<table>
<thead>
<tr>
<th>Title</th>
<th>On dominant dimension of Noetherian rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hoshino, Mitsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 26(2) P.275–P.280</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11073</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11073</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Throughout this note, R stands for a ring with identity and all modules are unital modules. In this note, for a given module M, we say that M has dominant dimension at least n, written $\text{dom dim } M \geq n$, if each of the first n terms of the minimal injective resolution of M is flat. Following Morita [5], we call R left (resp. right) QF-3 if $\text{dom dim } _RR \geq 1$ (resp. $\text{dom dim } R_\ell \geq 1$). He showed that if R is left noetherian and left QF-3 then it is also right QF-3. Thus, if R is left and right noetherian, R is left QF-3 if and only if it is right QF-3. Generalizing this, we will prove the following

Theorem. Let R be left and right noetherian. For any $n \geq 1$, $\text{dom dim } _RR \geq n$ if and only if $\text{dom dim } R_\ell \geq n$.

In case R is artinian, our dominant dimension coincides with Tachikawa's one [8], and the above theorem has been established (see Tachikawa [9] for details).

In what follows, for a given left or right R-module M, we denote by M^* the R-dual of M, by $\epsilon_M: M \to M^{**}$ the usual evaluation map and by $E(M)$ the injective hull of M. We denote by $\mathfrak{mod} R$ (resp. $\mathfrak{mod} R^\text{op}$) the category of all finitely generated left (resp. right) R-modules, where R^op stands for the opposite ring of R and right R-modules are considered as left R^op-modules.

1. Preliminaries. In this section, we recall several known facts which we need in later sections.

Lemma 1.1. Let R be right noetherian. For any $N \in \mathfrak{mod} R^\text{op}$ and for any injective left R-module E, $\text{Hom}_R (\text{Ext}_R^i (N, R), E) \cong \text{Tor}_i^R (N, E)$ for $i \geq 1$.

Proof. See Cartan and Eilenberg [1, Chap. VI, Proposition 5.3].

Lemma 1.2. Every finitely presented submodule of a flat module is torsionless.

Proof. See Lazard [4, Théorème 1.2].

Lemma 1.3. Let R be right noetherian. Let E be an injective left R-module
and suppose that every finitely generated submodule of E is torsionless. Then E is flat.

Proof. See Sato [6, Lemma 1.4]. His argument remains valid in our setting.

Lemma 1.4. Let R be left and right noetherian. Suppose that R is left QF-3. An injective left R-module E is flat if and only if it is cogenerated by E_R.

Proof. Immediate by Lemmas 1.2 and 1.3.

Lemma 1.5. Let R be left noetherian. Suppose that $\text{inj} \dim R < \infty$. For a minimal injective resolution $0 \to R \to E_0 \to E_1 \to \cdots$, $E = \bigoplus_{i=0}^\infty E_i$ is an injective cogenerator.

Proof. See Iwanaga [3, Theorem 2]. His argument remains valid in our setting.

2. **Proof of Theorem.** In order to prove the theorem, we need two more lemmas.

Lemma 2.1. Let R be left noetherian and $n \geq 1$. For any $M \in \text{mod} \ R$ with $\text{Ext}_R^i(M, R) = 0$ for $1 \leq i \leq n$ and for any $L \in \text{mod} \ R$ with $\text{proj} \dim L = m < n$, $\text{Ext}_R^i(M, L) = 0$ for $1 \leq i \leq n - m$.

Proof. By induction on $m \geq 0$. The case $m = 0$ is clear. Let $m \geq 1$ and let $0 \to K \to P \to L \to 0$ be an exact sequence in $\text{mod} \ R$ with P projective. Since $\text{proj} \dim K = m - 1$, by induction hypothesis $\text{Ext}_R^i(M, K) = 0$ for $1 \leq i \leq n - m + 1$. Applying the functor $\text{Hom}_R(-, -)$ to the above exact sequence, we get $\text{Ext}_R^i(M, L) = \text{Ext}_R^{i+1}(M, K) = 0$ for $1 \leq i \leq n - m$.

