0)
stops atk = N — 1. ]

Finally, we give the last lemma of this section. This lemmaveh that the con-
dition for existence of an expansion of,(y) € X by the negative slope algorithm.

Lemma 2.7. For nj, mj > 1, i > 1 and for any sequencs, nj, m;), i > 1),
there existyx, y) € X such that(g; (X, y), ni(X, ¥), mi(X, ¥)) = (&, nj, m;) unless there
exists k> 1 such that(ej, mj) = (+1, 1) for i > k or (g, nj) = (+1, 1) for i > k.

Proof. Suppose there exists, (y) € X satisfying & (X, y), ni(x, y)) = (+1, 1) for

all i > 1. Then the negative slope expansion ®fY) is ((+1, 1,my), (+1, 1,my),...)
formi >1,i > 1. We see that

10 © 10 O
Aiiimy Aoty =0 1 m-1]]0 1 m-1
1 1 mq 11 my

1 0 0
= m-1 m-1 ml(mz—l)
m+1 m+1 2n, —1

and
PR Y (0 W B0\ 10 o
r D D = O O 0 0 1 mu-1
qfﬂ) qg+1) q§i+1) qf) qg) qg) 1 1 Mi+1
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pl+pf PP+ PP (M — 1P + (M) pY
= O+ D i — 0+ i)y

A +a) q+a) (- 16+ (m o

fori > 2. If we putp{’ =1, p{’ = p{’ =0, then we havep{*? =1, p{*? = p{* =0.

Therefore we obtairp{’ = 1, p!) = p{) = 0 for alli > 1. From (4) in Lemma 2.2, we
see that

Xk

(k) (k)

X =
q x+q2y+q

where &, Yk) is k-th iteration by the negative slope algorithm. Sim#@, i=1,2,3
are increasing integer sequences argd Yk) € X, this implies thatx = 0. Then it is
the contradiction to Definition 2.4. O

3. The natural extension of the negative slope algorithm andharacterization
of the periodic points

3.1. Necessary part of Main Theorem. In this section, we introduce the
4-dimensional mapr which is called the natural extension of the negative sldge-a
rithm T. This map has been given in [4]. It was defined as the natutahsion of the
negative slope algorithm oR* as follows. LetX =X x (—o0, 0% For (x,y,z w) € X,
we define a ma@l on X by

'F(x, Y, Z,w)

y z
<m n(x,y), m m(X, y), W n(x,y),m—m(x,y))

if x+y>1

1-y 1-x 1—w
<l—(x+y)_n(x’y)’1—(x+y)_m(x’y)’l—(z+w)_n( Yo (z+ y ~mex y)>
if x+y<1.

Then it is easy to see that is bijective onX except for the boundary oK. We
show our Main Theorem in this section. After the proof of Mainedrem, we show
Theorem 1.1 as a corollary of Main Theorem.

Theorem 3.1 (Main Theorem). Suppose iteration by the negative slope algorithm
T of (x, y) € X does not stop Then the sequend@X(x, y): k > 0) is purely periodic
if and only if x and y are in the same quadratic extensionQnd (X, y, x*, y*) € X
where X denotes the algebraic conjugate of x
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We start with proving the necessary condition of Main Theordfirst, we show
that if iteration by T of (x, y) € X is purely periodic, then there exists> 0 s.t.x,
y are in Q(v/d). After that, we show that iteration bV_ of (X, ¥,z w) € X x R?\
{(X,y,z,w)|z+w=x+Yy, (z, w) € X} goes intoX.

Lemma 3.2. Suppose iteration by the negative slope algorithm T(afy) € X
does not stop Then if the sequenc€lk(x, y): k > 0) is purely periodi¢ there exists
d > 0 such that x and y are iQ(+/d).

Proof. Suppose the sequendé(x, y): k > 0) is purely periodic forX,y) € X by
the negative slope algorithii, then there exists > 0 such thafT'(x, y) = (x, y) € X.
From (6) in Lemma 2.2, we see that

(pg +12)(x+y) + (P +1))

)

X+y=
g (x +y) +qf

Then we have the following quadratic equation with respecfxt+ y).

o (x+y)?+ (o) — pY —rP)x+y) — (b +r{) = 0.

