

Title	Some criteria for hereditarity of crossed products
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1964, 1(1), p. 69-80
Version Type	VoR
URL	https://doi.org/10.18910/11065
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
1 (1964), 69-80

SOME CRITERIA FOR HEREDITARITY OF CROSSED PRODUCTS

MANABU HARADA

(Received March 26, 1964)

Let \mathfrak{O} be the integral closure of a discrete rank one valuation ring R with maximal ideal \mathfrak{p} in a finite Galois extension L of the quotient field of R . Auslander, Goldman and Rim have proved in [1] and [2] that a crossed product Λ over \mathfrak{O} with trivial factor sets is a maximal order in K_n if and only if a prime ideal \mathfrak{P} in \mathfrak{O} over \mathfrak{p} is unramified and Λ is a hereditary if and only if \mathfrak{P} is tamely ramified. Recently Williamson has generalized those results in [11] to a crossed product Λ with any factor sets in $U(\mathfrak{O})$, where $U(\mathfrak{O})$ means the set of units in \mathfrak{O} , namely if \mathfrak{P} is tamely ramified, then Λ is hereditary and the rank¹⁾ of Λ is determined.

In this paper, we shall modify the Williamson's method by making use of a property of crossed product over a ring.

Let G , S and H be the Galois group of L , decomposition group of \mathfrak{P} and inertia group of \mathfrak{P} , respectively. We denote a crossed product Λ with factor sets $\{\alpha_{\sigma,\tau}\}$ in $U(\mathfrak{O})$ by $(\alpha_{\sigma,\tau}, G, \mathfrak{O})$. Then we shall prove in Theorem 1 that Λ is a hereditary order if and only if so is $(\alpha_{\sigma,\tau}, H, \mathfrak{O}_{\mathfrak{P}_H})$ where $\mathfrak{P}_H = \mathfrak{P} \cap \mathfrak{O}_H$, and \mathfrak{O}_H is the integral closure of R in the inertia field \mathfrak{L}_H . Using this fact and the structure of hereditary orders [7], [8] we obtain the above results in [1], [2] and [11].

Furthermore, we shall show that Λ is hereditary if and only if \mathfrak{P} is tamely ramified under an assumption that R/\mathfrak{p} is a perfect field.

Finally, we give a complete description of hereditary orders in a generalized quaternions over rationals in Theorem 3.

1. Reduction theorem

In this paper we always assume that R is a discrete rank one valuation ring with maximal ideal \mathfrak{p} and \mathfrak{p} in the characteristic of R/\mathfrak{p} . Let L be a finite Galois extension of the quotient field of R with Galois

1) The rank means the number of maximal two-sided ideals in Λ .

group G , and \mathfrak{D} the integral closure of R in L . For a prime ideal \mathfrak{P} in \mathfrak{D} over \mathfrak{p} we denote the decomposition group and the inertia group of \mathfrak{P} by S and H and their fields and the integral closure by L_S , L_H and \mathfrak{D}_S , \mathfrak{D}_H and so on.

We note that \mathfrak{D} is a semi-local Dedekind domain and hence, \mathfrak{D} is a principal ideal domain. Let $\{\mathfrak{P}_i\}_{i=1}^g$ be the set of prime ideals in \mathfrak{D} and S_i and H_i be decomposition group and inertia group of \mathfrak{P}_i . Let $\mathfrak{p}\mathfrak{D} = \prod \mathfrak{P}_i^e = P^e$, where $P = \prod \mathfrak{P}_i$. Since $(\mathfrak{P}_i, \mathfrak{P}_j) = \mathfrak{D}$ for $i \neq j$, $\mathfrak{D}/P^n = \mathfrak{D}/\mathfrak{P}_1^n \oplus \dots \oplus \mathfrak{D}/\mathfrak{P}_g^n$. We note that $(\mathfrak{D}/\mathfrak{P}_i^n)^\sigma = \mathfrak{D}/(\mathfrak{P}_i^n)^\sigma$ for $\sigma \in G$. Then $\mathfrak{D}_{H_i}/\mathfrak{P}_{H_i}$ is the separable closure of R/\mathfrak{p} in $\mathfrak{D}/\mathfrak{P}_i$ and $\mathfrak{D}_{H_i}/\mathfrak{P}_{H_i}$ is a Galois extension of R/\mathfrak{p} with Galois group S_i/H_i , (see [10], p. 290).

Let Λ be a crossed product over \mathfrak{D} with factor sets $\{a_{\sigma,\tau}\}$ in $U(\mathfrak{D}) : \Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$. Since $P^\sigma = P$ for all $\sigma \in G$, $P^n\Lambda = \Lambda P^n$ is a two-sided ideal in Λ . Let $\bar{\Lambda}(n) = \Lambda/P^n\Lambda = (\bar{a}_{\sigma,\tau}, G, \mathfrak{D}/P^n) = \Sigma \oplus (\bar{a}_{\sigma,\tau}, G, \mathfrak{D}/\mathfrak{P}_i^n)$ as a module. We put $\bar{\Lambda}(S_i, n) = (\bar{a}_{\sigma,\tau}, S_i, \mathfrak{D}/\mathfrak{P}_i^n)$. Since $\bar{u}_\sigma^{-1}(\bar{u}_\tau \mathfrak{D}/\mathfrak{P}_i^n) \bar{u}_\sigma = \bar{u}_{\sigma^{-1}\tau\sigma}(\mathfrak{D}/\mathfrak{P}_i^n)^\sigma$, $\bar{u}_\sigma^{-1}\Lambda(S_i, n) \bar{u}_\sigma = \bar{\Lambda}(S_i^\sigma, n)$, where $S_i^\sigma = \sigma^{-1}S_i\sigma$. Thus we have

$$(1) \quad \bar{\Lambda}(S_i, n) \bar{u}_\sigma = \bar{u}_\sigma \Lambda(S_i^\sigma, n).$$

Let $G = \sigma_{i1}S_i + \sigma_{i2}S_i + \dots + \sigma_{ig}S_i = S_i\sigma_{i1} + \dots + S_i\sigma_{ig}$, $\sigma_{ii}S_i = S_i$, since G is a finite group. Then

$$(2) \quad \begin{aligned} \bar{\Lambda}(n) = & \bar{\Lambda}(S, n) + \bar{u}_{\sigma_{11}}\bar{\Lambda}(S, n) + \dots + \bar{u}_{\sigma_{1g}}\bar{\Lambda}(S, n) \\ & + \bar{\Lambda}(S_2, n) + \bar{a}_{\sigma_{22}}\Lambda(S_2, n) \dots + \bar{a}_{\sigma_{2g}}\Lambda(S_2, n) \\ & \dots \\ & + \bar{\Lambda}(S_g, n) + \bar{a}_{\sigma_{g2}}\Lambda(S_g, n) \dots + \bar{a}_{\sigma_{g,g}}\bar{\Lambda}(S_g, n), \end{aligned}$$

where $S = S_1$.

