Osaka University Knowledge Archive

Title	Some criteria for hereditarity of crossed products
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1964, 1(1), p. 69- 80
Version Type	VoR
URL	https://doi.org/10.18910/11065
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

SOME CRITERIA FOR HEREDITARITY OF CROSSED PRODUCTS

Manabu HARADA

(Received March 26, 1964)

Let \mathfrak{O} be the integral closure of a discrete rank one valuation ring R with maximal ideal \mathfrak{p} in a finite Galois extension L of the quotient field of R. Auslander, Goldman and Rim have proved in [1] and [2] that a crossed product Λ over \mathfrak{D} with trivial factor sets is a maximal order in K_{n} if and only if a prime ideal \mathfrak{P} in \mathfrak{O} over \mathfrak{p} is unramified and Λ is a hereditary if and only if \mathfrak{B} is tamely ramified. Recently Williamson has generalized those results in [11] to a crossed product Λ with any factor sets in $U(\mathfrak{D})$, where $U(\mathfrak{D})$ means the set of units in \mathfrak{O}, namely if \mathfrak{P} is tamely remified, then Λ is hereditary and the rank ${ }^{1)}$ of Λ is determined.

In this paper, we shall modify the Williamson's method by making use of a property of crossed product over a ring.

Let G, S and H be the Golois group of L, decomposition group of \mathfrak{B} and inertia group of \mathfrak{F}, respectively. We denote a crossed propuct Λ with factor sets $\left\{a_{\sigma, \tau}\right\}$ in $U(\mathfrak{D})$ by ($a_{\sigma, \tau}, G, \mathfrak{D}$). Then we shall prove in Theorem 1 that Λ is a hereditary order if and only if so is ($a_{\sigma, \tau}, H, \mathfrak{D}_{\mathfrak{B}_{H}}$) where $\mathfrak{B}_{H}=\mathfrak{F} \cap \mathfrak{D}_{H}$, and \mathfrak{D}_{H} is the integral closure of R in the inertia field \mathfrak{R}_{H}. Using this fact and the structure of hereditary orders [7], [8] we obtain the above results in [1], [2] and [11].

Furthermore, we shall show that Λ is hereditary if and only if $\mathfrak{\beta}$ is tamely ramified under an assumptions that R / \mathfrak{p} is a perfect field.

Finally, we give a complete description of hereditary orders in a generalized quaternions over rationals in Theorem 3.

1. Reduction theorem

In this paper we always assume that R is a discrete rank one valuation ring with maximal ideal \mathfrak{p} and p in the characteristic of R / \mathfrak{p}. Let L be a finite Golois extension of the quotient field of R with Galois

[^0]group G, and \mathfrak{O} the integral closure of R in L. For a prime ideal \mathfrak{P} in \mathfrak{O} over \mathfrak{p} we denote the decomposition group and the inertia group of \mathfrak{S}_{3} by S and H and their fields and the integral closure by L_{S}, L_{H} and $\mathfrak{D}_{S}, \mathfrak{D}_{H}$ and so on.

We note that \mathfrak{O} is a semi-local Dedekind domain and hence, \mathfrak{D} is a principal ideal domain. Let $\left\{\mathfrak{F}_{i}\right\}_{i=1}^{g}$ be the set of prime ideals in \mathfrak{S} and S_{i} and H_{i} be decomposition group and inertia group of \mathfrak{F}_{i}. Let $\mathfrak{p N}=$ $\Pi \Re_{i}^{e}=P^{e}$, where $P=\Pi \mathfrak{F}_{i}$. Since $\left(\mathfrak{F}_{i}, \mathfrak{\Re}_{j}\right)=\mathfrak{D}$ for $i \neq j, \mathfrak{O} / P^{n}=\mathfrak{D} / \mathfrak{F}_{1}^{n} \oplus \cdots \oplus$ $\mathfrak{O} / \mathfrak{S}_{g}^{n}$. We note that $\left(\mathfrak{D} / \mathfrak{F}_{i}^{n}\right)^{\sigma}=\mathfrak{O} /\left(\mathfrak{F}_{i}^{\sigma}\right)^{n}$ for $\sigma \in G$. Then $\mathfrak{D}_{H_{i}} / \mathfrak{S}_{H_{i}}$ is the separable closure of R / \mathfrak{p} in $\mathfrak{O} / \mathfrak{F}_{i}$ and $\mathfrak{O}_{H_{i}} / \mathfrak{\Re}_{H_{i}}$ is a Galois extension of R / \mathfrak{p} with Galois group S_{i} / H_{i}, (see [10], p. 290).

Let Λ be a crossed product over \mathfrak{D} with factor sets $\left\{a_{\sigma, 7}\right\}$ in $U(\mathfrak{O}): \Lambda$ $=\left(a_{\sigma, \tau}, G, \mathfrak{O}\right)$. Since $P^{\sigma}=P$ for all $\sigma \in G, P^{n} \Lambda=\Lambda P^{n}$ is a two-sided ideal in Λ. Let $\bar{\Lambda}(n)=\Lambda / P^{n} \Lambda=\left(\bar{a}_{\sigma, \tau}, G, \mathfrak{D} / P^{n}\right)=\Sigma \oplus\left(\bar{a}_{\sigma, \tau}, G, \mathfrak{D} / \mathfrak{\Re}_{i}^{n}\right)$ as a module. We put $\bar{\Lambda}\left(S_{i}, n\right)=\left(\bar{a}_{\sigma, \tau}, S_{i}, \mathfrak{O} / \mathfrak{S}_{i}^{n}\right)$. Since $\bar{u}_{\sigma}{ }^{-1}\left(\bar{u}_{\tau} \mathfrak{\Im} / \mathfrak{S}_{i}^{n}\right) \bar{u}_{\sigma}=\bar{u}_{\sigma-1 \tau \sigma}\left(\mathfrak{D} / \mathfrak{S}_{i}^{\sigma}\right)^{n}$, $\bar{u}_{\sigma}^{-1} \Lambda\left(S_{i}, n\right) \bar{u}_{\sigma}=\bar{\Lambda}\left(S_{i}^{\sigma}, n\right)$, where $S_{i}^{\sigma}=\sigma^{-1} S_{i} \sigma$. Thus we have

$$
\begin{equation*}
\bar{\Lambda}\left(S_{i}, n\right) \bar{u}_{\sigma}=\bar{u}_{\sigma} \Lambda\left(S_{i}^{\sigma}, n\right) . \tag{1}
\end{equation*}
$$

