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1. Introduction

Let P=P(x, D) be a self-adjoint pseudo-differential operator with the
symbol p(x, £) in the class S}, of Hérmander. The positive part of P is
defined by

Pt = S:xdE(x) ,

where dE(\) is the spectral measure of P. We shall be concerned with the
following question: To what extent the correspondence; #—P*u can be
localized? We shall prove a localization principle for the operator P* which
is analogous to Theorem 6.3 of Hormander [5]. If we combine this with our
previous discussions in [2], we can explicitly construct an operator B such that
we have estimate

|((4"—B)u, v)| = Cllullys|l0lls »

where # and v are arbitrary functions in P(R"™) and C is a positive constant
independent of % and v.

2. Localized operators

Let us repeat our notations. p(x, &) is a function in the class Si, which
vanishes unless x lies in a compact set K in R". We treat pseudo-differential
operator P(x, D) defined as

@.1) P(x, Dyu(x) = (2z)~" SSR p(x, E)u(y)e-2tdydE .

We assume that P=P(x, D) is self-adjoint in Hilbert space L*(R").

Now we make use of the partition of unity of Hérmander [5]. Let g,=0, g,,
g2 -+ be the unit lattice points in R*. Then R" is covered by open cubes of
side 2 with center at these points. Let ©(x) be a non-negative Cg function
which equals 1 on [x;| =1 and 0 outside |x;| =3/2, j=1, 2, 3, ---,n. We set
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22) i) = B(x—gn)/( 3] O(s—g)
and

Pu3) = ou (- =g+ )

Note that ¢(x)=1 on supp @;. We, by definition, have

24) S pula) = 1

and

(23) SID*p)*=C,

for any multi-index a=(a, a,, *** a,,)-

(2.6) lx—y| =3/ n if x and y are in supp @;.
We set

(2.7) V() = pu(E/1E]?) and

29) Ve = uelIEN"), S Sp=1
Then we have

29) S =1,

(2.10) |§lz'”‘p§3|D“\Ifk(§)|2§C,

and

(2.11) [E—n|<C|E]"  if £ and » are in supp g .

Here and hereafter C stands for positive constants which are different from
time to time.

2 C(E 77)2 ”n
2.12 -\[r Jr < f , R".
( ) ;I k(g) k(’7)| = (1 l’g‘l)"(l ‘ I)p or any f ne

Let 8,=]g;|%*"®. Then g;56,&supp ;. We shall denote by y;(D) the
pseudo-differential operator corresponding to the symbol +;(£). Then we have

(2.13) 2 v (DyY=1I.
The Sobolef norm |ull, of u is equivalent to (3 83/°||yr (D)ul|?) .

We put @;.(¥)=@,(8ix) and ¢;4(x, £)=@;4(x)Yrs(£), ¢;jk(x> E)Zéik(x)‘i’k(‘f )
where o=(1—p)/p. It is obvious from definition that

(2.14) | (%)"(%)Bcﬁjk(x, s)lgca':"’szlﬂ' <C|g|wa-m-pe,
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This means that the set {¢$;.},;; is bounded in the class S}, ,. We shall
frequently use the inequality

(2.15) Cllullfélzi‘. 8P|, Dyullz<C ~*|lull .

Choosing a point (x7%, £¥) in supp ¢, we set

x*DP B

(2.16) Qju(*, D)= >3 P&, E*), Nzp/(1—p),

—lwl+|p|<N alp!

and P (%, D)=%(Q,~,¢(x, D)+ 0Q,4(», D)*), where Q(x, D)* is the formal
adjoint of Q;.(x, D). We call these P;4(x, D) localized operators.

3. Statement of results

Theorem 1. For any given 'y>l(1— p), there exists a constant Cy>0 such
that inequality 2

3.1) (P, u)—23 (P a(x, D) §u(x, DY)l = Collulyllal]
holds for any u= C5(R"™).

Theorem 2. Assume that the localized operators P, (x, D) are self-adjoint.
Let Pj, denote the non-negative part of P,,. Then, for any fy>%(1— p), there

exists a constant C,>>0 such that we have estimate

(3:2)  1(Puy w)—233 (Piidpsu(x, D), ulx, D) | = Cy({lul Iyl el lfeel s - )
for any u in C3(R").

ReEMARK 3.1. When p=2/3 and N =2, the assumption that P,(x, D) is
self-adjoint is satisfied and Pj, is easily constructed. See [2] for the details. We
can construct operator B for which the estimate |((P*—B)u, v)| = Cllullysllvllie
holds for any % and v in C7.

