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1. Introduction

Let ( ), ≥ 0 be a nondecreasing right-continuous function such that (0) = 0.
The asymptotics of and its Laplace-Stieltjes transformω( ) =

∫∞
0

− ( ) are
closely linked and results in which we pass from ( ) toω( ) are called Abelian the-
orems and ones in converse direction are called Tauberian, and they play a very impor-
tant role in probability theory. A most well-known result onthis subject is Karamata’s
theorem (cf. Chapter 1 of [1]). Also the cases whenω( ) and ( ) vary exponentially
are treated by many authors (e.g. [2], [3], [4], [8], [9]. Seealso Chapter 4 of [1]).
Among them [2] studied the relationship between the limit of(1/λ) log (1/φ(λ)) as
λ→∞ and that of the Laplace-Stieltjes transform modified as

(1.1)
1
λ

log
∫ ∞

0

−λφ(λ) ( )

with regularly varyingφ(λ) = λα (λ). Now notice here that (1.1) can be rewritten as

1
λ

log
∫ ∞

0

−λ
λ( )

where λ( ) = ( /φ(λ)). Thus we arrive at the following question, which may be
regarded as a problem of large deviation. Consider a family of functions { λ( )}λ≥1

instead of a fixed ( ). Then what is the relationship between the limiting behaviour
of (1/λ) log λ( ) and that of

ϕλ( ) :=
1
λ

log
∫ ∞

0

−λ
λ( ) ?

This problem was studied by one of the authors (see [5]) and the present paper is
its continuation: Our aim here is to check if each of the assumptions of the previous
paper is essential or not and to remove unnecessary conditions. To state our results
we start with reviewing the main result of the previous paper: Throughout the paper

λ : [0 ∞) → R are nondecreasing, right-continuous functions withλ(0) = 0 such
that

∫∞
0

−λ
λ( ) < ∞ for all > 0, λ ≥ 1. Then the main result of [5] (see
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also its correction) can be rewritten as follows.

Theorem A ([5]). Suppose that the following limit exists for every> 0:

(1.2) ϕ( ) := lim
λ→∞

1
λ

log
∫ ∞

0

−λ
λ( )

If ϕ( ), > 0 is a continuously differentiable, strictly convex function satisfying
lim →0ϕ

′( ) = −∞, lim →∞ ϕ′( ) = 0, then

(1.3) lim
λ→∞

1
λ

log λ( ) = inf
>0
{ϕ( ) + } for every > 0

Here we remark that [5] did not discuss much on the assumptions on the strict
convexity ofϕ or on the continuity ofϕ′, since it proved the above theorem in order
to study the asymptotic behaviour of multiple convolutionsand thereϕ, which was
given explicitly in advance, was a smooth function. However, sometimes it is difficult
to check these conditions in the general cases whereϕ is not given explicitly, and
therefore, it would be convenient if we could remove such conditions. For example,
if this were possible, the case of the ‘limit on oscillations’ (see [6]) could easily be
reduced to Theorem A and hence could be improved greatly.

The main results of the present paper are as follows: We shallsee that the as-
sumption in Theorem A on the strict convexity ofϕ is inessential and may be re-
moved (Theorem 2.3). On the other hand, however, the continuity of the derivative
ϕ′ is indispensable: Ifϕ′ is discontinuous, then (1.3) does not hold in general. (For
a counter example, see Example 2.2). In such cases we shall study what can be said
about the upper and the lower bounds, which are in a sense bestpossible (Theo-
rem 2.4).

2. Main Results

We start with an Abelian theorem. We omit the proof since there is no need to
modify that of Theorem 1 of [5].

