<table>
<thead>
<tr>
<th>Title</th>
<th>Some criteria for hereditarity of crossed products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1(1) P.69-P.80</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11065</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11065</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Let \mathcal{O} be the integral closure of a discrete rank one valuation ring R with maximal ideal p in a finite Galois extension L of the quotient field of R. Auslander, Goldman and Rim have proved in [1] and [2] that a crossed product Λ over \mathcal{O} with trivial factor sets is a maximal order in K_n if and only if a prime ideal \mathfrak{p} in \mathcal{O} over p is unramified and Λ is a hereditary if and only if \mathfrak{p} is tamely ramified. Recently Williamson has generalized those results in [11] to a crossed product Λ with any factor sets in $U(\mathcal{O})$, where $U(\mathcal{O})$ means the set of units in \mathcal{O}, namely if \mathfrak{p} is tamely ramified, then Λ is hereditary and the rank of Λ is determined.

In this paper, we shall modify the Williamson’s method by making use of a property of crossed product over a ring.

Let G, S and H be the Galois group of L, decomposition group of \mathfrak{p} and inertia group of \mathfrak{p}, respectively. We denote a crossed product Λ with factor sets $\{a_{\sigma,\tau}\}$ in $U(\mathcal{O})$ by $(\alpha_{\sigma,\tau}, G, \mathcal{O})$. Then we shall prove in Theorem 1 that Λ is a hereditary order if and only if so is $(\alpha_{\sigma,\tau}, H, \mathcal{O}_H)$ where $\mathfrak{p}_H = \mathfrak{p} \cap \mathcal{O}_H$, and \mathcal{O}_H is the integral closure of R in the inertia field \mathcal{O}_H. Using this fact and the structure of hereditary orders [7], [8] we obtain the above results in [1], [2] and [11].

Furthermore, we shall show that Λ is hereditary if and only if \mathfrak{p} is tamely ramified under an assumptions that R/p is a perfect field.

Finally, we give a complete description of hereditary orders in a generalized quaternions over rationals in Theorem 3.

1. Reduction theorem

In this paper we always assume that R is a discrete rank one valuation ring with maximal ideal p and p in the characteristic of R/p. Let L be a finite Galois extension of the quotient field of R with Galois
group G, and \mathcal{O} the integral closure of R in L. For a prime ideal \mathfrak{p} in \mathcal{O} over \mathfrak{p} we denote the decomposition group and the inertia group of \mathfrak{p} by S and H and their fields and the integral closure by $L_{\mathcal{O}}$, L_H and \mathcal{O}_S, \mathcal{O}_H and so on.

We note that \mathcal{O} is a semi-local Dedekind domain and hence, \mathcal{O} is a principal ideal domain. Let $\{\mathfrak{p}_i\}_{i=1}^I$ be the set of prime ideals in \mathcal{O} and S_i and H_i be decomposition group and inertia group of \mathfrak{p}_i. Let $\mathfrak{p}\mathcal{O} = \prod\mathfrak{p}_i^s\mathfrak{p}_i$, where $P = \prod\mathfrak{p}_i$. Since $(\mathcal{O}_i, \mathcal{O}_j) = \mathcal{O}$ for $i \neq j$, $\mathcal{O}/P^n = \mathcal{O}/\mathcal{O}_i^n \bigoplus \cdots \bigoplus \mathcal{O}/\mathcal{O}_i^n$. We note that $(\mathcal{O}/\mathcal{O}_i^n)^\sigma = \mathcal{O}/\mathcal{O}_i^n$ for $\sigma \in G$. Then $\mathcal{O}_H/\mathcal{O}_H^i$ is the separable closure of R/\mathfrak{p} in $\mathcal{O}/\mathcal{O}_i^n$ and $\mathcal{O}_H/\mathcal{O}_H^i$ is a Galois extension of R/\mathfrak{p} with Galois group S_i/H_i, (see [10], p. 290).

Let Λ be a crossed product over \mathcal{O} with factor sets $\{a_{\sigma, \tau}\}$ in $U(\mathcal{O})$: $\Lambda = (a_{\sigma, \tau}, G, \mathcal{O})$. Since $P^n = P$ for all $\sigma \in G$, $P^n\Lambda = \Lambda P^n$ is a two-sided ideal in Λ. Let $\Lambda(n) = \Lambda/P^n\Lambda = (a_{\sigma, \tau}, G, \mathcal{O}/\mathcal{O}_i^n) = \mathcal{O}/\mathcal{O}_i^n$ as a module. We put $\Lambda(S_i, n) = (a_{\sigma, \tau}, S_i, \mathcal{O}/\mathcal{O}_i^n)$. Since $\mathfrak{a}_{\sigma, \tau}^{-1}(\mathfrak{u}_{\sigma, \tau}/\mathcal{O}_i^n)\mathfrak{a}_{\sigma, \tau} = \mathfrak{a}_{\sigma, \tau}^{-1}(\mathcal{O}/\mathcal{O}_i^n)$, $\mathfrak{a}_{\sigma}^{-1}\Lambda(S_i, n)\mathfrak{a}_{\tau} = \Lambda(S_i, n)$, where $S_i = \sigma^{-1}S_i\sigma$. Thus we have

$$\Lambda(S_i, n)\mathfrak{a}_{\sigma} = \mathfrak{a}_{\sigma}\Lambda(S_i, n).$$

Let $G = \sigma_i S_i + \sigma_i S_i + \cdots + \sigma_i S_i = S_i \sigma_i + \cdots + S_i \sigma_i$, $\sigma_i S_i = S_i$, since G is a finite group. Then

$$\Lambda(n) = \Lambda(S, n) + \mathfrak{a}_{\sigma_i} \Lambda(S, n) + \cdots + \mathfrak{a}_{\sigma_i} \Lambda(S, n)$$

$$+ \Lambda(S_2, n) + \mathfrak{a}_{\sigma_i} \Lambda(S_2, n) + \cdots + \mathfrak{a}_{\sigma_i} \Lambda(S_2, n)$$

$$+ \cdots$$

$$+ \Lambda(S_g, n) + \mathfrak{a}_{\sigma_i} \Lambda(S_g, n) + \cdots + \mathfrak{a}_{\sigma_i} \Lambda(S_g, n),$$

where $S = S_i$.

