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1. Introduction

Let U(x), x > 0 be a nondecreasing right-continuous function such tha) = @
The asymptotics ofU and its Laplace-Stieltjes transfasfg) = f0°° e dU(x) are
closely linked and results in which we pass framx ( )ut(v) are called Abelian the-
orems and ones in converse direction are called Taubenmhtreey play a very impor-
tant role in probability theory. A most well-known result ¢imis subject is Karamata'’s
theorem (cf. Chapter 1 of [1]). Also the cases whgR) and U () vary exponentially
are treated by many authors (e.g. [2], [3], [4], [8], [9]. Salso Chapter 4 of [1]).
Among them [2] studied the relationship between the limit(bf\) logU (1/4()\)) as
A — oo and that of the Laplace-Stieltjes transform modified as

l o0
(1.1) Zlog / e N gU(x)
Ao
with regularly varyinge(A\) = A“L(A). Now notice here that (1.1) can be rewritten as
1 & —\
—log e " dUx(x),
Ao

where Uy (x) = U(x/¢(N\). Thus we arrive at the following question, which may be
regarded as a problem of large deviation. Consider a fanfilfuctions {Ux(x)}x>1
instead of a fixedV/ A ). Then what is the relationship betweenlitniting behaviour
of (1/A)logUx(x) and that of

NOE E|og / e MY dUL(x) ?
A 0

This problem was studied by one of the authors (see [5]) aedptlesent paper is
its continuation: Our aim here is to check if each of the aggions of the previous
paper is essential or not and to remove unnecessary camglitio state our results
we start with reviewing the main result of the previous pagédrroughout the paper
U,: [0,00) — R are nondecreasing, right-continuous functions witf(0) = 0 such

that f0°° e~ M dUy(x) < oo, for all s > 0, A > 1. Then the main result of [5] (see
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also its correction) can be rewritten as follows.

Theorem A ([5]). Suppose that the following limit exists for every- O:

(1.2) ©(s) = lim Elog/ e MY AU (x).
A—o00 A 0

If p(s), s > 0 is a continuously differentiabjestrictly convex function satisfying
lim;_o¢'(s) = —o0, lim;_ o ¢'(s) =0, then

.1 .
(1.3) AI|m X logU,(x) = |21;{<p(s) +sx}, forevery x >0.

Here we remark that [5] did not discuss much on the assunmgpt@mnthe strict
convexity of ¢ or on the continuity ofy’, since it proved the above theorem in order
to study the asymptotic behaviour of multiple convoluticensd thereyp, which was
given explicitly in advance, was a smooth function. Howewametimes it is difficult
to check these conditions in the general cases whetis not given explicitly, and
therefore, it would be convenient if we could remove suchdiioms. For example,
if this were possible, the case of the ‘limit on oscillatibifsee [6]) could easily be
reduced to Theorem A and hence could be improved greatly.

The main results of the present paper are as follows: We sleallthat the as-
sumption in Theorem A on the strict convexity ¢f is inessential and may be re-
moved (Theorem 2.3). On the other hand, however, the catytimi the derivative
¢’ is indispensable: Ify’ is discontinuous, then (1.3) does not hold in general. (For
a counter example, see Example 2.2). In such cases we shdyl gthat can be said
about the upper and the lower bounds, which are in a sensepossible (Theo-
rem 2.4).

2. Main Results

We start with an Abelian theorem. We omit the proof since ehisr no need to
modify that of Theorem 1 of [5].

Theorem 2.1. Let f(x): (0, 00) — [—o0, o0) be a nondecreasing functipmnd
suppose

(2.1) lim sup% Iog/ e~ MY dU(x) < o0, forall s>0.
A—00 0

(2.2) AIim ;IogUA(x) = f(x), at all continuity points of f(x),
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then
(2.3) lim 1 Iog/ e MY dUN(x) = sup{ f(x) —sx}, forall s>0.
A—oo A 0 x>0

We now turn to the Tauberian part. Our question is whethes) (Bnplies (2.2)
or not. Obviously the answer is ‘no’ without further assuiops because of the prop-
erties of the Fenchel-Legendre transform. Facts on Feradggndre transform which
we quote in this paper are

Theorem 2.2. Let f(x) be a nondecreasing function df, cc) and define

(2.4) p(s) = fl;g{f(x) —sx}, (s>0)
and

(2.5) ¢"(x) = inf{p(s) +sx}, (x> 0).
Then

) f(x) < p*(x), for everyx > 0.

(iiy If f(x) is concavethen f(x) = ¢*(x) for everyx > 0.

(iiiy ¢* is the concave hull off .

(iv) Supposep is continuously differentiable and satisfies

limg_0¢'(s) = —oo, and lim,_ o, ¢’(s) = 0. Theny*(x) is strictly concave or(0, co)
and f(x) = p*(x) for everyx > 0.

Since the proof of (i) is easy and that of (iv) can be reducedhteorem 26.3
of [10], we omit them. We prove (ii) and (iii) in the next searii

In Theorem 2.2 (iv), the assumption thathas continuous derivative is essential
and in fact if o is not continuously differentiable, thep*(x) = inf;<o{y(s) +sx} does
not necessarily coincide witlf  (see Example 2.2). If we kdegseé facts in mind,
we shall see that the assumptions of the following theorehichvis an extension of
Theorem A, are reasonable.