Theorem 2.1. Let ( ) : (0 ∞) 7→ [−∞ ∞) be a nondecreasing function, and
suppose

(2.1) lim sup
λ→∞

1
λ

log
∫ ∞

0

−λ
λ( ) <∞ for all > 0

If

(2.2) lim
λ→∞

1
λ

log λ( ) = ( ) at all continuity points of ( )
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then

(2.3) lim
λ→∞

1
λ

log
∫ ∞

0

−λ
λ( ) = sup

>0
{ ( )− } for all > 0

We now turn to the Tauberian part. Our question is whether (2.3) implies (2.2)
or not. Obviously the answer is ‘no’ without further assumptions because of the prop-
erties of the Fenchel-Legendre transform. Facts on Fenchel-Legendre transform which
we quote in this paper are

Theorem 2.2. Let ( ) be a nondecreasing function on(0 ∞) and define

(2.4) ϕ( ) := sup
>0
{ ( )− } ( > 0)

and

(2.5) ϕ∗( ) := inf
>0
{ϕ( ) + } ( > 0)

Then
(i) ( ) ≤ ϕ∗( ), for every > 0.
(ii) If ( ) is concave, then ( ) = ϕ∗( ) for every > 0.
(iii) ϕ∗ is the concave hull of .
(iv) Supposeϕ is continuously differentiable and satisfies
lim →0ϕ

′( ) = −∞ and lim →∞ ϕ′( ) = 0 Thenϕ∗( ) is strictly concave on(0 ∞)
and ( ) = ϕ∗( ) for every > 0.

Since the proof of (i) is easy and that of (iv) can be reduced toTheorem 26.3
of [10], we omit them. We prove (ii) and (iii) in the next section.

In Theorem 2.2 (iv), the assumption thatϕ has continuous derivative is essential
and in fact ifϕ is not continuously differentiable, thenϕ∗( ) = inf >0{ϕ( ) + } does
not necessarily coincide with (see Example 2.2). If we keep these facts in mind,
we shall see that the assumptions of the following theorem, which is an extension of
Theorem A, are reasonable.

Theorem 2.3. Suppose that the following limit exists for every> 0:

(2.6) ϕ( ) := lim
λ→∞

1
λ

log
∫ ∞

0

−λ
λ( )

If ϕ( ), > 0 is a continuously differentiable function satisfyinglim →0ϕ
′( ) = −∞

and lim →∞ ϕ′( ) = 0 then

(2.7) lim
λ→∞

1
λ

log λ( ) = ϕ∗( ) for every > 0
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whereϕ∗( ) = inf >0{ϕ( ) + }.

We next study what can be said whenϕ does not have continuous derivative.

Theorem 2.4. Suppose that(2.6) exists for every > 0 and letϕ∗ be as inThe-
orem 2.3. Thenϕ∗ is a nondecreasing concave function, and for every > 0 and 0

(0< 0 ≤ ) such thatϕ∗ is strictly concave at 0, it holds that

(2.8) ϕ∗( 0) ≤ lim inf
λ→∞

1
λ

log λ( ) ≤ lim sup
λ→∞

1
λ

log λ( ) ≤ ϕ∗( )

REMARK. Let {µλ( )}λ be a family of Radon measures on (0∞), and let
ωλ( ) =

∫∞
0 µλ( ). Then, we can similarly show the relationship between the

asymptotic behaviour of logωλ(λ ) and that of logµλ( ∞).

We postpone the proofs of the above theorems until the next section and conclude
this section with examples.

EXAMPLE 2.1. Let

1( ) =

{√
if 0 < < 1 or 4≤

1 if 1 ≤ < 4

and

2( ) =

{√
if 0 < < 1 or 4≤

/3 + 2/3 if 1 ≤ < 4

Notice that 2 is the concave hull of 1. Then it holds

sup
>0
{ 1( )− } = sup

>0
{ 2( )− } = ϕ( )

where

ϕ( ) =





1/(4 ) if 0 < < 1/4 or 1/2≤
2− 4 if 1/4≤ < 1/3
1− if 1/3≤ < 1/2

This example illustrates thatϕ := sup >0{ ( ) − } does not determine uniquely
without further conditions onϕ.

