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Introduction

In the present work the authors study properties of Hopf structures modelled
on complex K-theory mod p of H-spaces. Namely, let X be an H-space which has
a homotopy type of finite CW-complexes, and p a prime. For each choice of the
admissible external multiplication p, of K*( ;Z,) [2], K*(X; Z,) gains a struc-
ture of algebra as well as that of coalgebra, hence a kind of structure like Hopf al-
gebra. We study structures modelled on these structures. Our results were already
partly announced in [3] and also reported in Neuchatel conference on H-spaces,
1970 (to appear in Springer Lecture Notes Series) by the first named author.

When we compare our structures like Hopf algebras with the classical Hopf
algebras modelled on the ordinary homology and cohomology of H-spaces, we will
find two significant differences. The first point of difference is that the classical
Hopf algebras are non-negatively graded and can be discussed sometimes by mak-
ing use of an induction argument on degrees (cf., [10] etc.), but our structures are
Z,-graded and we cannot use such arguments. We use instead sometimes two filt-
rations (F-filtrations by algebra structure and G-filtrations by coalgebra struc-
ture) originally due to Browder [6], or some other arguments.

The second point is that in the classical Hopf algebras the relation

dp = (pQ@)1QT 1) (¢R¢)

of Milnor-Moore [10] is important. But in our structures the above relation may
not hold in general. The above relation in the classical case is essentially based on
the commutativity of external multiplications of ordinary homology and cohomo-
logy. But the external multiplication x, of K*( ; Z,) may not be commutative in
general, and is never commutative in case p=2 [2]. Fortunately the deviation
formula from the commutativityis known [2]. So we regard this non-
commutativity as a kind of commutativity relation replacing the ordinary twisting
morphism 7' by the A-modified one T3, (2.17). Actually we find the above
relation holds also in our structures if we replace T by a suitable 7. In the de-
finition of T, a differential comes in. Thus we talk of the differential Hopf
algebras (in a modified sense) from the beginning.
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When the differential is trivial we find a Hopf algebra (in Z,-graded but not
modified sense). Thus our theory contains a theory on Hopf algebras in Z,-graded
sense. Generally we do not assume the finite dimensionality even though our main
interest is to apply for K*(X; Z,) with finite CW-H-space X.

In §1 we define algebras, coalgebras and two filtrations, and discuss basic pro-
perties of these filtrations, associated graded algebras and coalgebras, some con-
sequences of making use of these filtrations. In §2 we first formulate some basic
properties of ordinary twisting morphism or, more generally, of signed permu-
tations by making use of a semi-simplicial terminology. Then we define A-modi-
fied twisting morphism and A-modified permutations, and see that they also
behave the same basic properties as ordinary ones. This justifies to use A-modified
permutations instead of ordinary signed permutations. In §3 we discuss differen-
tial algebras, coalgebras and their spectral sequences associated with the basic
filtrations. In §4 we define A-modified differential Hopf algebras and discuss their
spectral sequences, primitivity and coprimitivity, and some related propositions.
Here we check some propositions and theorems of [10] work also for our A-modi-
fied differential Hopf algebras. In §5 we define the notion of derived Hopf alge-
bras of A-modified differential Hopf algebras, which will be used in §6 in connec-
tion with the characterization of primitivity and coprimitivity. In §6 we discuss
our version of Milnor-Moore criterions of primitivity and coprimitivity (cf.,[10],
Proposition 4.20), Theorem (6.6), (6.6%), (6.15) and (6.15%). In case p=2 and
Ad =0 the criterions fail to be criterions since we could not prove the inverse the-
orem in this case. Still it says something, and we could establish the primitivity or

coprimitivity of all terms of spectral sequences associated with basic filtrations,
Theorem (6.17).

1. Basic filtrations

1.1. All modules will be understood to be defined over a field K through-
out the present work. A Z,-graded module (or G,-module) M is a module over K
graded with indices in Z,, i.e.,

M= MM, .

Elements of M, (or of M,) will be called of even type (or of odd type). Morphisms
of G,-modules are understood to preserve Z,-gradings. A G,-module M has a ca-
nonical involution o such that

(1. 1) olM,=1 and o|M,= —1.

When the characteristic of K is different from 2 the involution ¢ characterizes the
Z,-grading conversely.

Let M and N be G,-modules. The tensor product M QN is a G,-module
defined by
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(M®N)o= M0®N0+M1®Nn (M®N)1 == M0®N1+M1®No .

The ground field K is always understood as to be Z,-graded by K,=K and
K,={0}. Then we have canonical isomorphisms

(1.2) M~MQOK~KQM

of G,-modules.
By a graded G,-module M we mean a G,-module with a non-negative grading

M= ®,5M"
such that M is (Z, Z,)-bigraded, i.e.,
M; = DM, Mi=MNM" ic€Z,.
Similarly a bigraded G,-module is defined.
1.2. An algebra A is a G,-module equipped with morphisms of G,-modules

@: ARA—A, called by a multiplication,
n: K—A, called by a unit.
and

& A-K, called by an augmentation,
which satisfy relations
P(1R1) = p(1Q7n) = 1,
via the canonical identification (1.2) for M=A,

Pr(ERE)=Ep and £Lnp=1g.

Notice that &: (4, @, 7)—K is a morphism of G,-modules equipped with multi-
plications and units.
A coalgebra 4 is a G,-module equipped with morphisms of G,-modules
¢: A—>ARA, called by a comultiplication,
&: A-K, called by a counit,
and
7. K—A4, called by an augmentation,

which satisfy relations

(ERNY = (1Q&eY = 1,4,
gn = (nQn)Px and &y = 1.
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An algebra (or a coalgebra) A is called to be associative when the multipli-
cation @ (or the comultiplication ¢) satisfies

P(Pp®1) = p(1Q9)  (or ($@1)¢ = (18¢)9) .

An algebra (or a coalgebra) A4 is called to be graded when the underlying G,-
module is graded and all structure morphisms preserve degrees. A graded algebra
(or coalgebra) A is called to be connected when A°=K, as usual.

Let A be an algebra (or a coalgebra). Since £7 = 1, we have a direct sum
decomposition of G,-modules

(1. 3) A = Im»PKer &
=K®pA,
where K and Im 7% are identified through the isomorphism 7: K=Im 5, and

Ker ¢ is denoted by A. We regard as 1< 4 via the above identification. We can
also identify A with Coker . Let

¢: AcA and p: A—A
be the inclusion and projection respectively. The map

(1.4) P = pp(tQ¢): ARQA—A
(or § = (p@p)pr: A—>ARA)

is called the reduced multiplication (or comultiplication).

Images of morphisms are called sub algebras (or sub coalgebras). Kernels of
morphisms are called ideals (or coideals). Hence every ideal (or coideal) J of 4 is
contained in A, and the quotient 4/] becomes an algebra (or a coalgebra) called a
quotient algebra (or a quotient coalgebra). If A is an algebra and J is an ideal of 4,
then K@ J is a sub algebra. If 4 is a coalgebra and B is a sub coalgebra, then
B is a coideal of A.

Let A be an algebra (or a coalgebra) and M be a G,-module. When M is
equipped with a morphism of G,-modules

om: AQM —-M (or Yar: M—ARQRM)
such that
Pu(1a®1ly) = 1y (or (5aQ1p )M = 1ar)

via the canonical identification K @ M=DM, then M is called a left A-module (or
A-comodule). Right A-modules (or A-comodules) are similarly defined. When 4
is associative and @, (Or ) is associative in the sense that

Pu(Pa®1) = ou(1Q@m)
(or (0@ dum = (1Q¢um)Pm) »
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then M is called to be associative.

1.3. Let A be an algebra (or coalgebra) and A®*=AR---QA stand for
the k-th power of 4 in the sense of tensor products. Let

(1.5) PP =10 RlRQeRIY:-R1: A%+ 4%*
(or (1.5*) ¢(i> — 1®...®1®¢®1®...®1: A®k_,A®k+1)

denote a map containing @ (or ¢) in the i-th tensor factor for 1 <7 <k.
Define a set W, of k-tuples of integers by

(1.6) We={(, ..., 1a); 1<i,<s, 1<s<h}, k>1,
and a map

@Pr: A®F— A4
(or gpe: A— A%

for each w,= W, by

(1.7) PYE = PP . Ui
(or (1. 7%) g = JRPE ke JOD) |
Putting

Pk = pPH(1Q - ®1): A% A
(or Jve = (pQ - Qp)Pie: A—)A@kﬂ) ,
we define a decreasing (or increasing) filtration {F*A4} (or {G#4}) of A by
(1. 8) F'A=A4, F'A=A,
F¥' 4 =3, cw, ImpPe for k>1
(or (1. 8%) G°'A=K,
G*4 = N,,cw, Kergie for k>1),

and call it the F-filtration (or G-filtration) of A. If A is associative then these filt-
rations coincide with those of [1], hence essentially to those of [6].

Sometimes we denote as

(0)

Po=@" =14  (or ¢y = ¢i” = 1,)
and
Po= Pyt = 1: A—>A
(or §o = ph, = p: A—A).
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And putting

Pn = 2°(€Bw,,e W,,¢’;ta”) (or Q_bn = (eaw,,e W,,‘Z:f”)oA)r n>1,

where A: A—>AD---DA and =: AP---PA—A4 are the diagonal map and the
dual, we have

F*74 =Imgp, (or G4 = Ker ¢,)

for n>0.
The associated graded G,-module is

(1.9) E(A) = Y4»E44, E{A=F*rA|F*"4,

(01‘ (1 9*) OE(A) = 2k>ooEkA1 oEkA = GkA/Gk_lA) .
We put

(1.10) OkA = A|F¥4

(or (1. 10%) Prd = ANG*A)

for k>1. In the case of coalgebra we have a direct sum decomposition
Gkd = KPPrA, k>1.
According to a notation of [10] we write also as
O(4) = Q'A  (or P(4) = P'A)

and call it the module of indecomposable elements (or of primitive elements) of A. In
the case of algebra, if a sub G,-module M of A is mapped isomorphically onto Q
(A) through the projection A—>Q(A4), then we call that M represents the module
of indecomposable elements of A.

1.4. The above filtrations of algebras (or coalgebras) can be naturally gene-
ralized to filtrations of 4-modules (or -comodules). Namely, let 4 be an algebra
(or a coalgebra) and M a left A-module (or -comodule). We define the map ¢
(or %) of (1.5) for M by replacing the last tensor factor of A®* and A®+** by M.
Then, define the map

ok A®RQM —-M
(or ¢ye: M—APkQM)

by the same formula (1.7) for each w,= W,. Finally, putting

PPk = (p}f’k(z®-"®t®1M): A®k®M._>M
(or P¥% = (PR RpR1p)p¥e: M—>AP QM)



D1rFrFERENTIAL HOPF ALGEBRAS 157

we define a decreasing (or increasing) filtration {F*M} (or {G*M?}) of M by

(1.11) F'M=FM=M,
Fe'M =2, cw, Im @Yk for k>1
(or (1. 11%) G°M = {0},

G*M = N ,,cw, Ker ¢}% for k>1).

The associated graded G,-module is

(1.12) E(M)=>EtM, E(M= F:M|Fx'M
(or (1. 12%) LEM) = EEM, [EM = GEM|G*'M).
We put

(1. 13) OtM = M|F*¥"M  (or PEM = G*M)

for k>1 in analogy with (1.10). Then we have
(1. 14) OM=EM=KQ,M
(or (1. 14%) P'M= E'M=K[],M)

by using the notations of [10}, p.215 and p.219.
Let A be an algebra (or a coalgebra). A is a left A-module (or -comodule)

with the structure map

Pi = ppa(l®:): AQA—A
(or ¢z = (1Qp)pat: A>ARA).

Observe that
Pe®0) = wpp(:®) (o (p®P)Y = (P@P)ep) ,
then by a simple computation we see that
F¥A = F*4 (or G¥A = ANG*A)
for k>1. Thus
QA = Q%4  (or P*A = P*t4)
for k>1. This justifies the definition (1.13).

1.5. Let A be an algebra and M a left A-module. For each w,_,eW,_,
and w,_;_,€W,_;_,, the set of (1.6), such that 1 <i<z-1, putting w,_,=(1, w;_,,
W,_;+)EW,_,, we have
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Puit = PP T QpnriiT!
and Pttt = (P T QP TY)
From this relation we see that
(1. 15) o (Do FIAQF" M)C F*M for n>0.
Applying this to M= A we see that
(1. 16) P o FFAQF"*A)CF"A for n>0.

(1.16) shows that @, induces a multiplication
E(9): E{A)QE(A)~E{A)

of E(A) and
(1.17) E(A) is a graded connected 'algebra.

The reduced multiplication @ induces the reduced multiplication

E(P), = E(p)n: SHIIESAQEY *A—E}A

of E(A) for each n>2.
(1.18) Proposition. E(P), is surjective for all n>2.

Proof. Remark that for every w,& W,, n>>1, there exist w,& W,and w,_,_,
eW,_,_, for some k, 0<<k<n, such that
1

Pa = PP *QPatitT

(This can be easily seen by observing a tree of w,). Then
Pu” = P(P, QP .