We see that the discriminaunt of this equation satisfies

2
4= (@)~ o) )+ 4l () 1) =

Note that the discriminand > O is not a square number. In fact, suppakés a
square number, then we see that y € Q. It implies that there existtN > 0 such
that the sequenceTlf(x, y): k > 0) stops atk = N by Proposition 2.6. This contradicts
the fact that the sequenc@X(x, y): k > 0) is purely periodic. Therefored is not a
square number and+y € Q(+/d). From Lemma 2.1, (4) and (5), we have

_ p(x +y) + p§
X="0 ® ’
D) (X+y)+q3 — (&1 &)
rék)(x +y)+ rék)

y= :
g (x +y) + a3 + (e1 - - - e

This is the assertion of this lemma. O

In the following, we put Xk, Yk, Zk, wk) = TK(X, y, z, w), k > O for the natural
extensionT of the negative slope algorithii. We show that if iteration byT of
(x, y) does not stop forx, y,z, w) € X x R?\ {(X, Y, z, w) | z+w = X +Y, (z, w) € X},
then3ky > 0 s.t. @, wk) € (—o0, 0)? for k > ko. This will yield the necessary condition
of Main Theorem.
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Lemma 3.3. Let(x,y,z, w) e X xR\ {(X,y,z, w) | z+w=Xx+Y, (z, w) e X}
and (X, Vi, Zk, wi) = TX(X, Y, z, w), k > 0 for the natural extensio of the negative
slope algorithm T Suppose the sequen€EX(x, y): k > 0) does not terminate at any
finite number k Then there existspok> 0 such that g+ wy < 0 for k > k.

Proof. Suppose the sequencE(x, y): k > 0) for (X, y) € X does not terminate
at any finite numbek. Then from Lemma 2.3, we have

a5’ (2+w) — (pS +75°) /o
o (z+w) — () +r%) /0

Zx twg = —

where &, Yk, Z, wk) = 'Fk(x, Yy, Z, w). According to Lemma 2.2 and (7) arq;ik) > 0,

i =2, 3, the right hand side converges mgk)/qg‘). Then there exist&; > 0 s.t.

Zx+twg <0
for k > kg. This is the assertion of this lemma. ]

Note that it follows from the definition oT that if z+w = x+y, then one has that
Zx + wg = Xk + Yk for all k > 0. From Lemma 2.2 and (7), it is not clear whether the
right hand side of the above equation converges. Howeverpme consider periodic
orbits of the sequencd [(x,y,z w): k> 0). In fact, it is easy to see that the sequence
(TK(x,y,z w): k > 0) is not periodic forz+w = x+y even if the sequencé {(x, y): k >
0) is periodic. Consequently, we can ignd(g, vy, z, w) € X x R? | z+w = X + y}. _
The next lemma shows théz, w) | z+w < 0} goes into oo, 0¥ by iterating T.

Lemma 3.4. Suppose iteration by the negative slope algorithm T>ofy) € X
does not stop Then the negative slope expansion (&f y) is an infinite sequence
((e1, N1, My), (g2, N2, My), ...). We put

Ax={(z, w) | z+w < 0, n(z, w) =k or m(z, w) =k}
and
In=8{l [ (&1, m) Z (+1, 1) or (&, M) 7 (+1, 1), | < N}
Then for(x, y, z, w) € X x Ay, there exists N> 0 such that for | > k,
TV, Yy, z w) € X.
Proof. We know thatX is T-invariant by [4]. Then it is enough to show that

the shaded two areas called upper area and lower area at B@irito (—oc, 07 by
iterating T.
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Z

/ 0
upper area
lower area

Fig. 1.

We start with lower area at Fig. 1. Suppose iteration by thgatiee slope al-
gorithm T of (x, y) € X does not stop, thenx(y) has an infinite expansion by the
negative slope algorithm

((e2, N1, M), (g2, N2, M), ..., (1, M, M), . ).