EXAMPLE 2.2 (continued). Let ( )
λ ( ) = exp{λ ( )} − 1, ( = 1, 2). Then by

Theorem 2.1 both (1)
λ and (2)

λ satisfy

lim
λ→∞

1
λ

log
∫ ∞

0

−λ ( )
λ ( ) = ϕ( ) ( = 1 2) for all > 0
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By an easy calculus we have

ϕ∗( )

(
:= inf

>0
{ + ϕ( )}

)
= 2( )

However, on the other hand, we easily see

lim
λ→∞

1
λ

log ( )
λ ( ) = ( ) ( = 1 2) for every > 0

Thus (2.6) does not necessarily imply (2.7) and this is an example which shows that
the assumption thatϕ ∈ 1 is essential in Theorem 2.3.

EXAMPLE 2.3 (continued). Notice that2 is strictly concave on (0 1)∪(4 ∞), and
for 1 ≤ ≤ 4, the supremum 0 ( 0 ≤ ) of the strictly concave points ofϕ∗ is 1.
Thus we can choose1( ) for the extreme left side of (2.8). Therefore, in this case
the assertion of Theorem 2.4 can be rewritten as follows: If

lim
λ→∞

1
λ

log
∫ ∞

0

−λ
λ( ) = ϕ( ) for all > 0

then

(2.9) 1( ) ≤ lim inf
λ→∞

1
λ

log λ( ) ≤ lim sup
λ→∞

1
λ

log λ( ) ≤ 2( )

for every > 0

Since the lower bound is attained by(1)
λ and the upper by (2)

λ as we have seen in
Example 2.2, we cannot improve the above inequality.

3. Proofs

In this section, we give proofs of Theorems 2.2 (ii), (iii), 2.3, and 2.4.

Proof of Theorem 2.2. (ii) In the special case where+ ( ) 6= 0 for every >

0, for a given > 0, put 0 = + ( ). Then attainsϕ( 0) in (2.4), i.e.,ϕ( 0) =
( )− 0 . Thus, we have

ϕ∗( ) ≤ ϕ( 0) + 0 = ( )

and combining with Theorem 2.2 (i), we have ( ) =ϕ∗( ). In the general case when

+ ( ) may vanish, approximate ( ) byε( ) = ( ) + ε(1− − ), (ε > 0).
(iii) We can easily see thatϕ∗ is a nondecreasing concave function on (0∞)
(see [5]), and from (i),ϕ∗( ) ≥ ( ) for every > 0. Next, let ( ) be a con-
cave function on (0∞), such that ( )≤ ( ) for every > 0, and show that
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ϕ∗( ) ≤ ( ) for every > 0. Now, define ˜ϕ( ) = sup >0{ ( ) − }, and ϕ̃∗( ) in
the obvious manner. Thenϕ( ) ≤ ϕ̃( ) for every > 0, which impliesϕ∗( ) ≤ ϕ̃∗( ).
From (ii), we see ˜ϕ∗( ) = ( ), which proves the assertion.

Proof of Theorems 2.3 and 2.4. Let0 be a strictly concave point ofϕ∗( ), and
let

= lim inf
λ→∞

1
λ

log λ( 0)

We can choose a subsequence{λ } ⊂ {λ} such that

lim
λ →∞

1
λ

log λ ( 0) =

Choosing a subsequence if necessary, we may and do assume that for some nonde-
creasing function ( ),

lim
λ →∞

1
λ

log λ ( ) = ( )

at all continuity points of ( ). Then from Theorem 2.1, we have

ϕ( ) = lim
λ →∞

1
λ

log
∫ ∞

0

−λ
λ ( ) = sup

>0
{ ( )− }

and from Theorem 2.2 (iii), we see

ϕ∗( 0) = ( 0) (= )

Thus, for any ≥ 0,

( ) ≥ ( 0) = ϕ∗( 0)

which gives the lower bound of (2.8), while (i) gives the upper one. Combining The-
orem 2.2 (iv), we obtain Theorem 2.3 as a corollary of Theorem2.4.
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