ON MAXIMAL SUBMODULES OF A FINITE DIRECT SUM OF HOLLOW MODULES II

MANABU HARADA

(Received April 26, 1983)

Introduction

We have given, in [3], the structure of right artinian rings satisfying the following conditions: i) the Jacobson radical of a ring is square zero and ii) every submodule of a direct sum of hollow (local) modules is also a direct sum of hollow modules. The latter property cited above implies that every maximal submodule of a direct sum of \(t+1\)-copies of a hollow module with length \(t\) contains a direct summand.

In this paper, we shall study this property for any right artinian ring, and reproduce, in §1, the results similar to ones in [3] without the assumption that the Jacobson radical is square zero. In §2 we shall give a characterization of some rings in terms of the property above.

1 Property (**)

Let \(R\) be a ring with identity. In this paper, every \(R\)-module is a unitary right \(R\)-module. Let \(M\) be an \(R\)-module. We shall denote the Jacobson radical of \(M\) by \(J(M)\) and the radical of \(R\) by \(J\) or \(J(R)\), respectively. Throughout this paper we assume that \(R\) is a right artinian (semi-perfect) ring and every \(R\)-module \(M\) has the finite composition length, which we denote by \(|M|\). If \(M\) has a unique maximal submodule \(J(M)\), \(M\) is called hollow (local). In this case \(M \approx eR/A\) for a primitive idempotent \(e\) and a right ideal \(A\) in \(eR\).

Given a family \(N=\{N_i\}_{i=1}^\infty\) of (hollow) modules, we denote by \(D(N)\) the direct sum \(\bigoplus_{i=1}^\infty N_i\). If \(N_i=N\) for a fixed module \(N\), we indicate this by \(N^{(n)}\).

We have studied in [3] the following property:

(**) Every maximal submodule of \(D(N)\) contains a non-zero direct summand of \(D(N)\).

Since the above property is preserved by Morita equivalence, we may assume that \(R\) is a basic ring. Hence, from now on, we assume that \(R\) is a right artinian and basic ring. Let \(N\) be a hollow module with finite length. We put \(\bar{N}=N/J(N)\), and \(S (=S_N)=\text{End}_R(N)\). Then \(\Delta=\text{End}_R(\bar{N})\) is a division
ring. We have the natural homomorphism \(\varphi \) of \(S \) into \(\Delta \). It is clear that \(\ker \varphi = J(S) \) and \(\im \varphi \) is a subdivision ring of \(\Delta \), because \(|N| < \infty \). We put \(\im \varphi = S' (= S) \). We assume \(D = D(N, j, n) = \sum \bigoplus N_{i1} \oplus \sum \bigoplus N_{i2} \oplus \cdots \bigoplus \bigoplus N_{ii} \), where \(N_{i1} \cong N_{ki} \) and \(N_{i2} \cong N_{ji} \) if \(i \neq j \). Let \(M \) be a maximal submodule of \(D \). Then \(M \supset J(D) \) and \(\bar{M} = M/J(D) \) is expressed as \(\bar{M} = \sum \bigoplus \bar{M}_i \), where \(\bar{M}_i \) is a maximal submodule of \(\bigoplus \bigoplus N_{ik} \) for some \(i \) and \(\bar{M}_i = \sum \bigoplus N_{jk} \) for \(j \neq i \). Therefore, when we study the property (**), we may assume \(\bar{N}_i \cong \bar{N}_i \) for all \(i \). We shall identify all End\(_R(N_i) \) and denote them by \(\Delta \). Then \(D/J(D) \) is a \(\Delta \)-vector space and \(M \) contains a subspace \(M' \) which is a maximal subspace of \(\sum \bigoplus N_i \) for some \(k \) (\(n \geq 3 \)), (cf. [3] §2). Hence \(M \) contains a submodule \(M' \) maximal in \(\sum \bigoplus N_i \). Thus we obtain the following:

Lemma 1. Let \(N = \{ N_i \}_{i=1}^\infty \) be a family of hollow modules with finite length. If \(D(N') \) satisfies (***) for a subfamily \(N' = \{ N_i \}_{i=1}^{k'} \) of \(N \) with \(k' > k \geq 2 \), so does \(D(N) \) (for the case \(k = 1 \), see Theorem 6 below).