In the following, we consider the two partitiorfst(” | k=1,2,...} and {A{? | k=

1,2,... } in lower area. First, we define the partitiotf(i) and fi(z, w) as follows.
(i) For e =+1, we define

=l [e2at] )

n 1-w 1-z
f(z w) = (1—(z+w)’ l—(z+w)>'

(iiy For &1 = -1, we define

(=) .— w -
A= e [

—_— w Z
e w) = ((Z+w) —1 (z+w) - 1>'

In the case ok, = +1, we see that

T(x, Y, A(k+)) = (X1, Y1, f+(A(k+)) — (N1, My))

(see Fig. 2). We have the following three cases for imaged tof A(k+).
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(i-a) Forn; =1, we see that

£ (A @ m) c AP uaPu..ual or ADuAP U ual,
(i-b) For 1< n; < k+1, we see that

fo(AP) — (ny, m) € AV UAP U U Al

k—n1+1

or ADuAS U uAD L
(i-c) Forny > k+1, we see that
f.(ALY) = (ng, my) € (—o0, O
In the case ofk; = —1, we see that

T(x, y, AL) = (%0, v, f-(AL)) — (ng, my))

(see Fig. 3). We have the following two cases for imagesT_bgif A(k_).
(ii-a) For n; < k, we see that

(A7) = m) c AP uaPu--ual or AP uaP U ual,.
(ii-b) For n; > k, we see that
f(AD) = (n1, my) C (—o0, O)%.
From (i) and (ii), we obtain
[£.(A0) = (e, m)} c A U U AP
except for (1, mi) = (1, mg) and
[12(A7) = (e, m)} c AF U U Al

for any (11, m;). From Lemma 2.7, there does not exigt> 0 s.t. ¢, n) = (+1, 1) or
(er, m) = (+1, 1) for alll > lo. Therefore, there existg > 0 such thatA(k+) and k-th
iteration by'lT of A(k+) are disjoint fork > kg. So we put

In=g{l: (&, ) #(+1, 1) or &, m) # (+1, 1), 1 < N}.
Then for @, w) € Aﬁi), there existsN > 0 s.t. forly > k,
TN(X, v, z, w) € X.

It is the same as upper area in Fig. 1, which completes thef.proo 0
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3 S —

/ ‘\.TN(X’ Y, X*’ y*)
()C, y’X*: y*) ‘/ \.

/ \

PR
/
/
/
/
/
I

Fig. 4.

REMARK 3.5. In the following proof, we use the fact tha_tk(x, Yy, X*, y%) =
Xk, ks ()%, (W)*). This is easy to show from the definition of the map

T(Y.X"y)
y* X*
o1 Gy i)

if x+ty>1

n(x,y) m(X,y),

y X
(W_ "(xty)-1

1y _1-x 1-y* 1-x*
(1—(x+y) —n(x,y), () —m(x,y), m—n(x,y), m_m(x,y)>

if x+y<1.

Sincen(x, y) and m(x, y) are positive integers, we see that fory > 1,
y* _ y Y\
ey -1 <(x+y)—1 ”) |
X —m= X —m :
rty)—1  \(x+y) -1 '
These are the same asty < 1. Then we obtain
T Ys X5 Y) = 0, Ya, ()" (Y2)),

Proof (necessary part of Main Theorem). Suppose the seq@!ce y): k > 0)
is purely periodic for X, y) € X by the negative slope algorithifi. Then from Lem-
ma 3.2, x and y are in the same quadratic extension @f It is easy to see that
(TK(x, y, x*, y*): k > 0) is purely periodic if TX(x, y): k > 0) is purely periodic,
wherex* is the algebraic conjugate af We show this fact later as Remark 3.5. From
Lemma 3.3 and Lemma 3.4, we see that there exists O such thafr N (X, Yy, x*,y*) €
X. SinceX is T-invariant, we obtain thatx( y, x*, y*) € X (see Fig. 4). ]
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3.2. Sufficient part of Main Theorem. Next, we show the sufficient part of
Main Theorem. Suppose andy are in the same quadratic extension@®@fand , v,
xX*, y*) € X. Then we show that the number of, b, x*, y*) € X is finite and the orbit
of (X, y, x*, y*) by T is purely periodic. We start with some definitions for qudidra
irrational numbers.

