

Title	Structure of a class of polynomial maps with invariant factors
Author(s)	Wen, Zhi-Xiong; Wen, Zhi-Ying
Citation	Osaka Journal of Mathematics. 1997, 34(3), p. 673–679
Version Type	VoR
URL	https://doi.org/10.18910/11085
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Wen, Z.-X. and Wen, Z.-Y. Osaka J. Math. **34** (1997), 673–679

STRUCTURE OF A CLASS OF POLYNOMIAL MAPS WITH INVARIANT FACTORS

ZHI-XIONG WEN and ZHI-YING WEN

(Received May 23, 1996)

Let $\mathbf{R}[x_1, \dots, x_n]$ be a ring of polynomials of $n \ (n \ge 3)$ indeterminates with coefficients in \mathbf{R} .

Let $\phi = (\phi_1, \dots, \phi_n) \in (\mathbf{R}[x_1, \dots, x_n])^n$ be a polynomial map from \mathbf{R}^n to \mathbf{R}^n . Let $x = (x_1, x_2, \dots, x_n)$ and define

$$\lambda_{n,a}(x) := \sum_{i=1}^{n} x_i^2 - a \prod_{i=1}^{n} x_i \in \mathbf{R}[x_1, x_2, \dots, x_n].$$

where $a \ (\neq 0) \in \mathbf{R}$. We will write λ in stead of $\lambda_{n,a}$ if no confusion happens. $\lambda_{n,a}$ is called an invariant factor of ϕ if

(1)
$$\lambda_{n,a} \circ \phi = \lambda_{n,a}.$$

Now let

$$G_{n,a} = \{\phi; \phi \in (\mathbf{R}[x_1, \dots, x_n])^n, \lambda_{n,a} \circ \phi = \lambda_{n,a}\},\$$

that is, $G_{n,a}$ is the set of polynomial maps of which invariant factor is $\lambda_{n,a}$. The main aim of this note is to determine the structure of $G_{n,a}$.

Let $\Omega_{n,a} = \{x \in \mathbf{R}; \lambda_{n,a}(x) = 0\}$. Then by the equality (1), for any $n \in \mathbf{N}$,

$$\phi^n(\Omega_{n,a}) \subset \Omega_{n,a},$$

that is, $\Omega_{n,a}$ is an invariant variety of ϕ^n , where ϕ^n denotes n-th iteration of ϕ (see [3]). By using this property, we may investigate the asymptotic dynamical behaviours of iterations of ϕ ([1, 2, 3]). We are led naturally to study the structure of $G_{n,a}$. In fact, we will prove first that $G_{n,a}$ is a group, then we will determine the generators of the group.

In the case n = 3, we have showed the following:

Theorem 1 ([2]). With the notations above, $G_{3,1} = \langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle$ is a group generated by $\tau_1(x, y, z) = (y, x, z)$, $\tau_2(x, y, z) = (z, y, x)$, $\tau_3(x, y, z) = (-x, -y, z)$, $\tau_4(x, y, z) = (x, y, xy - z)$.

The proof of Theorem 1 depends strongly on the reducibility of polynomial $u^2 + v^2 - auv$, but when $n \ge 4$, the corresponding polynomial that we have to treat is irreducible, thus the method for n = 3 is failed.

Let $p \in \mathbf{R}[x_1, \ldots, x_n]$, $\phi \in (\mathbf{R}[x_1, \ldots, x_n])^n$, we denote by deg p the degree of the polynomial p, and define the degree of ϕ as deg $\phi = \sum_{i=1}^n \deg \phi_i$.

Let S_n be the symmetric group on n letters, we have

$$S_n := \{(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)}); \ \pi \in S_n\} \simeq S_n.$$

So we can denote by π the permutation $(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})$.

Lemma 1. Let $n \ge 3$, $a \ne 0$, c is a constant, then $\lambda_{n,a} + c$ is irreducible.