Let $G=\sigma_{i 1} S_{i}+\sigma_{i 2} S_{i}+\cdots+\sigma_{i g} S_{i}=S_{i} \sigma_{i 1}+\cdots+S_{i} \sigma_{i g}, \sigma_{i 1} S_{i}=S_{i}$, since G is a finite group. Then

$$
\begin{align*}
\bar{\Lambda}(n)= & \bar{\Lambda}(S, n)+\bar{u}_{\sigma_{11}} \bar{\Lambda}(S, n)+\cdots+\bar{u}_{\sigma 1 g} \bar{\Lambda}(S, n) \\
& +\bar{\Lambda}\left(S_{2}, n\right)+\bar{a}_{\sigma 22} \Lambda\left(S_{2}, n\right) \cdots+\bar{a}_{\sigma 2 g} \Lambda\left(S_{2}, n\right) \tag{2}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& +\bar{\Lambda}\left(S_{g}, n\right)+\bar{a}_{\sigma g 2} \Lambda\left(S_{g}, n\right) \cdots+\bar{a}_{\sigma g, g} \bar{\Lambda}\left(S_{g}, n\right),
\end{align*}
$$

where $S=S_{1}$.
Let $p_{i j}$ be projections of $\bar{\Lambda}(n)$ to $\bar{u}_{\sigma_{i j}} \bar{\Lambda}\left(S_{i}, n\right)$. For a two-sided ideal \mathfrak{A} in $\bar{\Lambda}(n)$ we have $\mathfrak{Y} \supseteq \Sigma p_{i j}(\mathfrak{Y})$. Since $\bar{u}_{\sigma i j}$ is unit, $p_{i j}(\mathfrak{Y})=u_{\sigma 1 i} P_{i 1}(\mathfrak{Y})$ for all j. Let \bar{e} be the unit element in $\bar{\Lambda}(S, n)$. Then $\bar{\Lambda}\left(S_{i}, n\right) \bar{e}=0$ for $i \neq 1$ and $\bar{e} \bar{u}_{\sigma_{1 j} j} \Lambda(S, n) \equiv \bar{u}_{\sigma_{1} j} \bar{\Lambda}\left(S^{\sigma_{1 j}}, n\right) \bar{\Lambda}(S, n)=0$ for $j \neq 1$. Hence, $\bar{e} \mathfrak{Q} \bar{e}=p_{11}(\mathfrak{Z})$. Furthermore, since $S_{i}=S^{\sigma_{1 j}}, \quad 力_{i,}(\mathfrak{X})=\bar{u}_{\sigma_{i}}^{-1} p_{11}(\mathfrak{H}) \bar{u}_{\sigma_{1 i}}=p_{11}(\mathfrak{H})^{\sigma_{1 i}}$. Therefore,

$$
\begin{equation*}
\mathfrak{U}=\sum_{i, j} u_{\sigma_{i j}} \mathfrak{A}^{\sigma_{1 i}} \tag{3}
\end{equation*}
$$

for a two-sided ideal of \mathfrak{Y}_{0} in $\bar{\Lambda}(S, n)$. Conversely, the above ideal is a two-sided ideal in $\bar{\Lambda}(n)$ for a two-sided ideal \mathfrak{A}_{0} in $\bar{\Lambda}(S, n)$.

Thus, we have
Lemma 1. Let $\bar{\Lambda}(n)$ and $\bar{\Lambda}(S, n)$ be as above. Then we have a one-toone correspondence betueen two-sided ideals of $\bar{\Lambda}(n)$ and $\bar{\Lambda}(S, n)$ as above.

We note that the above correspondence preserves product of ideals.

Next we shall consider $\Lambda_{S}=\left(a_{\sigma, \tau}, S, \mathfrak{D}\right)\left(\subseteq \Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{D}\right)\right)$, where S is the decomposition group of \mathfrak{B}. Since \mathfrak{O}_{S} is contained in the center of Λ_{S}, we may regard Λ_{S} as an order over \mathfrak{O}_{S}. Let \mathfrak{S}_{S} be the prime ideal in \mathfrak{O}_{S} over \mathfrak{p}. Then $\mathfrak{O}_{\mathfrak{B}_{S}} / \mathfrak{F}_{\mathfrak{F}_{S}}^{n}=\mathfrak{O} / \mathfrak{S}^{n}$. If we set $\Gamma=\left(a_{\sigma, \tau}, S, \mathfrak{O}_{\mathfrak{B}_{S}}\right)$ $=\left(\Lambda_{S}\right)_{\mathfrak{B}_{S}}, \bar{\Gamma}(n)=\Gamma / \mathfrak{F}^{n} \Gamma \approx \bar{\Lambda}(S, n)$. In Γ we may regard $K=L_{S}$ and $\mathfrak{O}=\mathfrak{V}_{\mathfrak{B}_{S}}$. Let H be the inertia group of a unique prime ideal $\mathfrak{S}_{\mathfrak{B}}$ in \mathfrak{O}. Then H is a normal subgroup of S, (see [10], p. 290) and we have $S=H+\sigma_{2} H+$ $\cdots+\sigma_{f} H$. Let $\Gamma_{H}=\left(a_{\sigma, \tau}, H, \mathfrak{O}\right)$, then $\Gamma \mathfrak{P}^{n} \cap \Gamma_{H}=\Gamma_{H} \mathfrak{P}^{n}$. Hence $\bar{\Gamma}=\bar{\Gamma}(n)=$ $\Gamma / \Re^{n} \Gamma \supseteq \bar{\Gamma}_{H}(n)=\bar{\Gamma}_{H} . \quad$ Furthermore,

$$
\bar{\Gamma}=\bar{\Gamma}_{H}+\bar{u}_{\sigma_{2}} \bar{\Gamma}_{H}+\cdots+\cdots+\bar{u}_{\sigma_{f}} \bar{\Gamma}_{H} .
$$

By a similar argument as above, we have $\bar{u}_{\sigma}^{-1} \bar{\Gamma}_{H} \bar{u}_{\sigma}=\bar{\Gamma}_{H}$. We denote this automorphism by f_{σ}. Then the restriction of f_{σ} on $\bigcirc / \mathfrak{F}^{n}$ conincides with σ. Let \mathfrak{N}_{H} be the radical of Γ_{H}. Then $\mathfrak{R}_{H} \supseteq \mathfrak{S N}_{H}$. We put $\mathfrak{R}=$
 $\cdots+u_{\sigma_{f}} \mathfrak{N}_{H}^{n}$ 三利 Γ for some m. $\Gamma / \mathfrak{R}=\Gamma_{H} / \Re_{H}+\tilde{u}_{\sigma_{2}} \Gamma_{H} / \Re_{H}+\cdots+\tilde{u}_{\sigma f} \Gamma_{H} / \Re_{H}$ and $\Gamma_{H} / \Re_{H} \supseteq \mathfrak{O} / \mathfrak{S}_{3}$. Now we consider a crossed product of $\Gamma_{H} / \mathfrak{R}_{H}$ with automorphisms $\left\{f_{\sigma}\right\}$ and factor sets $\left\{\tilde{a}_{\sigma, \tau}\right\}$. We define a two-sided $\Gamma_{H} / \Re_{H^{-}}$ module Γ_{H} / \Re_{H} as follows: for $\tilde{x}, \tilde{y} \in \Gamma_{H} / \Re_{H} \tilde{x} * \tilde{y}=\widetilde{x^{f_{\sigma} y}}$ and $\tilde{y} * \tilde{x}=\widetilde{y x}$, and denote it by $\left(\sigma, \Gamma_{H} / \mathfrak{R}_{H}\right)$. Since $\Gamma_{H} / \mathfrak{R}_{H}$ is semi-simple, $\left(\sigma, \Gamma_{H} / \mathfrak{R}_{H}\right)$ is completely reducible. Furthermore, $\{\sigma\}$ is the complete set of automorphisms of $\mathfrak{O} / \mathfrak{F}$ (see [10], p. 290). Hence $\left\{f_{\sigma}\right\}$ is a complete outer-Galois, namely for any two-sided $\Gamma_{H} / \mathfrak{\Re}_{H}$-module $A \supseteq B$ in ($\sigma, \Gamma_{H} / \Re_{H}$) A / B is not isomorphic to some of those forms in $\left(1, \Gamma_{H} / \mathfrak{R}_{H}\right)$ if $\sigma \neq 1$. Therefore, for any two-sided ideal \mathfrak{N} in Γ / \mathfrak{R} we have by [3], Theorem 48.2

$$
\begin{equation*}
\mathfrak{A}=\Sigma \tilde{u}_{\sigma_{i}} \mathfrak{N}_{0} \tag{3}
\end{equation*}
$$

