

Title	On maximal submodules of a finite direct sum of hollow modules. II
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1984, 21(3), p. 671-677
Version Type	VoR
URL	https://doi.org/10.18910/11086
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
21 (1984), 671-677

ON MAXIMAL SUBMODULES OF A FINITE DIRECT SUM OF HOLLOW MODULES II

MANABU HARADA

(Received April 26, 1983)

Introduction

We have given, in [3], the structure of right artinian rings satisfying the following conditions: i) the Jacobson radical of a ring is square zero and ii) every submodule of a direct sum of hollow (local) modules is also a direct sum of hollow modules. The latter property cited above implies that every maximal submodule of a direct sum of $t+1$ -copies of a hollow module with length t contains a direct summand.

In this paper, we shall study this property for any right artinian ring, and reproduce, in §1, the results similar to ones in [3] without the assumption that the Jacobson radical is square zero. In §2 we shall give a characterization of some rings in terms of the property above.

1 Property (**)

Let R be a ring with identity. In this paper, every R -module is a unitary right R -module. Let M be an R -module. We shall denote the Jacobson radical of M by $J(M)$ and the radical of R by J or $J(R)$, respectively. Throughout this paper we assume that R is a right artinian (semi-perfect) ring and every R -module M has the finite composition length, which we denote by $|M|$. If M has a unique maximal submodule $J(M)$, M is called *hollow (local)*. In this case $M \approx eR/A$ for a primitive idempotent e and a right ideal A in eR .

Given a family $N = \{N_i\}_{i=1}^t$ of (hollow) modules, we denote by $D(N)$ the direct sum $\sum_{i=1}^t \oplus N_i$. If $N_i = N$ for a fixed module N , we indicate this by $N^{(i)}$.

We have studied in [3] the following property:

(**) *Every maximal submodule of $D(N)$ contains a non-zero direct summand of $D(N)$.*

Since the above property is preserved by Morita equivalence, we may assume that R is a basic ring. Hence, from now on, we assume that R is a right artinian and basic ring. Let N be a hollow module with finite length. We put $\bar{N} = N/J(N)$, and $S (= S_N) = \text{End}_R(N)$. Then $\Delta = \text{End}_R(\bar{N})$ is a division

ring. We have the natural homomorphism φ of S into Δ . It is clear that $\ker \varphi = J(S)$ and $\text{im } \varphi$ is a subdivision ring of Δ , because $|N| < \infty$. We put $\text{im } \varphi = \bar{S}_N (= \bar{S})$. We assume $D = D(N_j, n) = \sum_i \bigoplus N_{1i} \bigoplus \sum_i \bigoplus N_{2i} \bigoplus \cdots \bigoplus \sum_i \bigoplus N_{ti}$, where $\bar{N}_{ki} \approx \bar{N}_{ki}$ and $\bar{N}_{ii} \not\approx \bar{N}_{ji}$ if $i \neq j$. Let M be a maximal submodule of D . Then $M \supset J(D)$ and $\bar{M} = M/J(D)$ is expressed as $\bar{M} = \sum_j \bigoplus \bar{M}_j$, where \bar{M}_i is a maximal submodule of $\sum_k \bigoplus \bar{N}_{ik}$ for some i and $\bar{M}_j = \sum_k \bigoplus \bar{N}_{jk}$ for $j \neq i$. Therefore, when we study the property (**), we may assume $\bar{N}_i \approx \bar{N}_1$ for all i . We shall identify all $\text{End}_R(\bar{N}_i)$ and denote them by Δ . Then $D = \bar{D}/J(D)$ is a Δ -vector space and \bar{M} contains a subspace \bar{M}' which is a maximal subspace of $\sum_{i \neq k} \bigoplus \bar{N}_i$ for some k ($n \geq 3$), (cf. [3] §2). Hence M contains a submodule M' maximal in $\sum_{i \neq k} \bigoplus N_i$. Thus we obtain the following:

Lemma 1. *Let $N = \{N_i\}_{i=1}^{k'}$ be a family of hollow modules with finite length. If $D(N')$ satisfies (**) for a subfamily $N' = \{N_i\}_{i=1}^k$ of N with $k' > k \geq 2$, so does $D(N)$ (for the case $k=1$, see Theorem 6 below).*

Since R is semi-perfect, $N \approx eR/A$ for a primitive idempotent e and a right ideal A in eR . Then $\Delta = eRe/eJe$ and $S_N = \{x \in eRe \mid xA \subset A\}$. We sometimes denote \bar{S}_N by $\Delta(A)$.