Let p_{ij} be projections of $\bar{\Lambda}(n)$ to $\bar{u}_{\sigma_{ij}}\bar{\Lambda}(S_i, n)$. For a two-sided ideal \mathfrak{A} in $\bar{\Lambda}(n)$ we have $\mathfrak{A} \supseteq \sum p_{ij}(\mathfrak{A})$. Since $\bar{u}_{\sigma_{ij}}$ is unit, $p_{ij}(\mathfrak{A}) = u_{\sigma_{ij}}P_{i1}(\mathfrak{A})$ for all j . Let \bar{e} be the unit element in $\bar{\Lambda}(S, n)$. Then $\bar{\Lambda}(S_i, n)\bar{e} = 0$ for $i \neq 1$ and $\bar{e}\bar{u}_{\sigma_{1j}}\Lambda(S, n) \supseteq \bar{u}_{\sigma_{1j}}\bar{\Lambda}(S^{\sigma_{1j}}, n)\bar{\Lambda}(S, n) = 0$ for $j \neq 1$. Hence, $\bar{e}\mathfrak{A}\bar{e} = p_{11}(\mathfrak{A})$. Furthermore, since $S_i = S^{\sigma_{1j}}$, $p_{ij}(\mathfrak{A}) = \bar{u}_{\sigma_{ij}}^{-1}p_{11}(\mathfrak{A})\bar{u}_{\sigma_{ij}} = p_{11}(\mathfrak{A})^{\sigma_{1j}}$. Therefore,

$$(3) \quad \mathfrak{A} = \sum_{i,j} u_{\sigma_{ij}}\mathfrak{A}_0^{\sigma_{1j}}$$

for a two-sided ideal of \mathfrak{A}_0 in $\bar{\Lambda}(S, n)$. Conversely, the above ideal is a two-sided ideal in $\bar{\Lambda}(n)$ for a two-sided ideal \mathfrak{A}_0 in $\bar{\Lambda}(S, n)$.

Thus, we have

Lemma 1. *Let $\bar{\Lambda}(n)$ and $\bar{\Lambda}(S, n)$ be as above. Then we have a one-to-one correspondence between two-sided ideals of $\bar{\Lambda}(n)$ and $\bar{\Lambda}(S, n)$ as above.*

We note that the above correspondence preserves product of ideals.

Next we shall consider $\Lambda_S = (a_{\sigma,\tau}, S, \mathfrak{D})$ ($\subseteq \Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$), where S is the decomposition group of \mathfrak{P} . Since \mathfrak{D}_S is contained in the center of Λ_S , we may regard Λ_S as an order over \mathfrak{D}_S . Let \mathfrak{P}_S be the prime ideal in \mathfrak{D}_S over \mathfrak{p} . Then $\mathfrak{D}_{\mathfrak{P}_S}/\mathfrak{P}_{\mathfrak{P}_S}^n = \mathfrak{D}/\mathfrak{P}^n$. If we set $\Gamma = (a_{\sigma,\tau}, S, \mathfrak{D}_{\mathfrak{P}_S}) = (\Lambda_S)_{\mathfrak{P}_S}$, $\bar{\Gamma}(n) = \Gamma/\mathfrak{P}^n \Gamma \approx \bar{\Lambda}(S, n)$. In Γ we may regard $K = L_S$ and $\mathfrak{D} = \mathfrak{D}_{\mathfrak{P}_S}$. Let H be the inertia group of a unique prime ideal \mathfrak{P} in \mathfrak{D} . Then H is a normal subgroup of S , (see [10], p. 290) and we have $S = H + \sigma_2 H + \cdots + \sigma_f H$. Let $\Gamma_H = (a_{\sigma,\tau}, H, \mathfrak{D})$, then $\Gamma \mathfrak{P}^n \cap \Gamma_H = \Gamma_H \mathfrak{P}^n$. Hence $\bar{\Gamma} = \bar{\Gamma}(n) = \Gamma/\mathfrak{P}^n \Gamma \supseteq \bar{\Gamma}_H(n) = \bar{\Gamma}_H$. Furthermore,

$$\bar{\Gamma} = \bar{\Gamma}_H + \bar{u}_{\sigma_2} \bar{\Gamma}_H + \cdots + \cdots + \bar{u}_{\sigma_f} \bar{\Gamma}_H.$$

By a similar argument as above, we have $\bar{u}_{\sigma}^{-1} \bar{\Gamma}_H \bar{u}_{\sigma} = \bar{\Gamma}_H$. We denote this automorphism by f_{σ} . Then the restriction of f_{σ} on $\mathfrak{D}/\mathfrak{P}^n$ coincides with σ . Let \mathfrak{N}_H be the radical of Γ_H . Then $\mathfrak{N}_H \supseteq \mathfrak{P} \Gamma_H$. We put $\mathfrak{N} = \mathfrak{N}_H + u_{\sigma_2} \mathfrak{N}_H + \cdots + u_{\sigma_f} \mathfrak{N}_H$, then \mathfrak{N} is a two-sided ideal of Γ and $\mathfrak{N}^m = \mathfrak{N}_H^m + \cdots + u_{\sigma_f} \mathfrak{N}_H^m \supseteq \mathfrak{P}^m \Gamma$ for some m . $\Gamma/\mathfrak{N} = \Gamma_H/\mathfrak{N}_H + \bar{u}_{\sigma_2} \bar{\Gamma}_H/\mathfrak{N}_H + \cdots + \bar{u}_{\sigma_f} \bar{\Gamma}_H/\mathfrak{N}_H$ and $\Gamma_H/\mathfrak{N}_H \supseteq \mathfrak{D}/\mathfrak{P}$. Now we consider a crossed product of Γ_H/\mathfrak{N}_H with automorphisms $\{f_{\sigma}\}$ and factor sets $\{\tilde{a}_{\sigma,\tau}\}$. We define a two-sided Γ_H/\mathfrak{N}_H -module Γ_H/\mathfrak{N}_H as follows: for $\tilde{x}, \tilde{y} \in \Gamma_H/\mathfrak{N}_H$ $\tilde{x} * \tilde{y} = \tilde{x}^{f_{\sigma}y}$ and $\tilde{y} * \tilde{x} = \tilde{y} \tilde{x}$, and denote it by $(\sigma, \Gamma_H/\mathfrak{N}_H)$. Since Γ_H/\mathfrak{N}_H is semi-simple, $(\sigma, \Gamma_H/\mathfrak{N}_H)$ is completely reducible. Furthermore, $\{\sigma\}$ is the complete set of automorphisms of $\mathfrak{D}/\mathfrak{P}$ (see [10], p. 290). Hence $\{f_{\sigma}\}$ is a complete outer-Galois, namely for any two-sided Γ_H/\mathfrak{N}_H -module $A \supseteq B$ in $(\sigma, \Gamma_H/\mathfrak{N}_H)$ A/B is not isomorphic to some of those forms in $(1, \Gamma_H/\mathfrak{N}_H)$ if $\sigma \neq 1$. Therefore, for any two-sided ideal \mathfrak{A} in Γ/\mathfrak{N} we have by [3], Theorem 48.2

$$(3) \quad \mathfrak{A} = \sum \tilde{u}_{\sigma_i} \mathfrak{A}_0,$$

where \mathfrak{A}_0 is a two-sided ideal in Γ_H/\mathfrak{N}_H and $\mathfrak{A}_0^{f_{\sigma}} = \mathfrak{A}_0$ for all f_{σ} , and it is a one-to-one correspondence. Hence, Γ/\mathfrak{N} is semi-simple, and \mathfrak{N} is the radical of Γ . From the definition of f_{σ} we have

$$(4) \quad (\tilde{u}_{\tau} \lambda)^{f_{\sigma}} = \tilde{u}_{\sigma^{-1} \tau \sigma} \tilde{\lambda}^{\sigma} a_{\sigma,\tau} / a_{\sigma,\sigma^{-1} \tau \sigma}$$

for $\sigma \in S$, $\tau \in H$, $\lambda \in \mathfrak{D}/\mathfrak{P}$, and $\tilde{u}_{\tau} \in \Gamma_H/\mathfrak{N}_H$.