Lemma 2.2. Let R be left and right noetherian. Suppose that R is left QF-3. For any $n \geq 2$, $\text{dom} \ dim R^n$ if and only if for an $M \in \text{mod} \ R$, $M^* = 0$ implies $\text{Ext}_R^i(M, R) = 0$ for $1 \leq i \leq n - 1$.

Proof. Let $0 \to R \to E_0 \to E_1 \to \cdots$ be a minimal injective resolution. For any $i \geq 1$ we have an exact sequence of functors

$\text{Hom}_R(-, E_{i-1}) \to \text{Hom}_R(-, \text{Im} f_i) \to \text{Ext}_R^i(-, R) \to 0$.

"Only if" part. For a given $M \in \text{mod} \ R$ with $M^* = 0$, by Lemma 1.2 $\text{Hom}_R(M, E_i) = 0$ for $1 \leq i \leq n - 1$. Thus $\text{Hom}_R(M, \text{Im} f_i) = 0$, and by the above exact sequence $\text{Ext}_R^i(M, R) = 0$ for $1 \leq i \leq n - 1$.

"If" part. By induction on $i \geq 0$, we show that E_i is flat for $0 \leq i \leq n - 1$. By assumption, E_0 is flat. Let $1 \leq i \leq n - 1$ and suppose that E_{i-1} is flat. For a given $M \in \text{mod} \ R$ with $M^* = 0$, we claim $\text{Hom}_R(M, \text{Im} f_i) = 0$. We have
Ext_k^i(M, R) = 0. Also, by Lemma 1.2 \(\hom_k(M, E_{i-1}) = 0 \). Thus by the above exact sequence \(\hom_k(M, \im f_i) = 0 \). Hence \(\im f_i \) is cogenerated by \(E_k(R) \), and by Lemma 1.4 \(E_i \) is flat.

We are now in a position to prove the theorem. It suffices to prove the "only if" part.

"Only if" part of Theorem. The case \(n=1 \) is due to Morita [5, Theorem 1]. Let \(n \geq 2 \). Note that \(R \) is left and right \(QF-3 \). Replacing \(R \) with \(R^* \) in Lemma 2.2, it suffices to show that for any \(N \in \text{mod } R^* \) with \(N^* = 0 \) we have \(\ext_k^i(N, R) = 0 \) for \(1 \leq i \leq n-1 \). For a given \(N \in \text{mod } R^* \) with \(N^* = 0 \), we claim first that \(\ext_k^i(N, R)^* = 0 \) for \(i \geq 1 \). For any \(i \geq 1 \), by Lemma 1.1 \(\hom_k(\ext_k^i(N, R), E_k(R)) = \tor_k(N, E_k(R)) = 0 \), thus \(\ext_k^i(N, R)^* = 0 \). Hence by Lemma 2.2 \(\ext_k^i(\ext_k^i(N, R), R) = 0 \) for \(i \geq 1 \) and \(1 \leq j \leq n-1 \). Now, by induction on \(i \geq 1 \), we show that \(\ext_k^i(N, R) = 0 \) for \(1 \leq i \leq n-1 \). Let \(\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow N \rightarrow 0 \) be an exact sequence in \(\text{mod } R^* \) with the \(P_i \) projective and put \(N_i = \im f_i \). Since \(N^* = 0 \), we have an exact sequence

\[
0 \rightarrow P_0^* \xrightarrow{\beta_i} N_i^* \xrightarrow{\alpha_i} \ext_k^i(N, R) \rightarrow 0.
\]