4. Proofs
We begin our proof by the following lemma.

Lemma 4.1. Let A be a self-adjoint operator in a Hilbert space X. Let ¢'°4
be the corresponding one-parameter group of unitary operators. Then the non-
negative part A* of A is given by the formula

o isA

4.1) At = —(2m) S_” (se_ o

xds
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for any x in D(A?). Here (s—i0)~* is the distribution lim (s—i¢)~®. (cf. Gelfand-
Silov [3]) e

Proof. Let A*=max (A, 0). Then we have
(4.2) g:(s—iO)"e"s"dx — —2ma*,
If @ is in B(R"), then
(43)  —i0) g = | (2o)+p(—9)—2(0)sds +ing(0)
This and (4.2) mean that
(4.4) 2Nt = S:(e“"—l—e"""—Z)/szds——rzx .

Now we need spectral representation A:Sw AE(M\) of A. Integrating
(4.4) with respect to A by measure d,E(\)x, we have

Ny S:(eis“‘—l—e“"‘“—2)/s2dsx—7rAx — S: eisA|(s—i0)ds .
Proof of Theorem 1. We have to deal with the difference
(4.5) (Ptu, u)—? (P* ¢,u(x, D), ¢ ;4(x, D)u)
= 22([P", ¢ D) ja(x, Dyu, u) .

Putting

(4.6) ¢ ,-k(s; x, D) = Iei&sPd)ik(x, D)e::.'}sP and
Ti(s; x, D) = '¥Fp (x, D)*e 4P,

we have

4.7) [P, ¢ ;1(%, D)*1b,4(x, D)

= eF($%i(s; %, D)—¢¥u(—s; %, D))pju(s; &, D)e't*".
Therefore by lemma 4.1,
(#.8) [P*, b;u(x, D)*]b;u(x, D)
= —(27)" &: (s—i0) %" P(pTu(s; 8, D)—P¥i(—s; %, D))bals; %, D)e'teFds .

The operator ¢;(s; x, D) is a pseudo-differential operator whose symbol is
given in the following manner; Let (y(¢; , £), 7(¢; x, £)) be the solution of the
Hamilton-Jacobi equations

417=—.6P(y’77) @: _6])(_’}1,77)
(4.9) = 2, 2 o
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with initial conditions y(0; x, £)=x, and 7(0; x, £)=¢. The symbol of
bju(s; %, D) is
(4'10) quk(s; Xy E) == ¢jk(y(s; X, E): 7](31 X, E)) .

(cf. Egoroft [1], Hérmander [6] and Nirenberg-Tréves [7].). As a consequence,
the sequence ¢ ;4(s; x, £) is bounded in Sy, , and the number of overlaps of
supp ¢jx(s; x, £) is bounded. Set

#11) @5 % D) = (53 % D)—¢hi(—s; % D))dyuls; % D).
Then we have
Lemma 4.2.
(4.12) 1° @, (0;x, D)=0,
(413) 2° % @6i3,D) = Li{IP, s, DY iarHIP, 655 D)]-cob byulss 5, D)

+ LiGs5 % D)~ gua(—5; 3, DIP, k-

(4.15) 3° Isl““{%q)jk(s;x,D)—Zf[P,¢}"k(x,D)]¢jk(x,D)}, i k=0,1,2,,

is a bounded sequence in the space L2, if 0<a<1. Here we have used the
notation [P, ¢p%(x, D)]cy=€"*F[P, p%i(x, D)]e ##F.

Proof.
1° is obvious.

2 L9h(ss % D) = e[, e T = TP, il Dk

3° d-d?zCI),-k(s; x, D) =
= (1[2)[P, [P, ¢%]lo—[P; [P, ¢Fu(%, D)]k-}psals; %, D)

+2(2)[P, ¢;x(x, D)*]co+[P, dF(%, D)o }P, Pielcsso
+(E2)(P¥uls; %, D)—p;u(—s; %, D))[P, [P, dpjulleo -

This implies that the set {é% Dj(s; x, D)} . is bounded in S?{=Y. Applying

J
convexity argument, we can prove that the set {éi D i(s; x, D)—; D (0; x,
s s

D)} [s|~® is bounded in S5 (R™). This proves 3°.

Now we come back to the proof of Theorem 1. We divide integral (4.8)
into two parts;
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(416) A= Sjs‘z(e"i“’ D 4(s; %, D)eHP e 4P (—s; x, D)e¥F)ds
and
(4.17)  Bji= —2x[P, ¢}i(*, D)p;u(x, D)+

+ S:s_z(eiiwq’«'i(s; %, D)e*sP e HF® ;(—s; x, D)e *+F)ds .
We have to prove estimate
(4.18) 122 (A ey u)+23 (B, )| = Cyllullyllu] -

Since {®,(s; x, £)} j; is bounded in S7,_, and the number of overlaps of supp
®j, is bounded, the series >} ®;(s; x, D) converges to an operator I(s; x, D)
ik

in L) ,_, of Hérmander [5]. Thus we have
(4.19) |_2k (Ajau, u)| = ' Sms'z {(T(s; =, D)e'*sPu, e~*4sFu)
J t

+(T(—s; x, D)e *¥Py, ¢*Py)}ds
=Ct7lul.