Since \(R \) is semi-perfect, \(N \cong eR/A \) for a primitive idempotent \(e \) and a right ideal \(A \) in \(eR \). Then \(\Delta = eRe/eFe \) and \(S_N = \{ x \in eRe \mid xA \subset A \} \). We sometimes denote \(S_N \) by \(\Delta(A) \).

We have defined a max. quasiprojective module in [2]. This is nothing but \(\Delta = S_N \) in our case.

Theorem 1. Let \(N \) be a hollow module with \(|N| < \infty \). Then the following conditions are equivalent:

1) \(N \) is a max. quasiprojective.
2) \(N^{(2)} \) has the property of simple modules modulo the radical (see [1]).
3) \(N^{(n)} \) has the above property for \(n \geq 2 \).
4) \(N^{(k)} \) satisfies (***)

Proof. It is clear from [1], [2], except 4).

1) \(\leftrightarrow \) 4). This is clear from Theorem 2 below.

From Theorem 1 we are interested in case where \(\Delta \cong S_N = S \). We may assume that \(\Delta \) is a right \(S \)-vector space and we denote the dimension of \(\Delta \) by \([\Delta : S] \).

Theorem 2 ([3], Lemma 5). Let \(N, \Delta, \) and \(S \) be as above. Then \([\Delta : S] = k < \infty \) if and only if \(N^{(k+1)} \) satisfies (**), but \(N^{(k)} \) does not.

We shall give a more general result than Theorem 2. Let \(N_1 \) and \(N_2 \) be hollow modules with \(|N_1| \leq |N_2| < \infty \). We assume \(\bar{N}_1 \cong \bar{N}_2 \). We shall identify
\(\bar{N}_1 \) and \(\bar{N}_2 \) and denote \(\text{End}_E(\bar{N}_1) \) by \(\Delta \). Then we have the natural mapping \(\varphi \) of \(\text{Hom}_E(N_2, N_1) \) into \(\Delta \). Put \(\text{im } \varphi = \Delta(N_2, N_1) \) which is a right \(\bar{S}_{N_2} \)-subspace of \(\Delta \). We can express \(N_i = eR/A_i \), \(i = 1, 2 \). Then \(|A_1| \geq |A_2| \) and \(\text{Hom}_E(N_2, N_1) = \{ x \in eRe | xA_2 \subseteq A_1 \} \).

Theorem 2'. Let \(N_1 \) and \(N_2 \) be hollow modules with finite length \((\bar{N}_1 \cong \bar{N}_2) \).

If \(\Delta(\Delta(N_2, N_1)); S_{N_2} \leq k \), \(D = N_2^{(k+1)} \oplus N_1 \) satisfies \((**) \). Conversely, if \(D \) satisfies \((**) \) and \(|N_2| \geq |N_1| \) then \(\Delta(\Delta(N_2, N_1)); S_{N_2} \leq k \).

Proof. We assume first \(|N_2| \geq |N_1| \). We may assume \(N_1 = eR/A_i \) for \(i = 1, 2 \). Put \(D = eR/A_2 \oplus \cdots \oplus eR/A_2 \oplus eR/A_1 \). Assume \(D \) satisfies \((**) \). Let \(\{ \delta_1, \delta_2, \ldots, \delta_{k+1} \} \) be any set of elements in \(\Delta \). We shall express every element in \(D \) as \((a_1, a_2, \ldots, a_{k+2}) \), where the \(a_i \) are in \(eR \) and \(\delta_i \) is the residue class of \(a_i \) in \(eR/A \).

Take \(\alpha_1 = (\delta, \delta, \ldots, \delta, \delta) \), \(\alpha_2 = (\delta, \delta, \ldots, \delta, \delta_2) \), \ldots, \(\alpha_{k+1} = (\delta, \ldots, \delta, \delta, \delta_1) \). Let \(M \) be the submodule of \(D \) generated by \(\{ \alpha_j \} \) and the elements in \(J(D) \). Then \(M \) is a maximal submodule of \(D \). Put \(\bar{D} = \bar{D}[J(D)] \) \(\Rightarrow \bar{M} = M/J(D) \). \(M \) contains a non-zero direct summand \(M_1 \) of \(D \) by \((**) \).