Furthermore, let $\Gamma_H/\mathfrak{N}_H = \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_k$, where the \mathfrak{A}_i 's are simple components of Γ_H/\mathfrak{N}_H . If we classify those ideals $\mathfrak{A}, \mathfrak{B}$ by a relation

$$(5) \quad \mathfrak{A} \sim \mathfrak{B} \text{ if and only if } \mathfrak{A}^{f_{\sigma}} = \mathfrak{B} \text{ for some } f_{\sigma},$$

then the number of maximal two-sided ideals in Γ/\mathfrak{N} is equal to this class number.

Thus, we have

Lemma 2. *Let L be a Galois extension of the field K with Galois group G such that $S=G$, $\Gamma=(a_{\sigma,\tau}, S, \mathfrak{D})$, and $\Gamma_H=(a_{\sigma,\tau}, H, \mathfrak{D})$. If we denote the radicals of Γ and Γ_H by \mathfrak{N} , \mathfrak{N}_H , then, $\mathfrak{N}^t \equiv \sum \tilde{a}_\sigma \mathfrak{N}_H^t \pmod{\mathfrak{P}^t \Gamma}$ for some $t < n$, and there exists a one-to-one correspondence between two-sided ideals in Γ/\mathfrak{N} and Γ_H/\mathfrak{N}_H which is given by (3) and (4).*

Lemma 3. *Let Ω be an order over R in a central simple K -algebra Σ and \mathfrak{N} the radical of Ω . Then Ω is hereditary if and only if $\mathfrak{N}^t = \alpha \Omega = \Omega \alpha$ for some $t > 0$ and $\alpha \in \Sigma$.*

Proof. If $\mathfrak{N}^t = \alpha \Omega$, then the left (right) order of $\mathfrak{N} = \Omega$, and $\mathfrak{N} \mathfrak{N}^{t-1} \alpha^{-1} = \Omega$. Hence \mathfrak{N} is invertible in Ω , which implies that Ω is hereditary by [7], Lemma 3.6. The converse is clear by [7], Theorem 6.1.

Theorem 1. *Let R be a discrete rank one valuation ring and K its quotient field, and L a Galois extension of K with group G . Let S and H be decomposition group and inertia group of a prime ideal \mathfrak{P} in the integral closure \mathfrak{D} of R in L . Let $\Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$, $\Lambda_S = (a_{\sigma,\tau}, S, \mathfrak{D}_{\mathfrak{P}_S})$, and $\Lambda_H = (a_{\sigma,\tau}, H, \mathfrak{D}_{\mathfrak{P}_H})$. Then the following statement is equivalent*

- 1) Λ is hereditary,
- 2) Λ_S is hereditary,
- 3) Λ_H is hereditary.

In this case the rank of Λ is equal to that of Λ_S and is equal or less than that of Λ_H .

Proof. 1) \rightarrow 2). Let \mathfrak{N} , \mathfrak{N}_S be the radicals of Λ and Λ_S and P be the product of the prime ideals as in the beginning. Then $\mathfrak{N}^t = P\Lambda$. For $n > t$ we have $\mathfrak{N}_S^t \equiv \mathfrak{P}\Lambda_S \pmod{\mathfrak{P}^t \Lambda_S}$ by Lemma 1 and remark after that. Hence $\mathfrak{N}_S^t = \mathfrak{P}\Lambda_S$ since $\mathfrak{N}_S^t \equiv \mathfrak{P}^t \Lambda_S$. Therefore, Λ_S is hereditary by Lemma 3. The remaining parts are proved similarly by using Lemmas 1, 2, and 3, and a remark before Lemma 2.

If $(|H|, p) = 1$, then $\Lambda/\mathfrak{P}\Lambda$ is separable by [11], Theorem 1, (see Lemma 4 below) and hence Λ is hereditary, where $|H|$ means the order of group H . Therefore, we have

Corollary 1. ([11]). *If \mathfrak{P} is tamely ramified, i.e. $(|H|, p) = 1$, then $\Lambda = (a_{\sigma,\tau}, G, \mathfrak{D})$ is hereditary of the same rank as that of $\Lambda_S = (a_{\sigma,\tau}, S, \mathfrak{D}_{\mathfrak{P}_S})$ and its rank is equal to the class number of ideals defined by (5).*

Corollary 2. ([1, 2]). *If $\{a_{\sigma,\tau}\} = \{1\}$, then Λ is hereditary if and only if a prime ideal \mathfrak{P} in \mathfrak{D} over \mathfrak{p} is tamely ramified. In this case the rank of Λ is equal to the ramification index of \mathfrak{P} .*

Proof. $\{a_{\sigma,\tau}\} = \{1\}$, then $\Sigma = (a_{\sigma,\tau}, G, L) = K_n$. We assume that Λ is

hereditary, then Λ_H is also hereditary by Theorem 1. $\Lambda_H L = (L_H)_h$, where $h = |H|$, $(\mathfrak{D}_H)_h$ is a maximal order in $\Lambda_H L$. Furthermore, the composition length of left ideals of $(\mathfrak{D}_H)_h$ modulo the radical $(\mathfrak{P}_H)_h$ is equal to h , which is invariant for hereditary orders in $\Lambda_H L$ by [8], Corollary to Lemma 2.5. On the other hand $[\Lambda_H/\mathfrak{P}\Lambda_H : \mathfrak{D}/\mathfrak{P}] = h$. Hence, $\mathfrak{P}\Lambda_H$ is the radical and $\Lambda_H/\mathfrak{P}\Lambda_H$ is semi-simple which is a group ring of H over $\mathfrak{D}/\mathfrak{P}$. Therefore, $(|H|, p) = 1$. In this case $\mathfrak{A} = (\sum_{\sigma \in H} u_{\sigma}) \cdot \mathfrak{D}/\mathfrak{P}$ is a two-sided ideal in $\Lambda_H/\mathfrak{P}\Lambda_H$ which is invariant under automorphisms f_{σ} of (4). \mathfrak{A} is a minimal two-sided ideal in $\Lambda_H/\mathfrak{P}\Lambda_H$ which is invariant under f_{σ} . Hence, $\Lambda_S/\mathfrak{M} \approx \sum_{\sigma \in H} u_{\sigma} \mathfrak{A}$ for some maximal ideal \mathfrak{M} in Λ_S . Furthermore, since Λ_S is principal²⁾, $\Lambda_S/\mathfrak{M} \approx \Lambda_S/\mathfrak{M}'$ for any maximal ideal \mathfrak{M}' in Λ_S by [8], Theorem 4.1. Therefore, there exists h two-sided ideals in $\Lambda_H/\mathfrak{P}\Lambda_H$ which is invariant under f_{σ} , since $[\mathfrak{A} : \mathfrak{D}/\mathfrak{P}] = 1$.