where \mathfrak{N}_{0} is a twe-sided ideal in $\Gamma_{H} / \mathfrak{R}_{H}$ and $\mathfrak{N}_{0}^{f_{\sigma}}=\mathfrak{A}_{0}$ for all f_{σ}, and it is a one-to-one correspondence. Hence, Γ / \mathfrak{R} is semi-simple, and \mathfrak{R} is the radical of Γ. From the definition of f_{σ} we have

$$
\begin{equation*}
\left(\tilde{u}_{\tau} \lambda\right)^{f_{\sigma}}=\tilde{u}_{\sigma^{-1} 1_{\tau} \sigma} \tilde{\lambda}^{\sigma} a_{\sigma, \tau} / a_{\sigma, \sigma^{-1} 1_{\tau}} \tag{4}
\end{equation*}
$$

for $\sigma \in S, \tau \in H, \tilde{\lambda} \in \mathcal{O} / \mathfrak{F}$, and $\tilde{u}_{\tau} \in \Gamma_{H} / \Re_{H}$.
Furthermore, let $\Gamma_{H} / \mathfrak{N}_{H}=\mathfrak{A}_{1} \oplus \cdots \oplus \mathfrak{A}_{k}$, where the \mathfrak{A}_{i} 's are simple components of $\Gamma_{H} / \mathfrak{N}_{H}$. If we classify those ideals $\mathfrak{X}, \mathfrak{B}$ by a relation

$$
\begin{equation*}
\mathfrak{A} \sim \mathfrak{B} \text { if and only if } \mathfrak{A} f_{\sigma}=\mathfrak{B} \text { for some } f_{\sigma} \tag{5}
\end{equation*}
$$

then the number of maximal two-sided ideals in Γ / \mathfrak{R} is equal to this class number.

Thus, we have

Lemma 2. Let L be a Galois extension of the field K with Galois group G such that $S=G, \Gamma=\left(a_{\sigma, \tau}, S, \mathfrak{D}\right)$, and $\Gamma_{H}=\left(a_{\sigma, \tau}, H, \mathfrak{D}\right)$. If we denote the radicals of Γ and Γ_{H} by $\mathfrak{N}, \mathfrak{R}_{H}$, then, $\mathfrak{R}^{t} \equiv \Sigma \tilde{u}_{\sigma} \mathfrak{R}_{H}^{t}\left(\bmod \mathfrak{S}^{n} \Gamma\right)$ for some $t<n$, and there exists a one-to-one correspondence between two-sided ideals in $\Gamma / \mathfrak{\Re}$ and Γ_{H} / \Re_{H} which is given by (3) and (4).

Lemma 3. Let Ω be an order over R in a central simple K-algebra Σ and \mathfrak{n} the radical of Ω. Then Ω is hereditary if and only if $\mathfrak{R}^{t}=\alpha \Omega$ $=\Omega \alpha$ for some $t>0$ and $\alpha \in \Sigma$.

Proof. If $\mathfrak{R}^{t}=\alpha \Omega$, then the left (right) order of $\mathfrak{R}=\Omega$, and $\mathfrak{\Re M} \mathfrak{R}^{t-1} \alpha^{-1}$ $=\Omega$. Hence \mathfrak{R} is inversible in Ω, which implies that Ω is hereditary by [7], Lemma 3.6. The converse is clear by [7], Theorem 6.1.

Theorem 1. Let R be a discrete rank one valuation ring and K its quotient field, and L a Galois extension of K with group G. Let S and H be decomposition group and inertia group of a prime ideal \mathfrak{F} in the integral closure \mathfrak{O} of R in L. Let $\Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{D}\right), \Lambda_{S}=\left(a_{\sigma, \tau}, S, \mathfrak{O}_{\mathfrak{B}_{S}}\right)$, and $\Lambda_{H}=\left(a_{\sigma, \tau}, H, \mathfrak{\Im}_{\mathfrak{B}_{H}}\right)$. Then the following statement is equivalent

1) Λ is hereditary,
2) Λ_{s} is hereditary,
3) Λ_{H} is hereditary.

In this case the rank of Λ is equal to that of Λ_{s} and is equal or less than that of Λ_{H}.

Proof. 1) $\rightarrow 2$). Let $\mathfrak{R}, \mathfrak{R}_{s}$ be the radicals of Λ and Λ_{S} and P be the product of the prime ideals as in the beginning. Then $\mathfrak{R}^{t}=P \Lambda$. For $n>t$ we have $\Re_{S}^{t} \equiv \mathfrak{P} \Lambda_{S}\left(\bmod \Re^{3} \Lambda_{S}\right)$ by Lemma 1 and remark after that. Hence $\mathfrak{R}_{s}^{t}=\mathfrak{B} \Lambda_{S}$ since $\mathfrak{R}_{s}^{t} \equiv \mathfrak{S}^{n} \Lambda_{S}$. Therefore, Λ_{S} is hereditary by Lemma 3. The remaining parts are proved similarly by using Lemmas 1,2 , and 3, and a remark before Lemma 2.

If $(|H|, p)=1$, then $\Lambda / \mathfrak{F} \Lambda$ is separable by [11], Theorem 1, (see Lemma 4 below) and hence Λ is herediatry, where $|H|$ means the order of group H. Therefore, we have

Corollary 1. ([11]). If \mathfrak{F} is tamely ramefied, i.e. $(|H|, p)=1$, then $\Lambda=\left(a_{\sigma, \tau}, G, \bigcirc\right)$ is hereditary of the same rank as that of $\Lambda_{S}=\left(a_{\sigma, \tau}, S, \mathfrak{D}_{\mathfrak{p}_{S}}\right)$ and its rank is equal to the class number of ideals defined by (5).

Corollary 2. ($[1,2]$). If $\left\{a_{\sigma,,}\right\}=\{1\}$, then Λ is hereditary if and only if a prime ideal \mathfrak{F} in \mathfrak{D} over \mathfrak{p} is tamely ramified. In this case the rank of Λ is equal to the ramification index of \mathfrak{B}.

Proof. $\left\{a_{\sigma, \gamma}\right\}=\{1\}$, then $\Sigma=\left(a_{\sigma, \tau}, G, L\right)=K_{n}$. We assume that Λ is
hereditary, then Λ_{H} is also hereditary by Theorem 1. $\Lambda_{H} L=\left(L_{H}\right)_{h}$, where $h=|H|,\left(\mathfrak{D}_{H}\right)_{h}$ is a maximal order in $\Lambda_{H} L$. Furtheremore, the composition length of left ideals of $\left(\mathfrak{V}_{H}\right)_{h}$ modulo the radical $\left(\mathfrak{F}_{H}\right)_{h}$ is equal to h, which is invariant for hereditary orders in $\Lambda_{H} L$ by [8], Corollary to Lemma 2.5. On the other hand $\left[\Lambda_{H} / \mathfrak{F} \Lambda_{H}: \mathfrak{O} / \mathfrak{P}\right]=h$. Hence, $\mathfrak{P} \Lambda_{H}$ is the radical and $\Lambda_{H} / \mathfrak{\beta} \Lambda_{H}$ is semi-simple which is a group ring of H over $\mathfrak{O} / \mathfrak{F}$. Therefore, $(|H|, p)=1$. In this case $\mathfrak{A}=\left(\sum_{\sigma \in H} u_{\sigma}\right) \cdot \mathfrak{O} / \mathfrak{F}$ is a twosided ideal in $\Lambda_{H} / \mathfrak{F} \Lambda_{H}$ which is invariant under automorphisms f_{σ} of (4). \mathfrak{A} is a minimal two-sided ideal in $\Lambda_{H} / \mathfrak{P} \Lambda_{H}$ which is invariant under f_{σ}. Hence, $\Lambda_{S} / \mathfrak{M} \approx \sum_{\{\sigma H\}} u_{\sigma H} \mathfrak{X}$ for some maximal ideal \mathfrak{M} in Λ_{S}. Furtheremore, since Λ_{S} is principal ${ }^{2}, \Lambda_{S} / \mathfrak{M} \approx \Lambda_{S} / \mathfrak{M}^{\prime}$ for any maximal ideal \mathfrak{M}^{\prime} in Λ_{S} by [8], Theorem 4.1. Therefore, there exists h two-sided ideals in $\Lambda_{H} / \mathfrak{F} \Lambda_{H}$ which is invariant under f_{σ}, since $[\mathfrak{Z}: \mathfrak{O} / \mathfrak{F}]=1$.