This shows (1.18) immediately.
(1.19) Corollary. EgjA represents the module of indecomposable elements of E,(A).

(1.15) shows that ¢, induces a module structure

E(pum): E(A)QE(M)—~E(M),

and we have
(1.20) E,(M) is a graded left E,(A)-module.

By a reduced A-module structure of M we mean
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P = o (iR1): AQM—M .

Then we obtain the reduced E(4)-module structure

Eo(‘PM) = 2n>2E0(¢M)n ’
E(Pw)n = Edpa)n: SUTIBSAQESM—~E3M

of E(M). " By the same proof as (1.18) we obtain
(1.21) Proposition. E(Py), is surjective for n>2.
(1.22) Corollary. QE(M)=E;M=Q'M.

1.6. Next, let 4 be a coalgebra and M a left A-comodule. By a reduced 4-
comodule structure of M we mean

P = (pPQV)pr: M—>ARM .
As a dual of (1.15) we obtain
(1. 15%) Iu(G*M)C 3N G"AQRG" "M for n>1.
Proof. It is sufficient to show that
u(P"M)CSWIPTAQP™ "M for n>2.

For each w,eW; and w,e W, the set of (1.6), such that i+j=n-1, 0<i<n,
putting w,=(1, w;, w;4+i4-1)e W,, we have

(b @Py)pu(P"M) = po"(P"M) = 0.
Thus

ST’M(P,'M)C n itj=n-1wiw; Ker (J’:v%@‘;_b;aj)
=N i+j=n-1 Ker (‘7’,’5®$j)
= Nitjen(PPAQM+AQPM).

In particular

Iu(P*M)C(AQP**M)N (P*AQM)
CP*AQP*M.

Then, by an induction on ¢ we obtain
Iu(P*"M)C P P AQP" *M~+isiP* ¥FAQP*M
for t>1. Finally, putting t=#-1 we complete the proof.

Applying (1.15%) to M= A we see that
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(1. 16%) Pa(G"A)C N o G"ARG* "4 for n>0.
(1.16*) shows that ¢ , induces a comultiplication
oE(¢): E(A)—E(A)Q.E(4)
of ,E(4) and
(1.17%) E(A) is a graded connected coalgebra.
The reduced comultiplication ¢, induces the reduced comultiplication
E(D)n = E()n: E*"A—INLETAQE" A
of ,E(A) for each n>2.
(1. 18*) Proposition. E(¢), is injective for all n>2.
Proof. Let x& A be such that
PJ(x)eINBPIAQP " T'A, n>2.

Since for every w,_,&W,_, there exist w,_,€W,_, and w,_,_,€W,_,_, such
that

w, W, Wh_p—
nfl = (¢'ij l®¢’n1‘k—kl 1)‘)[’ )

we have
DanTi(x) = (ST Qb T Y ()
ESNADATI QP PIAQP T 4) = {0} .
Thus

xeP" 4. q.e.d.
(1.19%) Corollary. E'A=P(,E(A)).
(1. 15%) shows that ¢, induces a comodule structure
() E(M)—E(A)RE(M) .
and we have
(1.20%) E(M) is a graded left E(A)-comodule.

The reduced A4-comodule structure ¢nr of M induces the reduced ,E(4)-
comodule structure of E(M):
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"F(TM) = 2 ns1E(Par)n
E(Pr) = Egua)n: L M-S0 EAREM .

By the same proof as (1.18%*) we obtain
(1. 21%) Proposition. E(Jur), is injective for n>2.
(1. 22%) Corollary. P E(M)=,E(M)=P*M.

1.7. Letf: A—B be a morphism of algebras (or coalgebras). By definition
clearly f preserves F-filtrations (or G-filtrations). The induced map

E(f): E(A)—E(B)
(or E(f): oE(A)—>.E(B))

is a morphism of graded algebras (or coalgebras).

Let A be an algebra (or a coalgebra), M and N be A-modules (or -comodules).
If g: M —N is a morphism of A-modules (or -comodules), g also preserves F-
filtrations (or G-filtrations) and the induced map

E(g): E(M)—E(N)
(or ;E(g): E(M)—.E(N))

is a morphism of graded E,(A4)-modules (or ,E(4)-comodules).

In the following subsections we will show that some basic propositions of
Milnor-Moore [10] (Props. 1.4, 1.5, 1.6, 2.4, 2.5) hold also in our case under sui-
table formulations.

1.8. For the purposes to prove some properties of 4 using F- (or G-) filt-
rations we need sometimes their completeness conditions. Let A be an algebra
(or coalgebra). When the F- (or G-) filtration of A4 is complete, i.e.,

N el 24 = {0} (01' U lz>0GkA = A) ’

we call 4 to be semi-connected. Remark that a graded connected algebra (or coal-
gebra) is semi-connected. If A is semi-connected and of finite dimension over K,
then E,(A4) (or ,E(A)) is isomorphic to A as G,-modules.

Similarly we call a left A-module (or -comodule) M to be semi-connected if
its F- (or G-) filtration is complete. Remark also that a graded left A-module (or
(-module) is semi-connected if A4 is graded and connected.

Usually a decreasing filtration of a module topologizes it. For an algebra 4
or a left A-module M we topologize it by F-filtration. Then 4 or M is a Hausdorff
space if semi-connected.

(1.23) Proposition. Let A be a semi-connected algebra. Then A= {0} if and only

if O(4)={0}.
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Proof. The “only if”’ part is evident.

Suppose that Q(4)={0}, i.e., A=F?4. We shall prove that A=F"4 for
all #>1 by an induction on 7. If we assume that A=F?4=---=F"A4, n>2, then
E{A=0 for 1<i<n-1, and by (1.18) we obtain

E34A = {0}, ie., A=F"4d=F""4.
Now

A= N,..F"4 = {0}

since A4 is semi-connected. q.e.d.
By exactly the same proof we obtain the following

(1.24) Proposition. Let A be an algebra and M a semi-connected left A-module.
Then M= {0} if and only if O'M=K ® ;M= {0}.

(1.23*%) Proposition. Let A be a semi-connected coalgebra. Then A= {0} if and
only if P(4)={0}.

Proof. The “only if” part is evident.
Suppose that P(4)={0}. By (1.18*) and an induction on 7, we see that

P*4 = {0} forall n>1.
Then, since 4 is semi-connected
A= uP*4 = {0}. q.e.d.
In the same way we obtain the following

(1.24*) Proposition. Let A be a coalgebra and M a semi-connected left A-comodule.
Then M= {0} if and only if P*M=K [] ,M={0}.

1.9. Letf: A—Bbeamorphism of algebras. If f(4) is dense in B (topolo-
gized by F-filtration) then we call f to be almost surjective. Similarly we define the
almost surjectivity of a morphism of 4-modules. Denote by A the completion of
A4 by the topology of F-filtration, i.e.,

A=K®limQ*4.
Then f: A— B is almost surjective if and only if f: A— B is surjective.

(1.25) Proposition. Let f: A—B be a morphism of algebras. The following four
conditions are equivalent :
1) f: A—B is almost surjective,

i) O(f): O(A)—Q(B) is surjective,
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iti) O7f: Q"A—Q"B is surjective for all n>1,
iv) E3f: ESA—E}B is surjective for all n>1.

Proof. We prove in the order: i)—ii)—iv)—iii)—i). To say that f is
almost surjective means that for any b= B and any n>1 there exists an element
a,eA such that b-f(a,)eF”B. Thus “i)—ii)” and “iii)—i)” follow imme-
diately.

ii)—iv): We prove by an induction on 7. ii) is equivalent to say that Egf is
surjective. In the following commutative diagram

£
SYIBIAQET A — 2> End
J(EE §fQETf lE of
VABBREYB ——> E3B
E3p

E%p is surjective for n>2 by (1.18) and >ViZ1E§ fQETS ' f is surjective by the
induction hypothesis. Thus Ejf is surjective.
iv)—iii): By the following commutative diagram

0> E3d — Q"4 — Q"4 —> 0

VESf  Lo°f  1O™'f
0 — E3B > Q"B - Q"B — 0

and an induction on 7z we get the proof. q.e.d.

By a parallel argument to the above with some minor changes we get the fol-
lowing

(1.26) Proposition. Letf: M —N be a morphism of left A-modules. The following
four conditions are equivalent :
i) f: M—N is almost surjective,
i) 1Q4f: KQ®aM—->KQ 4N is surjective,
i) Q"f: O"M—Q"N is surjective for all n>1,
iv) E%f: ESM—EQN is surjective for all n>>1.

Let A be an associative algebra, M an associative left A-module and C a G,-
module. Define the left A-module structures on AQC and AQM by ¢,R1.
Let f: C—M be a morphism of G,-modules. Then

1,f: AQC—-ARM and @u: AQM—-M
become morphisms of left A-modules.

(1.27) Proposition. Under the above situation the composition ppu(1Q f): AQC
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— M is almost surjective if and only if the composition = f: C—K Q oM is a surjection
of G,-modules, where w: M —K & , M is the canonical projection.

Proof. Since
KQR,(ARC)~C and KQ,(AQM)~M
canonically, we see that

1@ alpn(1Qf)) == f

via canonical identifications. Then the proposition follows from (1.26). q.e.d.

1.10. By parallel discussions to 1.9. we obtain the following propositions.
The details are left to readers.

(1.25%) Proposition. Let f: A—B be a morphism of coalgebras and A be semi-
connected. The following four conditions are equivalent:
1) f: A—B is injective,
i) P(f): P(A)—P(B) is injective,
i) P*f: P*"A—P"B is injective for all n>1,
iv) JE*f: (E*A— E"B is injective for all n>1.

(1. 26*%) Proposition. Let f: M—N be a morphism of left A-comodules and M be
semi-connected. The following four conditions are equivalent:
1) f: M—N is injective,
i) 10af: K{(JaM—>K[J4N is injective,
i) P"f: P*M—P"N is injective for all n>1,
iv) E*f: E"M—,E”N is injective for all n>1.

Let A be an associative coalgebra, M an associative left 4-comodule and C
a G,-module. Define the left A-comodule structures on ARQC and AQM by
Ja®1. Let f: M—C be a morphism of G,-modules. Then

du: M—-AQM and 1,Qf: AQM—-ARC
become morphisms of left A-comodules.

(1. 27*%) Proposition. Under the above situation assume that M is semi-connected.
Then the composition (1Q f)pu: M—>ARC is injective if and only if the com-
position fi: K[ M —C is injective, where i: K [ ] .M — M is the canonical injection.

1.11. For the sake of our later references we list the following easily proved
propositions, which form some counterpart of Propositions (1.26) and (1.26%*).

(1.28) Proposition. Let f: M —N be a morphism of left A-modules. Q"f: Q"M
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—Q"N is injective for all n>1if and only if E3f: EtM—E3N is injective for all
n>1. Next assume that M is semi-connected, then the above equivalent conditions
imply that f: M —N is injective.

(1.28*) Proposition. Let f: M—N be a morphism of left A-comodules. P™f:
P"M —P”"N is surjective for all n>1 if and only if E*f: E*"M — E"N is sur-
jective for alln>1.  Next suppose that N is semi-connected, then the above equiva-
lent conditions imply that f: M —N is surjective.

2. \-modified permutations

2.1. A differential G,-module M is a G,-module equipped with a differential
d: M—M, i.e.

(2. 1) dM;CM,,,, i€Z, and d*=0.

We regard K as a differential G,-module endowed with a trivial differential.
Let M and N be differential G,-modules. M QN is a differential G,-module
by

duen = du@1+oQdy ,
where o is the involution (1.1) of M.

More generally: let M,, ..., M, be n differential G,-modules. We define the
i-th partial differential d; of M,®---Q M, by

2.2) di=o®Qo®IJIQ- Q1

with d in the 7-th tensor factor for 1<i<n, where o is the canonical involution
(1.1). Obviously we have

d?=0 and dd;+d;d; =0

foralliandj. The canonical differential G,-module structure of M,®---QM,, is
given with the total differential

d=d,+-+d,.

2.2. LetM,, ..., M, be n differential G,-modules. As usual, for every per-
mutation s& &, we can associate a morphism of differential G,-modules

T,: M\Q-QMp—>M;0yQ+ QMscm
(5=s7"), the so called signed permutation of tensor factors, i.e.,

Ts(x1® e ®xn) = Es(xx y ceey xn)x§(1)® .o ®x§(n) s
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x,€M;, 1<i<n, and &(x,, ..., x,,) is a sign such as, if s=(7, 7+ 1), a transposi-
tion, &,(%;, ..., ¥,)=(—1)?? for p=type x; and g=type x,,,.