DEFINITION 3.6. If o is a quadratic irrational number, then it satisfies the fol-
lowing quadratice equation:

ax’+bx+c=0

wherea, b, c € Z and the great common measure (GCM)apfb and c is equal to 1.
Then we say

D = a%(a — «*)? = b? — 4ac
is the discriminant ofx, wherea* is the algebraic conjugate ef. We also say that
D is the discriminant ofax? + bx + c.

We denote the discriminart and f(x) as D, and D¢, respectively.

DEFINITION 3.7. The numbersr and o’ are equivalent with respect to modular
transformations if they satisfy

_sa’ +t

a_
U’ +v

wheres, t,u, v € Z andsv — tu = £1.
From Definition 3.7, we deduce the following lemmas.

Lemma 3.8. If ¢’ is equivalent to a quadratic irrational number with respect
to modular transformationsthen the discriminant of’ and « are equal

Proof. Assume that is a quadratic irrational number with a discriminabtand
«’ is equivalent too w.r.t. modular transformations. Then we have the following

aad”+ba+Cc=0, a,nCc)=1, = — 4acC.
(9) 2+ b 0, GCM(a, b, c)=1, D=b’—4a
/+t
a:SOl , Sv—ts==+1.
(10)
U’ +v

From (9), (10) and simple calculation, we see thats the root of the following equa-
tion.

(11) @S +bsv+cu?)a’?+ (2ast+b(sv + tu) + 2cuv)e’ + (at? + btv + cv?) = 0.
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Then we obtain the discriminard’ of the above equation as follows.

D’ = (2ast+ b(sv + tu) + 2cuv)? — 4(as® + bsv + cu?)(at? + btv + cv?)

=b? — dac.

From assumptionGCM(as? + bsv + cu?, 2ast + b(sv + tu) + 2cuv, at? + btv + cv?) is
equal to 1. This is the assertion of this lemma. ]

Lemma 3.9. The cardinality of quadratic equations &x bx + ¢ = 0 with fixed
discriminant where ab, c € Z, GCM(a, b, ¢) =1, ac < 0 is finite

Proof. LetD be the fixed discriminant oéx? + bx + ¢ = 0 wherea, b, ¢ € Z,
GCM(a, b, ¢) =1, ac < 0. Then we see that

D = b? — 4dac=b? + 4jac| > b%.

This implies thatb is bounded byD and the cardinality of a paira( c) is finite for
eachb. This is the assertion of this lemma. ]

Note that if« is the root of quadratic equations of Lemma 3.9, then theicalitly
of suche is also finite.

Lemma 3.10. Assume thatr and g are in the same quadratic extension Qf
and (o, B, a*, p*) € X, then Q.4 is greater than [ and Ds.

Proof. From assumption, we see that

N <—b+c\/§ —b—cvo
(a, ™) = ,

), a,c>0, GCM@a,b,c)=1,
a a

GCM(p, q,r) =1,

(B, ) = (‘q gﬂ, - _p“/g>, p.r >0,

wheref does not contain square numbers as factors. thand g satisfy the follow-
ing quadratic equations.

a’x?+2abx+b? — %0 =0,

p?x% +2pgx+q? —r29 = 0.
On the other handx +y satisfies

(—bp—aq) + (pc+ar)vo
ap '

X+ys=
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Then the quadratic equation af+y is
a?p?(x +y)? + 2ap(bp + aq)(x + y) + (bp+aq)? — (pc+ar)?0 = 0.

It is enough to show the following four cases.
(1) If GCM(a, b, p, q,0) =1, then we see that

Da+p = 4a°p?(pc+ar)?, D, =4a’c®), Dy =4pir?s.