By the same argument as in the proof of Theorem 1 we have
Proposition 1. We assume that R / \mathfrak{p} is a perfect field, and we use the same notations as in Theorem 1. Let V be the second ramification group ${ }^{2)}$ and $\Lambda_{V}=\left(a_{\sigma, \tau}, V, \Im_{\mathfrak{B}_{V}}\right)$. Then Λ is hereditary if and only if so is Λ_{V}.

Proof. By virtue of Theorem 1 we may assume $G=H$. Let $G=$ $V+\sigma V+\cdots+\rho V$. Then $\Lambda=\Lambda_{V}+u_{\sigma} \Lambda_{V}+\cdots+u_{\rho} \Lambda_{V}$. Since V is a normal subgroup of G by [10], p. 295, an inner-automorphism by u_{σ} in Λ reduces an automorphism f_{σ} in Λ_{V}. Let \mathfrak{R}_{V} be the radical of Λ_{V} and $\mathfrak{R}=\mathfrak{R}_{V}+$ $u_{\sigma} \mathfrak{R}_{V}+\cdots+u_{\rho} \mathfrak{R}_{V}$. We shall show that \mathfrak{R} is the radical of Λ. By assumption that R / \mathfrak{p} is perfect, $\bar{\Lambda}_{V}=\Lambda_{V} / \mathfrak{R}_{V}$ is separable. Therefore, there exist x_{i}, y_{i} in $\bar{\Lambda}_{V}$ such that $\sum_{i} x_{i} y_{i}=1$ and $\sum_{i} \lambda x_{i} \otimes y_{i}^{*}=\sum_{i} x_{i} \otimes\left(y_{i} \lambda\right)^{*}$, where $y \rightarrow y^{*}$ gives an anti-isomorphism of Λ to Λ^{*}. Furthermore, we note that $|G / V|=t$ is relative prime to p by [10], p. 296. Let $\theta=1 / t\left(\sum_{\tau, i} \bar{a}_{\tau, \tau^{-1}}^{-1} \bar{u}_{\tau} x_{i}\right.$ $\left.\otimes\left(\bar{u}_{\tau^{-1}} y_{i}^{f_{\tau}-1}\right)^{*}\right)=1 / t\left(\sum \bar{a}_{\tau, \tau^{-1}}^{-1} \sum_{i} \bar{u}_{\tau} x_{i} \otimes\left(y_{i}^{f_{\tau}-1}\right)^{*} \bar{u}_{\tau-1}^{*}\right)$. Then $1 / t\left(\sum_{\tau} \bar{a}_{\tau, \tau^{-1}}^{-1}\right.$ $\left.\sum \bar{u}_{\tau} x_{i} \bar{u}_{\tau^{-1}} y_{i}{ }^{f_{\tau}-1}\right)=1$. We show that $\left\{\left(\eta \otimes 1^{*}\right)-\left(1 \otimes \eta^{*}\right)\right\} \theta=0$ for any $\eta \in \bar{\Lambda}$. Let γ be in $\bar{\Lambda}_{V} . \quad\left(\gamma \otimes 1^{*}\right) \theta=1 / t\left(\sum \bar{a}_{\tau, \tau^{-1}}^{-1} \bar{u}_{\tau} \gamma^{f_{\tau}} x_{i} \otimes\left(\bar{u}_{\tau^{-1}} y_{i} f_{\tau^{-1}}\right)^{*}\right)$ and $\left(1 \otimes \gamma^{*}\right) \theta=$ $1 / t\left(\sum_{i, \tau} \bar{a}_{\tau, \tau}^{-1}-1 \bar{u}_{\tau} x_{i} \otimes\left(\bar{u}_{\tau^{-}} y_{i}{ }^{f_{\tau}-1} \gamma\right)^{*}\right)=1 / t\left(\sum \bar{a}_{\tau, \tau^{-1}}^{-1} \bar{u}_{\tau} x_{i} \otimes\left(y_{i}{ }^{f_{\tau}-1} \gamma\right)^{*} \bar{u}_{\tau-1}^{*}\right)$. We can naturally define $\left\{f_{\sigma}\right\}$ on $\bar{\Lambda}_{V} \otimes \bar{\Lambda}_{V}^{*}$ by setting $\left(\gamma \otimes \gamma^{\prime *}\right)^{f_{\sigma}=\left(\gamma \otimes \gamma^{\prime} f_{\sigma} *\right) \text {. Since }}$ $\sum \gamma^{f_{\tau}} x_{i} \otimes y_{i}^{*}=\sum x_{i} \otimes\left(y_{i} \gamma^{f_{\tau}}\right)^{*}$, we obtain $\sum \gamma^{f_{\tau}} x_{i} \otimes\left(y_{i}{ }^{f_{\tau}-1}\right)^{*}=\sum x_{i} \otimes\left(y_{i}{ }^{f_{\tau}-1} \gamma\right)^{*}$. Therefore, $\left\{\left(\gamma \otimes 1^{*}\right)-\left(1 \otimes \gamma^{*}\right)\right\} \theta=0 .\left(\bar{u}_{\sigma} \otimes 1\right) \theta=1 / t\left(\sum \bar{a}_{\tau, \tau^{-1}}^{-1} \bar{u}_{\sigma} \bar{u}_{\tau} x_{i} \otimes u_{\tau^{-1}} y_{i}^{f_{\tau}-1}\right)^{*}$ $\left.=1 / t\left(\sum \bar{a}_{\tau, \tau^{-1}}^{-1} \bar{a}_{\sigma, \tau} \bar{u}_{\sigma \tau} x_{i} \otimes\left(\bar{u}_{\tau^{-1}} y_{i} f_{\tau}-1\right)\right)^{*}\right) . \quad\left(1 \otimes \bar{u}_{\sigma}^{*}\right) 6=1 / t\left(\sum \bar{a}_{\tau, \tau^{-1}}^{-1} \bar{u}_{\tau} x_{i} \otimes\right.$

[^1]$\left.\left(\bar{u}_{\tau^{-1}} y_{i}^{f_{\tau}-1} \bar{u}_{\sigma}\right)^{*}\right)=1 / t\left(\sum \bar{a}_{\tau, \tau}^{-1}-1 \bar{u}_{\tau} x_{i} \otimes\left(\bar{a}_{\tau^{-1}, \sigma}\left(y_{i}^{f_{\tau}-1}\right)^{*} u_{\tau}^{*-1_{\sigma}}\right)\right.$. However, we obtain $\bar{a}_{\tau, \tau^{-1}}^{-1} \bar{a}_{\sigma, \tau}=\bar{a}_{\sigma \tau,(\sigma \tau)^{-1}}^{-1} \bar{a}_{\tau^{-1}, \sigma}$ by the relation of $\bar{a}_{\sigma, \tau}$. Hence $\left\{\left(\bar{u}_{\sigma} \otimes 1\right)^{*}-\right.$ $\left.\left(1 \otimes \bar{u}_{\sigma}^{*}\right)\right\} \theta=0$. Therefore, $\left\{\left(\bar{u}_{\sigma} \gamma \otimes 1^{*}\right)-\left(1 \otimes\left(\bar{u}_{\sigma} \gamma\right)^{*}\right)\right\} \theta=\left(\bar{u}_{\sigma} \otimes 1^{*}\right)\left(\gamma \otimes 1-1 \otimes \gamma^{*}\right) \theta$ $+\left(1 \otimes \gamma^{*}\right)\left(\bar{u}_{\sigma} \otimes 1-1 \otimes \bar{u}_{\sigma}^{*}\right) \theta=0$. Thus we have proved that \mathfrak{R} is the radical of Λ. We can prove the proposition similarly to Theorem 1 by Lemma 3.