To formulate the basic properties of signed permutations we shall use certain
semi-simplicial structure of categories. Let &=, be the category of differ-
ential G,-modules over a field K. We regard the associativity

(LOM)YQN = LQ(M QN)
and the obvious isomorphism
KQM=MQK=M
as identities in . For each integer n>1 let
G™=@x:--xS (n fold)

be the n fold product category of 8. Objects and morphisms of &™ are respec-
tively (M,, ..., M), M;€0bj &, and (f,, ..., f,), i&Morph &, 1<i<n. Let

(2.3) D;: @*O-G™
1<i<mn, be a functor given by

DM,, ..., My,)= M, ..., M;_,, MiQM;,,, M;.,, ..., M,,,),
Di(fus s fard) = (fis oo ficts [i® frnas fivas oos fann) -
Let
(2.4) Fii Gma@e,
1<i<n-+1, be a functor given by
FM,, ..., M,)=(M,, ... M;_,, K, M, ..., M),
Fi(fis coos f) = (Fos oo ficis Yoo fis -0 1) -

As is easily seen we obtain relations:

D;F;=D;_ ,F;=1,
DjF,'zF,'Dj_l, i<j,
D]F‘= Fi—le7 ]<i"1 .

Thus
G* = {&®, &>, ..., ™, ...}

is equipped with a semi-simplicial structure (in a dual sense) with D,’s as degene-
racy operators and F;’s as face operators.
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The n-th symmetric group &, operates on ™ as a group of automorphisms.

Namely every s&€ @, determines a functor
s: @@
by
S(Mly seey Mn) = (ME(D’ ceey ME(’I)) ’
s(_fl) ceey fn) = (fE(l)s “"fE(n)) )

§=s"". 'These functors s form a group of automorphisms of &™. There hold
the following relations between these automorphisms and degeneracy or face ope-
rators: for any s€®, and any D;: G"*P—-@™ 1<i<n, there exists D¥seS,,,
uniquely such that
(2.5) soD, = D;oD¥s, j= s(i);

for any s&€©,,, and any F;: ™", 1<i<n+1, there exists F¥se&,
uniquely such that

(2. 6) soF; = FoF¥s, j=s(i).
And we have following relations with respect to compositions:
2.7) DioDfs = D¥(os), j= (i),
(2.8) F¥s'oFfs = F¥(s'os), j=s(i).

We define a canonical functor
(2.9) T=T": -6
by

M, .., M,)=MQ---QM,,
T(fis s fa) = 1:@ R fas
for each n>1. We have the following obvious relations:
(2.10) T™oD, = T™* forall i, 1<i<n, and
(2.11) T**PoF; =T™ forall 7, 1<i<n+1.
Now we can regard the signed permutations as natural transformations

(2.12) T,: T®—>T™os, s&€6,, n>1,
which satisfy the relations:
(2.13) TyT,=Ty,, T;y=1d.,
(2.14) T,oD; = Tp*, (se6,, 1<i<n),
(2. 15) T,oF; = Tr¥, (5€6,,,, 1<i<n+l1).
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2.3. Take an element A=K and fix it. Let M,, ..., M, be differential G,-
modules over K. Using the partial differentials d; of (2.2) we define A-modified
switching maps

Tip: M\® - QM,—>M,Q--QM;_,QM,,,\QM;QM;,,Q---QM,
by
(2. 16) Tin= (142dd;.,)T;
for 1<i<m—1. Asis easily seen we have
Tipd; = d;\Tin, Tindiyy=4d.T;,, 1<i<n—1,
Tind;=d;T;x for j=i,i+1.

In particular T ,’s are morphisms of differential G,-modules. When n=2 we
put

Tl,k = T}\ ’
ie.,

(2.17) T\=(1+Mdo)R4)T,
called the \-modified twisting morphism, then we have

(2.18) Tin=10-Q1QT\Q1Q-Q1

with T, in the i-th place for 1<i<n-1. Obviously the ordinary switching
maps and twisting morphism are the 0-modified ones.
A routine computation shows that

(2. 19) T2, =1 for 1<i<n-1,
T,-,)‘Ti_'_l,)‘T;’}\ = Ti+1’)‘T'c’}\T,~+1,)\ for 1 <i<n-2 ,
T;’)\Tj’)\ = TJ-,}\T,-,)\ for i+1 <j .

Since the corresponding relations for transpositions #;=(i, i41) are fundamental
relations of &, [7], p. 287, if we define for each s&&,, a map

Ts,ai M@ QM,—>M;;®** Q Mz

(5=s7") by expressing s as a product of #’s, replacing each #, in this expression by
the corresponding T » and putting T, , to be equal to thus obtained composition
of T;)’s, then T, , is a uniquely determined map regardless of choices of the
expression of s. So defined, the map T, » is called the \-modified permutation
(corresponding to s&&,). T, is a morphism of differential G,-modules since
T;\’s are so. Obviously T,=T, , for each s&€&,.

Now we can regard the A-modified permutations as natural transformations
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(2. 12), T, : TO>T®os, &, n>1.

(2.20) Proposition. \-modified permutations satisfy the relations :

(2. 13), Ty aTon=Tysr, Tiar=id.,
2. 14), TopoDi=Tp¥,n  (s€8,, 1<i<n),
(2. 15) TopoF; = Teryn (€8, 1<i<ntl).

Proof. (2.13), is obvious by the definition of 7 ,. To prove (2.14), it is
sufficient to prove for s=t,, a transposition, by the relation (2.7); then by (2.18)
it is sufficient to prove the case n=2. In the latter case the relations are easily

obtained by routine calculations.
The proof of (2.15), is also reduced by (2.8) and (2.18) to the case n=1.
This case is obvious because K has a trivial differential. q.e.d.

(2.21) Corollary. Suppose a proposition P on differential G,-modules involving
signed permutations T is true and proven only using properties (2.13), (2.14) and
(2.15) as those of T,’s.  Then a proposition P, obtained by replacing T by T  for
each s (N K is fixed), is also true.

An iterated application of (2.14), implies

(2.22) Proposition. Let M,, ..., M, be differential G,-modules. Suppose each
M; is a tensor product M;=N,, .,®---QN,, of differential G,-modules, 1<i<n,
0=k, <k, <k, <--<k,=r. A permutation s of {1, ..., n} induces naturally a
(blockwise) permutation 7 of {1, ..., r}. Then, for nEK,

T,n=T,x
regarded as a morphism
Ni®:+QN,—»N;sQ+QNz,,  (T=77).
An iterated application of (2.15), implies

(2.23) Proposition. Let M,, ..., M, be differential G,-modules. Suppose {M,,
.oy M} contains some number of K’s.  Deleting some K’s from {M,, ..., M,} we
obtain {N,, ..., N,}. A permutation s of {1, ..., n} induces a permutation 7 of {1,
.y ?}.  Then, for neK,

T

sA = T'r,)\

regarded as a morphism

Nl®"'®Nr_’N;(1)®“'®N;(r) (_'T- == T—l) .
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3. Differential algebras and coalgebras

3.1. Let 4 be an algebra (or a coalgebra) endowed with a differential 4 as a
G,-module. When d commutes with the structurure morphisms @, 7 and € (or
(¢, € and %) then we call 4 to be a differential algebra (or coalgebra). The ground
field K is a differential algebra as well as coalgebra endowed with a trivial
differential.

Remark that the assumption that d commutes with the multiplication ¢ (or
comultiplication ¢) implies that d commutes with the unit » (or €), [1], p.512. By
our present definition we further assume that d commutes with the augmenta-
tion € (or 7). 'Thus it is stronger than the definition of [1], p.512.

Let A4 and B be differential algebras (or coalgebras). Putting

3.1) o = (PpRP)1QTh®1): AQBRARB—>AQB
(or oo = (1QTWQR)(¢R¢): AQB—ARBRARB)
and
n=70,Q871, €= E4QEp, d= dl+d2

as usual, A®B becomes a differential algebra (or coalgebra), which has a multi-
plication @, (or comultiplication ¢,) different from the ordinary tensor product
and will be called the \-modified tensor product of A and B, denoted by (A X B),.
Thus (AR B),=AQ B, the ordinary tensor product.

Every algebra (or coalgebra) can be regarded as a differential one by putting
d=0 (trivial differential). In this case we have

(AQB), = A®B

for any e K.
Let 4, B and C be differential algebras (or coalgebras) and A& K. We have

the associativity

(3.2) (ARBRRC) = (AQ(BRC))x -

We denote this by (AQ BRC),. More generally we put
(4@ @An = (4@ QA N A

inductively for z differential algebras (or coalgebras) 4;, 1<i<n. Because of
the above associativity (3.2) it is equal to (4, (4,Q+-- @A, )\ ) and so on.
If a differential algebra (or coalgebra) A satisfies the relation

(3.3) pTh=¢ (or Tap=¢), reK,

then we call 4 to be A-commutative.
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(3.4) If A and B are associative or \-commutative differential algebras (or coalgeb-
ras), then (AQ B), is also associative or \-commutative.

Proofs of (3.2) and (3.4) are of course not hard by direct computations. But we
would rather regard them as cases to apply the principle (2.21) because the case
A=0 is obvious and classical.

3.2. To apply the principle (2.21) for differential algebras and coalgebras
the following observations would be useful. Let 4 be a differential algebra (or
coalgebra), M,, ..., M, be differential G,-modules and A€ K. Replacing M; by
A and AR A we consider the following morphism of differential G,-modules

(3. 5) PP =19 Q1RPR1R--®1:
M@+ @M, ,@AQARM, @ @M,
->MQ--QM; \QAQM;,,Q--QM,
(or ¢ =1Q - RIRYRIR---R1:
M@ @M;_,@ARM; @+ @M,
—>Ml®"‘®Mi-1®A®A®Mi+1®’“®Mn)

with @ (or ¢) in the i-th tensor factor, 1 <¢<z. Since @ (or ¢) is a morphism of
differential G,-modules, the naturality of A-modified permutations and (2.14),
imply the relation

(3 6) Ts,)\¢(i) — ¢<j)TD;ks,A
(or Tp#, agp® = $PT )
for each s&@,,, j=s(¢). Similarly, replacing @(or ¢) by 7 or &, we have relations
3.7) T, an® = v(j’TF;ks,A and €&PT,, = TF;ks’,\e(”
regarded as
77('.): M1®'°'®Mi—l®Mi+1®'"®Mn
_)M1® eec ®Mi—1®A®Mi+1® oot ®Mn
and
8('.): Ml®'"®M;—1®A®Mi+1®'"®Mn
_)M1®"'®Mi—1®Mi+1®"'®Mn )
where j=s(z).
3.3. Let A and B be differential algebras (or coalgebras). We have the

relation

(3.8) Tipr = pA(TAQT))
(or T\ = (TAQ@TN)¢n)
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for A€ K, where @, (or ¢,) denotes the multiplications (or comultiplications) of
(A®B), and of (BQ A), simultaneously, and Ty: (AQB)\—>(BXA),.

This relation is also an immediate consequence of (2.22) and the naturality
of T.

Next, let 4,, ..., A, be n differential algebras (or coalgebras) and Ae K. Let
c(n)=(1, 2, ..., n), a cyclic permutation of order n. Put

Towr = Cup, N-modified cyclic permutation.

Putting (4,®-:- @A, 2\=B, by (2.22) we see that C, ,=T), as amap: BRA,
—A,QB. Then, since (4, - QA n=(BRQA,), by (3.8) we obtain

(3.9 » Cappr = PA(CapQCh )
(or fhCpp = (CapQCrp)n)

where @, (or ) denotes the multiplications (or comultiplications) of (4,
®A,)n and of (4,84,Q---®A,_,)r simultaneously.

3.4. Let A be a differential algebra (or coalgebra) and M a left 4-module
(or -comodule) which is a differential G,-module. When the structure map @, (or
¢m) commutes with differentials on M and AQ M, then we call M to be a dif-
ferential left A-module (or -comodule).
Let A4 and B be differential algebras (or coalgebras), and M and N be differ-
ential left 4- and B-modules (or -comodules) respectively. Putting

(3. 10) P = (Pu@pn) (1R T,®1): (AQBROM @N—>M QN
(or r = (1R T\ @1)(YuD¢n): MON—~(AQBROM ®N),

we define a (A®B)-module (or -comodule) structure on M @N, denoted by
(M Q®N), and called by A-modified tensor product of M and N. (MQN), be-
comes a differential left (4 B)\-module (or -comodule). When M and N are
associative then (M ® N), is also an associative (4@ B),-module (or -comodule).

3.5. Let A be a differential algebra (or coalgebra). Since the structure mor-
phisms commute with the differential, H(A4) gains the induced multiplication (or
comultiplication), unit (or counit) and augmentation. Thus H(4) is an algebra
(or coalgebra). If A is associative or A-commutative for some A& K, then H(4)
is associative or commutative. If B is another differential algebra (or coalgebra)
then

(3.11) H((AQBY) = H(A)Q H(B)

as an algebra (or a coalgebra) for any A= K.
Since the differential commutes with » and &, it preserves the direct sum
decomposition (1.3). In particular
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(3.12) d(A)CA.
This implies that
(3.13) d(F*A)c F*A (or d(G*A)cG"A)

for each n>0. Thus the F- (or G-) filtration determines the spectral sequence
(3. 14) E,(A)=>E?4 (or ,E(A) = Xus0,E"A),

r>0, as usual. (1.16) (or-(1.16*)) and the standard arguments about spectral
sequences imply

(3.15) Proposition. If A is a differential (associative) algebra (or coalgebra), then
E, (A) (or ,E(A)) is a differential graded and connected (associative) algebra (or coal-
gebra) for each r >0, of which the differential d, has degree r (or -r). Furthermore,
if A is N-commutative for some NE K then E(A) (or (E(A)) is also N-commutative
for the same \ and E,(A) (or ,E(A)) are commutative for allr>1.