Let $p_{i,j}$ be projections of $\Lambda(\mathfrak{a})$ to $\mathfrak{a}_{\sigma_i} \Lambda(S_i, n)$. For a two-sided ideal \mathfrak{a} in $\Lambda(n)$ we have $\mathfrak{a} \supseteq \sum p_{i,j}(\mathfrak{a})$. Since \mathfrak{a}_{σ_i} is unit, $p_{i,j}(\mathfrak{a}) = \mathfrak{a}_{\sigma_i} P_{i,j}(\mathfrak{a})$ for all j. Let \mathfrak{a} be the unit element in $\Lambda(S, n)$. Then $\Lambda(S_i, n)\mathfrak{a} = 0$ for $i \neq 1$ and $\mathfrak{a}\Lambda(S_i, n) = \mathfrak{a}_{\sigma_i} \Lambda(S_i, n) \Lambda(S, n) = 0$ for $j \neq 1$. Hence, $\mathfrak{a}\Lambda\mathfrak{a} = p_{11}(\mathfrak{a})$. Furthermore, since $S_i = S_i^{\sigma_i}$, $\mathfrak{a}_{\sigma_i}^{-1} p_{i,j}(\mathfrak{a}) \mathfrak{a}_{\sigma_i} = p_{i,j}(\mathfrak{a})^{\sigma_i}$. Therefore,

$$\mathfrak{a} = \sum_{i,j} \mathfrak{a}_{\sigma_i} \mathfrak{a}_{\sigma_i}^{\sigma_i}$$

for a two-sided ideal of \mathfrak{a}_0 in $\Lambda(S, n)$. Conversely, the above ideal is a two-sided ideal in $\Lambda(n)$ for a two-sided ideal \mathfrak{a}_0 in $\Lambda(S, n)$.

Thus, we have

Lemma 1. Let $\Lambda(n)$ and $\Lambda(S, n)$ be as above. Then we have a one-to-one correspondence between two-sided ideals of $\Lambda(n)$ and $\Lambda(S, n)$ as above.

We note that the above correspondence preserves product of ideals.
Next we shall consider $A_s = (a_{x, y}, S, O)$ \((\subset \Lambda = (a_{x, y}, G, S))\), where S is the decomposition group of \mathfrak{P}. Since \mathcal{D}_S is contained in the center of Λ, we may regard Λ_S as an order over \mathcal{O}_S. Let \mathfrak{B}_S be the prime ideal in \mathcal{O}_S over \mathfrak{p}. Since \mathfrak{B}_S is contained in the center of Λ, we may regard Λ_S as an order over \mathfrak{B}_S. Let \mathfrak{B}_S be the prime ideal in \mathfrak{B}_S over \mathfrak{b}. Then $\mathfrak{B}_S/\mathfrak{B}_S = \mathfrak{O}/\mathfrak{P}$. If we set $\Gamma = (a_{x, y}, S, \mathfrak{B}_S) = (\Lambda_S)_{\mathfrak{B}_S}$, $\Gamma(n) = \Gamma/\mathfrak{P}^n \Gamma' \cong \bar{\Lambda}(S, n)$. In Γ we may regard $K = L_S$ and $\mathcal{O} = \mathcal{O}_S$. Let H be the inertia group of a unique prime ideal \mathfrak{P} in \mathcal{O}. Then H is a normal subgroup of S, (see [10], p. 290) and we have $S = H + \sigma_H H + \cdots + \sigma_H H$. Let $\Gamma_H = (a_{x, y}, H, \mathcal{O})$, then $\mathfrak{P}^n \Gamma H = \Gamma_H \mathfrak{P}^n$. Hence $\Gamma = \Gamma(n) = \Gamma/\mathfrak{P}^n \Gamma \cong \Gamma_H(n) = \Gamma_H$. Furthermore,

$$\Gamma = \Gamma_H + u_{a_{x, y}} \Gamma_H + \cdots + u_{a_{x, y}} \Gamma_H.$$

By a similar argument as above, we have $u_{a_{x, y}} \Gamma_H \alpha = \Gamma_H$. We denote this automorphism by f_σ. Then the restriction of f_σ on $\mathcal{O}/\mathfrak{P}^n$ coincides with σ. Let \mathfrak{R}_H be the radical of Γ_H. Then $\mathfrak{R}_H \cong \mathfrak{P}^n \mathfrak{R}_H$. We put $\mathfrak{R} = \mathfrak{R}_H + u_{a_{x, y}} \mathfrak{R}_H + \cdots + u_{a_{x, y}} \mathfrak{R}_H$, then \mathfrak{R} is a two-sided ideal of Γ and $\mathfrak{R}^m = \mathfrak{R}_H^m + \cdots + u_{a_{x, y}} \mathfrak{R}_H^m \cong \mathfrak{P}^n \mathfrak{R}$ for some m. $\Gamma/\mathfrak{R} = \Gamma_H/\mathfrak{R}_H + u_{a_{x, y}} \Gamma_H/\mathfrak{R}_H + \cdots + u_{a_{x, y}} \Gamma_H/\mathfrak{R}_H$ and $\Gamma_H/\mathfrak{R}_H \cong \mathcal{O}/\mathfrak{P}$. Now we consider a crossed product of Γ_H/\mathfrak{R}_H with automorphisms $\{f_\sigma\}$ and factor sets $\{\alpha_\sigma\}$. We define a two-sided Γ_H/\mathfrak{R}_H-module Γ_H/\mathfrak{R}_H as follows: for $x, y \in \Gamma_H/\mathfrak{R}_H$, $x* y = x^\sigma y$ and $y* x = y^\sigma x$, and denote it by $(\sigma, \Gamma_H/\mathfrak{R}_H)$. Since Γ_H/\mathfrak{R}_H is semi-simple, $\{\sigma\}$ is the complete set of automorphisms of \mathcal{O}/\mathfrak{P} (see [10], p. 290). Hence $\{f_\sigma\}$ is a complete outer-Galois, namely for any two-sided Γ_H/\mathfrak{R}_H-module $A \boxplus B$ in $(\sigma, \Gamma_H/\mathfrak{R}_H) A/B$ is not isomorphic to some of those forms in $(1, \Gamma_H/\mathfrak{R}_H)$ if $\sigma = 1$. Therefore, for any two-sided ideal \mathfrak{A} in Γ/\mathfrak{R} we have by [3], Theorem 48.2