2. Tamely ramification

In this section we always assume that R / \mathfrak{p} is a perfect field.
Theorem 2. Let L be a Galois extension of K with Golois group G, and $\Lambda=\left(a_{\sigma \tau}, G, \mathfrak{D}\right)$ a crossed product with a factor set $\left\{a_{\sigma, \tau}\right\}$ in $U(\mathfrak{O})$. We assume R / \mathfrak{p} is a perfect field. Then Λ is hereditary if and only if every prime ideal \mathfrak{F} in \mathfrak{D} over \mathfrak{p} is tamely ramified, where $U(\mathfrak{D})$ is the set of unit elements in \mathfrak{D}.

Proof. If \mathfrak{F} is tamely ramified, then Λ is hereditary by Corollary 1. We assume that Λ is hereditary. Then by virtue of Proposition 1 we may assume that G is equal to the second ramification group V. Since the elements of G operate trivially on $\mathfrak{O} / \mathfrak{F}, \bar{\Lambda}=\Lambda / \mathfrak{\beta} \Lambda=\overline{\mathfrak{D}}+\bar{u}_{\sigma} \overline{\mathfrak{D}}+$ $\cdots+\bar{u}_{\tau} \overline{\mathfrak{D}}$ is a generalized group ring. Furthermore, from a relation on a factor set we have $a_{\sigma, \tau}^{|G|}=A_{\sigma}^{\prime} A_{\tau}^{\prime} / A_{\sigma \tau}^{\prime}$, where $A^{\prime}=\prod_{\rho \in G} \bar{a}_{\rho, \sigma}$. Since $R / \mathfrak{p}=$ $\mathfrak{O} / \mathfrak{F}$ is perfect and G is a p-group by [10], p. 296, we have $\bar{a}_{\sigma, \tau}=A_{\sigma} A_{\tau} / A_{\sigma \tau}$, $A_{\sigma} \in \overline{\mathfrak{D}}$. Therefore, $\bar{\Lambda}$ is a group ring of G over $\overline{\mathfrak{D}}$. As well known (see [5], p. 435), the radical $\overline{\mathfrak{R}}$ of $\bar{\Lambda}$ is equal to $\sum\left(1-\bar{u}_{\sigma}\right) \overline{\mathfrak{D}}$ and $\bar{\Lambda} / \overline{\mathfrak{M}}=\overline{\mathfrak{D}}$. Hence Λ is a unique maximal order by [2], Theorem 3.11. Let σ be an element in G. $\left(u_{\sigma}\right)^{i}=u_{\sigma^{i}} C_{\sigma^{i}} ; C_{\sigma^{i}} \in U(\mathfrak{D})$. Hence, if we replace a basis $\left\{u_{\rho}\right\}$ by $\left\{u_{\rho}^{\prime}\right\} ; u_{\sigma^{i}}^{\prime}=\left(u_{\sigma}\right)^{i}$, and $u_{\tau}^{\prime}=u_{\tau}$ if $\tau \notin(\sigma)$, we may assume $a_{\sigma^{i}, \sigma^{j}}=1$ if $i+j<|\sigma|=n$ and $a_{\sigma^{i}, \sigma^{j}}=a$ if $i+j \geqq n$, where a is a unit element in \mathfrak{O}. It is clear that a is an element of the (σ)-fixed subfield $L_{(\sigma)}$ of L. Since $\overline{\mathfrak{R}}=\sum\left(1-\bar{u}_{\sigma}\right) \overline{\mathfrak{D}}, \quad\left(1-u_{\sigma}\right) \in \mathfrak{R} . \quad\left(1-u_{\sigma}\right)\left(1+u_{\sigma}+u_{\sigma^{2}}+\cdots+u_{\sigma^{-1}}\right)=1-a \in \mathfrak{R}$. Hence $1-a \in \mathfrak{R} \cap \bar{D}_{(\sigma)}=\mathfrak{\Re}_{(\sigma)}$. Furthermore, every one-sided ideal in Λ is a two-sided ideal and a power of \mathfrak{R} by [2], Theorem 3.11. Since $\left(1-u_{\sigma}\right) \Lambda \nsubseteq \mathfrak{P} \Lambda,\left(1-u_{\sigma}\right) \Lambda \supseteq \mathfrak{\beta} \Lambda$. Put $\mathfrak{\beta}=(\pi)$. Then $\pi=\left(1-u_{\sigma}\right) \sum u_{\tau} x_{\tau}=$ $\sum u_{\rho}\left(x_{\rho}-x_{\sigma^{-1} \rho} a_{\sigma, \sigma^{-1} \rho}\right)$. Hence, $x_{1}-x_{\sigma^{-1}} a=\pi, x_{1}=x_{\sigma}=x_{\sigma^{2}}=\cdots=x_{\sigma^{-1}}$. Therefore, $x_{1}(1-a)=\pi$. However, $(1-a) \equiv 0\left(\bmod \mathfrak{B}_{(\sigma)}\right)$. Therefore, \mathfrak{F} is unramified over $\mathfrak{\Re}_{(\sigma)}$ which implies $|\sigma|=1$. Hence $V=(1)$, which has proved the theorem.

Corollary 3. Let $\Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{O}\right)$. Then Λ is hereditary if and only if $\Lambda / P \Lambda$ is sime-simple, where $P=\Pi \mathfrak{P}_{i}$.

Proof. It is clear from Theorems 1 and 2 and the proof of Proposition 1.

Proposition 2. Let $\Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{V}\right)$ and t the ramification index of a maximal order Ω in $\Lambda K:\left(N(\Omega)^{t}=\mathfrak{p} \Omega\right)$. We assume that R / \mathfrak{p} is perfect. If Λ is a hereditary order of rank r, then the ramification index of \mathfrak{s} is equal to $r t$, where $N(\Omega)$ means the radical of Ω.

Proof. If Λ is hereditary, then $N(\Lambda)=P \Lambda$ by Corollary 3. Hence, $N(\Lambda)^{e}=\mathfrak{p} \Lambda$. Therefore, $e=r t$ by [7], Theorem 6.1.

Corollary 4. Let $\Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{Q}\right)$ be a hereditary order. Then $\Lambda \approx \Gamma$ $=\left(b_{\sigma, \tau}, G, \mathfrak{O}\right)$ if and only if $\Lambda K \approx \Gamma K$.

Proof. Since Λ is hereditary, \mathfrak{P} is tamely ramified. If $\Lambda K \approx \mathrm{~N} K$, then $\Lambda \approx 1$ by Proposition 2 and [8], Corollary 4.3.