If f: A—B is a morphism of differential algebras (or coalgebras) then findu-
ces morphism

E(f): E(A)—~E/(B)  (or ,E(f): ,E(4)~,E(B)),

r >0, of spectral sequences of graded algebras (or coalgebras).

Let A be a differential algebra (or coalgebra) and M a differential left A-mo-
dule (or -comodule). Then we can see that H(M) is a left H(A)-module (or -como-
dule), and also that the differential d: M —M preserves F- (or G-) filtrations of
M and hence we get a spectral sequence E,(M) (or ,E(M) ), r>0, of which the
r-th term is a differential left E,(4)-module (or ,E(A4)-comodule) for each r >0.

3.6. Let 4 and B be differential algebras (or coalgebras) and A K. Put-
ting (AQ B),=C and denoting the multiplications (or comultiplications) of 4, B
and C by 4@, g and ¢ (or 4¢, g and ) respectively, we shall express .@p¥n
(or c¢gwn) in terms of 4pp» and pppn (or 4¢u» and pdpn) for each w,eW,,
the sets of (1.6).

Let #,=©,, be a permutation such that

u(2i—1) =17 and uy(2)=k+i, 1<i<k.
We denote as
Ug=T, and Uga=T,,,,
By an induction on z we can easily show that
488Pn" = (4P Q ppnn)U, .,
(or Upiyagpdi™ = apn» @ pdu)
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for each w,eW,, n>1. Remark that this is the case to apply the principle
(2.21) making use of (3.6). Hence we obtain the relation

(3. 16) c@in = (aPin @ s )Upir
(or Upiipcdn™ = adun@ pdu)

for w,eW,, n>1.
3.7. Let A4 and B be differential algebras and A& K. We have
(3.17) Proposition. > F"AQF" "B = F*(AQ®B), for n>0.

Proof. Put (A®B),=C and denote the multiplication of C by cp. For
w, . €W,_,and w,_,eW__,, r+s=n, we have

Im 4@,77'® Im pP,77" = cp((Im 4P, 7' QK)Q(K® Im 58,71Y))
Cco(Im c‘i_’:uzfl@Im c@rjl-l) = Im c<P:.021_1
where w,_,=(1, w,_,, w,_,+r)eW,_,. Thus
» o FTAQF" "BC F"C.
Next, for each w,_, W, _,
c(';‘),'ff;l = (A¢"f21-1®3¢:'21—1) Upr(6c® - Qtc)
by (3.16) since
tc = 140+ taQ 1 +taQep
and since d commutes with % and ¢,

Im (@, ' C 3 Im A¢::21_1(77:‘1® - ®7;,)Q Im B‘l’:-vfl_l(”jl@ Q7 i)
where 7; and 7 ; are 7 or ¢ of A and B respectively, and the summation runs over
{#» --+» Tus J1» --+» Ju} having no pairs (i;, j,) such that =, ==; =%. Since

PuiTH (e, @+ @) = Puriti?

4> -+ Ti,} contains exactly ¢ 7’s, we have

for a suitable w,_,_,eW,_,_, if {#
Im c@:fl_lc2;+j<n,w,._,-_1,w,._j_1 Im 4,47 @ Im P72
CXtjenF " PAQF™ /B .
Thus
F'CcY, scaFTAQF*B =3, .. ,F"AQF°B. q.e.d.

By (3.17) we obtain immediately the following
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(3.18) Proposition. If A and B are differential algebras then for n& K we have
i) E(AQBn)=(E(A)SE(B)h

and
ii) E(AQB))=E/(4)QE,(B)

for r=1 as graded differential algebras.

3.8. Let 4 and B be differential coalgebras and A& K. As a dual of (3.17)
we have

(3.17%) Proposition. 3V..G"AQG""B=G*(AQB), for n=0.

Proof. Denoting comultiplications of 4, B and C=(AQ®B)\ by .¢, g
and ¢ respectively, (1.16*) and (3.16) imply that

W (GTARG " "B)C Dspusiirey UnhaA(GHAR @ Ginnd

Jit g = T

®G1BQ-++®Gin+1B)

for each w,W,. Ineach summand of the right hand side above, there exists #,
1<t<n+1, such that 7,=j,=0. Hence

Pen(GTARG""B)=0  for each w,c=W,
and we obtain
" oGTARG"* "BC G"C.
Conversely, let x€G"C. Since
Pc=EaQpPptpaREs+paQps

and the mixed tensor products of €4, pa, Ep and pp are projectors in a direct
sum decomposition of (AQ B)®* derived from the decomposition (1.3) of 4 and
B, letting #* denote € or p we have

*) (4 Q@mh® Qa1 Q@ fntr)civn (x) = 0

for all w,& W, unless z's=n/s=¢& for some s, 1 <s<n+1.
Now, for each w,e W, and w;= W, such that i{j=n—1,0<i<n—1, we

T

put w,=(1, w;, w,4i+1). Then ¢p»=(¢p't Q¢¥s)¢ and we have
(€a®pp)* 'R (Pa®E)®  cpim(x) = 0

from (*) on one hand. By an easy calculation it is equal to
Uz (¥ Q(ad71 @ pd?'e (%)@ (1)®+)

on the other hand, where 1=7(1) in 4 and B respectively. Thus
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(4971 Q@ pd?e (G"C) =0
foreachw,€ W, and w;= W, such that i+j=»—1 and 0<i<n—1. Hence

G"Cc NiZ(G'AQB+ARG*'B).

In (*), putting 7i=--=7n'»=E, n's1=E+p and n/1=-..==g/nt1=p, we obtain
G*CcA®G"B,

and also
G"CcG"AQRB.

Hence

' G"CcG*"A®G"B.

Finally using an induction similar as in the proof of (1.15%) we obtain
G*"C 3N G"ARG™"B. q.e.d.
From (3.17*) we obtain the following
(3.18%) Proposition. Let A and B be differential coalgebras and N K, then
i) E(AQB))=(L(A)QE(B)

and
i) ,E(A®B))=,E(A)Q,E(B)
for r=1 as graded differential coalgebras.

REMARK. Applying similar arguments as in 3.7 and 3.8 to (M @ N)y, where
M and N are differential left 4- and B-modules (or comodules), we can obtain a
similar Kiinneth formula for the spectral sequence of (M @N),. But it is some-
what tedious and unnecessary in our later discussions, so we omit the details of
them.

3.9. Let A be a differential algebra (or coalgebra). The filtration induced
from F- (or G-) filtration of 4 is defined by

F*H(A) = Im [H(F*A)—H(4)]
(or G*H(A) = Im [H(G"A)—~H(A)] .

This filtration is of course not the same as the F- (or G-) filtration of H(A4).
Nevertheless we can easily see that

(3.19) F"H(A)DF"H(A) (or G*H(A)c G*H(A))
for all n=0.

In coalgebra case we can easily deduce from (3.19) the following
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(3.20) Proposition. Let A be a differential and semi-connected coalgebra. Then
H(A) is also semi-connected.

In algebra case we can not prove the corresponding proposition. To this end
we need much stronger condition than the ‘“‘semi-connected”.

Let A be an algebra (or a coalgebra). We call 4 to be finitely semi-connected
if there exists #>0 such that F*4={0} (or G"4=4). Thus, in case of an
associative algebra A4, to say that 4 is finitely semi-connected is equivalent to say
that the unique maximal ideal A is nilpotent. When 4 is of finite dimension as a
module over K, “semi-connected’ is equivalent to “finitely semi-connected”.

Now from (3.19) we can easily see the following

(3.21) Proposition. Let A be a differential algebra (or coalgebra). If A is finitely
semi-connected, then H(A) is also finitely semi-connected.

4. 2-modified differential Hopf algebras

4.1. Let a G,-module 4 be endowed with a structure of algebra as well as
that of coalgebra. When the algebra unit and augmentation coincide with the coal-
begra augmentation and counit respectively, then we call 4 a quasi pre Hopf algeb-
ra. Furthermore, when the multiplication and the comultiplication is associative
then we call 4 a pre Hopf algebra.

When a (quasi) pre Hopf algebra 4 is equipped with a differential so that A
is a differential algebra as well as a differential coalgebra, then we call 4 a differen-
tial (quasi) pre Hopf algebra. In this case by (3.15) we have two spectral sequences

{E(A4), r=0} and {E(4), rz0}

of graded algebras and coalgebras respectively.
If a differential (quasi) pre Hopf algebra A satisfies

(4.1) $p = (PQe)(1R T\ 1)($®¢)

for some A K, then we call A a \-modified differential (quasi) Hopf algebra, or
simply a (quasi) (d, \) -Hopf algebra. Thus, to say that a differential (quasi) pre
Hopf algebra 4 is a (quasi) (d, 1)-Hopf algebra is equivalent to say that

¢: A—-(AQA)\
is a morphism of differential algebras or that
@: (AQA)\—A

is a morphism of differential coalgebras.
A(quasi) (d, 0)-Hopf algebra is simply called a differential (quasi) Hopf alge-



178 S. ARAKI AND Z. YOSIMURA

bra; furthermore, when the differential is trivial or ignored, it is a (quasi) Hopf
algebra. Any (quasi) Hopf algebra can be regarded as a (quasi) (d, 2)-Hopf alge-
bra with d=0 for any A& K.

We obtain easily

(4.2) Proposition. If A is a (quasi) (d, \)-Hopf algebra, then H(A) is a (quast)
Hopf algebra with the induced structure morphisms. (Cf., [1], proposition 2.4).

Examples of (d, \)-Hopf algebras are rich in mod p K-theory of H-spaces.
Differential near Hopf algebras of [1] are (d,1)-Hopf algebras over K=Z,. If we
use a non-commutative external multiplication in K *(; Z,) [2], then K*(X; Z,)
of a finite CW-H-space X becomes a quasi (d, \)-Hopf algebra with A=0.
(Cft., [1], 85).

4.2. Let A be a(quasi) (d, A)-Hopf algebra. Morphisms ¢ and @ induce a
morphism of differential algebras

E($): E(A)—>E,(A®A))
and of differential coalgebras
LE(p): E(AQA))—E(A)

for r>0. (3.18) and (3.18%*) imply that E, () (or ,E(p)) defines a comultipli-
cation (or multiplication) of E,(A4) (or ,E(A)). Thus we obtain Hopf structures in
E,(A) (or ,E(A)) and we can easily see the following

(4.3) Proposition. Let N\eK and A be a (quast) (d, \)-Hopf algebra. In the
spectral sequence {E,(A),r>0} (or ,E(A), r>0}) associated with the F- (or G-)
filtration,

i)  the term E(A) (or ,E(A)) is a graded connected (quast) (d, \)-Hopf algebra
with the differential d, of degree 0,

ii) the term E,(A) (or ,E(A)) is a graded connected differential (quasi) Hopf
algebra with the differential d, of degree r (or -r) for r>1, and

iii) E,.,(A)=H(E,(A)) (or ,.,E(A)=H(,E(A)) as (quasi) Hopf algebras for
r=0. (Cf., [1], proposition 2.9).

4.3. Let A4 and B be differential (quasi) pre Hopf algebra. For AeK we

denote by (A®B), a differential (quasi) pre Hopf algebra AQB with the A-
modified multiplication and A-modified comultiplication.

(4.4) Proposition. Let neK. If A and B are (quasi) (d, \)-Hopf algebras
then (A®B), is also a (quasi) (d, \)-Hopf algebra.

Proof. The proposition is classical for A=0. By the principle (2.21) using
(3.6) we conclude (4.4) for general A K. q.e.d.
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Now (3.18), (3.18*) and (4.4) show that

(4.5) Proposition. Let N\e K, and A and B be (quasi) (d, \)-Hopf algebras.
1) E((AQB))=(E(A)DE(B))
and

E(AR B)y)=(E(A) R E(B))

as graded (quast) (d, N)-Hopf algebras ;
i) E((AQB))=E,(A)QE,(B)

and

E((AQ B)y)=,E(A)R,E(B)

as graded (quast) differential Hopf algebras for r>1 :

iii) any morphismf: A— B of (quasi) (d, \)-Hopf algebras induces morphisms
E(f): E{A)~E,B) and ,E(f): ,E(A)—,E(B) of graded (quasi) (d, \)-Hopf
algebras for r=0 and of graded differential (quasi) Hopf algebras for r>1.