By the same argument as in the proof of Theorem 1 we have

Proposition 1. *We assume that R/\mathfrak{p} is a perfect field, and we use the same notations as in Theorem 1. Let V be the second ramification group²⁾ and $\Lambda_V = (a_{\sigma, \tau}, V, \mathfrak{D}_{\mathfrak{P}_V})$. Then Λ is hereditary if and only if so is Λ_V .*

Proof. By virtue of Theorem 1 we may assume $G = H$. Let $G = V + \sigma V + \dots + \rho V$. Then $\Lambda = \Lambda_V + u_{\sigma} \Lambda_V + \dots + u_{\rho} \Lambda_V$. Since V is a normal subgroup of G by [10], p. 295, an inner-automorphism by u_{σ} in Λ reduces an automorphism f_{σ} in Λ_V . Let \mathfrak{N}_V be the radical of Λ_V and $\mathfrak{N} = \mathfrak{N}_V + u_{\sigma} \mathfrak{N}_V + \dots + u_{\rho} \mathfrak{N}_V$. We shall show that \mathfrak{N} is the radical of Λ . By assumption that R/\mathfrak{p} is perfect, $\bar{\Lambda}_V = \Lambda_V/\mathfrak{N}_V$ is separable. Therefore, there exist x_i, y_i in $\bar{\Lambda}_V$ such that $\sum_i x_i y_i = 1$ and $\sum_i \lambda x_i \otimes y_i^* = \sum_i x_i \otimes (y_i \lambda)^*$, where $y \rightarrow y^*$ gives an anti-isomorphism of Λ to Λ^* . Furthermore, we note that $|G/V| = t$ is relative prime to p by [10], p. 296. Let $\theta = 1/t (\sum_{\tau, i} \bar{a}_{\tau, \tau^{-1}} \bar{u}_{\tau} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*) = 1/t (\sum \bar{a}_{\tau, \tau^{-1}} \sum_i \bar{u}_{\tau} x_i \otimes (y_i^{f_{\tau^{-1}}})^* \bar{u}_{\tau}^*)$. Then $1/t (\sum_{\tau} \bar{a}_{\tau, \tau^{-1}} \sum_i \bar{u}_{\tau} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*) = 1$. We show that $\{(\eta \otimes 1^*) - (1 \otimes \eta^*)\} \theta = 0$ for any $\eta \in \bar{\Lambda}$. Let γ be in $\bar{\Lambda}_V$. $(\gamma \otimes 1^*) \theta = 1/t (\sum \bar{a}_{\tau, \tau^{-1}} \bar{u}_{\tau} \gamma^{f_{\tau}} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*)$ and $(1 \otimes \gamma^*) \theta = 1/t (\sum_{i, \tau} \bar{a}_{\tau, \tau^{-1}} \bar{u}_{\tau} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}} \gamma)^* \bar{u}_{\tau}^*)$. We can naturally define $\{f_{\sigma}\}$ on $\bar{\Lambda}_V \otimes \bar{\Lambda}_V^*$ by setting $(\gamma \otimes \gamma'^*) f_{\sigma} = (\gamma \otimes \gamma'^{f_{\sigma}})$. Since $\sum \gamma^{f_{\tau}} x_i \otimes y_i^* = \sum x_i \otimes (y_i \gamma^{f_{\tau}})^*$, we obtain $\sum \gamma^{f_{\tau}} x_i \otimes (y_i^{f_{\tau^{-1}}})^* = \sum x_i \otimes (y_i^{f_{\tau^{-1}}} \gamma)^*$. Therefore, $\{(\gamma \otimes 1^*) - (1 \otimes \gamma^*)\} \theta = 0$. $(\bar{u}_{\sigma} \otimes 1) \theta = 1/t (\sum \bar{a}_{\tau, \tau^{-1}} \bar{u}_{\sigma} \bar{u}_{\tau} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*) = 1/t (\sum \bar{a}_{\tau, \tau^{-1}} \bar{a}_{\sigma, \tau} \bar{u}_{\sigma} \bar{u}_{\tau} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*)$. $(1 \otimes \bar{u}_{\sigma}^*) \theta = 1/t (\sum \bar{a}_{\tau, \tau^{-1}} \bar{u}_{\tau} x_i \otimes (\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}}})^*)$.

2) See the definition in [10].

$(\bar{u}_{\tau^{-1}} y_i^{f_{\tau^{-1}} \bar{u}_\sigma})^* = 1/t (\sum \bar{a}_{\tau, \tau^{-1}} \bar{u}_\tau x_i \otimes (\bar{a}_{\tau^{-1}, \sigma} (y_i^{f_{\tau^{-1}} \sigma})^* u_{\tau^{-1}, \sigma}^*)$. However, we obtain $\bar{a}_{\tau, \tau^{-1}} \bar{u}_\sigma = \bar{a}_{\sigma \tau, (\sigma \tau)^{-1}} \bar{u}_{\tau^{-1}, \sigma}$ by the relation of $\bar{a}_{\sigma, \tau}$. Hence $\{(\bar{u}_\sigma \otimes 1)^* - (1 \otimes \bar{u}_\sigma^*)\} \theta = 0$. Therefore, $\{(\bar{u}_\sigma \gamma \otimes 1^*) - (1 \otimes (\bar{u}_\sigma \gamma)^*)\} \theta = (\bar{u}_\sigma \otimes 1^*) (\gamma \otimes 1 - 1 \otimes \gamma^*) \theta + (1 \otimes \gamma^*) (\bar{u}_\sigma \otimes 1 - 1 \otimes \bar{u}_\sigma^*) \theta = 0$. Thus we have proved that \mathfrak{N} is the radical of Λ . We can prove the proposition similarly to Theorem 1 by Lemma 3.

2. Tamely ramification

In this section we always assume that R/\mathfrak{p} is a perfect field.

Theorem 2. *Let L be a Galois extension of K with Galois group G , and $\Lambda = (a_{\sigma, \tau}, G, \mathfrak{D})$ a crossed product with a factor set $\{a_{\sigma, \tau}\}$ in $U(\mathfrak{D})$. We assume R/\mathfrak{p} is a perfect field. Then Λ is hereditary if and only if every prime ideal \mathfrak{P} in \mathfrak{D} over \mathfrak{p} is tamely ramified, where $U(\mathfrak{D})$ is the set of unit elements in \mathfrak{D} .*

Proof. If \mathfrak{P} is tamely ramified, then Λ is hereditary by Corollary 1. We assume that Λ is hereditary. Then by virtue of Proposition 1 we may assume that G is equal to the second ramification group V . Since the elements of G operate trivially on $\mathfrak{D}/\mathfrak{P}$, $\bar{\Lambda} = \Lambda/\mathfrak{P}\Lambda = \bar{\mathfrak{D}} + \bar{u}_\sigma \bar{\mathfrak{D}} + \dots + \bar{u}_\tau \bar{\mathfrak{D}}$ is a generalized group ring. Furthermore, from a relation on a factor set we have $a_{\sigma, \tau}^{[G]} = A'_\sigma A'_\tau / A'_{\sigma \tau}$, where $A' = \prod_{\rho \in G} \bar{a}_{\rho, \sigma}$. Since $R/\mathfrak{p} = \mathfrak{D}/\mathfrak{P}$ is perfect and G is a p -group by [10], p. 296, we have $\bar{a}_{\sigma, \tau} = A_\sigma A_\tau / A_{\sigma \tau}$, $A_\sigma \in \bar{\mathfrak{D}}$. Therefore, $\bar{\Lambda}$ is a group ring of G over $\bar{\mathfrak{D}}$. As well known (see [5], p. 435), the radical $\bar{\mathfrak{N}}$ of $\bar{\Lambda}$ is equal to $\sum (1 - \bar{u}_\sigma) \bar{\mathfrak{D}}$ and $\bar{\Lambda}/\bar{\mathfrak{N}} = \bar{\mathfrak{D}}$. Hence Λ is a unique maximal order by [2], Theorem 3.11. Let σ be an element in G . $(u_\sigma)^i = u_{\sigma^i} C_{\sigma^i}$; $C_{\sigma^i} \in U(\mathfrak{D})$. Hence, if we replace a basis $\{u_\rho\}$ by $\{u'_\rho\}$; $u'_\sigma = (u_\sigma)^i$, and $u'_\tau = u_\tau$ if $\tau \notin (\sigma)$, we may assume $a_{\sigma^i, \sigma^j} = 1$ if $i + j < |\sigma| = n$ and $a_{\sigma^i, \sigma^j} = a$ if $i + j \geq n$, where a is a unit element in \mathfrak{D} . It is clear that a is an element of the (σ) -fixed subfield $L_{(\sigma)}$ of L . Since $\bar{\mathfrak{N}} = \sum (1 - \bar{u}_\sigma) \bar{\mathfrak{D}}$, $(1 - u_\sigma) \in \mathfrak{N}$. $(1 - u_\sigma)(1 + u_\sigma + u_{\sigma^2} + \dots + u_{\sigma^{n-1}}) = 1 - a \in \mathfrak{N}$. Hence $1 - a \in \mathfrak{N} \cap \bar{\mathfrak{D}}_{(\sigma)} = \mathfrak{P}_{(\sigma)}$. Furthermore, every one-sided ideal in Λ is a two-sided ideal and a power of \mathfrak{N} by [2], Theorem 3.11. Since $(1 - u_\sigma) \Lambda \not\subseteq \mathfrak{P}\Lambda$, $(1 - u_\sigma) \Lambda \supseteq \mathfrak{P}\Lambda$. Put $\mathfrak{P} = (\pi)$. Then $\pi = (1 - u_\sigma) \sum u_\tau x_\tau = \sum u_\rho (x_\rho - x_{\sigma^{-1}\rho} a_{\sigma, \sigma^{-1}\rho})$. Hence, $x_1 - x_{\sigma^{-1}\rho} a = \pi$, $x_1 = x_\sigma = x_{\sigma^2} = \dots = x_{\sigma^{n-1}}$. Therefore, $x_1(1 - a) = \pi$. However, $(1 - a) \equiv 0 \pmod{\mathfrak{P}_{(\sigma)}}$. Therefore, \mathfrak{P} is unramified over $\mathfrak{P}_{(\sigma)}$ which implies $|\sigma| = 1$. Hence $V = (1)$, which has proved the theorem.

Corollary 3. *Let $\Lambda = (a_{\sigma, \tau}, G, \mathfrak{D})$. Then Λ is hereditary if and only if $\Lambda/P\Lambda$ is semi-simple, where $P = \prod \mathfrak{P}_i$.*

Proof. It is clear from Theorems 1 and 2 and the proof of Proposition 1.

Proposition 2. *Let $\Lambda = (a_{\sigma, \tau}, G, \mathfrak{O})$ and t the ramification index of a maximal order Ω in $\Lambda K : (N(\Omega))^t = \mathfrak{p}\Omega$. We assume that R/\mathfrak{p} is perfect. If Λ is a hereditary order of rank r , then the ramification index of \mathfrak{P} is equal to rt , where $N(\Omega)$ means the radical of Ω .*

Proof. If Λ is hereditary, then $N(\Lambda) = P\Lambda$ by Corollary 3. Hence, $N(\Lambda)^e = \mathfrak{p}\Lambda$. Therefore, $e = rt$ by [7], Theorem 6.1.

Corollary 4. *Let $\Lambda = (a_{\sigma, \tau}, G, \mathfrak{O})$ be a hereditary order. Then $\Lambda \approx \Gamma = (b_{\sigma, \tau}, G, \mathfrak{O})$ if and only if $\Lambda K \approx \Gamma K$.*

Proof. Since Λ is hereditary, \mathfrak{P} is tamely ramified. If $\Lambda K \approx \Gamma K$, then $\Lambda \approx \Gamma$ by Proposition 2 and [8], Corollary 4.3.

Corollary 5. *Let $\Lambda = (a_{\sigma, \tau}, G, \mathfrak{O})$ and e the ramification index of \mathfrak{P} over \mathfrak{p} . Then Λ is a hereditary order of rank e if and only if $(e, p) = 1$ and a maximal order in ΛK is unramified.*

Corollary 6. *We assume $\Lambda = (a_{\sigma, \tau}, H, \mathfrak{O})$ is hereditary and a maximal order in ΛK is unramified. Then Λ is a minimal hereditary order³⁾.*

Proof. Let Ω be a maximal order in ΛK . Put $\Omega/N(\Omega) = \Delta_m$ and $[\Delta : R/\mathfrak{p}] = s$, where Δ is a division ring. Since $N(\Omega)^i/N(\Omega)^{i+1} \approx \Omega/N(\Omega)$, we obtain $m^2s = [\Omega/\mathfrak{p}\Omega : R/\mathfrak{p}] = [\Lambda/\mathfrak{p}\Lambda : R/\mathfrak{p}] = |H|^2$. The ranker of $\Lambda \leq m$ by [8], Corollary to Lemma 2.5. Hence $r = |H| = m\sqrt{s} \geq r\sqrt{s}$ by Proposition 2. Therefore, $s = 1$ and $m = |H| = r$. Hence, Λ is minimal by [8], Corollary to Lemma 2.5.

REMARK 1. If R is complete and R/\mathfrak{p} is finite, then we obtain, as well known (cf. [6]), that the ramification index of a maximal order in $\Sigma = (a_{\sigma, \tau}, G, L)$ is equal to the index of Σ .

Finally we shall generalize Corollary 2.

The following lemma is well known. However we shall give a proof for a completeness, (cf. [11], Theorem 1).

Lemma 4. *Let K be a commutative ring and G a finite group which operates on K trivially. $\{a_{\sigma, \tau}\}$ is a factor set in the unit elements of K . Then a generalized group ring $(a_{\sigma, \tau}, G, K)$ is separable over K if and only if $Kn = K$, where $n = |G|$.*

Proof. Let ψ be a K -homomorphism of Λ to $\Lambda \otimes \Lambda^* = \Lambda^e$:

$$\psi(u_{\sigma}) = \sum u_{\tau} \otimes u_{\rho}^* k(\sigma, \tau, \rho), \quad k(\sigma, \tau, \rho) \in K.$$

Then ψ is left Λ^e -homomorphic if and only if

3) See the definition in [8], § 2.

$$(6) \quad \begin{aligned} a_{\eta, \tau} k(\sigma, \tau, \rho) &= a_{\eta, \rho} k(\eta\sigma, \eta\tau, \rho) \\ a_{\rho, \eta} k(\sigma, \tau, \rho) &= a_{\sigma, \eta} k(\sigma\eta, \tau, \rho\eta) \quad \text{for any } \eta \in G. \end{aligned}$$

From (6) we have $k(1, \tau, \rho) = a_{\rho, \tau}^{-1} k(\rho\tau, \rho\tau, \rho\tau)$. If Λ is separable over K , then there exists a Λ^e -homomorphism ψ of Λ to Λ^e such that $\varphi\psi = I$, where $\varphi: \Lambda^e \rightarrow \Lambda$; $\varphi(x \otimes y^*) = xy$. Hence $1 = \varphi\psi(1) = \sum u_{\tau, \rho} a_{\tau, \rho} k(1, \tau, \rho) = u_1 (\sum_{\tau, \rho} a_{\tau, \rho} a_{\rho, \tau}^{-1} k(1, 1, 1))$. If we replace ρ, σ and τ by η^{-1}, η and η^{-1} in the relation of factor sets, then we have $a_{\eta, \eta^{-1}} = a_{\eta^{-1}, \eta}$, where we assume $a_{\eta, 1} = a_{1, \eta} = 1$. Hence $1 = nk(1, 1, 1)$. The converse is given by [11], Theorem 1. (cf. the proof of Proposition 1).

Proposition 3. *We assume that $\Lambda = (a_{\sigma, \tau}, G, \mathfrak{D})$ is an order in a matric K -algebra over K and R/\mathfrak{p} is not necessarily perfect. Then Λ is hereditary if and only if \mathfrak{P} is tamely ramified. In this case the rank of Λ is equal to the ramification index of \mathfrak{P} .*

Proof. We assume that Λ is hereditary. Since $\{a_{\sigma, \tau}\}$ is similar to the unit factor set in L , $\Lambda_H = (a_{\sigma, \tau}, H, \mathfrak{D})$ is in $(K)_{|H|}$. We know similarly to the proof of Corollary 2 that $N(\Lambda_H) = \mathfrak{p}\Lambda_H$. Hence, $\bar{\Lambda}_H = \bar{\Lambda}_H/\mathfrak{p}\Lambda_H = \bar{\mathfrak{D}} + \bar{u}_\sigma \bar{\mathfrak{D}} + \dots + \bar{u}_\rho \bar{\mathfrak{D}}$ is semi-simple. However, since $\Omega/N(\Omega) = (R/\mathfrak{p})_{|H|}$ for a maximal order Ω in $(K)_{|H|}$, $\bar{\Lambda} = \Sigma(R/\mathfrak{p})_{m_i}$ by [7], Theorem 4.6. Hence, $\bar{\Lambda}$ is separable. Therefore, $(|H|, \mathfrak{p}) = 1$ by Lemma 4.

3. Hereditary orders in a generalized quaternions

Finally, we shall determine all the hereditary orders in a generalized quaternions. Let Z be the ring of integers and K the field of rationals. Let d be an integer which is not divided by any quadrate and $L = K(\sqrt{d})$. Then the Galois group $G = \{1, g\}$ and $(\sqrt{d})^g = -\sqrt{d}$. For any integer a we have $\Sigma = (a, G, L) = K + Kg + K\sqrt{d} + Kg\sqrt{d}$ with relations $g^2 = a$, $(\sqrt{d})^2 = d$, and $g\sqrt{d} = -\sqrt{d}g$. We have determined all hereditary orders in [9], Theorem 1.2 in the case $a = -1$.

We use the same argument here as that in [9], §1.

First we shall determine the types of maximal orders over $Z_{\mathfrak{p}}$.

Proposition 4. *Let R be the ring of \mathfrak{p} -adic integers, $L = K(\sqrt{d})$ and $\Lambda = (a, G, \mathfrak{D})$. We denote the radical of Λ by \mathfrak{N} and Λ/\mathfrak{N} by $\bar{\Lambda}$. Then*

- 1) *If $\mathfrak{p} = 2$, $d \equiv 1 \pmod{4}$, then Λ is a maximal order such that $\bar{\Lambda} = (R/2)_2$.*
- 2) *If $\mathfrak{p} = 2$, $d \equiv 2, 3 \pmod{4}$, then Λ is not hereditary.*
- 3) *If $\mathfrak{p} \neq 2$, $d \not\equiv 0 \pmod{\mathfrak{p}}$, then Λ is a maximal order such that $\bar{\Lambda} = (R/\mathfrak{p})_2$.*
- 4) *If $\mathfrak{p} \neq 2$, $d \equiv 0 \pmod{\mathfrak{p}}$,*

- a) $(a/\mathfrak{p})^4=1$, then Λ is a hereditary order of rank two.
- b) $(a/\mathfrak{p})=-1$, then Λ is a unique maximal order.

Proof. We shall consider the following three cases.

1) $H=1$. Then i) $\mathfrak{p}=\mathfrak{P}_1\mathfrak{P}_2$ and $S=H$, ii) $\mathfrak{p}=\mathfrak{P}$ and $S=G$. Since \mathfrak{P} is unramified, Λ is maximal order by Theorem 1. In the case i) $\mathfrak{D}/\mathfrak{p}\mathfrak{D}=\mathfrak{D}/\mathfrak{P}_1+\mathfrak{D}/\mathfrak{P}_2$, and Λ is a maximal order such that $\Lambda/\mathfrak{p}\Lambda=(R/\mathfrak{p})_2$. The case ii) $\Lambda/\mathfrak{p}\Lambda=\mathfrak{D}/\mathfrak{P}+g\mathfrak{D}/\mathfrak{P}$. Since $G=S$, $\Lambda/\mathfrak{p}\Lambda$ is not commutative and hence, Λ is not a unique maximal.

2) $G=S=H$, $\mathfrak{p}=2$ and $a\equiv 1 \pmod{2}$. In this case 2 is ramified and hence, Λ is not hereditary by Theorem 3.