We may assume that \(M_1 \) is indecomposable and hence cyclic. Let \(\beta \) be its generator. Then \(\beta = \beta_1 y_1 + \beta_2 y_2 + \cdots + \beta_{k+1} y_{k+1} + j \), where the \(y_i \) are in \(eR \) and \(j \) is in \(J(D) \). Since \(\beta \in J(D) \), we may assume that the \(y_i \) are in \(eRe \) and \(\delta_1 = 0 \) (\(R \) is basic). Consider an epimorphism \(\psi \) of \(eR \) onto \(eR \) given by setting \(\psi(r) = \beta r \); \(r \in eR \). \(\beta \) satisfies \((**) \).

Put \(\beta = (\delta y_1 + j_1, \delta y_2 + j_2, \ldots, \delta y_{k+1} + j_{k+2}, \delta y_1 + \delta y_2 + \ldots + \delta_{k+1} y_{k+1} + j_{k+2}) \), where the \(j_i \) are in \(eR \). Let \(x \in \ker \psi \). Then \(x = x e \xi \in A_2 \). Hence \(x \in eR(\bar{z})^{-1} A_2 \) and so \(|M_1| > |\beta eR| = |eR/\ker \psi| = |eR| (\bar{z})^{-1} A_2 \). Since \(|eR/A_2| > |eR/A_1| \) and \(M_1 \) is an indecomposable direct summand of \(D \), \(|M_1| \leq |eR/A_2| \). Hence \(|M_1| = |eR/A_2| \), which implies \(\ker \psi = (\bar{z})^{-1} A_2 \). Therefore \((ey_i + j_i)(\bar{z})^{-1} A_2 \subseteq A_2 \) for \(i = 2, \ldots, k+1 \) and \((\delta y_1 + \ldots + \delta_{k+1} y_{k+1} + j_{k+2})(\bar{z})^{-1} A_2 \subseteq A_2 \). Accordingly, \(\varphi(ey_i + j_i)(\bar{z})^{-1} = \bar{y}_i \bar{z}^{-1} \in \Delta(A_2) \) and \(\varphi((\delta y_1 + \ldots + \delta_{k+1} y_{k+1} + j_{k+2})(\bar{z})^{-1}) = \bar{\delta}_1 + \bar{\delta}_2 y_2 + \ldots + \bar{\delta}_{k+1} y_{k+1} + \bar{\delta}_1 \). Hence \(\Delta(\Delta((2, A_1); \Delta(A_2)) \leq k \).

Conversely, we assume that \(\Delta(\Delta(A_2, A_1); \Delta(A_2)) \leq k \) and \(M \) is a maximal submodule of \(D \). Then \(M \supseteq J(D) \). Let \(\pi_i \) be the projection of \(D \) onto the \(i \)-th component. If \(\pi_i(M) = 0 \) for some \(j, M = \sum_{i=1}^{\infty} \oplus N_i \oplus J(N_i) \). Hence we may assume \(\pi_i(M) \neq 0 \) for all \(i \). Then \(M \) contains a basis \(\{ \alpha_1, \alpha_2, \ldots, \alpha_{k+1} \} \) as above. Since \(\Delta(\Delta(A_2, A_1); \Delta(A_2)) \leq k \), there exists a set \(\{ \bar{y}_1, \bar{y}_2, \ldots, \bar{y}_{k+1} \} \) in \(\Delta(A_2) \) such that \(\sum \bar{y}_i y_i \in \Delta(A_2, A_1) \). Hence \(M \) contains an element \(\beta = \sum \alpha_i y_i = (\bar{y}_1, \bar{y}_2, \ldots, \bar{y}_{k+1}, \sum \bar{y}_i y_i) \), and so \(M \) contains a direct summand of \(D \) by [3], Lemma 17. If we put \(N_2 = N_2 \) in the theorem, then we have Theorem 2. Finally we assume \(|N_2| > |N_1| \).

Then there are no epimorphisms of \(N_2 \) onto \(N_1 \), and so \(\Delta(N_2, N_1) = 0 \). Hence \(\Delta(\Delta(N_2, N_1)); S_{N_2} = \Delta; S_{N_2} \leq k \). Therefore \(D(k+2) \) satisfies \((**) \) by Theorem 2 and Lemma 1.
The argument given in [3], §3 shows that the converse part in Theorem 2' does not hold without the assumption \(|N_2| \geq |N_1| \).