4.4. Let A be a quasi (d, \)-Hopf algebra. Since
g: A—>(ARA4), and o¢: (ARA)—A4

are morphisms of differential algebras and coalgebras respectively, for each
w,= W,, the set of (1.6),

gun: A—(A®"*), and o@pn: (4%"*1),—4

are morphisms of differential algebras and coalgebras respectively, and preserve
F-filtrations and G-filtrations respectively. Then, by (3.17) and (3.17*) we see that

S":f”(FMA)CE;,+~--+i,.+1=mFi1A®"'®F'."+1A

and
Pt (it inpr=mG AR - QG a1 A)CG™A
for each w,eW,, n>1and m>0. In particular $,";* and $,"" induces
(4.6) O"($ai): QuA—(Q'4)%"
and
(4. 6%) P*@."Y): (PPA)®*—P*A

for each w,_,eW,_,, n=>2.
4.5. Let A be (quasi) pre Hopf algebra. For each n>1 we define a map
ve: P*PA—-0"4
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as a composition of the inculsion P*4—A4 and the projection A—>Q"4. parti-
cularly important is the map

v =v,;: P(A)—>0(4).

According to [6] we call 4 to be primitive, coprimitive or biprimitive if v is surjec-
tive, injective or bijective respectively.

(4.7) Proposition. Let A be (quasi) (d, N)-Hopf algebra. If A is primitive, co-
primitive or biprimitive then v, is surjective, injective or bijective respectively for
every n>=1.

Proof. Suppose A4 is primitive. Then v, is surjective. We prove the sur-
jectivity of v, by an induction on n. Let n>2 and consider the following com-
mutative diagram:

@(P‘A)®" EBP”(q_):,l‘l_l 5 PnA Pn—lA
| B(r,)®" T |
DO A)e" ” l

” nf =Yn—1
oEaer  PEP) pa g4 0a,

where the direct sum & runs over all w,_&W,_,, P”(¢:’l‘1‘1) is the map of
(4.6%) and E(P,"7Y): (ESA)®"—E3A coincides with E(@)."%.  (1.18) implies
that QENP. ") is surjective; P(r,)®" is surjective since v, is s0; v,_, is sur-
jective by an assumption of the induction. Then, since Eg4A—Q"4A—Q" A4 is
exact, by chasing the above diagram we see easily the surjectivity of »,,.

Next, suppose 4 is coprimitive. v, is injective. We prove the injectivity of
v, by an induction on #n. Let #>2 and consider the following commu-
tative diagram:

DLW o,

DL 4)®" «P"A<P"*'4
I ;
@(PlA)®n ”, -
Jf 65(”1)@” N
@(QIA)Q” e Q"A —> Qn—lA ,

DO"(Pnn7")
where the direct sum & runs over all w,_,W,_,. This diagram is dual to the

previous one. Then, by a dual argument to the above we see the injectivity of »,.

q.e.d.

4.6. Let A be a quasi (d, \)-Hopf algebra. Sometimes the semi-connecti-
vities of A as algebra and as coalgebra are not independent to each other.

(4.8) Proposition. Let A be a quasi (d, \)-Hopf algebra. If A is coprimitive and
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semi-connected as a coalgebra, then A is semi-connected as an algebra.

Proof. Take any x& N,,,F%A4. Since 4 is semi-connected as a coalgebra
there exists an integer # such that x& P"4. But »,(x)=0since x€ F"+'4. Now
A is coprimitive, hence (4.7) implies that x=0. q.e.d.

We can not prove the dual statement of (4.8) by a similar reason as (3.20).
Again, under the stronger condition of “finitely semi-connected” the dual state-
ment is true.

(4.9) Proposition. Let A be a quasi (d, \)-Hopf algebra. If A is coprimitive and
finitely semi-connected as a coalgebra, then A is finitely semi-connected as an algebra.

(4.9*) Proposition. Let A be a quasi (d, \)-Hopf algebra. If A is primitive and
finitely semi-connected as an algebra, then A is finitely semi-connected as a coalgebra.

Proofs of these propositions are easy.
4.7. By definitions, (1.19) and (1.19%) we see

(4.10) Proposition. Let A be a quasi (d, \)-Hopf algebra. E,(A) is primitive
and ,E(A) is coprimitive. (Cf., [6], proposition 1.3).

Next we prove

(4.11) Proposition. Let A be a quasi (d, N)-Hopf algebra which is semi-connected
as an algebra. If E(A) is coprimitve then A is coprimitive.

Proof. We show that P'ANF?4={0}. Take any element xP'AN
F*4 for any n>2. Then

{x} = PYE(A)NE4, n>2,

where {x} denotes the element of E34 represented by x. By the assumption and
(4.10) Ey(A) is biprimitive. Therefore

{x} =0, ie, xePANF*'A.

Thus
P'ANF*4 = P'ANF™*'4 forall n>2,
ie., P'ANF*A=P'ANF"4 forall n>2.
Now
P'ANF?4 = ”Dz (P'ANF"4) = {0}
since 4 is semi-connected as an algebra. q.e.d.

As a dual of (4.11) we obtain
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(4.11*) Proposition. Let A be a quasi (d, \)-Hopf algebra which is semi-connec-
ted as a coalgebra. If E(A) is primitive then A is primitive.

Proof. Take any element x& A. We show that x is congruent to an element
of P'A modulo F?A. Since 4 is semi-connected as a coalgebra, there exists #>0
such that xe P"A. Suppose that #>2. Since ,E(4) is biprimitive by the assump-
tion and (4.10), {x} is decomposable, where {x} denotes the class in ,E"4
represented by x. Thus, there exists ue P*'4 such that

x=umod F? ANP"A4 ,

whence, by an induction on # in the descending order, we see that x is congruent
to an element of P'4 mod F?4 q.e.d.

4.8. From now up to the end of this section we will see how some proposi-
tions and theorems of Milnor-Moore [10] work also for our (d, A)-Hopf algebras.

Let A and B be associative algebras (or coalgebras) and f: A—B (or f: B—
A) a morphism of algebras (or coalgebras) which is left normal in the sense of
[10], Definitions 3.3 and 3.5. We regard B as a left A-module (or -comodule) as
usual. Put C=K® 4B (or C=K[],B). Then C is a G,module and, as is
easily seen, has an induced structure of an algebra (or a coalgebra) by that of B.
Further suppose that 4 and B are differential algebras (or coalgebras) and f is a
morphism of differential algebras (or coalgebras). Then C obtains a differential
induced by that of B so that C becomes a differential algebra (or coalgebra). Final-
ly suppose that 4 and B are quasi (d, \)-Hopf algebras for A K and f a mor-
phism of quasi (d, A)-Hopf algebras, then the relation (4.1) of B shows that C ob-
tains also a comultiplication (or multiplication) induced by that of B so that C be-
comes a quasi (d, \)-Hopf algebra for the same A K. Thus we obtain the fol-
lowing two propositions.

(4.12) Proposition. Let N K and f: A—B be a morphism of quasi (d, \)-
Hopf algebras which is left normal as a morphism of algebras. Let r: B—-C=K
® aB be the natural projection, and assume that the multiplications of A and B
are associative. Then C has a unique structure of quasi (d, \)-Hopf algebra such that
m is a morphism of quasi (d, \)-Hopf algebras. ’

(4.12%) Proposition. Let N\ K and f: B—A be a morphism of quasi (d, \)-
Hopf algebras which is left normal as a morphism of coalgebras. Leti: C=K[ 4B
—B be the natural injection, and assume that the comultiplications of A and B are
associative. Then C has a unique structure of quasi (d, \)-Hopf algebra such that i
is a morphism of quasi (d, \)-Hopf algebras.

4.9. A morphism of algebras or A-modules, where 4 is an algebra, is cal-

jective.
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Let A and B be algebras (or coalgebras) and f: A—B (or f: B—A) a mor-
phism of algebras (or coalgebras). Put C=K ® 4B (or C=K[]4B) and »: B—~C
(or i: C—B) be the canonical projection (or injection). By the definitions of C
we have the following relation:

(4. 13) rpg(fR1) = n(Ea®1): AQB—-C
(or (4.13%) (fRN) i = ma®1)i: C—ARQB),
where we used the identification KQ B=B. These relations will be used fre-

quently in the following discussions.

(4.14) Proposition. Leti: A—B be an injection of quasi (d, N)-Hopf algebras
which is left normal as a morphism of algebras, and n: B—-C=K Q 4B be the
canonical projection. Assume that B is semi-connected and associative as an algebra.
then there exists an almost isomorphism

h: AQC—B

of left A-modules such that i=h(1®7c) and zh=E€ 4@ 1. If we assume furthermore
that B is finitely semi-connected as an algebra or that A and B are graded connected,
and i is degree-preserving, then h is an isomorphism.

Proof. Choose a morphism j: C—B of G,-modules such that zj=1¢, ju¢c
=g and Ezj=E (but not required to commute with differentials). Define

h: AQC—B
as the composition

1Qj ‘@1
40C 2% 408 2L pep 2., B

of morphisms of left 4-modules, where BQ B is an 4-module by the A-module
structure of the left tensor factor. The relations i=hA(1Q7¢) and 7h=€,®1 are
easily obtained. We have

1K®Ah=”j= IC‘

Thus by (1.27) we see that £ is almost surjective.
Next we show the injectivity of 4. Define a map

g: B>BQC
as the composition

1
B -, Bon %% Bec.

Using (4.13) we can easily see that g is a morphism of left A-modules, and we have
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gh= a(i®l),

where a=(ppQ7)(1Q¢s)(1Q7j): BQC—-BQC, is a morphism of left B-
modules. Now, since £Q 1 is injective, to show the injectivity of 4 it is sufficient
to show that « is injective. Since a preserves F-filtrations of BQC, which are
given by F£#BQC, by restricting a we have a map

Fkrka: FFBQC—-FBRC
for each k>0. Here

Ftagmod F¥'BRC = (pQr)(107¢Q1)(1Q¢) (1R j)
= (1R7)(1Qj) = id.
This shows that the map
Eia: EtBC—EBRC

induced by « is an identity map for each k>0. Thus a is injective by (1.28).
Finally suppose that B is finitely semi-connected as an algebra (or 4 and B
are graded connected, and 7 is degree-preserving), then F-topology of B (or of B*
for each degree #) is discrete. Thus almost surjectivity of % implies the surjecti-
vity of k. q.e.d.

(4.14*) Proposition. Let n: B—A be a surjection of quasi (d, \)-Hopf algebras
which is left normal as a morphism of coalgebras, and i: C=K[],B—B be the
canonical injection. Assume that B is semi-connected and associative as a coalgebra,
then there exists an isomorphism h: B—AQC of left A-comodules such that hi—
7,01 and n=(1QE&)h.

Proof. Choose a morphism j: B—C of G,-modules such that ji=1c,
Ecj=E&p and jng=7nc. Define

h: B>AQC
as the composition
1 1Qj
B -2 BeB 2% 498 2% 4gc

of morphisms of left A-comodules. 7 is injective by (1.27*) and satisfies the rela-
tions: ki==1,®1 and z=(1QE)A, as is easily seen. Define a map

g: BQC—-B
as the composition

Lo
Boc %% pop %, B,



DIFFERENTIAL HOPF ALGEBRAS 185

Using (4.13*) we can see that g is a morphism of left A-comodules, and we have
hg = (#@1)a,

where a=(1Q j)(1Q@z)(¢sR17): BQC—->BRYC, is a morphism of left B-como-
dules. Then, discussing in a similar way as in (4.14), we see that E*a=1 for all
k>=0. Thus «a is surjective by (1.28%). Hence £ is surjective. q.e.d.

4.10. The following two propositions correspond to Proposition 4.9 of [10].

(4.15) Proposition. Let i: A—B be an injection of quasi (d, \)-Hopf algebras
which is left normal as a morphism of algebras, and n: B—~C=K® 4B be the
canonical projection. Assume that the multiplication of B is associative, and that B
is finitely semi-connected as an algebra or that A and B are graded connected, and i
is degree-preserving, then i gives an isomorphism

A=B[]K
of quasi (d, \)-Hopf algebras by restricting range.

Proof. We use the maps and notations given in the proof of (4.14). Itis suf-
ficient to show that the sequence

0— 4 - B2 Bac

is exact, where g=(1Qpc)g.
gi = (1Qn)dsi = (1Q7)(i@i)pa
= ((Q(ncta))a=1Qnc,
thus
gi=0.
Next assume that g(b)=0 for b= B, then
8(6) = (1®(7c€¢))g(8) = (1Q7)(1®E)1®7)¢5(b)
= (1®7c)(1Q¢€p)p5(b) = (1 nc)(®) -
By the proof of (4.14), h: AQC—Band a: BQC—-BRC are isomorphisms
such that gh=a(1®1) and a(1®7:)=1®7n;. Then we have
(1R€h7(0) = (1QE)(ER1)h™(b)
= (1Q¢&c)a™'g(b)
= (18¢&x)a™(1®n:)b) = b,

Le., be Im:. g.e.d.
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(4.15%) Proposition. Let n: B—A be a surjection of quasi (d, \)-Hopf algeb-
ras which is left normal as a morphism of coalgebras, and i: C=K [ ,B—B be the
canonical injection. Assume that B is semi-connected and associative as a coalgebra,
then m induces an isomorphism

BRK = A
of quasi (d, \)-Hopf algebras by passing to quotients.
Proof. We use the maps and notations appeared in the proof of (4.14*). It

is sufficient to show that the sequence

BaC £ B 54 — 0
is exact, where g=g(1®¢¢).

