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0. Introduction

In the present paper we study the Schrodinger equation, the Dirac equation,
the equation describing the motion of relativistic spinless particles, and somewhat
more general equation:

©0.1) iﬁ%‘(z):lqt)u(z) on [0,T] (xeR"), u(0)=u®.

X+X

2 b
i X+X . . . .

#hDy);141,2,---,N) where Kj,(t,T,h‘Dx) is a pseudo-differential operator with the

Here 0<% <1 is the Planck constant, u(f)="(u,(t),---,un(t)), and K(£)=(K(t,

Weyl symbol k;(t,x,£) defined by

x;x’,ﬁé)f(X’)dX’dé (e &=Y]=1x8) i=y/ — 1, d=Q2n)"d?).

ﬂei(x_ xl).‘:kﬂ(t,

Throughout the present paper we assume that k;(t,x,¢);741,2,---,N) is a Hermitian
matrix and that ky(t,x,{) is a continuous function on [0,77]x R* and
C>-differentiable with respect to (x,¢&).

We use the following function spaces : L2=L?(R") is the space of all square
integrable functions with inner product (-,) and norm | |; Let a, b, and s be
non-negative constants. We define the weighted Sobolev space B; (%) by
B (W) ={feL? || flag,m = 1< YFI+1<k Yl <o} and denote its dual space
by B, ;(f) with norm | flp;sm Where <x>=(1+|x*)!/* and F@©=fe~ > (x)dx.

This research was supported by Grant-in-Aid for Scientific Research No. 05640196, Ministry of Education,
Science, and Culture, Japanese Government.



328 W. ICHINOSE

Let F be a Banach space with norm | f]|;. We denote by F" the direct product
space of N copies of F with norm [|(fy, - fwllrx = (Z)=, 11 /;113)'/* and by &[0, T]; F)
(j=0,1,---) the space of all F-valued j times continuously differentiable functions
in [0,T].

At first consider the Schrodinger equation. Let N=1 and set k(t,x,&)
=k, ,(t,x,€) in (0.1). Assume the following:

(0.2) For any multi-indices &= (a,--+,a,) and f=(By,---,B,) with Ja+ | = Y 7_,(a;+
B)>2 there exists a constant C, ; such that [k{)(z,x,&)| < C, ; on [0,7] x R*",

Nt (o1 o) (14
(x) - al‘ V] = cee —_ coe —_—
where k{g(t,x,6) = 33(10,k(t,x,8) = ( ; 51) ( ; 5) (,- ax1> <i 6x,,> (6.2

Then we get the existence and uniqueness of the unitary solution on L2 of
(0.1) and the regularity property on this solution stated just below from results in
[6], [12], and [18]. For any u®e B} (%) (s=>0) the equation (0.1) admits a unique
solution u,(r) e £X[0,T]; B},1(7)) and this u,(?) satisfies

lun® =11}l on [0,T],
0.3)
"un(t)"B{'lmﬁCs(T)”“(o)"Bg'lm on [0,T7],

where C(T) is independent of 0<#<1. The first equality in (0.3) implies that the
solution has the unitarity on L? and the second one guarantees for many observables
G in quantum mechanics and initial data u‘® that the expectation value (Gu(?), u(t))
exists for all te[0,7]. Then #A-independence of C(T) is also important for the
study on the classical limit lim,_,o (Guy(f),us(f)). For example see [21] for it. But
the assumption (0.2) is too restrictive. In fact this result is applicable to the
Schrodinger equation with an external electro-magnetic field

o=y 9 _ o9 _
0.9) zh‘a(t)—z " l(i agt,x)) . aft,x))u+ V(t,x)u

0x; X

only if all real valued aft,x) are polynomials of degree one in x, where “-o-”denotes
the product of operators. We note that the right-hand side in (0.4) can be written

as K(t,—X—;:E,h‘Dx)u with the Weyl symbol k(t,x,&)=>"_,(£ ,-—a,(t,x))2+ V(t,x).

One of our purposes in the present paper is to show that we can obtain the
same result as in the above under a more general assumption (A) than (0.2):

(A) For any a and B with |a+p|>1 there exists a constant C,, such that
k@t %,0)] < Cy p(1+ x| +[£]) on [0,7] x R*".
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Then our result is applicable to (0.4) if d4aft,x) (j=1,2,---,n) are bounded on
[0,7]x R" for all |f|#0 and we have |6£V(t,x)|sCﬂ<x> for all |f|#0. So, for
example, we can apply it to (0.4) with periodic vector potential (a,(t,x),--,a,(t,x)) in x.

Next we consider the Dirac equation and the equation describing the motion
of relativistic spinless particles. Assume the following in general :

(B) We have |k;3)(t,x,6)| < C, ;<(x> on [0,T] x R*" (j,/=1,2,-,N) for all |«| #0 and
B. Inaddition, there exists a constant M > 1 such that |k (2, x,)| < C,,((x)” +
(&) for all B.