(3)
$$\mathfrak{A} = \Sigma u_{a_{\tau}} \mathfrak{A}_0,$$

where \mathfrak{A}_0 is a two-sided ideal in Γ_H/\mathfrak{R}_H and $\mathfrak{A}_0 = \mathfrak{A}_0$ for all f_σ, and it is a one-to-one correspondence. Hence, Γ/\mathfrak{R} is semi-simple, and \mathfrak{A} is the radical of Γ. From the definition of f_σ we have

(4)
$$(u_\lambda, \lambda)^\sigma = u_{a_{\tau}}^* \bar{\lambda} \bar{a}_{\tau, \sigma} a_{\tau, \sigma}^{-1} v_{\tau, \sigma}$$

for $\sigma \in S$, $\tau \in H$, $\lambda \in \mathcal{O}/\mathfrak{P}$, and $u_{a_{\tau}} \in \Gamma_H/\mathfrak{R}_H$. Furthermore, let $\Gamma_H/\mathfrak{R}_H = \mathfrak{A}_0 \boxplus \cdots \boxplus \mathfrak{A}_k$, where the \mathfrak{A}_i's are simple components of Γ_H/\mathfrak{R}_H. If we classify those ideals $\mathfrak{A}, \mathfrak{B}$ by a relation

(5)
$$\mathfrak{A} \sim \mathfrak{B} \text{ if and only if } \mathfrak{A} f_\sigma = \mathfrak{B} \text{ for some } f_\sigma,$$

then the number of maximal two-sided ideals in Γ/\mathfrak{R} is equal to this class number.

Thus, we have
Lemma 2. Let L be a Galois extension of the field K with Galois group G such that $S=G$, $\Gamma=(a_{\sigma\tau}, S, \mathcal{O})$, and $\Gamma_H=(a_{\sigma\tau}, H, \mathcal{O})$. If we denote the radicals of Γ and Γ_H by $\mathcal{R}, \mathcal{R}_H$, then, $\mathcal{R}'=\Sigma\mathcal{R} \mathcal{R}_H \pmod{\mathcal{R}'}$ for some $t<n$, and there exists a one-to-one correspondence between two-sided ideals in Γ/\mathcal{R} and Γ_H/\mathcal{R}_H which is given by (3) and (4).

Lemma 3. Let Ω be an order over R in a central simple K-algebra Σ and \mathcal{R} the radical of Ω. Then Ω is hereditary if and only if $\mathcal{R}'=\alpha \Omega = \Omega \alpha$ for some $t>0$ and $\alpha \in \Sigma$.

Proof. If $\mathcal{R}'=\alpha \Omega$, then the left (right) order of $\mathcal{R}=\Omega$, and $\mathcal{R}\mathcal{R}'=\alpha^{-1} \Omega$. Hence \mathcal{R} is inversible in Ω, which implies that Ω is hereditary by [7], Lemma 3.6. The converse is clear by [7], Theorem 6.1.

Theorem 1. Let R be a discrete rank one valuation ring and K its quotient field, and L a Galois extension of K with group G. Let S and H be decomposition group and inertia group of a prime ideal \mathfrak{p} in the integral closure \mathcal{O} of R in L. Let $\Lambda=(a_{\sigma\tau}, G, \mathcal{O}), \Lambda_S=(a_{\sigma\tau}, S, \mathcal{O}_S)$, and $\Lambda_H=(a_{\sigma\tau}, H, \mathcal{O}_H)$. Then the following statement is equivalent

1) Λ is hereditary,
2) Λ_S is hereditary,
3) Λ_H is hereditary.

In this case the rank of Λ is equal to that of Λ_S and is equal or less than that of Λ_H.

Proof. 1)\rightarrow2). Let $\mathcal{R}, \mathcal{R}_S$ be the radicals of Λ and Λ_S and P be the product of the prime ideals as in the beginning. Then $\mathcal{R}'=P \Lambda$. For $n'>t$ we have $\mathcal{R}'_S= \mathcal{R} \mathcal{R}_S \pmod{\mathcal{R}'}$ by Lemma 1 and remark after that. Hence $\mathcal{R}'_S= \mathcal{R} \mathcal{R}_S$ since $\mathcal{R}'_S= \mathcal{R} \mathcal{R}_S$. Therefore, Λ_S is hereditary by Lemma 3. The remaining parts are proved similarly by using Lemmas 1, 2, and 3, and a remark before Lemma 2.

If $(|H|, \rho)=1$, then $\Lambda/\mathfrak{p} \Lambda$ is separable by [11], Theorem 1, (see Lemma 4 below) and hence Λ is hereditary, where $|H|$ means the order of group H. Therefore, we have

Corollary 1. ([11]). If \mathfrak{p} is tamely ramedfied, i.e. $(|H|, \rho)=1$, then $\Lambda=(a_{\sigma\tau}, G, \mathcal{O})$ is hereditary of the same rank as that of $\Lambda_S=(a_{\sigma\tau}, S, \mathcal{O}_S)$ and its rank is equal to the class number of ideals defined by (5).

Corollary 2. ([1, 2]). If $\{a_{\sigma\tau}\} = \{1\}$, then Λ is hereditary if and only if a prime ideal \mathfrak{p} in \mathcal{O} over \mathfrak{p} is tamely ramedified. In this case the rank of Λ is equal to the ramification index of \mathfrak{p}.