Theorem 3. Let \(\{N_i\}_{i=1}^t \) be a set of hollow modules. Assume \(|N_i| = |N_1| \), \(N_i \cong N_1 \) and \([\Delta: S_{ni}] = k < \infty \) for all \(i \). Put \(D = N_1^{(s)} \oplus N_2^{(s)} \oplus \cdots \oplus N_i^{(s)} \), where \(k + 1 = \sum s_i \) and \(s_i \geq 1 \). Then \(D \) satisfies \((**\) \) if and only if \(N_i \cong N_1 \) for all \(i \).

Proof. If \(N_i \cong N_1 \) for all \(i \), then \(D(N_i, k+1) \) satisfies \((**\) \) by Theorem 2. Conversely, assume the property above. Since \(t \geq 2 \) and \(\sum s_i = k+1 \), \(s_i \leq k \).

We shall first show that some two of \(\{N_i\}_{i=1}^t \) are isomorphic to each other. According to Theorem 2 there exists a maximal submodule \(M_0 \) of \(N_i^{(s)} \), which contains no non-zero direct summands of \(N_i^{(s)} \). It is clear that \(M_0 \) is generated by \(f_i(N_i^{(s)}) \) and the set of elements \(\{\theta_i = (\delta, \cdots, \delta, \delta, \cdots, \delta_{ii}) \in N^{(s)}\} \), where \(\delta_{ii} \) are elements of \(eRe \). Let \(\{\tilde{\delta}_{ii}, \tilde{\delta}_{ii2}, \cdots, \tilde{\delta}_{iit}\} \) be a set of independent elements of \(\Delta \) over \(S_{ni} \) for \(i \leq t-1 \). We can assume \(N_i = eR/A_i \). Let \(M \) be the submodule of \(D \) generated by \(\{a_{ij} = (\delta, \cdots, \delta, \delta, \cdots, \delta_{ii})\}_{i=1, j=1} \), where \(k_{ij} = s_i + \cdots + s_{i-1} + j \) and \(J(D) \). As in the proof of Theorem 2', put \(\beta = (\tilde{\delta}_{ii} y_{11} + \tilde{\delta}_{iit} y_{1t} + \cdots, \tilde{\delta}_{iit} y_{t-1} + \tilde{\delta}_{iit} y_{tt} + \cdots + \tilde{\delta}_{iit} y_{tt-1} + \delta_{tt}) \) and assume that the direct summand \(M_i \) of \(D \), and hence of \(M \), is generated by \(\beta \). Then \(M_i = \beta R = \beta eR + (M_i \cap \Delta) = \beta R \). Since \(\beta \notin J(D) \), some \(y_{ij} \) is not in \(efe \). Assume first that \(y_{ij} = 0 \) for all \(i \leq t-1 \). Then \(M_i \subseteq N_i^{(s)} \). Let \(\pi \) and \(\pi_{ij} \) be the projections of \(D \) onto \(M_i \) and the \(j \)th component of \(N_i^{(s)} \), respectively. Since \(y_{ij} = 0 \) for some \(i, \pi_{ij}(M_i) \neq 0 \). Hence, \(M_i \) being isomorphic to some \(N_{i_p} \), \(M_i \cong N_i \). Since \(\tilde{y}_{ij} = 0 \) for \(i \leq t-1, \pi_{jj} = 0 \), where \(j \in J(\sum_{i=1}^t \oplus N_i^{(s)}), \theta = \sum \theta_{ij} y_{ij} + (0, \cdots, 0, \tilde{y}_{it}, \cdots, \tilde{y}_{tt}) \in M_i \subseteq N_i^{(s)} \). Hence \(M_i = \beta eR \) is epimorphic to \(M_i^s = \theta eR \), and so \(|M_i| \geq |M_i^s| \). Noting that \(\pi(M_i^s) = \pi(M_i) \), we know that \(\pi | M_i^s \) is an epimorphism, and hence \(\pi | M_i^s \) is an isomorphism. Therefore \(D = M_i^s \oplus ker \pi \), and so \(M_i^s \) \((\subseteq M_i) \) is a direct summand of \(N_i^{(s)} \), which is a contradiction. Accordingly, \(y_{ij} = 0 \) for some \(i \leq t-1 \), say \(i = j = 1 \). If \(y_{ip} = 0 \) for \(p \neq 1 \), \(\pi_{ip}(M_i) = 0 \). Hence \(N_i \cong M_i \cong N_p \). Assume \(y_{pq} = 0 \) for all \(p \neq 1 \) and all \(q \). Then we have the situation similar to the proof of Theorem 2', and obtain \(\tilde{y}_{it} y_{it} \in \Delta(A_i) \). Therefore \(\delta_{ii} y_{11} + \delta_{i2} y_{12} + \cdots + \delta_{it} y_{tt} = 0 \), and so \(\pi_{it}(M_i) = 0 \), which means \(N_i \cong M_i \cong N_i \). Thus we have shown that some two of \(\{N_i\}_{i=1}^t \) are isomorphic to each other. Hence we can show the theorem by induction on \(t \).