We have defined a max. quasiprojective module in [2]. This is nothing but $\Delta = \bar{S}_N$ in our case.

Theorem 1. *Let N be a hollow module with $|N| < \infty$. Then the following conditions are equivalent:*

- 1) N is a max. quasiprojective.
- 2) $N^{(2)}$ has the lifting property of simple modules modulo the radical (see [1]).
- 3) $N^{(n)}$ has the above property for $n \geq 2$.
- 4) $N^{(2)}$ satisfies (**).

Proof. It is clear from [1], [2], except 4).

1) \leftrightarrow 4). This is clear from Theorem 2 below.

From Theorem 1 we are interested in case where $\Delta \supseteq \bar{S}_N = \bar{S}$. We may assume that Δ is a right \bar{S} -vector space and we denote the dimension of Δ by $[\Delta: \bar{S}]$.

Theorem 2 ([3], Lemma 5). *Let N , Δ , and \bar{S} be as above. Then $[\Delta: \bar{S}] = k < \infty$ if and only if $N^{(k+1)}$ satisfies (**), but $N^{(k)}$ does not.*

We shall give a more general result than Theorem 2. Let N_1 and N_2 be hollow modules with $|N_1| \leq |N_2| < \infty$. We assume $\bar{N}_1 \approx \bar{N}_2$. We shall identify

\bar{N}_1 and \bar{N}_2 and denote $\text{End}_R(\bar{N}_1)$ by Δ . Then we have the natural mapping φ of $\text{Hom}_R(N_2, N_1)$ into Δ . Put $\text{im } \varphi = \Delta(N_2, N_1)$ which is a right \bar{S}_{N_2} -subspace of Δ . We can express $N_i = eR/A_i$, $i=1, 2$. Then $|A_1| \geq |A_2|$ and $\text{Hom}_R(N_2, N_1) = \{x \in eRe \mid xA_2 \subset A_1\}$.

Theorem 2'. *Let N_1 and N_2 be hollow modules with finite length ($\bar{N}_1 \approx \bar{N}_2$). If $[\Delta/\Delta(N_2, N_1) : S_{N_2}] \leq k$, $D = N_2^{(k+1)} \oplus N_1$ satisfies (**). Conversely, if D satisfies (**) and $|N_2| \geq |N_1|$ then $[\Delta/\Delta(N_2, N_1) : \bar{S}_{N_2}] \leq k$.*