Proof. $\{a_{\sigma\tau}\} = \{1\}$, then $\Sigma=(a_{\sigma\tau}, G, L)=K_n$. We assume that Λ is
hereditary, then \(\Lambda_H \) is also hereditary by Theorem 1. \(\Lambda_H L = (L_H)_h \), where \(h = |H| \), \((\mathcal{O}_H)_h\) is a maximal order in \(\Lambda_H L \). Furthermore, the composition length of left ideals of \((\mathcal{O}_H)_h\) modulo the radical \((\mathcal{P}_H)_h\) is equal to \(h \), which is invariant for hereditary orders in \(\Lambda_H L \) by [10], Corollary to Lemma 2.5. On the other hand \([\Lambda_H/\mathcal{P}_H]: \mathcal{O}/\mathcal{P}] = h\). Hence, \(\mathcal{P}_H \Lambda_H \) is the radical and \(\Lambda_H/\mathcal{P}_H \Lambda_H \) is semi-simple which is a group ring of \(H \) over \(\mathcal{O}/\mathcal{P} \). Therefore, \(|H|, \rho = 1\). In this case \(\mathfrak{M} = (\sum \mathfrak{M}_h) \cdot \mathcal{O}/\mathcal{P} \) is a two-sided ideal in \(\Lambda_H/\mathcal{P}_H \Lambda_H \) which is invariant under automorphisms \(f_\sigma \) of (4). \(\mathfrak{M} \) is a minimal two-sided ideal in \(\Lambda_H/\mathcal{P}_H \Lambda_H \) which is invariant under \(f_\sigma \). Hence, \(\Lambda_S/\mathfrak{M} \approx \sum \mathfrak{M}_h \mathfrak{A} \) for some maximal ideal \(\mathfrak{M} \) in \(\Lambda_S \). Furthermore, since \(\Lambda_S \) is principal \(2^3 \), \(\Lambda_S/\mathfrak{M} \approx \Lambda_S/\mathfrak{M}' \) for any maximal ideal \(\mathfrak{M}' \) in \(\Lambda_S \) by [10], Theorem 4.1. Therefore, there exists \(h \) two-sided ideals in \(\Lambda_H/\mathcal{P}_H \Lambda_H \) which is invariant under \(f_\sigma \), since \([\mathfrak{M}: \mathcal{O}/\mathcal{P}] = 1\).

By the same argument as in the proof of Theorem 1 we have

Proposition 1. We assume that \(R/\mathfrak{p} \) is a perfect field, and we use the same notations as in Theorem 1. Let \(V \) be the second ramification group \(V \) and \(\Lambda_V = \langle v, \sigma \rangle \). Then \(\Lambda \) is hereditary if and only if so is \(\Lambda_V \).

Proof. By virtue of Theorem 1 we may assume \(G = H \). Let \(G = V + \sigma V + \cdots + \sigma^p V \). Then \(\Lambda = \Lambda_V + u_\sigma \Lambda_V + \cdots + u_p \Lambda_V \). Since \(V \) is a normal subgroup of \(G \) by [10], p. 295, an inner-automorphism by \(u_\sigma \) in \(\Lambda \) reduces an automorphism \(f_\sigma \) in \(\Lambda_V \). Let \(\mathfrak{M} \) be the radical of \(\Lambda \) and \(\mathfrak{M} = \mathfrak{M}_V + u_\sigma \mathfrak{M} + \cdots + u_p \mathfrak{M} \). We shall show that \(\mathfrak{M} \) is the radical of \(\Lambda \). By assumption that \(R/\mathfrak{p} \) is perfect, \(\Lambda/\mathfrak{M} \) is separable. Therefore, there exist \(x_i \), \(y_i \) in \(\Lambda \) such that \(\sum x_i y_i = 1 \) and \(\sum x_i \otimes y_i = \sum x_i \otimes (y_i \lambda) \), where \(\lambda \rightarrow (y) \) gives an anti-isomorphism of \(\Lambda \) to \(\Lambda^* \). Furthermore, we note that \(|G/V| = t\) is a relative prime to \(p \) by [10], p. 296. Let \(\theta = 1/t(\sum a^{-1} x_i \otimes \lambda) = 1/t(\sum a^{-1} x_i \otimes (y_i \lambda) \otimes \mu) \). Then \(1/t(\sum a^{-1} x_i \otimes \lambda) \) and \(\sum a^{-1} x_i \otimes (y_i \lambda) \otimes \mu = 1 \). We show that \((\gamma \otimes 1^*) (1 \otimes \eta^*) \) is zero for any \(\eta \). Let \(\gamma \) be in \(\Lambda \). \((\gamma \otimes 1^*) \theta = 1/t(\sum a^{-1} x_i \otimes (u_i \gamma) \otimes (y_i \lambda)) \). Since \(\sum x_i \otimes (y_i \lambda) \), we obtain \(\sum x_i \otimes (y_i \lambda) \otimes \mu = \sum x_i \otimes (y_i \lambda) \). Therefore, \((\gamma \otimes 1^*) (1 \otimes \eta^*) \theta = 0 \).}

2) See the definition in [10].
However, we obtain $\alpha_{\sigma, \tau}^{-1} - \alpha_{\tau, \sigma}^{-1} = \alpha_{\sigma, \tau}^{-1} - \alpha_{\tau, \sigma}^{-1}$ by the relation of $\alpha_{\sigma, \tau}$. Hence, $((\alpha_{\sigma} \otimes 1)^* - (1 \otimes \alpha_{\sigma}^*)) \theta = 0$. Therefore, $(\alpha_{\sigma} \gamma \otimes 1^*) - (1 \otimes (\alpha_{\sigma} \gamma)^*) \theta = (\alpha_{\sigma} \otimes 1^*) (\gamma \otimes 1 - 1 \otimes \gamma^*) \theta + (1 \otimes \gamma^*) (\alpha_{\sigma} \otimes 1 - 1 \otimes \alpha_{\sigma}^*) \theta = 0$. Thus we have proved that \mathcal{R} is the radical of Λ. We can prove the proposition similarly to Theorem 1 by Lemma 3.

2. Tamely ramification

In this section we always assume that R/p is a perfect field.

Theorem 2. Let L be a Galois extension of K with Galois group G, and $\Lambda = (a_{\sigma, \tau}, G, \mathcal{O})$ a crossed product with a factor set $\{a_{\sigma, \tau}\}$ in $U(\mathcal{O})$. We assume R/p is a perfect field. Then Λ is hereditary if and only if every prime ideal \mathfrak{P} in \mathcal{O} over p is tamely ramified, where $U(\mathcal{O})$ is the set of unit elements in \mathcal{O}.