Since \(\ext_k^i(\ext_k^i(N, R), R) = 0 \), \(\alpha_i \) splits. On the other hand, since \(\ext_k^i(N, R)^* = 0 \), \(\hom_k(\ext_k^i(N, R), N^*_i) = 0 \). Thus \(\ext_k^i(N, R) = 0 \). Next, let \(1 < i \leq n-1 \) and suppose that \(\ext_k^i(N, R) = 0 \) for \(1 \leq j \leq i-1 \). We have an exact sequence

\[
0 \rightarrow P_0^* \rightarrow \cdots \rightarrow P_{i-1}^* \xrightarrow{\beta_i} N_i^* \xrightarrow{\alpha_i} \ext_k^i(N, R) \rightarrow 0.
\]

Since \(\ext_k^i(\ext_k^i(N, R), R) = 0 \) for \(1 \leq j \leq n-1 \), and since \(\proj \dim \im \beta_i \leq i-1 < n-1 \), by Lemma 2.1 \(\ext_k^i(\ext_k^i(N, R), \im \beta_i) = 0 \). Thus \(\alpha_i \) splits. On the other hand, \(\ext_k^i(N, R)^* = 0 \) implies \(\hom_k(\ext_k^i(N, R), N^*_i) = 0 \). Hence \(\ext_k^i(N, R) = 0 \).

3. Left exactness of the double dual. In this section, we establish the relation between the dominant dimension of a left and right noetherian ring \(R \) and the behavior of the functor \((_)^{**} : \text{mod } R \rightarrow \text{mod } R \). Compare our results with Colby and Fuller [2, Theorems 1 and 2].

Proposition 3.1. Let \(R \) be left and right noetherian. Then \(R \) is left \(QF-3 \) if and only if the functor \((_)^{**} : \text{mod } R \rightarrow \text{mod } R \) preserves monomorphisms.

This is an immediate consequence of Morita [5, Theorem 1] and the following lemmas.

Lemma 3.2. Let \(R \) be left noetherian and right \(QF-3 \). For any monomorphism \(\alpha : M \rightarrow L \) with \(M, L \in \text{mod } R \), \(\alpha^{**} \) is monic.
Proof. For a given exact sequence $0 \to \alpha_* M \to L \to K \to 0$ in mod R, we claim $(\text{Cok } \alpha^*)^* = 0$. By Lemma 1.1, $\text{Hom}_R(\text{Ext}_k(K, R), E(R_{\pi})) = \text{Tor}^k(E(R_{\pi}), K) = 0$. Since \text{Cok } \alpha^* is imbedded into $\text{Ext}_k(K, R)$, we get $\text{Hom}_R(\text{Cok } \alpha^*, E(R_{\pi})) = 0$. Thus $(\text{Cok } \alpha^*)^* = 0$, and α^{**} is monic.

Lemma 3.3. Let R be right noetherian. Suppose that for any monomorphism $\alpha: M \to L$ with $M, L \in \text{mod } R$, α^{**} is monic. Then R is left QF-3.

Proof. For a given $M \in \text{mod } R$ with $M \subset E(R_R)$, we claim that M is torsionless. Replacing M with $M + R$ if necessary, we may assume $R \subset M$. Denote by ι the inclusion $R \hookrightarrow M$. Since ι^{**} is monic, so is $\iota^{**} \circ \varepsilon_M = \varepsilon_{M/R}$. Thus $R \cap \ker \varepsilon_M = 0$, which implies $\ker \varepsilon_M = 0$. Hence by Lemma 1.3, $E(R_R)$ is flat.

Now we can prove the following

Proposition 3.4. Let R be left and right noetherian. Then $\text{dom dim } R_R \geq 2$ if and only if the functor $(\)^{**}: \text{mod } R \to \text{mod } R$ is left exact.