Proof. We assume first $|N_2| \geq |N_1|$. We may assume $N_i = eR/A_i$ for $i=1, 2$. Put $D = eR/A_2 \oplus \dots \oplus eR/A_2 \oplus eR/A_1$. Assume D satisfies (**). Let $\{\bar{\delta}_1, \bar{\delta}_2, \dots, \bar{\delta}_{k+1}\}$ be any set of elements in Δ . We shall express every element in D as $(\tilde{a}_1, \tilde{a}_2, \dots, \tilde{a}_{k+1}, \tilde{a}_{k+2})$, where the a_i are in eR and \tilde{a}_i is the residue class of a_i in eR/A . Take $\alpha_1 = (\tilde{e}, \tilde{o}, \dots, \tilde{o}, \bar{\delta}_1)$, $\alpha_2 = (\tilde{o}, \tilde{e}, \tilde{o}, \dots, \tilde{o}, \bar{\delta}_2)$, \dots , $\alpha_{k+1} = (\tilde{o}, \dots, \tilde{o}, \tilde{e}, \bar{\delta}_{k+1})$. Let M be the submodule of D generated by $\{\alpha_i\}_{i=1}^{k+1}$ and the elements in $J(D)$. Then M is a maximal submodule of D . Put $\bar{D} = D/J(D) \supset \bar{M} = M/J(D)$. M contains a non-zero direct summand M_1 of D by (**). We may assume that M_1 is indecomposable and hence cyclic. Let β be its generator. Then $\beta = \alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_{k+1} y_{k+1} + j$, where the y_i are in eR and j is in $J(D)$. Since $\beta \notin J(D)$, we may assume that the y_i are in eRe and $\bar{y}_1 \neq 0$ (R is basic). Consider an epimorphism ψ of eR onto βeR given by setting $\psi(r) = \beta r$: $r \in eR$. Put $\beta = (\tilde{e}y_1 + \tilde{j}_1, \tilde{e}y_2 + \tilde{j}_2, \dots, \tilde{e}y_{k+1} + \tilde{j}_{k+1}, \bar{\delta}_1 y_1 + \bar{\delta}_2 y_2 + \dots + \bar{\delta}_{k+1} y_{k+1} + \tilde{j}_{k+2})$, where the j_p are in eJ , and put $z = ey_1 + j_1$. Let x be in $\ker \psi$. Then $zx = zex \in A_2$. Hence $x \in (ze)^{-1}A_2$ and so $|M_1| \geq |\beta eR| = |eR/\ker \psi| \geq |eR/(ze)^{-1}A_2| = |eR/A_2|$. Since $|eR/A_2| \geq |eR/A_1|$ and M_1 is an indecomposable direct summand of D , $|M_1| \leq |eR/A_2|$. Hence $|M_1| = |eR/A_2|$, which implies $\ker \psi = (ze)^{-1}A_2$. Therefore $(ey_i + j_i)(ze)^{-1}A_2 \subseteq A_2$ for $i=2, \dots, k+1$ and $(\delta_1 y_1 + \dots + \delta_{k+1} y_{k+1} + j_{k+2})(ze)^{-1}A_2 \subseteq A_1$. Accordingly, $\varphi((ey_i + j_i)(ze)^{-1}) = \bar{y}_i z^{-1} \in \Delta(A_2)$ and $\varphi((\delta_1 y_1 + \dots + \delta_{k+1} y_{k+1} + j_{k+2})(ze)^{-1}) = \bar{\delta}_1 + \bar{\delta}_2 y_2 z^{-1} + \dots + \bar{\delta}_{k+1} y_{k+1} z^{-1} \in \Delta(A_2, A_1)$. Hence $[\Delta/\Delta(A_2, A_1) : \Delta(A_2)] \leq k$. Conversely, we assume that $[\Delta/\Delta(A_2, A_1) : \Delta(A_2)] \leq k$ and M a maximal submodule of D . Then $M \supset J(D)$. Let π_i be the projection of D onto the i -th component. If $\pi_j(\bar{M}) = 0$ for some j , $M = \sum_{i \neq j} \oplus N_i \oplus J(N_j)$. Hence we may assume $\pi_i(\bar{M}) \neq 0$ for all i . Then M contains a basis $\{\bar{\alpha}_1, \bar{\alpha}_2, \dots, \bar{\alpha}_{k+1}\}$ as above. Since $[\Delta/\Delta(A_2, A_1) : \Delta(A_2)] \leq k$, there exists a set $\{\bar{y}_1, \bar{y}_2, \dots, \bar{y}_{k+1}\}$ in $\Delta(A_2)$ such that $\sum \bar{\delta}_i y_i \in \Delta(A_2, A_1)$. Hence M contains an element $\beta = \sum \alpha_i y_i = (\bar{y}_1, \bar{y}_2, \dots, \bar{y}_{k+1}, \sum \bar{\delta}_i y_i)$, and so M contains a direct summand of D by [3], Lemma 17. If we put $N_1 = N_2$ in the theorem, then we have Theorem 2. Finally we assume $|N_2| < |N_1|$. Then there are no epimorphisms of N_2 onto N_1 , and so $\Delta(N_2, N_1) = 0$. Hence $[\Delta/\Delta(N_2, N_1) : \bar{S}_{N_2}] = [\Delta : \bar{S}_{N_2}] \leq k$. Therefore $D(k+2)$ satisfies (**) by Theorem 2 and Lemma 1.

The argument given in [3], §3 shows that the converse part in Theorem 2' does not hold without the assumption $|N_2| \geq |N_1|$.