78 = nps(1810) = pA(@r)(1©i)
= @ a(7®(n4Ec)) = 7QEc,

thus
g =0.

Next assume that z(b)=0 for b B. By the proof of (4.14*) h: B—>AQC
and a: BQC—-BQ®C are isomorphisms satisfying 7=(1QE&:)h, (1Q%5)a=1Q¢&¢
and hg=(z®1)a. Therefore

(1Q&c)h(b) = =(b) =0,
ie., h(b)e ARC .

Hence, choosing a morphism k: A—B of G,-modules such that zk=1 4, we have

a (kR )k(b)e BRC,

and
Za” (kRQ1)h(b) = ga (kR 1)h(b)
=h ' (zQ1)(kQ1)h(b) = b,
ie., be Img. q.e.d.

By the above two propositions and Propositions 3.11 and 3.12 of [10] we ob-
tain

(4.16) Propositien. Under the assumptions of Proposition (4.15) or (4.15%) (in
this case, exchanging the notations between A and C) there is a commutative diagram

O—>P(£/1)—+P(lB)—>P(¢C)
O(4)—Q(B)—~Q(C)—0
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with exact rows.

4.11. The following two propositions correspond to Proposition 4.11 of
[10]. The proofs are almost parallel to that of [10] if we use our (4.15) and (4.15%)
instead of Proposition 4.9 of [10]. So we omit the proofs.

(4.17) Proposition. Supposei: A—B and j: B—C are injections of quasi (d, \)-
Hopf algebras which are left normal as morphisms of algebras. Assume that the
multiplication of C is associative, and that C is finitely semi-connected as an algebra
or that A, B and C aregraded connected, and i, j are degree preserving. Let B'=K
QaB, C'=KQ® 4,C and j': B'—C" be the morphism of quasi (d, \)-Hopf algebras
induced by j. Then j' is injective and left normal as a morphism of algebras, and

K®,C=K® yC'

(4.17%) Proposition. Suppose 7: B—A and =: C—B are surjections of quasi
(d, \)-Hopf algebras which are left normal as morphisms of coalgebras. Assume that
C is semi-connected and associative as a coalgebra. Let B'=K[],B, C'=K[],C
and n': C'—B’ be the morphism of quasi (d, \)-Hopf algebras induced by =. Then
7' is surjective and left normal as a morphism of coalgebras, and

KOyC' = K[,C.

4.12. Let A be a semi-connected coalgebra. We define an integer valued
function w on A4 by w(x)="‘the least integer n such that x& G”4”. We call o the
primitivity function on A. The following proposition corresponds to Proposition

4.13 of [10].

(4.18) Proposition. Let A be a (quasi) (d, \)-Hopf algebra which is semi-connec-
ted as a coalgebra. Then A is a direct limit of sub (quasi) (d, \)-Hopf algebras which
are finitely generated as algebra.

The proof is the same as [10], Proposition 4.13, if we replace the choice of
xeA— B with least degree by a choice of such an element with least value w(x),
and the use of degree property of ¢(x) by the use of (1.16*). So we omit the de-
tails of the proof.

Let 4 be a (quasi) (d, A)-Hopf algebra such that A="U,.;4,;, a direct limit
of sub (quasi) (d, A)-Hopf algebras, where I is directed by the inclusion of 4,.
Since the direct limit is an exact functor for modules over a field, the functors
Pi O E,, ,E, and H commute with the direct limit, i.e.,

P4 = UiEIPkAiv Fr4 = U"EIFkAn‘a
0#4 = 1lim Q*4,, E(A) = lim E(4,),
ier ier
E(4) = li? E(A;) and H(A)=1lim H(4,).

i€l iel
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5. Derived Hopf algebras

5.1. In this section all modules, algebras and so on, are understood over a
field K of characteristic p3=0. Let II be a multiplicative cyclic group of order p
and M a I1-module, i.e., IT operates on M. Suppose M admits a basis X= {x,}
which is IT-invariant. Then X is decomposed uniquely as a disjoint union X=
Y UZ of TI-invariant subsets such that IT fixes every element of Y and operates
freely on Z. We call Y and Z respectively the I1-fixed and I1-free part of X.

Let 7 be a generator of II and put
A=1—-7z and 3= 1+4+z+.-Fxn?".

Since A)=>1A=0, for a II-module M we can define the quotients
(5.1) O(M) = Ker A/Im>} and Y(M)= Ker>}/ImA.
Since 31=A?""', we have inclusions

KerAcKer>) and Im>'c ImA
and a canonical map
(5.2) k: ®(M)—>¥(M).

Following lemmas are obvious.

(5.3) Lemma. Let M and N be 11-modules, then

DM PN)=D(M)DDP(N)
and

V(M PN)=¥(M)DWY(N)
canonically.

(5.4) Lemma. Let M be a I1-module admitting a Tl-invariant basis X, and Y
be the T1-fixed part of X. Then the canonical map « induces isomorphisms

O(M)=v(M)=K{Y}.
the submodule of M generated by Y.

5.2. Let M be a differential G,-module. For A& K, the A-modified cyclic
permutation C, , makes M®? a [I-module. In this case A and >3 are denoted
by A, and 3, respectively. We denote also as

(5.5) D(M®, C,2) = ®,M and W(M®, C,,) = U, M

for simplicity. Since C,, commutes with the differentials, ®,M and ¥,M
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obtain the induced structures of differential G,-modules.

(5.6) Lemma. Let M and N be differential G, modules. We have canonical iso-
morphisms

D(MPN)=>,M DN
and

V(M BN)=v,MPY,N
of differential G,-modules.

Proof. We have a direct sum decompsoition
(M EBN)@P — M@ﬁ@N@p@B

of II-modules, where B=M Q N®?~'@.... TII operates freely on the set of direct
summands {M QN®?7', ...} of B. Choosing a set of representatives of IT-orbits
in this set, M QN®?7' M®QN®?~2 and so on, and choosing a d-stable homo-
geneous basis of M and of NV respectively, make a basis for each representative of
the above II-orbits as usual. The union of these bases and their successive
Cp -transforms makes a II-free basis of B. Thus Lemmas (5.3) and (5.4)
conclude Lemma (5.6). q.e.d.

5.3. Let M be a differential G,-module. Choosing a d-stable homogeneous
basis {x,, dx,, y,} of M, where dy,=0, we can decompose M as a direct sum of
differential sub G,-modules:

M == @lB‘®KCK b
where B,=K {x,, dx,} and C,=K {y,}. Thus

(5 7) ¢)\Mg ®4¢AB¢@K¢ACK
and
(5. 7,) \I’)\Mg @LWABLGBK‘I’)\Cn

by (5.6) for . & K. We can now reduce the discussions of ®,M and ¥,M to
those of ®,B, ¥,B, ®,C and ¥,C, where B=K {x, dx} and C=K {y} with
dy=0.

@,C and ¥,C are easily discussed.
C®? = K {y®*} =K
and y®? is fixed by C, , regardless of type y. Thus, by (5.4), we obtain
(5.8) ®,C=¥,C=K

generated by y®2.
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Next we discuss ®,B and ¥,B.

Case i): p=2 and A=0. In this case {xQx, dxQRdx, xQdx, dxQx} forms a II-
invariant basis of BQ B and its I1-fixed part is {xQx, dx®dx}. Thus

(5.9.1) O,B=¥,B=K {xQx, dxQdx} .

Case ii): p=2 and A=0. In this case {xQx, *Qx+NdxRQdx, xQdx, dxQx}
forms a IT-invariant II-free basis of BQB. Hence

(5.9.2) ©B=~¥,B={0} .

Case iii) p odd. By a monomial in B®? we mean a mixed tensor product of x and
dx. A monomial in B®? is called of height & if it contains exactly & dx’s in its
tensor factors. Let B, denote the submodule of B®? generated by monomials
of height >r, which is clearly C, ,-stable. B, defines a decreasing filtration of
B®?:

B®» = B,D>B,D-*DB, = K{(dx)®*} DB+, = {0} .

The operation on B,/B, ., induced by C, , coincides with C,, and as is
easily seen B,/B, ., admits a II-free basis for 0<r<p and a II-fixed basis for
r=0 and p, namely, {x®?} for »=0 and {(dx)®?} for r==p. Choosing a set of
representatives of IT-orbits of this I1-free basis for 0<r < p, by an induction on
descending order of r we see easily that B, admits a II-invariant basis of which
II-fixed part consists only of (dx)®? for 1<r<p.

Let B* and B denote the submodule of B®? generated by monomials of
height even and odd respectively. By definition of A-modified switching maps
we see that B and B¢ are II-stable, and we obtain direct sum decompositions

B® — BB
and
B, = BN B,®B*“N B,

into II-stable submodules. Furthermore, a simple check of the above choice of
IT-invariant basis of B, shows that this basis can be decomposed as a union of
II-invariant bases of BN B, and of B¥ N B,. Since B* N B, does not contain
(dx)®?, finally we see that B® N B, admits a I1-free basis. Thus

O(B* N B,) = ¥(B”NB,) = {0}
by (5.4).
(5.10) Lemma. There exists an element

b, \(x)eB” N B,
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such that x®?-1-b, \(x) is II-fixed. b, \(x) is unique modulo Im 33, .

Using this lemma we see easily that the union of {¥®?4b, ,(x)} with the
II-free basis of B®’ N B, forms a I1-invariant basis of B® of which the II-fixed part
consists only of x®#4-b,,(x). Since B“=B*B,, B admits a II-invariant
basis of which the II-fixed part consists only of (dx)®?. Thus B®? admits a II-
invariant basis of which the I1-fixed part is {x®?+b, \(x), (dx)®?}. Therefore,

(5.9.3) D\B=W,B=K {x®+b, ,(x), (dx)®?} .
Proof of Lemma 5.10. Observe that
A\(x®?)eB*N B, .
Since A,(x®?)eKer 3, and W(B®NB,)={0} we see that
A\(x®?)e A\ (BN B,),
i.e., there exists an element &, ,(¥)= B N B, such that
AN(x®?+b, \(x)) = 0.
Let b’ B N B, be another element such that ¥®?+5’ is C, ,-invariant.
Then
Ax(bpa(x)—0")=10.
Since ®(B* N B,)= {0} we see that
bpr(x)—b'eIm > . q.e.d.
5.4. By (5.7), (5.7'), (5.8) and (5.9.1-3) we obtain

(5.11) Proposition. Let M be a differential G,-module and ne K. The canon-
ical map (5.2) induces an isomorphism

qD)\M = \If)\M
of differential G,-modules.

Next we show

(5.12) Proposition. Let M be a differential G,-module and & K. The induced
differential on DM =V, M is trivial.

Proof. Since 1 | Ker A,=C, ,|Ker A, we have

d|Ker Ay = 3 cucpdil Ker Ay = 35, 4c 54, C 5750 [ Ker Ay
= 21<k<ﬁC;-}‘ldllKer A)‘ = ZxdllKer A)\Clm 2,\ .
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Thus
d=0 on OM. q.e.d.

@, (or W,) is clearly functorial. Let
0—-L—->M—->N—-0

be an exact sequence of differential G,-modules. Choosing a canonical basis of
L and then extending it to a canonical basis of M, we see that the above exact se-
quence is a direct sum of the following types of exact sequences:

1
0— 0 —>B —2B—0,
1
0— 0 —C-5C 0,
0 C—> B—C 0,
1
00— B—2B—>0—0,

0—C—-S5%C—0—0,

where B and C are elementary differential G,-modules discussed in 5.3. Apply
@, (or ¥,) on these sequences and use (5.8) and (5.9.1-3), then we see easily
that

D, L->D,M —>D,N
is exact, and in case p odd or p=2 and Ad=0
0—>D\L>D M DN —0
is exact. Thus we obtain

(5.13) Proposition. Let N K and assume that p is odd or that p=2 and \d
=0. Then D, (or ¥)) is an exact functor defined on the category of differential
G,-modules.

5.5. Let A4 be a differential algebra (or coalgebra) and K. By (3.9)
Cya: (A%?),—(A®?), is a morphism of differential algebras (or coalgebras).
Thus we obtain

A}\¢A = ¢A(AA®1+Cp,A®A)\)
(or rAx = (AR 1+Cp A QAN¢)

where @, (or ¢, denotes the multiplication (or comultiplication) of (A%?),.
Therefore we obtain

(5.14) Lemma. i) When A is a differential algebra then Ker A, is a differential
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sub algebra of (A®?),.
ii) When A is a differential coalgebra then Im A, is a differential coideal of (A®?)\.

Next we prove

(5.15) Lemma. 1) When A is a differential algebra then Im 3>, is a differential
ideal of Ker A, .

il When A is a differential coalgebra then W, A is a differential sub coalgebra of
Coker A, .