Corollary 5. Let $\Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{O}\right)$ and e the ramification index of \mathfrak{B} over \mathfrak{p}. Then Λ is a hereditary order of rank e if and only if $(e, p)=1$ and a maximal order in ΛK is unramified.

Corollary 6. We assume $\Lambda=\left(a_{\sigma, \tau}, H, \mathfrak{O}\right)$ is hereditary and a maximal order in ΛK is unramified. Then Λ is a minimal hereditary order ${ }^{3}$.

Proof. Let Ω be a maximal order in ΛK. Put $\Omega / N(\Omega)=\Delta_{m}$ and $[\Delta: R / \mathfrak{p}]=s$, where Δ is a division ring. Since $N(\Omega)^{i} / N(\Omega)^{i+1} \approx \Omega / N(\Omega)$, we obtain $m^{2} s=[\Omega / \mathfrak{p} \Omega: R / \mathfrak{p}]=[\Lambda / \mathfrak{p} \Lambda: R / \mathfrak{p}]=|H|^{2}$. The ranker of $\Lambda \leqslant m$ by [8], Corollary to Lemma 2.5. Hence $r=|H|=m \sqrt{s} \geqslant r \sqrt{s}$ by Proposition 2. Therefore, $s=1$ and $m=|H|=r$. Hence, Λ is minimal by [8], Corollary to Lemma 2.5.

Remark 1. If R is complete and R / \mathfrak{p} is finite, then we obtain, as well known (cf. [6]), that the ramification index of a maximal order in $\Sigma=\left(a_{\sigma, \tau}, G, L\right)$ is equal to the index of Σ.

Finally we shall generalize Corollary 2.
The following lemma is well known. However we shall give a proof for a completeness, (cf. [11], Theorem 1).

Lemma 4. Let K be a commutative ring and G a finite group which operates on K trivially. $\left\{a_{\sigma, \gamma}\right\}$ is a factor set in the unit elements of K. Then a generalized group ring $\left(a_{\sigma, \tau}, G, K\right)$ is separable over K if and only if $K n=K$, where $n=|G|$.

Proof. Let ψ be a K-homomorphism of Λ to $\Lambda \otimes \Lambda^{*}=\Lambda^{e}$:

$$
\psi\left(u_{\sigma}\right)=\Sigma u_{\tau} \otimes u_{\rho}^{*} k(\sigma, \tau, \rho), \quad k(\sigma, \tau, \rho) \in K
$$

Then ψ is left Λ^{e}-homomorphic if and only if

[^2]\[

$$
\begin{align*}
& a_{\eta, \tau} k(\sigma, \tau, \rho)=a_{\eta, \rho} k(\eta \sigma, \eta \tau, \rho) \tag{6}\\
& a_{\rho, \eta} k(\sigma, \tau, \rho)=a_{\sigma, \eta} k(\sigma \eta, \tau, \rho \eta) \quad \text { for any } \eta \in G .
\end{align*}
$$
\]

From (6) we have $k(1, \tau, \rho)=a_{\rho, \tau}^{-1} k(\rho \tau, \rho \tau, \rho \tau)$. If Λ is separable over K, then there exists a Λ^{e}-homomorphism ψ of Λ to Λ^{e} such that $\phi \psi=I$, where $\mathcal{P}: \Lambda^{e} \rightarrow \Lambda ; ~ \mathcal{P}\left(x \otimes y^{*}\right)=x y$. Hence $1=\mathscr{p} \psi(1)=\sum u_{\tau, \rho} a_{\tau, \rho} k(1, \tau, \rho)=$ $u_{1}\left(\sum_{\tau \rho=1} a_{\tau, \rho} a_{\rho, \tau}^{-1} k(1,1,1)\right.$. If we replace ρ, σ and τ by η^{-1}, η and η^{-1} in the relation of factor sets, then we have $a_{\eta, \eta^{-1}}=a_{\eta^{-1}, \eta}$, where we assume $a_{\eta, 1}=a_{1, \eta}=1$. Hence $1=n k(1,1,1)$. The converse is given by [11], Theorem 1. (cf. the proof of Proposition 1).

Proposition 3. We assume that $\Lambda=\left(a_{\sigma, \tau}, G, \mathfrak{D}\right)$ is an order in a matric K-algebra over K and R / p is not necessarily perfect. Then Λ is hereditary if and only if \mathfrak{F} is tamely ramified. In this case the rank of Λ is equal to the ramification index of \mathfrak{B}.

Proof. We assume that Λ is hereditary. Since $\left\{a_{\sigma, \tau}\right\}$ is similar to the unit factor set in $L, \Lambda_{H}=\left(a_{\sigma, \tau}, H, \mathfrak{D}\right)$ is in $(K)_{|H|}$. We know similarly to the proof of Corollary 2 that $N\left(\Lambda_{H}\right)=\mathfrak{p} \Lambda_{H}$. Hence, $\bar{\Lambda}_{H}=\bar{\Lambda}_{H} / \mathfrak{p} \Lambda_{H}=$ $\overline{\mathfrak{D}}+\bar{u}_{\sigma} \overline{\mathfrak{D}}+\cdots+\bar{u}_{\rho} \overline{\mathfrak{D}}$ is semi-simple. However, since $\Omega / N(\Omega)=(R / \mathfrak{p})_{|H|}$ for a maximal order Ω in $(K)_{|H|}, \bar{\Lambda}=\Sigma(R / \mathfrak{p})_{m_{i}}$ by [7], Theorem 4.6. Hence, $\bar{\Lambda}$ is separable. Therefore, $(|H|, p)=1$ by Lemma 4.

3. Hereditary orders in a generalized quaternions

Finally, we shall determine all the hereditary orders in a generalized quatenions. Let Z be the ring of integers and K the field of rationals. Let d be an integer which is not divided by any quadrate and $L=K(\sqrt{d})$. Then the Galois group $G=\{1, g\}$ and $(\sqrt{d})^{g}=-\sqrt{d}$. For any integer a we have $\Sigma=(a, G, L)=K+K g+K \sqrt{ } \bar{d}+K g \sqrt{d}$ with relations $g^{2}=a$, $(\sqrt{d})^{2}=d$, and $g \sqrt{d}=-\sqrt{d} g$. We have determined all hereditary orders in [9], Theorem 1.2 in the case $a=-1$.

We use the same argument here as that in [9], § 1.
First we shall determine the types of maximal orders over Z_{p}.
Proposition 4. Let R be the ring of \mathfrak{p}-adic integers, $L=K(\sqrt{d})$ and $\Lambda=(a, G, \mathfrak{D})$. We denote the radical of Λ by \mathfrak{N} and Λ / \mathfrak{R} by $\bar{\Lambda}$. Then

1) If $\mathfrak{p}=2, d \equiv 1(\bmod 4)$, then Λ is a maximal order such that $\bar{\Lambda}=(R / 2)_{2}$.
2) If $\mathfrak{p}=2, d \equiv 2,3$ ($\bmod 4)$, then Λ is not hereditary.
3) If $\mathfrak{p} \neq 2, d \equiv 0(\bmod \mathfrak{p})$, then Λ is a maximal order such that $\bar{\Lambda}=(R / \mathfrak{p})_{2}$.
4) If $\mathfrak{p} \neq 2, d \equiv 0(\bmod \mathfrak{p})$,
a) $(a / p)^{4}=1$, then Λ is a herediary order of rank two.
b) $(a / \mathfrak{p})=-1$, then Λ is a unique maximal order.