Theorem 3. *Let $\{N_i\}_{i=1}^t$ ($t \geq 2$) be a set of hollow modules. Assume $|N_i| = |N_1|$, $\bar{N}_i \approx \bar{N}_1$ and $[\Delta: \bar{S}_{N_i}] = k < \infty$ for all i . Put $D = N_1^{(s_1)} \oplus N_2^{(s_2)} \oplus \dots \oplus N_t^{(s_t)}$, where $k+1 = \sum s_i$, and $s_i \geq 1$. Then D satisfies $(**)$ if and only if $N_i \approx N_1$ for all i .*

Proof. If $N_i \approx N_1$ for all i , then $D(N_i, k+1)$ satisfies $(**)$ by Theorem 2. Conversely, assume the property above. Since $t \geq 2$ and $\sum s_i = k+1$, $s_i \leq k$. We shall first show that some two of $\{N_i\}_{i=1}^t$ are isomorphic to each other. According to Theorem 2 there exists a maximal submodule M_0 of $N_t^{(s_t)}$, which contains no non-zero direct summands of $N_t^{(s_t)}$. It is clear that M_0 is generated by $J(N_t^{(s_t)})$ and the set of elements $\{\theta_i = (\tilde{o}, \dots, \overset{i}{\tilde{e}}, \tilde{o}, \dots, \tilde{\delta}_{ti}) \in N_t^{(s_t)}\}$, where the $\tilde{\delta}_{ik}$ are elements of eRe . Let $\{\tilde{\delta}_{i1}, \tilde{\delta}_{i2}, \dots, \tilde{\delta}_{is_i}\}$ be a set of independent elements of Δ over \bar{S}_{N_i} for $i \leq t-1$. We can assume $N_i = eR/A_i$. Let M be the submodule of D generated by $\{\alpha_{ij} = (\tilde{o}, \dots, \overset{i}{\tilde{e}}, \tilde{o}, \dots, \tilde{\delta}_{ij})\}_{i=1, j=1}^t$, where $k_{ij} = s_1 + \dots + s_{i-1} + j$ and $J(D)$. As in the proof of Theorem 2', put $\beta = (\tilde{e}y_{11} + \tilde{j}_{11}, \dots, \tilde{e}y_{1s_1} + \tilde{j}_{1s_1}, \dots, \tilde{e}y_{ts_t-1} + \tilde{j}_{ts_t-1}, \tilde{\delta}_{11}y_{11} + \dots + \tilde{\delta}_{ts_t-1}y_{ts_t-1} + \tilde{j}_{k+1})$ and assume that the direct summand M_1 of D , and hence of M , is generated by β . Then $M_1 = \beta R = \beta eR + (M_1 \cap J(D)) = \beta eR + J(M_1) = \beta eR$. Since $\beta \notin J(D)$, some y_{ij} is not in eJe . Assume first that $\bar{y}_{ij} = 0$ for all $i \leq t-1$. Then $\bar{M}_1 \subseteq \bar{N}_t^{(s_t)}$. Let π and π_{ij} be the projections of D onto M_1 and the j th component of $N_i^{(s_i)}$, respectively. Since $\bar{y}_{ij} \neq 0$ for some j , $\pi_{ij}(\bar{M}_1) \neq 0$. Hence, M_1 being isomorphic to some N_p , $M_1 \approx N_p$. Since $\bar{y}_{ij} = 0$ for $i \leq t-1$, $\beta = j + \theta$, where $j \in J(\sum_{i \leq t-1} \oplus N_i^{(s_i)})$, $\theta = \sum \theta_{ij} y_{ij} + (0, \dots, 0, \tilde{j}_{11}, \dots, \tilde{j}_{k+1}) \in M_0 \subseteq N_t^{(s_t)}$. Hence $M_1 = \beta eR$ is epimorphic to $M_0^* = \theta eR$, and so $|M_1| \geq |M_0^*|$. Noting that $\pi(\bar{M}_0^*) = \pi(\bar{M}_1) = \bar{M}_1$ and M_1 is hollow, we know that $\pi|_{M_0^*}$ is an epimorphism, and hence $\pi|_{M_0^*}$ is an isomorphism. Therefore $D = M_0^* \oplus \ker \pi$, and so M_0^* ($\subseteq M_0$) is a direct summand of $N_t^{(s_t)}$, which is a contradiction. Accordingly, $\bar{y}_{ij} \neq 0$ for some $i \leq t-1$, say $i = j = 1$. If $\bar{y}_{pq} = 0$ for $p \neq 1$ and all q , then we have the situation similar to the proof of Theorem 2', and obtain $\bar{y}_{1k}\bar{y}_{11}^{-1} \in \Delta(A_1)$. Therefore $\tilde{\delta}_{11}y_{11} + \tilde{\delta}_{12}y_{12} + \dots + \tilde{\delta}_{1s_1}y_{1s_1} \neq 0$, and so $\pi_{ts_t}(\bar{M}_1) \neq 0$, which means $N_t \approx M_1 \approx N_1$. Thus we have shown that some two of $\{N_i\}_{i=1}^t$ are isomorphic to each other. Hence we can show the theorem by induction on t .