Proof. If the conclusion of the lemma is not true, then $\lambda_{n,a} + c$ is reducible, i.e. we have the non-trivial factorization of $\lambda_{n,a} + c$

$$(*) \qquad \qquad \lambda_{n,a} + c = p_1 p_2.$$

Thus if we consider $\lambda_{n,a} + c$ as a polynomial of x_n with degree 2, then we have either

$$p_1 = f_1(x_1, \dots, x_{n-1})x_n + g_1(x_1, \dots, x_{n-1}),$$

$$p_2 = f_2(x_1, \dots, x_{n-1})x_n + g_2(x_1, \dots, x_{n-1})$$

or

$$p_1 = f_1(x_1, \dots, x_{n-1})x_n^2 + g_1(x_1, \dots, x_{n-1})x_n + h_2(x_1, \dots, x_{n-1}),$$

$$p_2 = f_2(x_1, \dots, x_{n-1}).$$

From the hypothesis $n \ge 3$ and by comparing the degree of two sides of the equality (*), it is easy to see that the factorizations above are impossible for both cases. This proves the lemma.

Now define $\psi = (x_1, x_2, \dots, x_{n-1}, a \prod_{i=1}^{n-1} x_i - x_n)$, which will play an important role in the studies of this note. By a direct calculation, we see immediately $\psi \in G_{n,a}$.

Lemma 2. Let $\phi \in G_{n,a}$. If deg $\phi > n$, then there exists $\pi \in S_n$, such that $deg(\psi \circ \pi \circ \phi) < deg \phi$.

Proof. Because we can find a permutation π , such that

$$\deg \phi_{\pi(1)} \leq \deg \phi_{\pi(2)} \leq \cdots \leq \deg \phi_{\pi(n)}.$$

we can assume that

(2)
$$\deg \phi_n \ge \deg \phi_{n-1} \ge \cdots \ge \deg \phi_1.$$

Since deg $\phi > n$, we have deg $\phi_n \ge 2$. From the equality (1),

(3)
$$\left(\phi_n - a \prod_{i=1}^{n-1} \phi_i\right) \phi_n + \sum_{i=1}^{n-1} \phi_i^2 = \sum_{i=1}^n x_i^2 - a \prod_{i=1}^n x_i.$$

1. If deg
$$\phi_n \neq deg\left(a \prod_{i=1}^{n-1} \phi_i\right)$$
, then

$$\deg\left(\phi_n - a\prod_{i=1}^{n-1}\phi_i\right) = \sup\left\{\deg\phi_n, \ \deg\left(a\prod_{i=1}^{n-1}\phi_i\right)\right\}.$$

Thus by (2) and (3), we have

$$\deg \lambda_{n,a} = n = \sup \left\{ \deg \phi_n, \ \deg(a \prod_{i=1}^{n-1} \phi_i) \right\} + \deg \phi_n \geq \sum_{i=1}^n \deg \phi_i = \deg \phi > n,$$

This contradiction follows that

(4)
$$\deg \phi_n = \deg(\phi_1 \cdots \phi_{n-1}).$$

2. If deg $\phi_n = \deg \phi_{n-1}$, then by (4), we have deg $\phi_i = 0, 1 \le i \le n-2$. Thus from the equality (3), there exists constants c_1 and c_2 , such that

$$\phi_n^2 + \phi_{n-1}^2 - ac_1\phi_n\phi_{n-1} = \sum_{i=1}^n x_i^2 - a\prod_{i=1}^n x_i + c_2.$$

Notice that the left member of the equality above is reducible, but by Lemma 1, the right member of the equality above is irreducible, this contraction yields that

(5)
$$\deg \phi_n > \deg \phi_{n-1}.$$

3. If deg
$$\left(a \prod_{i=1}^{n-1} \phi_i - \phi_n\right) = \deg \phi_n$$
, then

(6)
$$\deg\left(\prod_{i=1}^{n-1}\phi_i\right) \leq \deg\phi_n.$$

Using (5), (6) and using the analyses similar to the case 1, we have

$$n = \deg \lambda = \deg \lambda \circ \phi = 2 \deg \phi_n \ge \sum_{i=1}^n \deg \phi_i = \deg \phi > n_i$$

This contradiction implies that deg $\left(a \prod_{i=1}^{n-1} \phi_i - \phi_n\right) \neq \deg \phi_n$, thus from (4), we have deg $\left(a \prod_{i=1}^{n-1} \phi_i - \phi_n\right) < \deg \phi_n$. By the definition of ψ , we obtain finally

 $\deg(\psi \circ \pi \circ \phi) < \deg \phi.$

Now, define $\rho = (-x_1, -x_2, x_3, ..., x_n)$.