Proof. If \mathfrak{P} is tamely ramified, then Λ is hereditary by Corollary 1. We assume that Λ is hereditary. Then by virtue of Proposition 1 we may assume that G is equal to the second ramification group V. Since the elements of G operate trivially on \mathcal{O}/\mathfrak{P}, $\Lambda = \Lambda/\mathfrak{P}\Lambda = \bar{\mathcal{O}} + a_{\sigma} \bar{\mathcal{O}} + \cdots + a_{\bar{\sigma}} \bar{\mathcal{O}}$ is a generalized group ring. Furthermore, from a relation on a factor set we have $a_{\sigma} \tau = A_{\sigma} = A_{\sigma}^* A_{\sigma}$, where $A' = \Pi_{\beta} a_{\beta, \sigma}$. Since $R/p = \mathcal{O}/\mathfrak{P}$ is perfect and G is a p-group by [10], p. 296, we have $\bar{a}_{\sigma, \tau} = A_{\sigma} A_{\tau}/A_{\tau}$, $A_{\sigma} \in \bar{\mathcal{O}}$. Therefore, Λ is a group ring of G over $\bar{\mathcal{O}}$. As well known (see [5], p. 435), the radical \mathcal{R} of Λ is equal to $\Sigma(1 - \bar{a}) \bar{\mathcal{O}}$ and $\Lambda/\mathcal{R} = \bar{\mathcal{O}}$. Hence Λ is a unique maximal order by [2], Theorem 3.11. Let σ be an element in G. $(u_{\sigma})^t = u_{\sigma} C_{\sigma^t}; C_{\sigma^t} \in U(\mathcal{O})$. Hence, if we replace a basis $\{u_{\sigma}\}$ by $\{u_{\sigma}^t\}; u_{\sigma}^t = (u_{\sigma})^t$, and $u_{\sigma}^t = u_{\sigma}$ if $\tau \notin (\sigma)$, we may assume $a_{\sigma^t, \sigma} = 1$ if $i + j \leq |\sigma| = n$ and $a_{\sigma^t, \sigma} = a$ if $i + j = n$, where a is a unit element in \mathcal{O}. It is clear that a is an element of the (σ)-fixed subfield L_{σ^t} of L. Since $\mathcal{R} = \Sigma(1 - \bar{u}_{\sigma}) \bar{\mathcal{O}}, (1 - u_{\sigma}) \in \mathcal{R}$. $(1 - u_{\sigma})(1 + u_{\sigma} + u_{\sigma^2} + \cdots + u_{\sigma^{n-1}}) = 1 - a \in \mathcal{R}$. Hence $1 - a \in \mathcal{R} \wedge \mathcal{O}_{(\sigma)} = \mathcal{O}_{(\sigma)}$. Furthermore, every one-sided ideal in Λ is a two-sided ideal and a power of \mathcal{R} by [2], Theorem 3.11. Since $(1 - u_{\sigma}) \Lambda \subseteq \mathcal{O} \Lambda, (1 - u_{\sigma}) \Lambda \subseteq \mathcal{O} \Lambda$. Put $\mathfrak{B} = (\pi)$. Then $\pi = (1 - u_{\sigma}) \Sigma u_{\sigma} x_{\sigma} = \Sigma a_{\sigma, \tau} x_{\sigma} = x_{\sigma} = x_{\sigma} = x_{\sigma^2} = \cdots = x_{\sigma^{n-1}}$. Therefore, $x_{\sigma}(1 - a) = \pi$. However, $(1 - a) \equiv 0 \pmod{\mathfrak{B}_{(\sigma)}}$. Therefore, \mathfrak{B} is unramified over $\mathfrak{B}_{(\sigma)}$ which implies $|\sigma| = 1$. Hence $\mathcal{V} = (1)$, which has proved the theorem.

Corollary 3. Let $\Lambda = (a_{\sigma, \tau}, G, \mathcal{O})$. Then Λ is hereditary if and only if $\Lambda/\mathcal{P}\Lambda$ is semisimple, where $P = \Pi \mathfrak{P}_{(\sigma)}$.

Proof. It is clear from Theorems 1 and 2 and the proof of Proposition 1.
Proposition 2. Let $\Lambda = (a_{\sigma, \tau}, G, \mathcal{O})$ and t the ramification index of a maximal order Ω in $\Lambda K : (N(\Omega)'/p\Omega)$. We assume that R/p is perfect. If Λ is a hereditary order of rank r, then the ramification index of \mathcal{O} is equal to rt, where $N(\Omega)$ means the radical of Ω.

Proof. If Λ is hereditary, then $N(\Lambda)=PA$ by Corollary 3. Hence, $N(\Lambda)^e=p\Lambda$. Therefore, $e=rt$ by [7], Theorem 6.1.

Corollary 4. Let $\Lambda = (a_{\sigma, \tau}, G, \mathcal{O})$ be a hereditary order. Then $\Lambda \approx \Gamma = (b_{\sigma, \tau}, G, \mathcal{O})$ if and only if $\Lambda K \approx \Gamma K$.

Proof. Since Λ is hereditary, \mathcal{O} is tamely ramified. If $\Lambda K \approx \Gamma K$, then $\Lambda \approx \Gamma$ by Proposition 2 and [8], Corollary 4.3.

Corollary 5. Let $\Lambda = (a_{\sigma, \tau}, G, \mathcal{O})$ and e the ramification index of \mathcal{O} over \mathfrak{p}. Then Λ is a hereditary order of rank e if and only if $(e, p)=1$ and a maximal order in ΛK is unramified.

Corollary 6. We assume $\Lambda = (a_{\sigma, \tau}, H, \mathcal{O})$ is hereditary and a maximal order in ΛK is unramified. Then Λ is a minimal hereditary order3.

Proof. Let Ω be a maximal order in ΛK. Put $\Omega / N(\Omega) = \Delta_m$ and $[\Delta : R/\mathfrak{p}]=s$, where Δ is a division ring. Since $N(\Omega)/N(\Omega) = \Omega / N(\Omega)$, we obtain $m^s = [\Omega / p\Omega : R/\mathfrak{p}]=|\Lambda / p\Lambda : R/\mathfrak{p}| = |H|^s$. The ranker of $\Lambda \leq m$ by [8], Corollary to Lemma 2.5. Hence $r = |H| = m\sqrt{s} > r\sqrt{s}$ by Proposition 2. Therefore, $s=1$ and $m=|H|=r$. Hence, Λ is minimal by [8], Corollary to Lemma 2.5.

Remark 1. If R is complete and R/\mathfrak{p} is finite, then we obtain, as well known (cf. [6]), that the ramification index of a maximal order in $\Sigma = (a_{\sigma, \tau}, G, L)$ is equal to the index of Σ.

Finally we shall generalize Corollary 2.

The following lemma is well known. However we shall give a proof for a completeness, (cf. [11], Theorem 1).

Lemma 4. Let K be a commutative ring and G a finite group which operates on K trivially. \{a_{\sigma, \tau}\} is a factor set in the unit elements of K. Then a generalized group ring $(a_{\sigma, \tau}, G, K)$ is separable over K if and only if $Kn=K$, where $n=|G|$.