From the proof above we have

Theorem 4. *Let N_1 and N_2 be hollow modules with $\bar{N}_1 \approx \bar{N}_2$. Assume $|N_2| = |N_1|$ and $[\Delta: \bar{S}_{N_2}] = k$. Then $N_1 \approx N_2$ if and only if $D(k+1) = N_2^{(k)} \oplus N_1$ satisfies $(**)$.*

Theorem 5. Let $\{N_i\}_{i=1}^t$ ($t \geq 2$) be a set of hollow modules. Assume $|N_i| = |N_1|$, $\bar{N}_i \approx \bar{N}_1$, and $[\Delta: \bar{S}_{N_i}] \geq k_i < \infty$. If $N_1^{(k_1)} \oplus N_2^{(k_2)} \oplus \dots \oplus N_t^{(k_t)}$ satisfies (**), then some two of $\{N_i\}_{i=1}^t$ are isomorphic to each other.

2 Direct sums of hollow modules with same length

We assume again that R is a right artinian ring.

Theorem 6. Let N be a set of representatives of the isomorphism classes of hollow modules. Then there holds the following:

- 1) Every $N \in N$ satisfies (**) if and only if R is semi-simple.
- 2) Every $N_1 \oplus N_2$ ($N_i \in N$) satisfies (**) if and only if R is right serial.

Proof. 1) Let e be an arbitrary primitive idempotent in R . If (**) is satisfied then eR is hollow and hence $eJ=0$, which proves that R is semi-simple.

2) If R is right serial then, for any $N \in N$, $N \approx eR/A$ with a primitive idempotent e and a characteristic submodule A of eR . Hence $\Delta(A) = \Delta$, and therefore every $N_1 \oplus N_2$ ($N_i \in N$) satisfies (**) by Theorem 2. Conversely, if every $N_1 \oplus N_2$ ($N_i \in N$) satisfies (**) then, by Theorems 2 and 4, $\Delta = \Delta(A)$ and $eR/A \approx eR/B$ for any primitive idempotent e and maximal submodules A and B in eJ . Hence $B = xA$ for some unit element x in eRe . In view of [3], Proposition 1, we may assume that $J^2=0$. Then, since $\Delta = \Delta(A)$, we have $B = xA = A$. Therefore R is right serial.

Theorem 7. Let N' be a set of hollow modules such that $|N_i| = |N_j|$ and $\bar{N}_i \approx \bar{N}_j$ for all $N_i, N_j \in N'$. Then all $N_1 \oplus N_2 \oplus N_3$ satisfy (**), but not all $N_1 \oplus N_2$ ($N_i \in N'$), if and only if N' satisfies either

- a) all N in N' are isomorphic to each other and $[\Delta: \bar{S}_N] = 2$, or
- b) $\Delta = \bar{S}_N$ for all $N \in N'$ and N' contains exactly two isomorphism classes.

Proof. This is immediate from Lemma 1 and Theorems 3, 4 and 5.

Theorem 8. Let N' be as in Theorem 7. Then all $N_1 \oplus N_2 \oplus N_3 \oplus N_4$ satisfy (**), but not all $N_1 \oplus N_2 \oplus N_3$ ($N_i \in N'$), if and only if N' satisfies one of the following:

- a) All N in N' are isomorphic to each other and $[\Delta: \bar{S}_N] = 3$.
- b) There are no N in N' such that $[\Delta: \bar{S}_N] = 3$, and if $l=1$ or 2 then N' contains exactly one isomorphism class of N such that $[\Delta: \bar{S}_N] = l$.
- c) $\Delta = \bar{S}_N$ for all $N \in N'$ and N' contains exactly three isomorphism classes.