Lemma 3. Let $\mathcal{L}_n = \{ \phi \in G_n; \deg \phi_i = 1, 1 \leq i \leq n \}$, then \mathcal{L}_n is a group generated by \mathcal{S}_n and ρ .

Proof. Since deg $\phi_i = 1$, we can write $\phi_i := \phi_i(x_1, \dots, x_n) = h_i(x_1, \dots, x_n) + c_i$, where h_i are homogeneous linear polynomials of x_1, \dots, x_n , and $c_i \in \mathbf{R}$ are constants. By the equality (1),

(7)
$$\sum_{i=1}^{n} (h_i + c_i)^2 - a \prod_{i=1}^{n} (h_i + c_i) = \sum_{i=1}^{n} x_i^2 - a \prod_{i=1}^{n} x_i.$$

By comparing the coefficients of the terms of degree n of the two sides of (7), we have $h_i = d_i x_{\pi(i)}$, where $d_i \in \mathbf{R}$, $\pi \in S_n$. By comparing the coefficients of the terms of degree n - 1, we have $c_i = 0$. By comparing the coefficients of the square terms, we have $d_i^2 = 1$, $1 \le i \le n$. Finally notice that $|\{i; d_i = -1, 1 \le i \le n\}| \in 2\mathbf{N}$ and notice the role of the action of ρ , we obtain this lemma.

Lemma 4. Let $\phi \in G_{n,a}$. Then for any $i, 1 \leq i \leq n$, we have deg $\phi_i \geq 1$. Moreover, there exists $\varphi \in \langle \psi, S_n \rangle$, such that

$$\deg(\varphi \circ \phi)_1 = \cdots = \deg(\varphi \circ \phi)_n = 1.$$

Proof. We prove the lemma by induction. By Theorem 4 of §3 of [1], the lemma holds for n = 3. Now suppose that the conclusions of the lemma are true for the positive integers less than $n \ (n \ge 4)$.

If deg $\phi > n$, by using Lemma 2 repeatedly, we can decrease the degree of ϕ by using ψ and a suitable $\pi \in S_n$, and the degree of each component of ϕ does not increase. Thus we can assume that deg $\phi \leq n$.

If the conclusion of the lemma is not true, then there exists some ϕ_i , being ϕ_n without loosing generality, such that $\phi_n \equiv c$, where c is a constant. If c = 0, by the

equality (1),

(8)
$$\phi_1^2 + \dots + \phi_{n-1}^2 = x_1^2 + \dots + x_n^2 - ax_1x_2 \cdots x_n.$$

Notice that the left member of the equality (8) is always non-negative. But for $n \ge 3$, we can choose x_1, \ldots, x_n , such that the right member of the equality (8) is strictly negative. thus $c \ne 0$.

Now let $\phi = (\phi_1, \dots, \phi_{n-1}, c), c \neq 0$. Define

$$\begin{array}{ll} \phi_i^{(j)}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n) &:= \\ \phi_i(x_1,\ldots,x_{j-1},c,x_{j+1},\ldots,x_n) &\in \mathbf{R}[x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n], \\ \phi^{(j)}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n) &:= \\ & (\phi_1^{(j)},\ldots,\phi_{n-1}^{(j)}) &\in (\mathbf{R}[x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n])^{n-1}. \end{array}$$

where $1 \leq j \leq n$.

From (1) and $\phi_n \equiv c$, we check directly for any $j, \ 1 \leq j \leq n$

(9)
$$\lambda_{n-1,ca} \circ \phi^{(j)} = \lambda_{n-1,ca}.$$

Since deg $\phi \leq n$, we have deg $\phi^{(j)} \leq n, 1 \leq j \leq n$.