Then we can also get the existence and uniqueness of the unitary solution on (L%)¥
of (0.1) and the regularity property on it. To show this is our second purpose.

The method of proving our results is much different from and much easier
than that in [6], [12], and [18], where the theory of Fourier or oscillatory integral
operators was used. In the present paper we will use the theory of pseudo-differential
operators with- basic weight function which will be studied in Section 2. Then
our proof becomes analogous to that of the similar result on hyperbolic equations
in [13] and [20]. We will state our results in Section 1. Their proof will be
given in Section 3.

1. Results

We state the main theorem.

Theorem. (i) Suppose that all k;(t,x,%) satisfy the assumption (A). Then for
any u® e By ()" (— 00 <s < 00) there exists a unique solution uy(t)e £X([0,T7; B ,(H))
NENL0,TT; By 2™ of (0.1). In addition, there exits a constant C{T) independent
of 0<hi<1 such that

(1.1) ”“n(l)||B§’1(mNSCs(T)"u(o)”ng_l(mN on [0,T].
In particular, when s=0, we have
(1.2) lun@) e = 1@l g2px  on [0, T].

(i) Suppose the assumption (B). Then for any u®e B (A (— o0 <s<o0)
there exists a unique solution ut)e &X[0,T]; By (M) NENO,T]; By 1(MY) of
(0.1). In addition, (1.1) where B \(F)" is replaced by B}, ()" holds and (1.2) also does
when s=0.

ExampLE 1.1. Consider the Dirac equation

d o
ih-é‘t-‘(t)=z;!= (o 3tk Vi,
l

Xj
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where u="(u,,---,uy) and a;, y, and V(t,x) are N by N Hermitian matrices. «; and
y are constant ones. Suppose that all elements V(t,x) of M,x) are continuous
on [0,7]x R" and Cx-differentiable with respect to x and that there exists a
constant M >1 satisfying

(1.3) |08V (1, %) < Cplx)M
for all f. Then we can apply (ii) of Theorem to this Dirac equation.

ExampLE 1.2. Let
k(tax,é) = {1 +Z;= 1(£j_aj(t5x))2} 1z + V(t9x)’

where ajt,x) and V(t,x) are real valued continuous functions on [0,7] x R" and
C~-differentiable with respect to x. Then the equation (0.1) where N=1 and
ky4(t,x,&)=k(t,x,£) describes the motion of relativistic spinless particles in an external
electro-magnetic field (e.g. [4], [7], and [9]). Suppose that |%az,x)| are bounded
by Cglog{x) on [0,T]x R" for all |f|#0 and that M(t,x) satisfies (1.3) for all
p. Then we can apply (ii) of Theorem.

Let & be the space of rapidly decreasing functions and %’ its dual

space. Suppose that (k;(x,&);{%1,2,---,N) is independent of ¢ and satisfies the
X+X

assumption in (i) or (i) of Theorem. Then K(—-;—,h‘Dx) is a continuous operator

on &Y and can be extended uniquely to a continuous one on (¥')¥, defining

K(?JTD,ME (&Y for fe(#)' by

X+X

X+X
(K(—T,ﬁDx)f,g)=(f,K(—;—JfDx)g) ges™)

(e.g. Chapter XVIII in [8]). Then we get the following :

X . .
Corollary. Under the assumption above we denote K(%,th) with domain

X
&N and that with domain {fe(L*" ;K(i‘,—_;——,th)fe(Lz)N} by K, and K,

respectively. Then K, is essentially self-adjoint on (L*)" and its self-adjoint extension

is K.

Proof. It follows from the definition of K(?,th) fe(S) for fe(¥) that

we can easily have K§=K. So if we can prove that K, is essentially self-adjoint, the
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proof of Corollary can be completed. For we have K=K¥=(K,)*=K, from
Theorem VIIL1 in [16]. K, denotes the closure of K.

We follow the proof of the Stone theorem in [16]. Suppose that there is an
feD(K®) so that K¥f= —if. Let g be an arbitrary function in &~ and wu,t) the
solution of (0.1) with @ =g. We write u,(f) as U(t)g. Then U(f)ge &X([0,T]); ™)

follows from Thorem, because we can easily prove that N B; ()= for a>0

—ow <s<ow

d ' ' 1
and 5>0. Hence we have E(U(t)g,f)=(—’£1_KoU(t)g, = —;l_{U(t)g,Ka‘f)=;l_(U(t)g,

/) and so (U(H)g,f/)=€e"(g,f). The equality (1.2) implies that U(?) is unitary on
(LN, So both sides must be bouded, which implies (g,f)=0. Hence we have
f=0. A similar proof shows that K& f=if can have no non-zero solutions. Thus
K, is essentially self-adjoint. Q.E.D.

ReMARK 1.1. In [22] the equation (0.4) was studied. There a similar result
to (i) of Theorem was obtained (Teorem 3 in [22]). See also [23], where the
problem was studied under a different situation. The assumption imposed in both
papers is more restrictive than (A). For example their assumption can not be
satisfied by (0.4) with periodic vector potential in x.