From the proof above we have

Theorem 4. Let \(N_1 \) and \(N_2 \) be hollow modules with \(N_i \cong N_2 \). Assume \(|N_2| = |N_1| \) and \([\Delta: S_{N_2}] = k \). Then \(N_i \cong N_2 \) if and only if \(D(k+1) = N_2^{(s)} \oplus N_1 \) satisfies \((**\) \).
Theorem 5. Let \(\{N_i\}_{i=1}^t \) be a set of hollow modules. Assume \(|N_i| = |N_j| \) for all \(i, j \), \(\hat{N}_i \cong \hat{N}_j \), and \([\Delta : \bar{S}_{N_i}] \geq k_i \). If \(N_i^{(k_1)} + N_i^{(k_2)} + \cdots + N_i^{(k_l)} \) satisfies (**) then some two of \(\{N_i\}_{i=1}^t \) are isomorphic to each other.

2 Direct sums of hollow modules with same length

We assume again that \(R \) is a right artinian ring.

Theorem 6. Let \(\mathcal{N} \) be a set of representatives of the isomorphism classes of hollow modules. Then there holds the following:

1) Every \(N \in \mathcal{N} \) satisfies (**), if and only if \(R \) is semi-simple.

2) Every \(N_i \oplus N_2 \) (\(N_i \in \mathcal{N} \)) satisfies (**), if and only if \(R \) is right serial.

Proof. 1) Let \(e \) be an arbitrary primitive idempotent in \(R \). If (**), then \(eR \) is hollow and hence \(ej=0 \), which proves that \(R \) is semi-simple.

2) If \(R \) is right serial then, for any \(N \in \mathcal{N}, N \cong eR/A \) with a primitive idempotent \(e \) and a characteristic submodule \(A \) of \(eR \). Hence \(\Delta(A) = \Delta \), and therefore every \(N_i \oplus N_2 \) (\(N_i \in \mathcal{N} \)) satisfies (**). Conversely, if every \(N_i \oplus N_2 \) (\(N_i \in \mathcal{N} \)) satisfies (**), then, by Theorems 2 and 4, \(\Delta = \Delta(A) \) and \(eR/A \cong eR/B \) for any primitive idempotent \(e \) and maximal submodules \(A \) and \(B \) in \(eJ \). Hence \(B=xA \) for some unit element \(x \) in \(eRe \). In view of [3], Proposition 1, we may assume that \(J^2 = 0 \). Then, since \(\Delta = \Delta(A) \), we have \(B=xA=A \). Therefore \(R \) is right serial.

Theorem 7. Let \(\mathcal{N}' \) be a set of hollow modules such that \(|N_i| = |N_j| \) and \(\hat{N}_i \cong \hat{N}_j \) for all \(i, j \), \(\hat{N}_i \in \mathcal{N}' \). Then all \(N_i \oplus N_2 \oplus N_3 \) satisfy (**), but not all \(N_i \oplus N_2 \oplus N_3 \) satisfy (**), if and only if \(\mathcal{N}' \) satisfies either

a) \(\Delta = \bar{S}_N \) for all \(N \in \mathcal{N}' \) and \(\mathcal{N}' \) contains exactly two isomorphism classes.

b) \(\Delta = \bar{S}_N \) for all \(N \in \mathcal{N}' \) and \(\mathcal{N}' \) contains exactly two isomorphism classes.

Proof. This is immediate from Lemma 1 and Theorems 3, 4 and 5.