We get estimate of >)(Bj,u, u) by virtue of lemma 4.2. The set
ik
{Isl “”“”(cpjk(s; X, D)—sdid),-,,(O; x, D))} is bounded in S, If we
s ik
set A=(1—A)} and
Sin(ss 3, D) = A0+ 0501 (@4 (55 3, D)—s & 034(0; w, D) )T+,
s

the sequence of their symbols S;(s; x, D) is bounded in S?,_, and the number
of overlaps of supports of them is also bounded. The series >} Sj(s; %, D)
7]

thus converges to an operator S(s; x, D) in the space LJ,,_,. Hence we have
(4.20) sz] (Bjru, u) =
= S'SN_I(S(S; x, D)e"%SPA%(H'"’m—p)(S)u, e-i%sPAg(lwo)(l—P)(_s)u)ds
0
+ {5 S(5; w, Dyemnerscra-p gy, et g —syuyds
0

where A(s)=¢#FPAe P,
Since A(s) and A(—s) are elliptic operators of order 1, we have

t
(4:21) |3 By, )] < C s dsllullss-s

= Ct“”“”i(”m)(l—p)
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Setting r)/=%(1—|—a:)(1— p) and adding (4.19) and (4.21), we obtain

122 (Ajate, w)+23 (Bjau, u)| = CQ* llully+27"ull?) -

Since ¢ was arbitrary positive number we take the minimum of the right side with
respect to £. 'This completes proof of Theorem I.

Proof of Theorem II.
This time we have to deal with

(+.22) | (P, 0)— 31 (P ubsale, Dty byu(x, D)
<3U(®*—P)bsulx, DY, bl DY)l
Using Lemma 4.1 again, we have
(423)  (P*—P3)su(x D, dul, D))
= |7 (i) (e — e ), DY, 40, Dyu)ds .
We put
L(s) = (""" u(x, Dy $7u(x, D)) and

divide the integral in (4.23) into two parts;
18177
(4.24) M, = S sH(L(s)+L(—s)ds and
]
(4.25) N, = m’L’(O)—l—j; 18 M)+ L(—s))ds
k

The latter is easily majorized. In fact, unitarity of operators &*F and e**Fit
imply that
(4.26) gm s72| L(s)+L(—s) |ds < ZSM $72||p;r(2, D)ul|*ds
1£41°-1 1§41~ 1
=C & llpja(x, D)ull?,
while

(4.27) | L(0)] = ((P—P;1)ba(%, D)u, p;u(x, Dyu)]|
=CIE:" lldpju(x, D)ull*.
And we have

(4.28) Nu=C1Ex|""lldpja(x, Dyull®.

L(s) can be written in the form
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(429) L) = L (ereo-0rn)p u(e, Dy, yus, D)
= S:(e"'P(P—ij)e"(s“)"ikgbjk(x, Du, bu(x, Dyu)dt .

The integrand can be divided into two parts

(4.30) J&) = 7 §3(2t; x, D)(P—P;p)ei—HFis
and
(+31) K(t) = ¢*(I—§}(2t; %, D))(P—Py)es %

Here <j;’,",,(2t; x, D)= e~"F <Z>,-,,(x, D)*¢*?,  'The symbol (Z)]-,,(Zt; x, EY* of it is
obtained from (ﬁjk(x, £)* in exactly the same manner as ¢;,(¢; x, £)* is obtained
from ¢¥(x, £). A consequence of this is that there exists constant C>0
such that |x—x7%| <C|E,|°" and |E—E¥|=C|E|® hold if (x, &) is in
supp ¢3(2¢; %, £) and [¢| <|£,|*7'. This fact together with definition of P;,
imply that {¢3(2¢; x, £)(P—P;4)};x is bounded in S}7%, and at most bounded
number of them have non-empty intersection.

Lemma 4.3. We have the following estimates

(#.32) (1) 1(J®)b;a(x, Dyu, b;u(x, Dyu)| =C1Exl* " lipjulx, Dyull*,

(4.33) (2) Il =*(J@)b;a(x, D)ty Pju(%, D)) —(J(O)pja(x, DY, $;u(, D))l
SCE TP Iju(x, D)ull* .