Proof. We shall consider the following three cases.

1) $H=1$. Then i) $\mathfrak{p}=\mathfrak{S}_{1} \mathfrak{P}_{2}$ and $S=H$, ii) $\mathfrak{p}=\mathfrak{F}$ and $S=G$. Since \mathfrak{P} is unramified, Λ is maximal order by Theorem 1. In the case i) $\mathfrak{D} / \mathfrak{p} \mathfrak{O}$ $=\mathfrak{O} / \mathfrak{F}_{1}+\mathfrak{O} / \mathfrak{F}_{2}$, and Λ is a maximal order such that $\Lambda / \mathfrak{p} \Lambda=(R / p)_{2}$. The case ii) $\Lambda / \mathfrak{p} \Lambda=\mathfrak{D} / \mathfrak{F}+g \mathfrak{V} / \mathfrak{F}$. Since $G=S, \Lambda / \mathfrak{p} \Lambda$ is not commutative and hence, Λ is not a unique maximal.
2) $G=S=H, \mathfrak{p}=2$ and $a \equiv 1(\bmod 2)$. In this case 2 is remified and hence, Λ is not hereditary by Theorem 3 .
3) $G=S=H$, and $\mathfrak{p}=2$. Then $\mathfrak{p}=\mathfrak{F}^{2}$ and $\Lambda / \mathfrak{F} \Lambda=R / \mathfrak{p}+(R / \mathfrak{p}) g$. Since \mathfrak{B} is tamey ramefied, $\mathfrak{S} \Lambda=\mathfrak{N}$ by the remark before Corollary 1 , and Λ is hereditary. Let \mathfrak{A} be a two-sided ideal in $\bar{\Lambda}$. If \mathfrak{A} is proper, then $\mathfrak{A}=(1+\bar{y} \bar{g}) R / \mathfrak{p}$ and $\bar{a} \bar{y}^{2}=1$ for some $\bar{y} \in \overline{\mathfrak{D}}=R / \mathfrak{p}$, and conversely. Therefore, if $(a / \mathfrak{p})=1$ then Λ is a hereditary order of rank 2 and if $(a / \mathfrak{p})=-1$, then Λ is a unique maximal order. The proposition is trivial from the well known facts of quadratic field.

If we set $g=i$ and $\sqrt{d}=j$, then $\Sigma=(a, G, L)$ is a generalized quaternions over the field K of rationals. For any element $x=x_{1}+x_{2} i+x_{3} j+x_{4} i j$ we define

$$
N(x)=x_{1}^{2}-a x_{2}^{2}-d x_{3}^{2}+a d x_{4}^{2}
$$

Let Ω be a maximal order over R with basis u_{1}, u_{2}, u_{3} and u_{4}. We call an element $x=\Sigma x_{i} u_{i}$ in Ω normalized if $\left(x_{1}, \cdots, x_{4}\right)=1$.

We note that if Σ contains at least two maximal orders, then $\hat{\Sigma}$ is a matrix ring over \hat{K} where \wedge means the completion with respect to \mathfrak{p}, (cf. [9], Lemma 1.4).

In order to use the same argument as in the proof of [9], Theorem 1.2 we need

Lemma 6. 1) If either $\mathfrak{p}=2, d \equiv 3(\bmod 4)$ and $a \equiv 1(\bmod 4)$ or $\mathfrak{p}=2, d \equiv 2(\bmod 4)$, and $a \equiv 1(\bmod 8)$, then there exists a maximal order Ω such that $\left.\bar{\Omega}=(R / 2)_{2} .2\right)$ If $\mathfrak{p}=2, d \equiv 2(\bmod 4), a \equiv 1(\bmod 4)$ and $a \neq 1$ (mod 8), then there exists a unique maximal order. 3) If $\mathfrak{p} \neq 2$, $d \equiv 0(\bmod \mathfrak{p})$ and $(a / \mathfrak{p})=1$, then there exists a maximal order Ω such that $\bar{\Omega}=(R / \mathfrak{p})_{2}$, where $\bar{\Omega}$ means the factor ring of Ω modulo its radical.

Proof. Let $\Omega=\mathfrak{O}+(1 / 2)(1+g) \mathfrak{O}=R+R j+R 1 / 2(1+i)+R(1 / 2)(j+i j)$, where $i=g$ and $j=\sqrt{\bar{d}}$. We denote $(1 / 2)(1+i)$ and $(1 / 2)(j+i j)$ by h and l. Then we obtain by the direct computations that

[^3]\[

$$
\begin{align*}
j h & =i-l, h j=l, j l=d(1-h), l j=d h, h l=l+j r, l h \\
& =-r j, h^{2}=h+r \text { and } l^{2}=d r, \tag{7}
\end{align*}
$$
\]

where $a=1+4 r, r \in R$.

1) $d \equiv 3(\bmod 4)$. Let $N(\Omega)$ be the radical of Ω and $\bar{x}=\bar{x}_{1}+\bar{x}_{2} j+\bar{x}_{3} h$ $+\bar{x}_{4} l \in N(\Omega) / 2 \Omega$. Then $\bar{x} j+j \bar{x}=\bar{x}_{4} \bar{d}+\bar{x}_{3} j$. If $x_{3} \equiv 0(\bmod 2)$, then we may assume $1+j \in N(\Omega)$. Then $0 \equiv(1+j) l+l(1+j) \equiv d(\bmod 2)$, which is a contradiction. Hence, we know $N(\Omega)=2 \Omega$ by the similar argument for x_{1}, x_{2}. Since $\Omega / N(\Omega)$ is not commutative by (7), $\Omega / N(\Omega)=(R / 2)_{2}$ and Ω. is a maximal order (cf. [9], Lemma 1.3).
2) $d \equiv 2(\bmod 4)$. From (7) we obtain $N(\Omega)=\Lambda j$. If $r \equiv 0(\bmod 2)$, then $\Omega / N(\Omega)=(R / 2) h+(R / 2)(1+h)$. Hence Ω is a hereditary order of rank two. Let $\Omega_{0}=R+R j+R h+R(1 / 2)$. It is clear that $\Omega_{0} \supsetneq \Lambda$ and Ω_{0} is a ring. Hence Ω_{0} is a maximal order by [7], Theorems 1.7 and 3.3. If $r \neq 0(\bmod 2)$, then $\Omega / N(\Omega)$ is a field and hence Ω is a unique maximal order.
3) In this case Λ is hereditary. Let $\Omega=R+R i+R j+R(1 / p)(j+y i j)$, where $a y^{2}=1+p x, x \in R$. It is clear that $\Omega \supsetneq \Lambda$. We shall show that Ω is a ring. $((1 / p)(j+y i j))^{2}=(d / p) x \in \Omega$, and $(1 / p)(j+y i j) i=-(x / y) j-$ $(1 / y p)(j+y i j) \in \Omega$, and $(1 / p)(j+y i j) j=(d / p)(1+k y) \in \Omega$. Therefore, Ω is a maximal order as above.

Next, we consider a case of $a \neq 1(\bmod 4)$ and $\mathfrak{p}=2$.
Lemma 7. We consider the following conditions
i) $a \equiv 3(\bmod 8), d \equiv 2(\bmod 4)$, but $d \equiv 2(\bmod 8)$.
ii) $a \equiv 3(\bmod 8)$, and $d \equiv 2(\bmod 8)$.
iii) $a \equiv 7(\bmod 8)$, and $d \equiv 2(\bmod 4)$, but $d \equiv 2(\bmod 8)$.
iv) $a \equiv 7(\bmod 8)$, and $d \equiv 2(\bmod 8)$.
v) $a \equiv 1(\bmod 4)$, and $d \equiv 3(\bmod 4)$.