Proof. Let ψ be a K-homomorphism of Λ to $\Lambda \otimes \Lambda^* = \Lambda^*$:

$$\psi(u_\sigma) = \sum u_\sigma \otimes u_\sigma^* k(\sigma, \tau, \rho), \quad k(\sigma, \tau, \rho) \in K.$$

Then ψ is left Λ^*-homomorphic if and only if

3 See the definition in [8], § 2.
\[a_\eta, k(\sigma, \tau, \rho) = a_\eta, k(\eta \sigma, \eta \tau, \rho) \]
\[a_\rho, k(\sigma, \tau, \rho) = a_\eta, k(\sigma \eta, \tau, \rho \eta) \]
for any \(\eta \in G \).

From (6) we have \(k(1, \tau, \rho) = \varphi^{-1}(\rho, \rho \tau, \tau) \). If \(\Lambda \) is separable over \(K \),
then there exists a \(\Lambda^e \)-homomorphism \(\psi \) of \(\Lambda \) to \(\Lambda^e \) such that \(\varphi \psi = I \),
where \(\varphi : \Lambda^e \to \Lambda ; \varphi(x \otimes y^*) = xy \). Hence
\[1 = \psi(1) = \sum u_{\alpha} \alpha a_{\alpha} k(1, \tau, \rho) = u_{\alpha} \sum a_{\alpha} \alpha a_{\alpha} k(1, 1, 1) \].
If we replace \(\rho, \sigma \) and \(\tau \) by \(\eta, \eta \) and \(\eta \) in the relation of factor sets,
then we have \(a_{\eta, \eta^{-1}} = a_{\eta^{-1}, \eta} \), where we assume \(a_{\eta, 1} = a_{1, \eta} = 1 \). Hence \(1 = \eta \). The converse is given by [11], Theorem 1. (cf. the proof of Proposition 1).

Proposition 3. We assume that \(\Lambda = (\sigma, \tau, G, \mathcal{O}) \) is an order in a matric \(K \)-algebra over \(K \) and \(R/p \) is not necessarily perfect. Then \(\Lambda \) is hereditary if and only if \(\mathfrak{B} \) is tamely ramified. In this case the rank of \(\Lambda \) is equal to the ramification index of \(\mathfrak{B} \).

Proof. We assume that \(\Lambda \) is hereditary. Since \(\{a_{\sigma, \tau}\} \) is similar to the unit factor set in \(L, \Lambda_H = (\sigma, \tau, H, \mathcal{O}) \) is in \((K)_{H} \). We know similarly to the proof of Corollary 2 that \(N(\Lambda_H) = p\Lambda_H \). Hence, \(\Lambda_H = \Lambda_H / \mathfrak{p} = \mathfrak{O} + \mathfrak{a}_\rho \mathfrak{O} + \cdots + \mathfrak{a}_\rho \mathfrak{O} \) is semi-simple. However, since \(\Omega / N(\Omega) = (R/p)_{H} \) for a maximal order \(\Omega \) in \((K)_{H} \), \(\Lambda = \Sigma(R/p)_{m_i} \) by [7], Theorem 4.6. Hence, \(\Lambda \) is separable. Therefore, \((|H|, p) = 1 \) by Lemma 4.

3. Hereditary orders in a generalized quaternions

Finally, we shall determine all the hereditary orders in a generalized quaternions. Let \(Z \) be the ring of integers and \(K \) the field of rationals. Let \(d \) be an integer which is not divided by any quadrate and \(L = K(\sqrt{d}) \). Then the Galois group \(G = \{1, g\} \) and \((\sqrt{d})^* = -\sqrt{d} \). For any integer \(a \) we have \(\Sigma = (a, G, L) = K + Kg + K\sqrt{d} + Kg\sqrt{d} \) with relations \(g^2 = a, (\sqrt{d})^2 = d, \) and \(g\sqrt{d} = -\sqrt{d} g \). We have determined all hereditary orders in [9], Theorem 1.2 in the case \(a = -1 \).

We use the same argument here as that in [9], § 1.

First we shall determine the types of maximal orders over \(Z_p \).

Proposition 4. Let \(R \) be the ring of \(p \)-adic integers, \(L = K(\sqrt{d}) \) and \(\Lambda = (a, G, \mathcal{O}) \). We denote the radical of \(\Lambda \) by \(\mathfrak{p} \) and \(\Lambda / \mathfrak{p} \) by \(\bar{\Lambda} \). Then

1) If \(p = 2, d \equiv 1 \) \((\mod 4) \), then \(\Lambda \) is a maximal order such that \(\bar{\Lambda} = (R/2)_2 \).
2) If \(p = 2, d \equiv 2, 3 \) \((\mod 4) \), then \(\Lambda \) is not hereditary.
3) If \(p = 2, d \equiv 0 \) \((\mod p) \), then \(\Lambda \) is a maximal order such that \(\bar{\Lambda} = (R/p)_2 \).
4) If \(p \not= 2, d \equiv 0 \) \((\mod p) \).
Some Criteria for Hereditariness of Crossed Products 77

a) \((a/p)^{p}=1\), then \(\Lambda\) is a hereditary order of rank two.
b) \((a/p)=-1\), then \(\Lambda\) is a unique maximal order.

Proof. We shall consider the following three cases.

1) \(H=1\). Then i) \(p=\mathfrak{p}, \mathfrak{P}_{2}\) and \(S=H\), ii) \(p=\mathfrak{P}_{2}\) and \(S=G\). Since \(\mathfrak{P}\) is unramified, \(\Lambda\) is maximal order by Theorem 1. In the case i) \(\mathfrak{O}/\mathfrak{p}\mathfrak{O}=\mathfrak{O}/\mathfrak{P}_{1}+\mathfrak{O}/\mathfrak{P}_{2}\), and \(\Lambda\) is a maximal order such that \(\Lambda/p\Lambda=(R/p)_{2}\). The case ii) \(\Lambda/p\Lambda=\mathfrak{O}/\mathfrak{P}_{1}+g\mathfrak{O}/\mathfrak{P}_{2}\). Since \(G=S\), \(\Lambda/p\Lambda\) is not commutative and hence, \(\Lambda\) is not a unique maximal.

2) \(G=S=H\), \(p=2\) and \(a\equiv 1 \text{ (mod 2)}\). In this case 2 is ramified and hence, \(\Lambda\) is not hereditary by Theorem 3.