Proof. "Only if" part. For a given exact sequence $0 \to \alpha_* M \to L \to K \to 0$ in mod R, we claim $(\text{Cok } \alpha^*)^* = 0 = \text{Ext}_k(\text{Cok } \alpha^*, R)$. Note that $\text{dom dim } R_R \geq 2$. By Lemma 3.2, α^{**} is monic. Thus $(\text{Cok } \alpha^*)^{**} = 0$, and by Lemma 2.2, $\text{Ext}_k(\text{Cok } \alpha^*, R) = 0$. Hence the following sequence is exact:

$$0 \to M^{**} \xrightarrow{\alpha^{**}} L^{**} \xrightarrow{\beta^{**}} K^{**}.$$

"If" part. By Lemma 3.3, $E(R_R)$ is flat. For a given $M \in \text{mod } R$ with $M \subset E(R_R)/R$, we claim that M is torsionless. There is some $L \in \text{mod } R$ such that $L \subset E(R_R)$ and $M = L/R$. By Lemma 1.2, L is torsionless. We have the following commutative diagram with exact rows:

$$
\begin{array}{cccc}
0 & \to & R & \to & L & \to & M & \to & 0 \\
& & \downarrow \iota & & \downarrow \varepsilon_L & & \downarrow \varepsilon_M & \\
0 & \to & R^{**} & \to & L^{**} & \to & M^{**} & &
\end{array}
$$

Since ε_L is monic, so is ε_M. Thus by Lemma 1.4, $E(E(R_R)/R)$ is flat.

4. Remarks. In this final section, we make some remarks on noetherian rings of finite self-injective dimension.

The following proposition is essentially due to Iwanaga [3].

Proposition 4.1. Let R be left noetherian. Suppose that $\text{inj dim } R_R < \infty$ and that the last non-zero term of the minimal injective resolution of R_R is flat. Then R is quasi-Frobenius.

Proof. Suppose to the contrary that R_R is not injective. Put $n = \text{inj dim } R_R$
and let $0 \to {}_R R \to E_0 \to E_1 \to \cdots \to E_\infty \to 0$ be a minimal injective resolution. There is a torsion theory $(\mathcal{T}, \mathcal{D})$ in $\text{mod } R$ such that \mathcal{T} consists of the modules $M \in \text{mod } R$ with $\text{Ext}_R^1(M, R) = 0$. Note that \mathcal{T} contains a simple module L. Since E_n is flat, and since $\text{Hom}_R(L, E_n) = \text{Ext}_R^1(L, R) \neq 0$, by Lemma 1.2 L is torsionless, which implies $L \in \mathcal{T}$, a contradiction.

Proposition 4.2. Let R be left noetherian. Suppose that $\text{inj dim } {}_R R < \text{dom dim } {}_R R$. Then $E({}_R R)$ is an injective cogenerator.

Proof. Let $0 \to {}_R R \to E_0 \to E_1 \to \cdots$ be a minimal injective resolution and put $E = \bigoplus_{i=0}^n E_i$, where $n = \text{inj dim } {}_R R$. By Lemma 1.5 E is an injective cogenerator. Thus, since E is flat, by Lemma 1.2 every $M \in \text{mod } R$ is torsionless, namely $E({}_R R)$ is an injective cogenerator.

The next proposition generalizes Sumioka [7, Theorem 5].

Proposition 4.3. Let R be left and right noetherian and $n \geq 1$. Suppose that $\text{inj dim } {}_R R \leq n \leq \text{dom dim } {}_R R$. For a minimal injective resolution $0 \to {}_R R \to E_0 \to E_1 \to \cdots$, $E = \bigoplus_{i=0}^n E_i$ is an injective cogenerator if and only if $\text{inj dim } {}_R R \leq n$.

Proof. “Only if” part. Since E_i is flat for $0 \leq i \leq n - 1$, and since $E_i = 0$ for $i > n$, E_n and thus E have weak dimension at most n. Thus by Lemma 1.1 $\text{Hom}_R(\text{Ext}_R^{n+1}(N, R), E) = \text{Tor}_R^{n+1}(N, E) = 0$ for all $N \in \text{mod } R^{op}$. Hence, since E is an injective cogenerator, $\text{inj dim } {}_R R \leq n$.

“If” part. By Lemma 1.5.

References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan