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Karsumr NOMIZU

(Received October 7, 1977)

With J. Milnor [2] we consider a special class &€ of solvable Lie groups.
A non-commutative Lie group G belongs to & if its Lie algebra g has the
property that [x, y] is a linear combination of x and y for any elements x and y
in g. It is shown that g has this property if and only if there exist a com-
mutative ideal 11 of codimension 1 and an element d& 1t such that [b, x]=x for

every x 1.
Milnor has shown that if G&@, then every left-invariant (positive-definite)
Riemannian metric on G has negative constant sectional curvature. The sim-

plest example is given by

G—{ab'>0 bER}
=10 (/20 @ .

On the other hand, Wolf [3, p. 58] showed that this group G admits a left-
invariant Lorentz metric which is flat (that is, with zero sectional curvature).
Our first and main objective in this paper is to prove the following theorem.

Theorem 1. If a Lie group G belongs to the class &, then
(1) every left-invariant Lorentz metric (of signature (—, +, -+, +)) has
constant sectional curvature ;

(2) given any arbitrary constant k, k>0, k=0, or k>0, one can find a left-
invariant Lorentz metric on G with k as constant sectional curvature.

Unlike the Riemannian case, the existence of a flat left-invariant Lorentz
metric seems to be a more frequent phenomenon. Our second objective is to

prove

Theorem 2. Each of the following 3-dimensional Lie groups admits a flat
left-invariant Lorentz metric :

(1) E(2): group of rigid motions of Euclidean 2-space ;

(2) E(1,1): group of rigid motions of Minkowski 2-space ;

*) This work was supported 1n part by an NSF grant, (MCS 76-06324 A01).
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(3) The Heisenberg group consisting of all real matrices of the form

1 % =
0 1 =
0 0 1

We note that Milnor has shown that the group (1) admits a flat left-invariant

Riemannian metric but not the groups (2) and (3); see Corollaries 4.6, 4.7 and
4.8 in [2].

1. Proof of Theorem 1

We take a commutative ideal 1t of codimension 1 and an element b1t such
that [b, x]=x for every x&u. Let {,)> be the Lorentz inner product in g
coming from a given left-invariant Lorentz metric on G.

Case 1. 1 is nondegenerate (that is, the restriction of the inner product to
1t is nondegenerate).

We may choose & such that (4’, 1>=0 and g= {#’} +1t (direct sum). Then
we can wirte &’=a b+ x, with some a=0and x,=1. For every ¥’ €11, we have

[0/, ®] = afb, x]+[x,, ¥] = ax.

We may now take b’/a and rename it &. Then <b, 1)=0 and [b, x]=x for

every x&1t. We now consider two subcases: Ia (b is time-like) and Ib (b is
space-like).

Subcase 1a. Let {b, b>=—x\* (A\>0). We use the formula
(1) K.y, 2>=[*, y], 35—y, 2], ©>+<[#, 2], y>
to determine the covariant derivative V,y of the left-invariant Lorentz metric

(formula (5.3) in [2]). Easy computation shows

Vb=0, Vx=20 for xu
so that
Vb = Vxt[x, 0] = —x.
For x, y&11 we have
AKV.y, b> =[x, ], b>—<[y, b], x>+<[b, x], y> = 2w, >
and
XV, z2>=0 for zeu.
Hence

V:y - _<‘x: y>b/7\2 )
since <{b, b>= — %
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For x, y, 21, we obtain for the curvature tensor R

R(x, y)2x = V,V,2—V V. 2
= Vi(—{y» 20bN) =V (—=<x, 2Db[\)
=y, 2 x[N—x, 2Dy[A?,
R(x, )b =V, Vb—V,V,b
= V=)= Vy(—a) =[] =0.
Similarly, we have

R(x, b)b = —x

R(x, b)y=—<x, y>b/\*.
Thus

R(x,3) = 5\
(2)

R, b) = —i—zx/\b,

where u Av denotes the endomorphism
uAvw = v, wiu—_u, wHv .