3) $G=S=H$, and $\mathfrak{p}=2$. Then $\mathfrak{p}=\mathfrak{P}^2$ and $\Lambda/\mathfrak{P}\Lambda=R/\mathfrak{p}+(R/\mathfrak{p})g$. Since \mathfrak{P} is tamey ramified, $\mathfrak{P}\Lambda=\mathfrak{N}$ by the remark before Corollary 1, and Λ is hereditary. Let \mathfrak{A} be a two-sided ideal in $\bar{\Lambda}$. If \mathfrak{A} is proper, then $\mathfrak{A}=(1+\bar{y}\bar{g})R/\mathfrak{p}$ and $\bar{a}\bar{y}^2=1$ for some $\bar{y}\in\bar{\mathfrak{D}}=R/\mathfrak{p}$, and conversely. Therefore, if $(a/\mathfrak{p})=1$ then Λ is a hereditary order of rank 2 and if $(a/\mathfrak{p})=-1$, then Λ is a unique maximal order. The proposition is trivial from the well known facts of quadratic field.

If we set $g=i$ and $\sqrt{d}=j$, then $\Sigma=(a, G, L)$ is a generalized quaternions over the field K of rationals. For any element $x=x_1+x_2i+x_3j+x_4ij$ we define

$$N(x) = x_1^2 - ax_2^2 - dx_3^2 + adx_4^2.$$

Let Ω be a maximal order over R with basis u_1, u_2, u_3 and u_4 . We call an element $x=\sum x_i u_i$ in Ω normalized if $(x_1, \dots, x_4)=1$.

We note that if Σ contains at least two maximal orders, then $\hat{\Sigma}$ is a matrix ring over \hat{K} where \wedge means the completion with respect to \mathfrak{p} , (cf. [9], Lemma 1.4).

In order to use the same argument as in the proof of [9], Theorem 1.2 we need

Lemma 6. 1) If either $\mathfrak{p}=2$, $d\equiv 3 \pmod{4}$ and $a\equiv 1 \pmod{4}$ or $\mathfrak{p}=2$, $d\equiv 2 \pmod{4}$, and $a\equiv 1 \pmod{8}$, then there exists a maximal order Ω such that $\bar{\Omega}=(R/2)_2$. 2) If $\mathfrak{p}=2$, $d\equiv 2 \pmod{4}$, $a\equiv 1 \pmod{4}$ and $a\not\equiv 1 \pmod{8}$, then there exists a unique maximal order. 3) If $\mathfrak{p}\neq 2$, $d\equiv 0 \pmod{\mathfrak{p}}$ and $(a/\mathfrak{p})=1$, then there exists a maximal order Ω such that $\bar{\Omega}=(R/\mathfrak{p})_2$, where $\bar{\Omega}$ means the factor ring of Ω modulo its radical.

Proof. Let $\Omega=\mathfrak{D}+(1/2)(1+g)\mathfrak{D}=R+Rj+R1/2(1+i)+R(1/2)(j+ij)$, where $i=g$ and $j=\sqrt{d}$. We denote $(1/2)(1+i)$ and $(1/2)(j+ij)$ by h and l . Then we obtain by the direct computations that

4) Legendre's symbol,

$$(7) \quad \begin{aligned} jh &= i-l, \quad h j = l, \quad j l = d(1-h), \quad l j = d h, \quad h l = l+jr, \quad l h \\ &= -rj, \quad h^2 = h+r \quad \text{and} \quad l^2 = dr, \end{aligned}$$

where $a=1+4r$, $r \in R$.

1) $d \equiv 3 \pmod{4}$. Let $N(\Omega)$ be the radical of Ω and $\bar{x} = \bar{x}_1 + \bar{x}_2 j + \bar{x}_3 h + \bar{x}_4 l \in N(\Omega)/2\Omega$. Then $\bar{x}j + j\bar{x} = \bar{x}_4 \bar{d} + \bar{x}_3 j$. If $x_3 \not\equiv 0 \pmod{2}$, then we may assume $1+j \in N(\Omega)$. Then $0 \equiv (1+j)l + l(1+j) \equiv d \pmod{2}$, which is a contradiction. Hence, we know $N(\Omega) = 2\Omega$ by the similar argument for x_1, x_2 . Since $\Omega/N(\Omega)$ is not commutative by (7), $\Omega/N(\Omega) = (R/2)_2$ and Ω is a maximal order (cf. [9], Lemma 1.3).

2) $d \equiv 2 \pmod{4}$. From (7) we obtain $N(\Omega) = \Lambda j$. If $r \equiv 0 \pmod{2}$, then $\Omega/N(\Omega) = (R/2)h + (R/2)(1+h)$. Hence Ω is a hereditary order of rank two. Let $\Omega_0 = R + Rj + Rh + R(1/2)$. It is clear that $\Omega_0 \supseteq \Lambda$ and Ω_0 is a ring. Hence Ω_0 is a maximal order by [7], Theorems 1.7 and 3.3. If $r \not\equiv 0 \pmod{2}$, then $\Omega/N(\Omega)$ is a field and hence Ω is a unique maximal order.

3) In this case Λ is hereditary. Let $\Omega = R + Ri + Rj + R(1/p)(j + yij)$, where $ay^2 = 1 + px$, $x \in R$. It is clear that $\Omega \supseteq \Lambda$. We shall show that Ω is a ring. $((1/p)(j + yij))^2 = (d/p)x \in \Omega$, and $(1/p)(j + yij)i = -(x/y)j - (1/yp)(j + yij) \in \Omega$, and $(1/p)(j + yij)j = (d/p)(1 + ky) \in \Omega$. Therefore, Ω is a maximal order as above.

Next, we consider a case of $a \not\equiv 1 \pmod{4}$ and $p = 2$.

Lemma 7. *We consider the following conditions*

- i) $a \equiv 3 \pmod{8}$, $d \equiv 2 \pmod{4}$, but $d \not\equiv 2 \pmod{8}$.
- ii) $a \equiv 3 \pmod{8}$, and $d \equiv 2 \pmod{8}$.
- iii) $a \equiv 7 \pmod{8}$, and $d \equiv 2 \pmod{4}$, but $d \not\equiv 2 \pmod{8}$.
- iv) $a \equiv 7 \pmod{8}$, and $d \equiv 2 \pmod{8}$.
- v) $a \not\equiv 1 \pmod{4}$, and $d \equiv 3 \pmod{4}$.

If one of i) and iv) is satisfied, then there is a maximal order Ω such that $\Omega/N(\Omega) = (R/2)_2$. If one of ii), iii) and v) is satisfied, then there exists a unique maximal order.

Proof. We shall show this lemma by a direct computation. Thus, we give here only a sketch of the proof.