Proof. Remark that

llKer A}‘ == CI,,,JKCI‘ A}‘ .
Hence

¢A(ZA® 1)|B® Ker A,
= ¢’A(1® 1+ Cﬁ,x® Cp,A+ e —{—C;;,‘,\1®Cf,_")\l)|B® Ker A,
= EA¢A|B®KCY Ay,

where B=(A4®?),. Thus

oA((Im 32,)Q(Ker A,))cIm 33, .
Similarly,

or(Ker A)(Im 3}))C Im 3 .
That is, 1) is proved.
Next, for x& B=(A®?),,
(A 1)da(%)

=(1Q14C, ,QC, 1+ -+ CERRCE)PA(¥)
= 2 (¥) mod B(ImA,).

Thus
d(Ker DY) (Ker 3V)QB+BQ(Im A)) .
Similarly
d(Ker 3} BR(Ker 3Y,)+(Im a,)RB .
Hence
gr(Ker S,)C BR(Im Ay)+(Im A)® B+ (Ker TH)® (Ker 3 ,
which proves ii). q.e.d.

5.6. Now let A be a (quasi) (d, »)-Hopf algebra for neK. By (4.4)
(A®?), is also a (quasi) (d, A)-Hopf algebra. By (5.15) ®,4 and ¥,4 are
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differential algebra and coalgebra respectively with induced structures from
(A®")x. (5.12) says that these differentials are trivial, and (5.11) says that there
exists a canonical isomorphism ®,4=W¥,4 of G,-modules. So, if we identify
®,4 and ¥, 4 by this canonical isomorphism, then ®,4 gains structures of an
algebra and a coalgebra. Since these structures of ®,4 are induced from the
corresponding ones of (4®?), it is a (quasi) (d, A)-Hopf algebra with the trivial
differential, i.e., we have

(5.16) Proposition. Let A be a (quasi) (d, \)-Hopf algebra. ®,A==Y,A isa
(quasi) Hopf algebra.

We call ®,4 the derived Hopf algebra of A. By (5.6) we see also that

(5. 17) m - @}\A and \P)\A = \I,)\A .

6. Primitivity and coprimitivity

6.1. Let 4 beaquasi(d, r)-Hopf algebra for n& K. By ideals, sub algebras
and quotient algebras (or coideals, sub coalgebras and quotient coalgebras) of A we
mean those of the underlying algebra (or coalgebra) of 4.

The maps

P, = P(PR1-1Q9): (AQARA)N—A,
@, = p(Tr—1): (ARA)\—4,
da = (PQ1-1Q¢)p: A—>(AQARQA)\
and
g = (Tx—1)¢: A=(ARA)
measure deviations from associativities and A-commutativities.

(6.1) Lemma. i) Im @, and Im @, are differential coideals of A;
ii) Ker ¢, and Ker J, are differential sub algebras of A.

Proof. Since p(p®1), (1Q@), T, and @ are morphisms of coalgebras
by (4.1) and (3.8), putting B=(ARXA), and C=(AQARQ A), we have

¢P. = (PR (P(PR 1)) +(P(1Q9)) R P.)d.
and

Jp. = (P RQPT+ QP )5,

which prove 1i).
Similarly we have

$a? = P(La@ (PR 1)P)+((1Q¢)P) R ¢a)
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and
Sbc¢ = ¢B(¢'c® TA¢+ ¢’®¢’c) ’

which show ii). q.e.d.

6.2. As the first step to discuss our version of Milnor-Moore criterion of
coprimitivity [10], Proposition 4.20, we have

(6.2) Proposition. Let A be a quasi (d, \)-Hopf algebra which is semi-connected
as a coalgebra. If A is coprimitive then the multiplication is associative and N-com-
mutative.

Proof. It is sufficient to show that @, and ¢, are zero maps.
By (6.1) Coker ¢, is a quotient coalgebra of 4. Since Im @,CF?A we

have a map f: Coker @,—>Q(A) such that the following diagram

Py —— A —L o)
|P(z) |=

P(Coker @,) — Coker @,

is commutative, where z: 4— Coker ¢, is the canonical projection, a morphism of
coalgebras, and ji==v: P(A)—Q(A). Asv is injective by assumption the above
diagram shows that P(x) is injective. Then = is injective by (1.25%). Hence

Ker 7z = Im @, = {0} .
A parallel discussion shows that ¢, is also a zero map. q.e.d.

(6. 2*) Proposition. Let A be a quasi (d, N)-Hopf algebra which is semi-connected
as an algebra. If A is primitive then the comultiplication is associative and \-com-
mutative.

Proof. We show that ¢, and ¢, are zero maps.
By (6.1) Ker ¢, is a sub algebra of 4. Evidently ¢,(P(4))=0. Thus we

have a map g: P(4)—Ker ¢, such that the following diagram

J

Py —— 4 0(4)
N R [ o)

Ker g,—— O(Ker ¢,)

is commutative, where k: Ker ¢,—4 is the inclusion. As v=;ji is surjective by

assumption, we see that Q(k) is surjective. Then Ker ¢, is dense in 4 by (1.25).
On the other hand, ¢, preserves F-filtrations since (¢®1)¢ and (1Q¢)¢ are so,
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which means that ¢, is continuous. Thus Ker ¢, is closed in 4 since (AR A
@A), is semi-connected as an algebra, i.e., Hausdorff. Hence

Keryg,=4.
A parallel discussion shows also that

Kerg,=4. q.e.d.

6.3. Let A be a differential algebra (or coalgebra). If the multiplication ¢
(or comultiplication ¢ is associative, then, for each n>1, @ (or yu») are the
same map for all choices of w,& W,,, the set of (1.6). In this case we denote it
simply by @, (or ¢,) (which coincides with the notation of [6]).

Now assume that the characteristic of K, denoted by p, is non-zero and the
multiplication @ (or comultiplication J) of A is associative and N-commutative for
some ne K. Using the notations of §5 we define a map

g Ker3,—A4 (or n5: A—Coker 3,
by
Ex=@pat (or 9\ = md,_y),

where 2: Ker >3,—(A4%®?), and n: (A®?),—Coker >}, are the canonical inclusion
and projection respectively. Since @ (or ¢) is A-commutative we have

Pl =0 (or Aoy =0)

by (3.3) and (2.13),. And, passing to quotient (or restricting range) we have the
induced map

7 UA—-A (or ny: A—-D,4).
Define
Ex: @\A—A (or ny: A—T,A4)

as the composition
Ex=EVck (or 7y = rony’)

where « is the canonical map (5.2). Since @ (or ¢) is A-commutative, @,_,:
(4%?),—A (or ¢,_,: A—(A®?),) is a morphism of differential algebras (or
coalgebras). Thus the induced morphism &, (or »,) is a morphism of algebras
(or coalgebras).

Now suppose A is a quasi (d, A)-Hopf algebra, char K=p=0, and the
multiplication @ (or comultiplication ¢) is associative and A-commutative.
@p_y (Or Pp_,) is a morphism of coalgebras (or algebras) by (4.1). Thus the in-
duced one &{’ (or 1}’) is also so. 'Thus we obtain
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(6.3) Proposition. Let A be a quasi (d, \)-Hopf algebra over a field K of charac-
teristic p=£0. If the multiplication @ (or comultiplication ) is associative and -
commutative then @,_, (or ¢ ,_,) induces a morphism of (d, \)-Hopf algebras

6.4) Ex: D A—A (or 7 A-W,\4).
Since the differential of ®,4 is trivial by (5.12),
(6. 5) Imé&, (or Coim %,)

is a quasi Hopf algebra with an associative and commutative multiplication (or
comultiplication) which is a sub (or quotient) Hopf algebra of A4.

6.4. We use the following notations:
Z:x =EIPA and 7, = mlA.

(6.6) Theorem. Let NeK and A be a quasi (d, \)-Hopf algebra which is semi-
connceted as a coalgebra. If A is coprimitive then the multiplication is associative, A-
commutative and, when the characteristic of K is non-zero, €, is a zero map.

Proof. The first half is only a repetition of (6.2).

By (6.3) £,(®,A4) is a sub coalgebra of A, hence £,(®,4) is a coideal of A.
Since &, is induced by @,_, and every element of ®,4 has a representative in
A®? by (5.17), we see easily that £,(®,4)C F?4 and obtain an induced map f:
AJE\(@rA)—Q(A) such that the following diagram

P(4) - d A

| P %’—’/f

P(A[EN(@:A)) — A[Ex(DAA)
is commutative, similar to that of (6.2). Then a parallel argument to (6.2) shows
Ex(@:A) = {0} . q.e.d.
As a dual of (6.6) we obtain

(6.6*) Theorem. Let NeK and A be a quasi (d, \)-Hopf algebra which is
semi-connected as an algebra. If A is primitive then the comultiplication is associative,
A-commutative and, when the characteristic of K is non-zero and W,A is semi-
connected as an algebra, 7, is a zero map.

Proof. Again the first part is only a repetition of (6.2%).
By (6.3) Ker 7, is an ideal of 4. Hence, putting B=K @Ker »,, B is a sub
algebra of 4. An easy computation shows that
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$p(P(A)=0 mod Im3,.

Thus P(4)C Ker 7,=B and we have a commutative diagram

Py A o 00)

N TR Tow

B — Q(B)»

similar to that of (6.2%¥). Hence Ker 7, is dense in 4 with respect to F-topology
of 4 as in (6.2%¥). Now Ker 7, is closed in A since 7, is continuous as a mor-
phism of algebras and ¥, A4 is Hausdorff by assumption. Thus

Kery, = A. q.e.d.

ReMARK. The additional assumption that ¥,4 is semi-connected as an al-
gebra is perhaps awkward in the above Theorem. Yosimura [11] has proved re-
cently the following fact: Let A be a differential algebra over a field K, char K=p
+0, and A€ K ; when p is odd or p=2 and nd=0, A is semi-connected if and only if
the algebra W\ A is so; when p=2 and \d +0, H(A) is semi-connected if and only if
W,A4 isso. Thus this awkward assumption about ¥, 4 can be eliminated in major
case, or replaced by another assumption that H(A4) is semi-connected as an algebra
in the other case. Because of (3.21), when 4 is finite dimensional over K we can
eliminate the assumption about ¥, 4 completely.

6.5. Let A be a quasi(d, \)-Hopf algebra over a field K, char K=p=0.
The above two Theorems (6.6) and (6.6*) give necessary conditions for coprimiti-
vity and primitivity of 4. We show later that, in the major case, i.e., p odd or p
=2 and Ad=0, these are also sufficient conditions. Here we denote these con-
ditions by
<CP> the multiplication @ is associative, N-commutative and &, is a zero map,
and
<P> the comultiplication J is associative, N-commutative and 7, is a ero map.

Here we have

(6.7) Proposition. The properties <CP > and <P > of A are respectively here-
ditary to H(A).

Proof. Clearly the associativity and A-commutativity is hereditary to H(A).
Now in the exact sequence

0 - dA — Z(A) - HA) — 0
each term has trivial differential. Hence

0 — D(dA) — P (Z(A) ~ D(H(A) — 0
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is exact by (5.13). Observe the following commutative diagram:

o(d) < a2 A) 2 o,y
& ,- |Bzay |y

A «—— z(A ——> HA)

i is injective and ®,(x) is surjective. Hence £,=0 implies that &,(H(A4))=0,
i.e., <CP> is hereditary to H(A4).
The case of <P > can be proved by a parallel discussion. g.e.d.

6.6. One of the main steps in proving the sufficiency of <CP > and <P >
for coprimitivity and primitivity in major cases, is to reduce the problem to some
graded cases and come back to A by making use of (4.11) and (4.11%).

(6.8) Proposition. Let &K, char K=p, and A be a quasi (d, \)-Hopf algebra.
Assume that p is odd or that p=2 and Nd=0. If A satisfies <CP > then Ey(A)
also satisfies <CP > .

Proof. The associativity and A-commutativity of E(p) is clear. We prove
only that &, is a zero map for E,(4).
Since each E3A is a d,-stable submodule of E,(A4), we have

D,E (4)== ”6[290 DEA
by (5.6). Now we see that
Exi DAE(A)—Ey(A)
is a direct sum of maps
Ex: ®EA—EPA

(by the reason of degrees), n>0. Since &, (of 4) is induced by @,_, and @,_,
preserves F-filtrations by (1.16) and (3.17), it induces a map

Ex: OF"A—-F"4
for each n>0. Now consider the following commutative diagram

NG @
o4 20, @, F"4 i) ®,EnA

B . s e
A —— F4 "5 Ep4a

for n>0, where 7 and » are canonical inclusions and projections. By (5.13)

®,(x) is surjective. Then, by a simple chasing of the above diagram we see that

the assumption implies that
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& ©\EA—EA
is a zero map for each n>0. q.e.d.
(6.8*) Proposition. Let nK, char K=p, and A be a quasi (d, \)-Hopf

algebra. Assume that p is odd or that p=2 and \d=0. If A satisfies <P > then
+E(A) also satisfies <P >.