The equations (2) imply that our metric has constant sectional curvature 1/A%
Subcase Ib. Let <b, b>=2* (A>0). Since our inner product is Loren-
tzian, we have a time-like unit vector, say, ¢ in u: {¢, c)=—1. We can write
u= {c} +u,, where 1, is the orthogonal complement of {c}. We write y, 2, u, «
for elements in 1, in the following computation.
We have, again by means of (1),

Vbb = Vbc = be =0 N Where yE]Il .

Thus
Vb= —c, Vb= —y, whereyen,.
From
24V, by = —{[¢, b], e>+<[b, c], > = —2
and
24V, =2V, y>=0,
we obtain

Ve = —b/\.
we have easily

Vy=0 and V=0, where yeuy, .
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For y, 2z, ust, we get
2V, c>=XV2u>p=0 '
and
24V 2, by = —{[#, b], y>+<b, »], 2> = 2y, &>
and hence
V2 =<y, 2DbA\?.
We may now compute
R(b, ¢)c = b/N?*, R(b,c)b=¢, R(b,c)y=20
R(b, )b =y, R(b,y)e =0, R(b,y)s = —(y, )25\
R(C: y)b =0, R(c, y)e = —y/V, R(C: V)& =— <y: z>c/>»2
R(v, 2)b =0, R(y, 2)c=0, R(y, 2)u= —<z, upy/\+y, upz/\’.
We have thus

(3) R(u, v) = __Tzlu/\'v for allu, veg,

which means that our metric has constant sectional curvature —1/x,.

Case 11 1 is degenerate (that is, restriticon of the inner product to 1 is
degenerate).

According to [1], Theorem 1.1, u contains a light-like vector ¢ and an
(n—2)-dimensional subspace 11, on which the inner product is positive-definite
such that 1= {c}+u, (direct sum) and <¢, 1,>=0. In the orthogonal com-
plement 1t{- of 11, in g we can find a vector 4’ such that

b, H>=0 and ¥, c>=—1.

We can write b'=a b+x, for some a0 and x,&1t. Then [¥/, x]=alb, x]+
[x0, ¥]=a & for every x=11. Now if we denote #’/a and ac by b and ¢, then our
new b and ¢ staisfy the following conditions:

g= {0} +{c}+n, 1= {c}+u, (direct sums);
b, b>=0, <bco>=—1, Le,e>p=0, <b,u=7<c, n,)=0;
[b,cl=¢, [b,y]l=y for yen, .
We find
Vb= —b, Vye=¢, V,y=0 for yey,
Vb=0, Ve=0, V.y=0 for yewn,
Vb= —y, Ve=0, V= —{y, 2> for y, zen, .

Form these we obtain

R(b, c) = R(b, y) = R(c, y) = R(y, 2) =0 for y, zen,,
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that is, our metric is flat.

We have thus concluded the proof of the first part of Theorem 1. The
sccond part does not require much extra work as we see in the following.

We start wtih g= {b} +11, where 1t is a commutative ideal of codimension 1
and [b, x]=x for every x=u.

If k>0, then take A>0 such that k=1/A*. Take any positive-definite
inner product in 1t and extend it to a Lorentz inner product in g by

<hy,uy=0 and <b,d>= —1/\%.

The computation in Case Ia shows that the resulting left-invariant Lorentz
metric on G has constant sectional curvature k=1/\%

If £<0, then take A>0 such that k=—1/A% Take any Lorentz jnner
product in 1t and extend it to g by

byu>—0 and <b, b>= —1/A%.

The computationtin Case Ib shows that the resulting Lorentz metric on G has
constant sectional curvature k=—1/\%

Finally, suppose k=0. Take an element ¢+0 in 1t and an (n—2)-dimen-
sional subspace 1, of 11. We extend any positive-definite inner product in 1,
to a Lorentz metric in g by

b, b>={e,c>=<b, ;> =<c, 1,>=0 and <b,c>= —1.

The computation in Case II shows that we get a flat Lorentz metric on G.