Put $i = g$, $j = \sqrt{d}$ and $H = 1/2(1+i+j)$, $L = 1/2(i+i+ij)$. Let $\Lambda = R + Ri + RH + RL$. If we set $a = 1+2r$, $d = 2+4k$ where $r \equiv 1 \pmod{4}$, $k \not\equiv 0 \pmod{2}$, we have

$$(8) \quad \begin{aligned} i^2 &= 1+2r, \quad H^2 = k + (1+r)/2 + H, \quad L^2 = -(1/2)(1+r) - (1+2r)k + L, \\ iH &= L+r, \quad Hi = 1+r+i-L, \quad iL = -ri + (1+2r)H, \quad Li = 1+2r \\ &+ (1+r)i - (1+2r)H. \quad LH = r + ((1+r)/2 + k)i - rH + L, \quad \text{and} \end{aligned}$$

$$HL = -(k + (1+r)/2)i + (1+r)H.$$

In cases i) and iv) we can show directly that $N(\bar{\Lambda}) = \bar{\Lambda}(\bar{i} + \bar{1})$ and $\bar{\Lambda}/\bar{\Lambda}(1+i) \approx (R/2)\bar{H} \oplus (R/2)(\bar{1} + \bar{H})$, $\bar{H}(\bar{1} + \bar{H}) = \bar{0}$, where $\bar{\Lambda} = \Lambda/2\Lambda$. Since $(1-i)(1+i) = 1-a = -2r$, $r \not\equiv 0 \pmod{2}$, $\Lambda(1+i) \supseteq 2\Lambda$. Hence $N(\Lambda) = \Lambda(1+i)$, which implies that Λ is a hereditary order of rank two. Therefore, there exists a maximal order as in the lemma.

In cases ii) and iii) we obtain similarly that $\Lambda/\Lambda(1+i) \approx (R/2)\bar{H} + (R/2)(\bar{1} + \bar{H})$ and $\bar{H}^2 = \bar{1} + \bar{H}$, $(\bar{1} + \bar{H})^2 = \bar{H}$, $\bar{H}(\bar{1} + \bar{H}) = \bar{1}$. Hence, Λ is a unique maximal order.

In case v) we put $t = 1/2(1+i+j+ij)$ and $\Lambda = R + Ri + Rj + Rt$. Then by the same argument in [9], Lemma 1.3 we can show that $N(\Lambda) = \Lambda(1+i)$ and $\Lambda/\Lambda(1+i)$ is a field. Hence, Λ is a unique maximal order.

From Proposition 4, Lemmas 6 and 7 and the proof of [9], Theorem 1.2 we have

Theorem 4. *Let R be a ring of \mathfrak{p} -adic integers, K the field of rationals and $L = K(\sqrt{d})$. For a unit element a in R , $\Sigma = (a, G, L)$ is a generalized quaternions and $\Lambda = (a, G, \mathfrak{D})$. Then every hereditary order over R in Σ is isomorphic to one of the following:*

- 1) Λ (unique maximal) if $\mathfrak{p} = 2$, $d \equiv 0 \pmod{\mathfrak{p}}$, $(a/\mathfrak{p}) = -1$.
- 2) $\Omega_1 = R + R\sqrt{d} + R(1/2)(1+g) + (1/2)(\sqrt{d} + g\sqrt{d})$
(unique maximal) if $\mathfrak{p} = 2$, $d \equiv 2 \pmod{4}$, $a \equiv 1 \pmod{4}$
and $a \not\equiv 1 \pmod{8}$.
- 3) Λ (maximal), $\Lambda \cap \alpha^{-1}\Lambda\alpha$
if either a) $\mathfrak{p} = 2$, $d \equiv 1 \pmod{4}$ or
b) $\mathfrak{p} \neq 2$, $d \equiv 0 \pmod{\mathfrak{p}}$.
- 4) Ω (maximal), $\Gamma_1 = R + Rg + RH + RL$,
if one of i) and iv) in Lemma 8 is valid.
- 5) Γ_1 (unique maximal)
if one of ii), iii) and iv) in Lemma 8 is valid.
- 6) $\Omega_2 = R + Rg + R\sqrt{d} + Rt$ (unique maximal)
if $\mathfrak{p} = 2$, $d \equiv 3 \pmod{4}$, and $a \not\equiv 1 \pmod{4}$.
- 7) $\Omega_3 = R + R\sqrt{d} + R(1/2)(1+g) + R(1/4)(\sqrt{d} + g\sqrt{d})$
(maximal),
 $\Gamma_2 = R + R\sqrt{d} + R(1/2)(1+g) + R(1/2)(\sqrt{d} + g\sqrt{d})$
if $\mathfrak{p} = 2$, $d \equiv 0 \pmod{4}$, and $a \equiv 1 \pmod{8}$.
- 8) Ω_1 (maximal), $\Omega_1 \cap \alpha^{-1}\Omega\alpha$
if either a) $\mathfrak{p} = 2$, $d \equiv 3 \pmod{4}$ $a \equiv 1 \pmod{4}$ or
b) $\mathfrak{p} = 2$, $d \equiv 2 \pmod{4}$ and $a \equiv 1 \pmod{8}$.
- 9) $\Omega_4 = R + Rg + R\sqrt{d} + R(1/p)(\sqrt{d} + yg\sqrt{d})$ (maximal),
 Λ if $\mathfrak{p} \neq 2$, $d \equiv 0 \pmod{\mathfrak{p}}$ and $(a/\mathfrak{p}) = 1$.

Where \mathfrak{O} means the integral closure of R in L and α is a normalized element with respect to the basis of a maximal order and $N(\alpha)=pq$, $(p, q)=1$ and $ay^2 \equiv 1 \pmod{\mathfrak{p}}$, $H=(1/2)(1+g\sqrt{d})$, $L=(1/2)(1+\sqrt{d}+g\sqrt{d})$, $t=\frac{1}{2}(1+g+\sqrt{d}+g\sqrt{d})$, and $\mathfrak{p}=(p)$.

REMARK 2. A maximal order Ω in 4) is any ring which contains properly Λ .

References

- [1] M. Auslander and O. Goldman: *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc. **97** (1960), 367–409.
- [2] ———: *Maximal orders*, Trans. Amer. Math. Soc. **97** (1960), 1–24.
- [3] M. Auslander and D. S. Rim: *Ramification index and multiplicity*, Illinois J. Math. **7** (1963), 566–581.
- [4] G. Azumaya and T. Nakayama: *Daisugaku*, (Japanese), Iwanami, Tokyo, 1954.
- [5] E. W. Curtis and I. Reiner: *Representation theory of finite groups and associative algebras*, New York, 1962.
- [6] M. Deuring: *Algebren*, Berlin, 1935.
- [7] M. Harada: *Hereditary orders*, Trans. Amer. Math. Soc. **107** (1963), 283–290.
- [8] ———: *Structure of hereditary orders over local rings*, J. Math. Osaka City Univ. **14** (1963), 1–22.
- [9] ———: *Hereditary orders in generalized quaternions D_7* , J. Math. Osaka City Univ. **14** (1963), 71–81.
- [10] O. Zariski and P. Samuel: *Commutative algebra*, vol. 1, Van Nostrand, 1958.
- [11] S. Williamson: *Crossed products and hereditary orders*, Nagoya Math. J. **23** (1963), 103–120.