Theorem 2.3. Suppose that the following limit exists for every- O:
l o0
(2.6) w(s) ;= lim —Iog/ e~ MY AU (x).
)\—>C>O )\ 0

If ©(s), s > 0 is a continuously differentiable function satisfyitig;_.o ©’'(s) = —oc
and lim;_. ., ¢'(s) = 0, then

(2.7) /\Iim %Iog Ux(x) = ¢*(x), forevery x>0,
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where o*(x) = inf,so{©(s) +sx}.
We next study what can be said whendoes not have continuous derivative.

Theorem 2.4. Suppose tha2.6) exists for every > 0 and lety* be as inThe-
orem 2.3 Theny* is a nondecreasing concave functiand for everyx > 0 and xg
(0 < xg < x) such thaty™* is strictly concave atxg, it holds that

N o1 . 1 .
(2.8) ©*(xo) < liminf = logU,(x) < limsup=logU,(x) < ¢*(x).
A—oo A A—00 A

Remark. Let {ux(dx)}, be a family of Radon measures on, @), and let
wi(s) = f0°° e*dux(x). Then, we can similarly show the relationship between the
asymptotic behaviour of logy(As) and that of loguy(x, 00).

We postpone the proofs of the above theorems until the netibeeand conclude
this section with examples.

ExampLE 2.1. Let

_[+/x, f0O<x<lord<x,
fl(x)_{l, if 1<x<4,
and

hox) = VX, ifO<x<1lor4<yx,
2T x/3+2/3, if1<x <4

Notice that f> is the concave hull off;. Then it holds

sup{ fi(x) —sx} = Sl;([)){fz(x) —sx} = (),

x>0

where

245, if1/4<s5<1/3

1/(4s), ifO<s<1l/4o0rl/2<s,
w(s) =
1-s, if1/3<s<1/2

This example illustrates thap := sup..{ f(x) — sx} does not determing’  uniquely
without further conditions onp.

ExampLE 2.2 (continued). Letng)(x) = exp(Afi(x)} = 1, (k = 1, 2). Then by
Theorem 2.1 botrvil) and Uf\z) satisfy

1 o0
Jim T log e aUuB(x) = o(s), (k=1 2) forall s>0.
— 00 0
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By an easy calculus we have
¢ (= inffsx + 00} ) = o)
However, on the other hand, we easily see
. 1 (k) _ _
AI|m XIogUA x)= fix) (=1, 2) forevery x>0.

Thus (2.6) does not necessarily imply (2.7) and this is anmgi@ which shows that
the assumption thap € C?! is essential in Theorem 2.3.

ExampLE 2.3 (continued). Notice thaf; is strictly concave on (0 1)(4, o), and
for 1 < x < 4, the supremunxy (xo < x) of the strictly concave points op* is 1.
Thus we can choos¢i(x) for the extreme left side of (2.8). Therefore, in this case
the assertion of Theorem 2.4 can be rewritten as follows: If
1

lim = Iog/ e MY dUN(x) = (s), forall s>0,
A—oo A 0

then

(29) filx) < fiminf {10gUs(x) < imsup 1ogUx(x) < fo(x).
—00 A—00

for every x > 0.

Since the lower bound is attained iayt" and the upper by/® as we have seen in
Example 2.2, we cannot improve the above inequality.

3. Proofs

In this section, we give proofs of Theorems 2.2 (ii), (iii}32and 2.4.

Proof of Theorem 2.2. (ii) In the special case whéef(x) # O for everyx >
0, for a givenx > 0, putsg = D, f(x). Thenx attainsp(sg) in (2.4), i.e., p(so) =
f(x) — sox. Thus, we have

©"(x) < @(so) +sox = f(x),

and combining with Theorem 2.2 (i), we hayex ( )#=(x). In the general case when
D. f(x) may vanish, approximate¢ x( ) by.(x) = f(x) +e(1—e "), (¢ > 0).

(i) We can easily see thatp* is a nondecreasing concave function on «f)
(see [5]), and from (i),p*(x) > f(x) for everyx > 0. Next, letg &) be a con-
cave function on (0x0), such thatf £ )< g(x) for every x > 0, and show that
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©*(x) < g(x) for everyx > 0. Now, definey(s) = sup.o{g(x) —sx}, and¢*(x) in

the obvious manner. Thep(s) < @(s) for everys > 0, which impliesp*(x) < @*(x).
From (ii), we seep™(x) = g(x), which proves the assertion. O

Proof of Theorems 2.3 and 2.4. Le$ be a strictly concave point ap*(x), and
let

o1
a= |I)\I’Tllollf 3 log U (xo).

We can choose a subsequercg} C {\} such that

lim /\i log Uy, (xo) = a.

Aj—00 j

Choosing a subsequence if necessary, we may and do assutmi@rtlsmme nonde-
creasing functionf x ),

lim iIogUA.()c) = f(x),
Aj /

j—00

at all continuity points off £ ). Then from Theorem 2.1, we have
H 1 > —\jsx
o(s)= lim —log e " dU,y,(x) = sup{ f(x) — sx},
Aj00 Aj 0 x>0
and from Theorem 2.2 (iii), we see
©"(x0) = f(x0) (= a).
Thus, for anyx > xo,

f(x) = f(x0) = ¢ (x0),

which gives the lower bound of (2.8), while (i) gives the upp@ae. Combining The-
orem 2.2 (iv), we obtain Theorem 2.3 as a corollary of Theo&h U
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