Theorem 8. Let \(\mathcal{N}' \) be as in Theorem 7. Then all \(N_i \oplus N_2 \oplus N_3 \oplus N_4 \) satisfy (**), but not all \(N_i \oplus N_2 \oplus N_3 \) satisfy (**), if and only if \(\mathcal{N}' \) satisfies one of the following:

a) All \(N \) in \(\mathcal{N}' \) are isomorphic to each other and \([\Delta : \bar{S}_N] = 3 \).

b) There are no \(N \) in \(\mathcal{N}' \) such that \([\Delta : \bar{S}_N] = 3 \), and if \(l=1 \) or \(2 \) then \(\mathcal{N}' \) contains exactly one isomorphism class of \(N \) such that \([\Delta : \bar{S}_N] = l \).

c) \(\Delta = \bar{S}_N \) for all \(N \in \mathcal{N}' \) and \(\mathcal{N}' \) contains exactly three isomorphism classes.

Proof. This is also easy by Lemma 1 and Theorems 3, 4 and 5.

The following example will illustrate what Theorem 8 intends to expose.

Example 1. Let \(n \) be a positive integer. Let \(k \) be a field, and \(x \) an in-
determinate. Put $L=k(x)$ and $K_i=k(x^i)$. Considering L as a K_i-vector space, for any hyper-subspaces V and V' in L we can show directly that $\{x \in L \mid xV \subseteq V\} = K_i$ and $yV = V'$ for some y in L. Put

$$R = \begin{pmatrix}
L & L \cdots L & L \cdots L & L \cdots L & L \\
K_1 & \ddots & K_1 & \ddots & 0 \\
& K_1 & \ddots & K_1 & \ddots \\
& & K_1 & \ddots & K_1 \\
& & & K_1 & \ddots \\
& & & & K_1 \\
& & & & & \ldots
\end{pmatrix}$$

where $i_p \neq i_q$ if $p \neq q$. Then $e_{11}J = \sum_{p=1}^{i} \oplus L_{p1}$, where $L_{p1}=(0, 0, \ldots, L, 0, \ldots)$, $i=\sum_{j=1}^{i} n_j + q + 1$, and $L_{p1} \cong L_{q1}$ if $(p, q) \neq (q', q')$. Hence, every maximal submodule in $e_{11}J$ is of the form $A_{pq}=(0, L, \ldots, L, V, L, \ldots)$, where V is a hyper-subspace of L over K_{i_p}. Further, $A_{pq}=e_{11}y_{e_{11}}A_{q'}$ for some y in L and $\Delta(A_{pq}) = K_{i_p}$. Therefore, for each i there exist exactly n_i non-isomorphic classes of maximal submodules N_j in $e_{11}J$ such that $[\Delta: \Delta(\Delta(N_j))] = i_j$.

Theorem 9. Let R be a commutative and local artinian ring and let N be a set of representatives of the isomorphism classes of serial modules with length two. In case R/J is infinite, if there exists a natural number n such that all $N_1 \oplus N_2 \oplus \cdots \oplus N_n$ ($N_i \in N$) satisfy (**), then R is a serial ring, and conversely. In case R/J is finite, there exists a natural number n such that all $N_1 \oplus N_2 \oplus \cdots \oplus N_n$ satisfy (**).

Proof. Let $K=R/J$ and $J/J^2 = \sum_{j=1}^{m} A_j$ with simple K-modules A_j. If K is infinite, then $A_1 \oplus A_2$ contains infinitely many submodules isomorphic to A_1. Hence N is infinite provided $m \geq 2$. Therefore $J/J^2 = A_1$ if and only if there exists a natural number n such that all $N_1 \oplus N_2 \oplus \cdots \oplus N_n$ ($N_j \in N$) satisfy (**), and hence by [3], Proposition 1, if and only if R is serial. If K is finite, then J/J^2 is also finite. Hence N contains m modules, and therefore all $N_1 \oplus N_2 \oplus \cdots \oplus N_m$ satisfy (**).

Similarly, we can prove

Theorem 10. Let R be a local algebra of finite dimension over an algebra-
icelty closed field. Let \(N \) be a representative set of the isomorphism classes of serial modules with length two. Then there exists a natural number \(n \) such that all \(N_1 \oplus N_2 \oplus \cdots \oplus N_n (N_i \in N) \) satisfy (**') if and only if \(R \) is right serial.

The author would like to express his hearty thanks to the referee who was patient to make up the original manuscript understandable.

References

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558,
Japan