Proof. Again we prove only that 7, is a zero map for ,E(4). By the same
reason as in the above, we have

U, (,E(4))= B .Y\ E") .

By the nature of the construction of ¥,, ¥,(,E”4) should be considered as the
group of degree np, that is, if we express the graded module ¥,(,E(A4)) as

Vi E(A)) = Dmso¥r(E(A))",

then
v, E(4))" = {0} for m=%0 mod p
and
Y, ,E(A))*? = ¥,(,E"4).

Therefore, since 7, of ,E(4) is induced by E(¢,_,), it is degree preserving;
putting

n= D%, W =mhE"4,
we see that

7 =0 for m=%E0modp
and

7% JE"? AV, (,E"A)

for each n>0. Hence it is sufficient to show that »%?=0 for »>0 under our
present assumption.

Next we remark that, if we regard as ¥,4=¥,4 by (5.17), then we can
regard as 7, (of A) is induced by ¢,_,. Now ¢,_, preserves G-filtrations by
(1.16*) and (3.17%*), whence J,_,(p"?*A)C " (A®?),. Hence J,_, induces a
map

Pyoit Afpm?T A—(A2),[p"0 (AP,

(A®?),/P"?"'(A®?), is a [I-module by an operation induced by C,,. And, by
exactly the same reason as in (6.3), ¢, _, induces a map

ni: A[P" 7' A—>W((A®?), [Pt (A®?),, C, )

for each »>0. Since
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P (A%, C A®P\QP* ' A+ .+ P* AR A®?!
by (3.17*), we have an induced map
Ji (A®2),[P"*7}(A%%),~(A|P""'A)®?
of IT-modules. Hence we have
W(j): (AP (APP),, C, ) W(AIP™ ).
Then we can regard the composition
™= W(i)nk: AP AW, (AP A)
as a map induced by ¢,_, for each n>0.
Finally consider the following commutative diagram
A " Apra L pmg
2N lm ln’i”
v,A m w,(A/P"'A) m v, ,E"A4)

for n>0, where k: ,E”A->A/P™'A is the inclusion and z: A—>A/P™'4 is
the projection. By (5.13) ¥,(k) is injective. 'Then, chasing the above diagram
we see that the assumption implies that }? is a zero map for n>0. q.e.d.

6.7. Let 4 be a quasi (d, A)-Hopf algebra, A K, char K=p=+0. In this
subsection we assume that the multiplication of A is associative and \-com-
mutative. We obtain the following lemmas by routine calculations involving
inductions.

(6.9) Lemma. 1) If x& A is of even type, then
Mdx) =0 and d(x*) = kx*"'dx;
ii) if x A is of odd type, then
Mdx)? = 22, d(x**") = x**dx and d(x**) = 0.

(6.10) Lemma. Suppose that p=2 or that p is odd and x and y are elements
of even type. Then

= St B in ey s 2o e iy,

(ay)* = wkyh N (k(k-1)[2)x4 " duc- y*~dy .
(6.11) Lemma. LetxsP(A4). i) Suppose that p=2 or that p is odd and x is
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of even type, then
Hck) = 2;;0(’;)x'@xwﬂ(k(k-l)/Z)zzzi(’:.:f)xf-ldx@@xk-i—ldx ,
P(x*dr) = ZLO(?)(x‘dx®x”"+x‘®xk“dx);
ii) Suppose that p—2 or that p is odd and x is of odd type, then
ol = 5§ ey @ (-,
o) = 321 8 )y @ o+ (dyin (dp ).

By (5.9.1-3) we see that Im &, is generated by {#*; Adx==0, x= A} in case
p=2, and {@,_,(x®?+b, \(x)), x= A} in case p odd. Since b, (x) is a linear
combination of mixed p-fold tensor products of x and dx containing dx at least
two, by (6.9) we see at once

(6.12) Lemma. Suppose that A satisfies <CP >, then
i) in case p=2,

=0 i ANdx=0;
ii) in case p odd,
x? =0 if x is of even type.

6.8. Let 4 be a graded connected quasi (d, A)-Hopf algebra, A€ K, char
=p=+0. Aisbigraded: the one is the Z,-grading and the other is a non-nega-
tive grading, the former is called by “type’” and the latter by ‘“degree”. By a
“homogeneous’ element of 4 we mean an element with definite type and degree.
In this subsection we assume that the multiplication is associative and n-commu-
tative, and deg d=0.

Let x€ A be a homogeneous element, then non-zero elements of {x*, x*dx;
k>0} are linear independent since types or degrees are mutually different. And
also non-zero elements of {(dx)*, (dx)*x; k>0} are linear independent. There-
fore by (6.11) we obtain

(6.13) Lemma. Let xe A be homogeneous and primitive.

1) Suppose that p=2 or that p is odd and x is of even type; if a non -zero element
x® is primitive, then k=p*, t >0, where t=+1 in case p=2 and \dx=+0; if a non-zero
element xkdx is primitive, then k=0.

i) Suppose that p=2 or that p is odd and x is of odd type; if a non-zero element
(dx)% is primitive, then k=p*,t >0; if a non-zero element (dx)kx is primitive, then
k=0.
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6.9. Here we prove the inverse to Theorem (6.6) under very special assump-
tions in major cases.

(6.14) Proposition. Let A be a graded connected quasi (d, \)-Hopf algebra with
deg d=0, whose generators as an algebra are finite and of degree 1. Assume that
P is odd or that p=2 and Ad=:0. If A satisfies <CP > then A is coprimitive.

Proof. Choose a d-stable homogeneous basis
X1y covs Xpy Xptyy oony Xy AXyyon.y dXp}

1<k<n, of A (the module of degree 1) where dx;=0 for k4-1<j<n. We say
that 4 has » generators as a differential algebra. We prove the proposition by an
induction on z#.

First we suppose that 4 has a single homogeneous generator x as a differen-
tial algebra. We have two cases.

1) The case of dv=0; in this case we are just in the ordinary case; A=K ,[x]/
(x*) when p is odd and x is of even type, or A=A 4(x) otherwise by (6.9) and
(6.12). Thus A4 is biprimitive.

2) The case of dx=0; the elements of 4 are all linear combinations of elements
of the form x*%(dx)’. When p=2 or p is odd and x is of even type, we see that
(dx)*=0 by (6.12) for p=2, and by (6.9.ii) for p odd; hence the elements of 4 are
all linear combinations of x*, x*dx, k>0. When p is odd and «x is of odd type,
we see by (6.9.11) that A (dx)’=2x? i.e., ¥’*=N[2+(dx)?; hence the elements of 4 are
all linear combinations of (dx)%, x(dx)*, k>0. Now by (6.12) and (6.13) we see
easily that 4 is biprimitive.

Next process is parallel to [10], p.233. Suppose the proposition is true for
cases with less than or equal to #-1 generators as differential algebras. Let B be the
sub differential algebra of 4 generated by {x,, ..., x,_,}. A-commutativity implies
that B is a normal sub algebra of 4. Putting C==K ® zA4, C is a quotient dif-
ferential algebra of 4 with one generator y=n(x,) of differential algebra, where
m: A—C is the canonical projection. Here we note that B and C are quasi (d,\)-
Hopf algebras with generators <n—1 as differential algebras, satisfying the
assumption of the proposition. Under our assumption on p and Ad, @, is an ex-
act functor by (5.13). Thus <CP > is hereditary to Sub and Quotient (d, \)-
Hopf algebras. Therefore B and C satisfy < CP >, hence are coprimitive by the
assumption of the induction. Now we have a commutative diagram

0 —> P(B) — P(d) — P(C)

Vp Va Ve

0 — O(B) — Q(4) — O(C) —0

with exact rows by (4.15), (4.16) and our assumption on degrees of generators. It
follows the injectivity of », from that of vz and v.. q.e.d.
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6.10. Now we prove our inverse theorem to Theorem (6.6) in cases p odd
or p=2 and Ad=0.

(6.15) Theorem. Let neK and A be a quasi (d, \)-Hopf algebra. Suppose
that A 1s semi-connected as an algebra, and that char K==p is odd or that p=2 and
Ad=0. If A satisfies <CP > then A is coprimitive.

Proof. By (6.8) Ey(A) satisfies <CP > under our assumptions. E,(A4) is
graded connected. Hence by (4.18) we can express as

EO(A) = U .‘eIBi

as a direct limit of sub quasi (d, \)-Hopf algebras which are finitely generated as
algebras. Since E,(A) is generated by elements of degree 1 as an algebra by (1.19),
we can choose B,, i1, so that they are generated by elements of degree 1. Now,
since deg d,=0, B, satisfies the assumptions of (6.14) for each icl. <CP>
is clearly hereditary to sub (d, A)-Hopf algebras. Thus B, satisfies <CP >, hence
is coprimitive by (6.14). Then, since the direct limits are exact functors.

v:P(E((4))—Q(E(A))
is injective as the limit of
vt P(B,)—~0O(B))

which are injective, i.e., E,(A) is coprimitive. Finally, by (4.11) we see that A4 is
coprimitive. q.e.d.

6.11. Let A be a graded G,-module, i.e.,
A= A,pA,, Z,grading

= >'.504", non-negative grading

such that, putting A?=A4,N A", A,=>",,4% for teZ,. Suppose A4 is of finite
type, i.e. dim A” <oo for each #>0, then we can talk about the dual 4* of 4 as
usual [10]. Several notions and statements about 4 and 4* are in duality relation.
We denote here by “X« Y” that a notion or a statement X about A4 is dual to
Y about A*. When A4 is a finite dimensional G,-module, putting 4°=A4, A*=
{0} for n>0, we can regard A4 as a graded G,-module of finite type, and apply the
following duality relations.

The following duality are classical, cf. [10]: multiplication g«>comultipli-
cation @*; @ is associative«>g@* is associative; 7 is a unit for p«>7* is a counit for
@*; € is an augmentation of @«&* is an augmentation of @*; (4, @, 7, €)is a
graded algebracs(A*, @*, n*, £*) is a graded coalgebra; graded connected algebra
—graded connected coalgebra; differentiale—differential; differential algebrac—
differential coalgebra.
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Now let A& K. We see easily that T, is self-dual. 'Thus we obtain the fol-
lowing dualities: multiplication @ is A-commutativeescomultiplication @* is -
commutative; (4, @, ¢, 7, €, d) is a graded (quasi) (d, \)-Hopf algebrac(A4*,
o¥, @*, £*, ¥, d¥*)is a graded (quasi) (d, \)-Hopf algebra.

Next, let 4 be a graded (quasi) (d, 1)-Hopf algebra of finite type. The fol-

lowing duality relations are also easily seen:
P*A>Q%A*, k>1; H(A)—~H(A*); E,(A)—,E(A*), r>1; A is primitive>A* is
coprimitive; A4 is semi-connected as an algebracA* is semi-connected as a
coalgebra. Assume further that char K=p=+0, then @AV, 4*: £,on: 4
satisfies <CP >« A*satisfies <P>.

6.12. As a dual to Theorem (6.15) we obtain

(6.15*) Theorem. Let AeK and A be a quasi (d, \)-Hopf algebra.  Suppose
that A is semi-connected as a coalgebra, and that char K==p is odd or that p=2 and
Ad==0. If A satisfies <P > then A is primitive.

Proof. By (6.8%) E(A) satisfies <P >. E(A)is graded connected. Hence
by (4.18) we can express ,E(A)= U c;B; as a direct limit of sub quasi (d, \)-
Hopf algebras which are finitely generated as algebras. Hence B, is of finite
type. Under our assumptions ¥, is an exact functor by (5.13). Hence the
property <P > is hereditary tosub (d, \)-Hopf algebras. Thus B, satisfies
<P>. Then the dual B¥ satisfies <CP > (cf.,, 6.11). Here B¥ is connected,
hence coprimitive by (6.15). Thus B, is primitive for each ;1. Now, since
the direct limits are exact functors,

v: P(E(A))—>0(E(A))
is surjective as the limit of surjective maps
v;: P(B,)—~0Q(B,),
i.e., oE(A) is primitive. Finally, by (4.11*) we see that 4 is primitive. q.e.d.
6.13. By (6.6), (6.7) and (6.15) we obtain

(6.16) Proposition. Let N K, char K=+0, and A be a quasi (d, \)-Hopf
algebra.  Assume that A is semi-connected as a coalgebra and H(A) is semi-connected
as an algebra. If A is coprimitive then H(A) is coprimitive.

Dually, by (6.6*), (6.7) and (6.15%) we obtain

(6.16*) Proposition. Let &K, char K=+0, and A be a quasi (d, \)-Hopf
algebra. Assume that A and V\A are semi-connected as an algebras and H(A) is
semi-connected as a coalgebra. If A is primitive then H(A) is primitive.
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Now, since E,(A) and ,E(A) are graded connected for >0, as a corollary

of (4.10), (6.16) and (6.16%) we obtain

(6.17) Theorem. ILet n&K, char K =0, and A be a quasi (d, \)-Hopf algebra.
E,(A) is primitive and ,E(A) is coprimitive for every r>0.
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