Proof.
(1) Since {(f)j",,(Zt; %, D)(P—P;,)};+ is a bounded set in L;3%,, we have

|(J(@)bsa(x, Dty bsu(, Dyu)|
— (P AT G285 2, DYP— Py -0, Dty AH(—28)50(, DY)
= C|lp;e(x, D)ull [|A~*(—2¢8)d;a(, D)ul|
=Cllpju(x, Dyull*|Eel™".

(2) Differentiating (4.30), we have
& J® = e 3(21; w, DYPP—Py)—(P—Pyu)P e =07
— ¢UPg(28; %, D){(P—Pyu)f-+[P, P—PyJ}eie=o%n,
We know, just as above, that
H21; % DY(P—Py)+[P, P—Pyl} AP

is bounded. This fact implies that
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!<£](t)¢jk(x, Du, ¢;u(x, D)”> SC &1 lipja(x, D)ull*.

Convexity argument again proves
121 =*{(J@)bsa(%, Dy, bju(%, Dyu)—(J (0)psuxs D)t bsu(, D))}
SCIE ™4l ja(, Dyull* .
Lemma 4.4.
(#34)  [(K(O)d;a(x, D), bsa(x, Dyu) | =C1Ex] ~*lIbsa(, Dullllul]
and

(435)  |(K s D)t by (3, DY) SC 1£ul s, Dyl

Proof. By definition (4.31) we have
oT(x, D)K(2) = e"Pp¥(2t; x, D)(l—qg’,",,(Zt; %, D))(P—Pj)etc—DFir

Lemma 4.4 is a consequence of this and the fact that ¢Ji(2¢; «, D)(l—J;}“,,(Zt;
x, D)) belongs to L™".

Now we are able to manage (4.23). L(s) turns out to be
(436) L) = | (JO—T )b, Dy, b, Dyt
+5(J(O)d;u(x, D), psu(¥, D)u)
+ [ 6= L K@ sux, D, byuw, Dyu )it
—I_S(K(O)d)jk(x» D)u» Sbjk(x! D)u) .
The first term is estimated as a consequence of Lemma 4.3.
(437) 1§ (7O, Dy, ¢, DI

=1S: *t=*(J(&)—J(0)) (¢ ja(x, D)u, Pp;u(x, D)u)dt‘
<Cs* g, (1+m)(l—p)”¢jk(x’ D)u”z’ a>0.

Estimate of the third term follows from Lemma 4.4;
s d

(4.38) H (=0 L KO)su( Dy, il D)u)dtl
0 dt

=C & ~"lldju(x, D)l lul] -
Thus we have proved that L(s)=sW(s)+ R(s), where
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(4.39) W(s) = (P—P;r)e*Fircp;(%, D)u, P;x(x, D)u)
and
(4.40)  |R(s)| SC(s™ | Ep| 92| p(x, DYull*4-51Ere| ="l pju(%, D)ual|[uell) -

Now we majorize M;,. First we have

[ s RO+ R(—)ds
SC(|Ex| P21 E [ 4P| u(2, DyullP+ | Exl = 7°]|p;u(2, D)ual] [uel)
The remainder is

S.()Eki _ sTH(sin(s Pjg)pju(%, DYu, (P—P;r)*ju(x, Dyu)ds .

Therefore we have proved estimate
(441) [ Ml =C(1EeI" " llpju(x, D)ull*+ £l ="~ *llda(x, D)ull lluell)
if we admit the following lemma that will be proved later.

Lemma 4.5. Let A be a self-adjoint operator in a Hilbert space X, then

K
S s7'sin (s A)ds ”én‘ .
It follows from (4.23), (4.24) and (4.26) that we must prove estimate
122 Mt 33 Niwl = C(llulll el -+ elles-o3r2)

This is proved in the following manner: Taking summation of (4.41) with
respect to j and k, we have

23 M| = C 2Nl llbsu(0, DYl = Cllullica-oo -
On the other hand
N el SCCSERTPlhsals DlF+Er Il bgal, Dyl )
= C(S i salw Dyl fs-pt- el
=Cllullia-e »

This is because the number of those j’s for which supp ¢;,N KX R", k being
fixed, is of order |£,|“~""X (the volume of the set K). Theorem II is now
proved up to Lemma 4.5.

Proof of Lemma 4.5. Let A=Sm MdE(\)be the spectral representation of
A. Then we have
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K X K o
S s~ (sin(s A, y)ds:S dsS s~ sin () d(E(\) %, 9)
o K
— S dEM), 9) S s~ sin (As)ds
o o

KA
0

= S:d(E(A.)x, ) S s™'sinsds.

Therefore,

(1]
[2

[3]
(4]

(5]

(6]
7]

SKs“ sin s4 ds”_ﬁ_ Sup
T

T .
§ s~ 'sin sds
0 0

<.
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