This implies thatDy+g > Dy, Dg.
(2) If GCM(a, p,d) =i > 1, GCM(a, b,0) =1 andGCM(p, q,0) =1, then we see that

Da+p = 4i%(@)%(p)*(p'c+ar)?, D, =4a’c®), Dy =4p’r?)

wherea =ia’ and p=ip’. This implies thatDy+g > D, Dg.
3) If GCM(a, b, p,#) =j >1 andGCM(p, q, 0) =1, then we see that

Du+p = 4j%@)%(p)*(p'c+ar)’s, D, =4@)%c®, Dg=4p*?9

wherea = ja’ and p = jp’. This implies thatD,+s > D, Dg.
(4) If GCM(a, b, p, q,0) =1 > 1, then we see that

Do = 4@)%(P)2(Pc+ar)’0, Dy =4@)°c0, Dy =4(p)r%

wherea =1a’ and p =Ip’. This implies thatD,.s > D,, Dg.
It is clear thatD, < 4ac?0, Dy < 4p?r?0 if GCM(a, b, 6) > 1, GCM(p, q, 6) > 1.
This completes the proof. 0

_ We give the last lemma to complete Main Theorem. We show that i, x*, y*) €
X, then the sequencd {(x, y, x*, y*): k > 0) is purely periodic.

Lemma 3.11. Suppose iteration by T di, y) € X does not stop Then the se-
quence(TX(x, y, x*, y*): k > 0) is purely periodic if x and y are in the same quadratic
extension ofQ and (x, y, x*, y*) € X, where ¥ denotes the algebraic conjugate of x

_ Proof. If x andy are in the same quadratic extension@fand , y, x*, y*) €
X, then we see thak + vy is equivalent toxx + yx, k > 1 w.r.t. the negative slope
algorithm from (1) and (6). It implies thaby.y is equal to Dy+y, by Lemma 3.8.
From Lemma 3.10,D,, and Dy, are bounded byD,., for eachk > 1. This implies
that the cardinality of Xk, yi) for k > 0 is finite from Lemma 3.9. Sinc® is bijective
on X, there existd > 1 s.t. for anyk > I,

T*(X, y, X*, y*) = T*(x, y, X*, y*).
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Note that &, y, x*, y*) doesn’t converge to the boundaryﬁf Indeed, if &*,y*) =
(z, 0) for z < 0, then we see that

B <L—n,u—m) if e=+1
T(z,0) =

From Lemma 2.7, there does not exigt> 0 such thafT¥(z,0) € 3(—oo, 02 for k > k.
SinceT is bijective onX, we see that

kal(x' Y, X*, y*) - Tk+lfl(xy Y, X*, y*)
By induction, we obtain
(%, ¥, X%, ¥ = THX, Y, X5, ).
This completes the proof of Main Theorem. O
Then we have the following corollary of Main Theorem.

Corollary 3.12 ([1]). Suppose iteration by the negative slope algorithm T of
(X, y) € X does not stop Then x and y are in the same quadratic extensionQof
if and only if the sequenc€T(x, y): k > 0) is eventually periodic

Proof. Suppose iteration by the negative slope algorifhmf (X, y) € X does not
stop andx andy are in the same quadratic extension(@f Then from Lemma 3.4,
there existsN’ > 0 such thafTN'(x, y, x*, y*) = (Xn', Y, (Xn)*, (Yn')*) € X. Therefore
we see that the sequencE*(x, y, x*, y*): k > N’) is purely periodic by Main Theorem.
It implies that the sequencd {(x, y): k > 0) is eventually periodic. Conversely, if the
sequenceTX(x, y): k > 0) is eventually periodic, then there exists> 0 such that the
sequence T (xn, yn): j = 0) is purely periodic. By Main Theorem, we see that
and yy are in the same quadratic extension@fand &y, Yn, (Xn)*, (YN)¥) is in X,
This is the assertion of this corollary. ]
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