If one of i) and iv) is satisfied, then there is a maximal order Ω such that $\Omega / N(\Omega)=(R / 2)_{2}$. If one of ii), iii) and v$)$ is satisfied, then there exists a unique maximal order.

Proof. We shall show this lemma by a direct computation. Thus, we give here only a sketch of the proof.
Put $i=g, j=\sqrt{d}$ and $H=1 / 2(1+i+j), L=1 / 2(i+i+i j)$. Let $\Lambda=R+R i+$ $R H+R L$. If we set $a=1+2 r, d=2+4 k$ where $r \equiv 1(\bmod 4), k \neq 0(\bmod 2)$, we have

$$
\begin{align*}
& i^{2}=1+2 r, H^{2}=k+(1+r) / 2+H, L^{2}=-(1 / 2)(1+r)-(1+2 r) k+L, \\
& i H=L+r, H i=1+r+i-L, i L=-r i+(1+2 r) H, L i=1+2 r \\
& +(1+r) i-(1+2 r) H . L H=r+((1+r) / 2+k) i-r H+L, \quad \text { and } \tag{8}
\end{align*}
$$

$$
H L=-(k+(1+r) / 2) i+(1+r) H .
$$

In cases i) and iv) we can show directely that $N(\bar{\Lambda})=\bar{\Lambda}(\bar{i}+\overline{1})$ and $\bar{\Lambda} / \bar{\Lambda}(1+i) \approx(R / 2) \bar{H} \oplus(R / 2)(\overline{1}+\bar{H}), \bar{H}(\overline{1}+\bar{H})=\overline{0}$, where $\bar{\Lambda}=\Lambda / 2 \Lambda$. Since $(1-i)(1+i)=1-a=-2 r, r \equiv 0(\bmod 2), \Lambda(1+i) \supseteq 2 \Lambda$. Hence $N(\Lambda)=\Lambda(1+i)$, which implies that Λ is a hereditary order of rank two. Therefore, there exists a maximal order as in the lemma.
In cases ii) and iii) we obtain similarly that $\Lambda / \Lambda(1+i) \approx(R / 2) \bar{H}+$ $(R / 2)(\overline{1}+\bar{H})$ and $\bar{H}^{2}=\overline{1}+\bar{H},(\overline{1}+\bar{H})^{2}=\bar{H}, \quad \bar{H}(\overline{1}+\bar{H})=\overline{1}$. Hence, Λ is a unique maximal order.
In case v) we put $t=1 / 2(1+i+j+i j)$ and $\Lambda=R+R i+R j+R t$. Then by the same argument in [9], Lemma 1.3 we can show that $N(\Lambda)=\Lambda(1+i)$ and $\Lambda / \Lambda(1+i)$ is a field. Hence, Λ is a unique maximal order.

From Proposition 4, Lemmas 6 and 7 and the proof of [9], Theorem 1.2 we have

Theorem 4. Let R be a ring of \mathfrak{p}-adic integers, K the field of rationals and $L=K(\sqrt{d})$. For a unit element a in $R, \Sigma=(a, G, L)$ is a generalized quaternions and $\Lambda=(a, G, \mathfrak{D})$. Then every hereditary order over R in Σ is isomorphic to one of the following:

1) Λ (unique maximal) if $\mathfrak{p}=2, d \equiv 0(\bmod \mathfrak{p}),(a / \mathfrak{p})=-1$.
2) $\Omega_{1}=R+R \sqrt{\bar{d}}+R(1 / 2)(1+g)+(1 / 2)(\sqrt{\bar{d}}+g \sqrt{\bar{d}})$
(unique maximal) if $\mathfrak{p}=2, d \equiv 2(\bmod 4), a \equiv 1(\bmod 4)$ and $a \neq 1(\bmod 8)$.
3) Λ (maximal), $\Lambda \cap \alpha^{-1} \Lambda \alpha$
if either $a) \mathfrak{p}=2, d \equiv 1(\bmod 4)$ or b) $\mathfrak{p} \neq 2, d \equiv 0(\bmod \mathfrak{p})$.
4) Ω (maximal), $\Gamma_{1}=R+R g+R H+R L$,
if one of i) and iv) in Lemma 8 is valid.
5) Γ_{1} (unique maximal)
if one of ii), iii) and iv) in Lemma 8 is valid.
6) $\Omega_{2}=R+R g+R \sqrt{d}+R t$ (unique maximal)
if $\mathfrak{p}=2, d \equiv 3(\bmod 4)$, and $a \equiv 1(\bmod 4)$.
7) $\Omega_{3}=R+R \sqrt{\bar{d}}+R(1 / 2)(1+g)+R(1 / 4)(\sqrt{d}+g \sqrt{d})$
(maximal),
$\mathrm{I}_{2}=R+R \sqrt{\bar{d}}+R(1 / 2)(1+g)+R(1 / 2)(\sqrt{d}+g \sqrt{d})$
if $\mathfrak{p}=2, d \equiv 0(\bmod 4)$, and $a \equiv 1(\bmod 8)$.
8) Ω_{1} (maximal), $\Omega_{1} \cap \alpha^{-1} \Omega \alpha$
if either $a) \mathfrak{p}=2, d \equiv 3(\bmod 4) a \equiv 1(\bmod 4)$ or b) $\mathfrak{p}=2, d \equiv 2(\bmod 4)$ and $a \equiv 1(\bmod 8)$.
9) $\Omega_{4}=R+R g+R \sqrt{d}+R(1 / p)(\sqrt{d}+y g \sqrt{d})($ maximal $)$, $\Lambda \quad$ if $\mathfrak{p} \neq 2, d \equiv 0(\bmod \mathfrak{p})$ and $(a / \mathfrak{p})=1$.

Where \mathfrak{D} means the integral closur of R in L and α is a normalized element with respect to the basis of a maximal order and $N(\alpha)=p q,(p, q)$ $=1$ and $a y^{2} \equiv 1(\bmod \mathfrak{p}), \quad H=(1 / 2)(1+g \sqrt{d}), \quad L=(1 / 2)(1+\sqrt{d}+g \sqrt{d})$, $t=\frac{1}{2}(1+g+\sqrt{\bar{d}}+g \sqrt{d})$, and $\mathfrak{p}=(p)$.

Remark 2. A maximal order Ω in 4) is any ring which contains properly Λ.

References

[1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
[2] --: Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.
[3] M. Auslander and D. S. Rim: Ramification index and multiplicity, Illinois J. Math. 7 (1963), 566-581.
[4] G. Azumaya and T. Nakayama: Daisugaku, (Japanese), Iwanami, Tokyo, 1954.
[5] E. W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, New York, 1962.
[6] M. Deuring: Algebren, Berlin, 1935.
[7] M. Harada: Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 283290.
[8] : Structure of herditary orders over local rings, J. Math. Osaka City Univ. 14 (1963), 1-22.
[9] : Hereditary orders in generalized quaternions D_{τ}, J. Math. Osaka City Univ. 14 (1963), 71-81.
[10] O. Zariski and P. Samuel : Commutative algebra, vol. 1, Van Nostrand, 1958.
[11] S. Williamson: Crossed products and hereditary orders, Nagoya Math. J. 23 (1963), 103-120.

[^0]: 1) The rank means the number of maximal two-sided ideals in Λ.
[^1]: 2) See the definition in [10].
[^2]: 3) See the definition in [8], § 2.
[^3]: 4) Legendre's symbol,