2. Proof of Theorem 2
For each group, we describe its Lie algebra and show how to define a Lor-
entz inner product which will give rise to a flat left-invariant Lorentz metric on
the group.
E(2): This consists of all matrices of the form
cos@ —sinf a
sin 6 cosd b
0 0 1

Its Lie algebra has a basis consisting of

0 0 1 00 0 0 —1 0
x=|0 0 0}, v=]0 0 1|, 2=|1 0 0
0 0 0 0 0 0 0 0 0

for which
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%, 0]1=0, [ x]=y, [y,2]=x.
We define a Lorentz inner product by
<z: z>=_”1y <x1x>z<y:y>:1) <z:x>:<sz>:<x:y>=0'
Computation shows
Va=V,y=Vax=V2=V,y=Ve=Vz=0
and
Vx=y, V,y=—x.

It follows that
R(x)y) = R(y: z) = R(z: x) =0,

that is, the mettic is flat.
E(1, 1): This is the group of all matrices of the form

cosht sinht a
sinh? cosht b
0 0 1

Its Lie algebra has a basis consisting of
0 0 1 0 0 O 010
x=|00 0|, y=|0 0 1|, 2=|1 0 0
0 0 O 0 00 0 0 0
for which
%] =0, [54]=y [2)]=x.
We define a Lorentz inner product by
<x,x>:<z,z>:1, <y’y>=_1) <z»x>=<2,y>=<x,y>=0-

Computation shows

V.=0, V,=0, Vax=y, V,y=% Vz2=0.
It follows that
R(x,y) = R(y, 3) = R(2,x) = 0.

The Heisenberg group: Its Lie algebra has a basis consisting of

010 0 0 0 0 0 1
x={0 0 0|, y={0 0 1|, 2=]0 0 0
0 0 0 0 0 O 0 0 O
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for which
[, 9] =2 [3x]=1[3]=0.

We consider the Lorentz inner product given by

Fap=<xx>=0 <za)>=—1
@yr=<2y>=0 <yyw=1.
Computation shows that
Vax=y, V,y=2%, V2=
Vax=V,y=V,2e=Vx=V,y=Vz3=0,
and consequently,

R(x, y) = R(y, ) = R(2, x) = 0.

Remark 1. The group SO(3) (or SU(2)) does not admit a left-invariant
flat Lorentz metric. Suppose it does. Then x—V, is a homomorphism of
the Lie algebra o(3) into the Lie algebra o(1, 2) of all skew-symmetric endomor-
phisms of the 3-dimensional flat Lorentz space. The kernel has to be (0)
because 0(3) is simple. 'This means that there is an isomorphism of o(3) onto
o(1, 2), a contradiction.

Remark. 2. The group o(1, 2) (or SL(2, R)) admits a left-invariant Lorentz
metric with constant sectional curvature —1. For the Lie algebra 3[(2,R) of SL
(2, R), we define

lx, y> = %trace (xy) .

0 —1 1 0 01

1 0 0 -1 1 0
are orthogonal and have length square —1, 1, 1, respectively. Thus we have a
Lorentz inner product. On can compute to see that the resulting left-invariant

Lorentz metric has constant sectional curvature —1. Another geometric way
is the following. We consider the vector space R; with indefinite inner product

The matrices

$x, 0 = =01 —%Y5 X3 V5%, Yy .
It is well known that the hypersurface H}= {x&R}; {x, x)>=—1} has constant
sectional curvature —1 with respect to the induced Lorentz metric (so-called
anti De Sitter space). Now the mapping

XNy XXy

Xptx, X —Xg

(%1, %y, x5, %) ERz — [ }EQI(Z, R)
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gives a one-to-one correspondence between H3 and SL(2, R), and the Lorentz
metric on H3 corresponds to the left-invariant Lorentz metric (also right-invari-
ant) on SL(2, R) which we defined earlier. Our metric is essentially the same
as the Killing-Cartan form.
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Added in Proof. Concerning Remark 1, we learned that Professor Y.
Matsushima had the following result (unpublished): A semi-simple Lie group
does not admit a left-invariant torsion-free flat linear connection.