3) \(G=S=H\), and \(p=2\). Then \(p=\mathfrak{P}_{2}\) and \(\Lambda/\mathfrak{P}_{1}\Lambda=R/p+(R/p)\mathfrak{g}\). Since \(\mathfrak{P}\) is tamey ramified, \(\mathfrak{P}\Lambda=\mathfrak{R}\) by the remark before Corollary 1, and \(\Lambda\) is hereditary. Let \(\mathfrak{A}\) be a two-sided ideal in \(\Lambda\). If \(\mathfrak{A}\) is proper, then \(\mathfrak{A}=(1+g\mathfrak{g})R/p\) and \(d\mathfrak{g}=1\) for some \(y\in\mathfrak{S}=R/p\), and conversely. Therefore, if \((a/p)=1\) then \(\Lambda\) is a hereditary order of rank 2 and if \((a/p)=-1\), then \(\Lambda\) is a unique maximal order. The proposition is trivial from the well known facts of quadratic field.

If we set \(g=i\) and \(\sqrt{-d}=j\), then \(\Sigma=(a, G, L)\) is a generalized quaternions over the field \(K\) of rationals. For any element \(x=x_{1}+x_{2}i+x_{3}j+x_{4}ij\) we define

\[N(x) = x_{1}^{2} - ax_{2}^{2} - dx_{3}^{2} + adx_{4}^{2}.\]

Let \(\Omega\) be a maximal order over \(R\) with basis \(u_{1}, u_{2}, u_{3}\) and \(u_{4}\). We call an element \(x=x_{1}u_{1}\) in \(\Omega\) normalized if \((x_{1}, \ldots, x_{4})=1\).

We note that if \(\Sigma\) contains at least two maximal orders, then \(\hat{\Sigma}\) is a matrix ring over \(\hat{K}\) where \(\hat{}\) means the completion with respect to \(p\), (cf. [9], Lemma 1.4).

In order to use the same argument as in the proof of [9], Theorem 1.2 we need

Lemma 6. 1) If either \(p=2\), \(d\equiv 3 \text{ (mod 4)}\) and \(a\equiv 1 \text{ (mod 4)}\) or \(p=2\), \(d\equiv 2 \text{ (mod 4)}\), and \(a\equiv 1 \text{ (mod 8)}\), then there exists a maximal order \(\Omega\) such that \(\Omega=(R/\mathfrak{p})_{2}\). 2) If \(p=2\), \(d\equiv 2 \text{ (mod 4)}\), \(a\equiv 1 \text{ (mod 4)}\) and \(a\equiv 1 \text{ (mod 8)}\), then there exists a unique maximal order. 3) If \(p=2\), \(d\equiv 0 \text{ (mod p)}\) and \((a/p)=1\), then there exists a maximal order \(\Omega\) such that \(\Omega=(R/p)_{2}\), where \(\Omega\) means the factor ring of \(\Omega\) modulo its radical.

Proof. Let \(\Omega=\mathfrak{O}+(1/2)(1+g)\mathfrak{O}=R+R_{2}+R_{1}/2(1+i)+R(1/2)(j+ij)\), where \(i=g\) and \(j=\sqrt{-d}\). We denote \((1/2)(1+i)\) and \((1/2)(j+ij)\) by \(h\) and \(l\). Then we obtain by the direct computations that

4) Legendre's symbol,
\[jh = i - l, \quad hj = l, \quadjl = d(1 - h), \quad lj = dh, \quad hl = l + jr, \quad lh = -rj, \quad h^2 = h + r \quad \text{and} \quad I^2 = dr, \]

where \(a = 1 + 4r, \quad r \in R. \)

1) \(d = 3 \pmod{4}. \) Let \(N(\Omega) \) be the radical of \(\Omega \) and \(x = x_1 + x_2 j + x_r h + x_i f \in N(\Omega) / 2\Omega. \) Then \(x_j + j x = x_d + x_z j. \) If \(x_j \equiv 0 \pmod{2}, \) then we may assume \(1 + j \in N(\Omega). \) Then \(0 \equiv (1 + j)l + l(1 + j) \equiv d \pmod{2}, \) which is a contradiction. Hence, we know \(N(\Omega) = 2\Omega \) by the similar argument for \(x_1, x_2. \) Since \(\Omega / N(\Omega) \) is not commutative by (7), \(\Omega / N(\Omega) = (R / 2)^2 \) and \(\Omega \) is a maximal order (cf. [9], Lemma 1.3).

2) \(d = 2 \pmod{4}. \) From (7) we obtain \(N(\Omega) = \Lambda j. \) If \(r \equiv 0 \pmod{2}, \) then \(\Omega / N(\Omega) = (R / 2) h + (R / 2)(1 + h). \) Hence \(\Omega \) is a hereditary order of rank two. Let \(\Omega_0 = R + Rj + Rh + R(1/2). \) It is clear that \(\Omega_0 \supseteq \Lambda \) and \(\Omega_0 \) is a ring. Hence \(\Omega_0 \) is a maximal order by [7], Theorems 1.7 and 3.3. If \(r \equiv 0 \pmod{2}, \) then \(\Omega / N(\Omega) \) is a field and hence \(\Omega \) is a unique maximal order.

3) In this case \(\Lambda \) is hereditary. Let \(\Omega = R + Ri + Rj + R(1/p)(j + yij), \) where \(ay^2 = 1 + px, \quad x \in R. \) It is clear that \(\Omega \supseteq \Lambda. \) We shall show that \(\Omega \) is a ring. \((1/p)(j + yij)^p = (d/p)x \in \Omega, \) and \((1/p)(j + yij)^i = -(x/y)j - (1/yp)(j + yij) \in \Omega, \) and \((1/p)(j + yij)^j = (d/p)(1 + ky) \in \Omega. \) Therefore, \(\Omega \) is a maximal order as above.

Next, we consider a case of \(a \equiv 1 \pmod{4} \) and \(p = 2. \)

Lemma 7. We consider the following conditions

i) \(a = 3 \pmod{8}, \quad d = 2 \pmod{4}, \) but \(d = 2 \pmod{8}. \)

ii) \(a = 3 \pmod{8}, \) and \(d = 2 \pmod{8}. \)

iii) \(a = 7 \pmod{8}, \) and \(d = 2 \pmod{4} \) but \(d = 2 \pmod{8}. \)

iv) \(a = 7 \pmod{8}, \) and \(d = 2 \pmod{8}. \)

v) \(a = 1 \pmod{4}, \) and \(d = 3 \pmod{4}. \)

If one of i) and iv) is satisfied, then there is a maximal order \(\Omega \) such that \(\Omega / N(\Omega) = (R / 2)^2. \) If one of ii), iii) and v) is satisfied, then there exists a unique maximal order.