Proof. This is also easy by Lemma 1 and Theorems 3, 4 and 5.

The following example will illustrate what Theorem 8 intends to expose.

Example 1. Let n be a positive integer. Let k be a field, and x an in-

determinate. Put $L=k(x)$ and $K_i=k(x^i)$. Considering L as a K_n -vector space, for any hyper-subspaces V and V' in L we can show directly that $\{x \in L \mid xV \subseteq V\} = K_i$ and $yV = V'$ for some y in L . Put

$$R = \begin{pmatrix} L & \overbrace{L \cdots L}^{n_1} & L & \overbrace{L \cdots L}^{n_2} & L & \overbrace{L \cdots L}^{n_3} & \cdots \\ K_{i1} & \ddots & K_{i1} & K_{i2} & \ddots & K_{i2} & K_{i3} & \ddots & K_{i3} & \ddots \\ 0 & & 0 & & & & & & & \end{pmatrix}$$

where $i_p \neq i_p$ if $p \neq q$. Then $e_{11}J = \sum_p \sum_{q=1}^{n_p} \oplus L_{pq}$, where $L_{pq} = (0, 0, \dots, \overset{\swarrow}{L}, 0, \dots)$, $i = \sum_{j=1}^{p-1} n_j + q + 1$, and $L_{pq} \not\cong L_{p'q'}$ if $(p, q) \neq (p', q')$. Hence, every maximal submodule in $e_{11}J$ is of the form $A_{pq} = (0, L, \dots, L, \overset{\swarrow}{V}, L, \dots)$, where V is a hyper-subspace of L over K_{ip} . Further, $A_{pq} = e_{11}ye_{11}A'_{pq}$ for some y in L and $\Delta(A_{pq}) = K_{ip}$. Therefore, for each i there exist exactly n_i non-isomorphic classes of maximal submodules N_i in $e_{11}J$ such that $[\Delta: \Delta(N_i)] = i$.

Theorem 9. *Let R be a commutative and local artinian ring and let N be a set of representatives of the isomorphism classes of serial modules with length two. In case R/J is infinite, if there exists a natural number n such that all $N_1 \oplus N_2 \oplus \dots \oplus N_n$ ($N_i \in N$) satisfy (**) then R is a serial ring, and conversely. In case R/J is finite, there exists a natural number n such that all $N_1 \oplus N_2 \oplus \dots \oplus N_n$ satisfy (**).*

Proof. Let $K = R/J$ and $J/J^2 = \sum_{j=1}^m \oplus A_j$ with simple K -modules A_j . If K is infinite, then $A_1 \oplus A_2$ contains infinitely many submodules isomorphic to A_1 . Hence N is infinite provided $m \geq 2$. Therefore $J/J^2 = A_1$ if and only if there exists a natural number n such that all $N_1 \oplus N_2 \oplus \dots \oplus N_n$ ($N_j \in N$) satisfy (**), and hence by [3], Proposition 1, if and only if R is serial. If K is finite, then J/J^2 is also finite. Hence N contains m modules, and therefore all $N_1 \oplus N_2 \oplus \dots \oplus N_{m+1}$ satisfy (**).

Similarly, we can prove

Theorem 10. *Let R be a local algebra of finite dimension over an algebra-*

ically closed field. Let N be a representative set of the isomorphism classes of serial modules with length two. Then there exists a natural number n such that all $N_1 \oplus N_2 \oplus \cdots \oplus N_n$ ($N_i \in N$) satisfy $(**)$ if and only if R is right serial.

The author would like to express his hearty thanks to the referee who was patient to make up the original manuscript understandable.

References

- [1] M. Harada: *On lifting property on direct sums of hollow modules*, Osaka J. Math. **17** (1980), 783–791.
- [2] ———: *On maximal quasiprojective modules*, J. Austral. Math. Soc. Ser. A **35** (1983), 357–368.
- [3] ———: *On maximal submodules of a finite direct sum of hollow modules I*, Osaka J. Math. **21** (1984), 649–670.
- [4] ———: *Serial rings and direct decompositions*, J. Pure Appl. Algebra **31** (1984), 55–61.

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558,
Japan