1. Suppose that deg $\phi^{(j)} = n$. By Lemma 2, there exists $\pi \in S_{n-1}\{1, \dots, j-1, j+1, \dots, n\}$ such that

(10)
$$\deg \psi^{(j)} \circ \pi \circ \phi^{(j)} < \deg \phi^{(j)} = n,$$

where

$$\psi^{(j)}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n) = (x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_{n-1},\ acx_1\cdots x_{j-1}x_{j+1}\ldots x_{n-1}-x_n).$$

From (9) and the induction hypothesis, we have

$$\psi^{(j)} \circ \pi \circ \phi^{(j)} = (\varepsilon_1^{(j)} x_{\tau^{(j)}(1)}, \dots, \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}, \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}, \dots, \varepsilon_n^{(j)} x_{\tau^{(j)}(n)}),$$

where $\tau^{(j)} \in S_{n-1}\{1, \dots, j-1, j+1, \dots, n\}$, $\varepsilon_i^{(j)} = \pm 1$. Since $(\psi^{(j)})^2 = id$, we have

Since $\phi^{(j)} = (\phi_1, \dots, \phi_{n-1})|_{x_j=c}$ for any c and ϕ is a polynomial in x_1, \dots, x_n , it follows from (11) that

$$(\phi_{1},\ldots,\phi_{n-1}) = \pi^{-1} \circ (\varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)},\ldots,\varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)},\varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)},\ldots,$$
$$ax_{j}\varepsilon_{1}^{(j)} x_{\tau^{(j)}(1)}\cdots\varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}\varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}\cdots\varepsilon_{n-1}^{(j)} x_{\tau^{(j)}(n-1)}-\varepsilon_{n}^{(j)} x_{\tau^{(j)}(n)}).$$

for some π and τ . Therefore,

$$n \ge \deg \phi = 2n - 3,$$

which contradicts with $n \ge 4$.

2. Now suppose that deg $\phi^{(j)} \le n-1$ for $j = 1, \ldots, n$.

From (9) and by the induction hypothesis, we have

(12)
$$\phi^{(j)} = (\varepsilon_1^{(j)} x_{\tau^{(j)}(1)}, \dots, \varepsilon_{j-1}^{(j)} x_{\tau^{(j)}(j-1)}, \varepsilon_{j+1}^{(j)} x_{\tau^{(j)}(j+1)}, \dots, \varepsilon_n^{(j)} x_{\tau^{(j)}(n)}).$$

for any c, where $\tau^{(j)} \in S_{n-1}\{1, \ldots, j-1, j+1, \ldots, n\}$, $\varepsilon_i^{(j)} = \pm 1$ and they may depend on c. Since $\phi^{(j)} = (\phi_1, \ldots, \phi_{n-1})|_{x_j=c}$ for any c and ϕ is a polynomial in x_1, \ldots, x_n , it follows from (12) that $(\phi_1, \ldots, \phi_{n-1})$ is independent of x_j for any $j = 1, \ldots, n$. Thus, deg $\phi = 0$, which is absurd since $\phi \in G_{n,a}$.

These contradictions come from the hypothesis that $\phi_i \equiv c$ for some *i*, so we have deg $\phi_i \geq 1$ for i = 1, ..., n. Since deg $\phi \leq n$, this implies that

$$\deg \phi_1 = \cdots = \deg \phi_n = 1,$$

which completes the proof of Lemma 4.

Corollary 1. Suppose that $\phi \in G_{n,a}$. Then there exists $\varphi \in G_{n,a}$, such that

$$\varphi \circ \phi = (d_1 x_{\pi(1)}, \dots, d_n x_{\pi(n)}).$$

Proof. It follows immediately from Lemma 3 and Lemma 4.

The foregoing results complete the proof of the following

Theorem 2. $G_{n,a}$ is a group generated by S_n, ρ and ψ .

References

- [1] J. Peyrière, Z.-X. Wen and Z.-Y. Wen: On the dynamic behaviours of the iterations of the trace map associated with substitutive sequences, Nonlinear problems in engineering and science, ed. S. Xiao and X.-C. Hu, Science Press, Beijing, (1992), 259–266.
- [2] J. Peyrière, Z.-Y. Wen et Z.-X. Wen: Polynômes associés aux endomorphismes de groupes libres, L'Enseignement Mathématique, **39** (1993), 153-175.
- J. Roberts and M. Baake: Trace maps as 3D reversible dynamical systems with an invariant, J. Stat. Phys. 74-3/4 (1994), 829–888.

Z.-X. Wen Department of Physics Wuhan University Wuhan 430072, P. R. of China

Z.-Y. Wen Department of Mathematics Wuhan University Wuhan 430072, P. R. of China