Proof. We shall show this lemma by a direct computation. Thus, we give here only a sketch of the proof.

Put \(i = g, \quad j = \sqrt{d} \) and \(H = 1/2(1 + i + j), \quad L = 1/2(i + i + ij). \) Let \(\Lambda = R + Ri + RH + RL. \) If we set \(a = 1 + 2r, \) \(d = 2 + 4k \) where \(r \equiv 1 \pmod{4}, \) \(k \equiv 0 \pmod{2}, \) we have

\[i^2 = 1 + 2r, \quad H^2 = k + (1 + r)/2 + H, \quad L^2 = -(1/2)(1 + r) - (1 + 2r)k + L, \]

\[iH = L + r, \quad Hi = 1 + r + i - L, \quad iL = -ri + (1 + 2r)H, \quad Li = 1 + 2r \]

\[+(1 + r)i = -(1 + 2r)H, \quad LH = r + ((1 + r)/2 + k)i - rH + L, \] (8) and
\[HL = -(k + (1 + r)/2)i + (1 + r)H. \]

In cases i) and iv) we can show directly that \(N(\bar{\Lambda}) = \bar{\Lambda}(\bar{i} + \bar{1}) \) and \(\bar{\Lambda}/\bar{\Lambda}(1 + i) \approx (R/2)\bar{H} \oplus (R/2)(1 + \bar{H}) \), \(\bar{H}(1 + \bar{H}) = 0 \), where \(\bar{\Lambda} = \Lambda/2\Lambda \). Since \((1-i)(1+i) = 1 - a = -2r, r \equiv 0 \pmod{2}, \) \(\Lambda(1 + i) \equiv 2\Lambda \). Hence \(N(\Lambda) = \Lambda(1 + i) \), which implies that \(\Lambda \) is a hereditary order of rank two. Therefore, there exists a maximal order as in the lemma.

In cases ii) and iii) we obtain similarly that \(\Lambda/\Lambda(1 + i) \approx (R/2)\bar{H} + (R/2)(1 + \bar{H}) \) and \(\bar{H}^2 = 1 + \bar{H}, \) \((1 + \bar{H})^2 = \bar{H}, \) \(\bar{H}(1 + \bar{H}) = 1 \). Hence, \(\Lambda \) is a unique maximal order.

In case v) we put \(i = 1/2(1 + i + j + ij) \) and \(\Lambda = R + Ri + Rj + Rt \). Then by the same argument in [9], Lemma 1.3 we can show that \(N(\Lambda) = \Lambda(1 + i) \) and \(\Lambda/\Lambda(1 + i) \) is a field. Hence, \(\Lambda \) is a unique maximal order.

From Proposition 4, Lemmas 6 and 7 and the proof of [9], Theorem 1.2 we have

Theorem 4. Let \(R \) be a ring of \(\wp \)-adic integers, \(K \) the field of rationals and \(L = K(\sqrt{d}) \). For a unit element \(a \) in \(R \), \(\Sigma = (a, G, L) \) is a generalized quaternions and \(\Lambda = (a, G, \Sigma) \). Then every hereditary order over \(R \) in \(\Sigma \) is isomorphic to one of the following:

1. \(\Lambda \) (unique maximal) if \(\wp = 2, d \equiv 0 \pmod{\wp}, \) \(a/\wp = -1 \).
2. \(\Omega_1 = R + R\sqrt{d} + R(1/2)(1 + g) + (1/2)(\sqrt{d} + g\sqrt{d}) \) (unique maximal) if \(\wp = 2, d \equiv 2 \pmod{4}, a \equiv 1 \pmod{4} \) and \(a \equiv 1 \pmod{8} \).
3. \(\Lambda \) (maximal), \(\Lambda \cap \alpha^{-1}\Lambda\alpha \) if either a) \(\wp = 2, d \equiv 1 \pmod{4} \) or b) \(\wp = 2, d \equiv 0 \pmod{\wp} \).
4. \(\Omega \) (maximal), \(\Gamma_1 = R + Rg + RH + RL \) if one of i) and iv) in Lemma 8 is valid.
5. \(\Gamma_1 \) (unique maximal) if one of ii), iii) and iv) in Lemma 8 is valid.
6. \(\Omega_2 = R + Rg + R\sqrt{d} + Rt \) (unique maximal) if \(\wp = 2, d \equiv 3 \pmod{4}, \) and \(a \equiv 1 \pmod{4} \).
7. \(\Omega_3 = R + R\sqrt{d} + R(1/2)(1 + g) + R(1/4)(\sqrt{d} + g\sqrt{d}) \) (maximal), \(\Gamma_3 = R + R\sqrt{d} + R(1/2)(1 + g) + R(1/4)(\sqrt{d} + g\sqrt{d}) \) if \(\wp = 2, d \equiv 0 \pmod{4}, \) and \(a \equiv 1 \pmod{8} \).
8. \(\Omega_4 \) (maximal), \(\Omega_4 \cap \alpha^{-1}\Omega\alpha \) if either a) \(\wp = 2, d \equiv 3 \pmod{4}, a \equiv 1 \pmod{4} \) or b) \(\wp = 2, d \equiv 2 \pmod{4} \) and \(a \equiv 1 \pmod{8} \).
9. \(\Omega_5 = R + Rg + R\sqrt{d} + R(1/\wp)(\sqrt{d} + yg\sqrt{d}) \) (maximal), \(\Lambda \) if \(\wp = 2, d \equiv 0 \pmod{\wp} \) and \(a/\wp = 1 \).
Where \mathcal{O} means the integral closure of R in L and α is a normalized element with respect to the basis of a maximal order and $N(\alpha)=pq$, $(p,q) = 1$ and $a\gamma^2 \equiv 1 \pmod{\wp}$, $H=(1/2)(1+g\sqrt{d})$, $L=(1/2)(1+\sqrt{d}+g\sqrt{d})$, $t=\frac{1}{2}(1+g+\sqrt{d}+g\sqrt{d})$, and $\wp=(p)$.

Remark 2. A maximal order Ω in 4) is any ring which contains properly Λ.

References