REMARK 1.2. We can get from Corollary the result on the self-adjontness of
the Schrodinger operator, the Dirac one, and the one describing the motion of
relativistic spinless particles. As to the essential self-adjointness, more general
results have been obtained. See [2], [3], [5], [9], [10], [11], and their references.

2. Pseudo-differential operators with basic weight function

For constants a>0 and b>0 we set
(2.1 o(x,&;a,b)=(x)*+ (&

Let p(x,£) be a C*-function in Hérmander’s symbol class S(w(x,&;a,b)", |dx|? +|dE|?)
(—oo<m<c). That is, for any « and B there exists a constant C,, such that

22 PG)(x. Ol < Cppeolx,&;a,)"  on R

Then the pseudo-differential operator P(X,Dy) with symbol o(P(X,Dy))=p(x,§) is
defined by

P(X,Dy) f(x)=[e™p(x,)f ()¢

for f(x)e &. Itis easy to see that P(X, Dy) is a continuous operator on &% and can be
extended uniquely to a continuous one on & ([8]). We write S(w(x,¢;a,b)",
|dx|? +|d€|?) as S(w(x,&;a,b)™) and call w(x,&;a,b) a basic weight function, following
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[13], [14], and [19].
Set

(2'3) !p”'") = max|a+ﬁ| <l Sup {lp:;))(x’ é)lw(x’g;a,b)_m} (l=0’ 192, o ')'
x,&

Following the proof of Theorem 2.5 of Chapter 2 in [13] (c.f. Theorem 18.5.4 in
[8]), we can easily have

Lemma 2.1. Let p{x,¢)e S(w(x,&;a,b)™) (j=1,2) and set
(24) q(x,&;1) = Os — [[e™""p, (x,& +Fimp o (x + , E)dydy,

where Os—[(---dydn means the oscillatory integral (Chapter 1 of [13]). Then for
any [,=0,1,2,--- there exist an integer [,>0 and a constant C, independent of
0<%<1 such that

2.5) lgliy *™ < C, lps [ V|7
So {q(x,&;M)}o<ne1 makes a bounded set in S(w™*™). We also have

(2.6) QX,iD ;1) =P (X, D,) > Py(X,}iD,) on &.

Lemma 2.2. Let {p,(x,)}o<,<; be a bounded set in S(1) such that
lim,_ o p@(x,£)=0  pointwisely on R*"
for all ||<2n. Then we have for all fe L*
lim,, 0| P(X,D,)f 1| =0.

Proof. Let fe% and / an integer such that %<15n. Then, integrating by

parts, we have
P(X,D,)f(x)=[e™p,(x,&) [ (£)d¢
= (0" Hfe (1= A {px. )/ ()}
= (x>~ Mg (x).

Using fe & and the assumptions on {p,(x,£)}o<,<1, We see that g,(x) are uniformly
bounded on R" in 0<e<1 and that

lim,, g,(x)=0 pointwisely on R".

Here we used the Lebesgue dominated convergence theorem. Applying the
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Lebesgue theorem again, we obtain lim, || P,(X,D,)f | =0.

Let fe L. We have assumed that {p,(x,&)}o<,<; is bounded in S(1). So,
applying the Calderdon-Vaillancourt theorem in [1], for any #>0 we can determine
a ve & independent of ¢ such that

1P(X,D)w— )l <n

for all &. Then we have

H—fﬁwo”Psf” Sf]
because of lim,_,||P,»||=0. Hence we can complete the proof. Q.E.D.

We set for s>0
2.7 14x.830,8) = 0(x,30,b) = ({x)* + <)
Then there exist constants C,, such that

C, p0(x, 8P 1 {xH 7!
(2.8) ly$h(x, &5a,b)| < for all « and |B|#0,

lCa,ﬂw(x,é)’”‘@V”‘
for all |a|#0 and B.

Lemma 2.3. Let s>0. Then we have:

(i) There exist a constant p(s)= u(s;a,b)>1 independent of 0 <h <1 and a bounded
set {wyx, &R} o<nc1 = (W6, E7a,b) o <n<y in Sfx,&;a,6)™°) such that W{x,hD,;h)
={u(s)+Tx,hAD,)} " on &.

(i) {w,(x,&;Mas,bs)}o<n<y is bounded in S(o(x,&;a,b)™%).

Proof. Lett>0and x>0beconstants. By direct calculations we get for u>0

29) max ge— 1 u~ !, when0<tr<l1,

<
1<0 u+0"

—1 1-1/x
(—?K—)——u‘ U whentk>1and p>
TK k—1

We set for u>1
(2.10) Pux.O={u+ydx.&;a,b)} 7",

Then we have from (2.8)
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Co (6,871 p(x,8)?

(2.11) |Pf:?ﬂ)(x,¢)ls for all « and |ﬂ|?é0,
Copo(x,8F T8 1p,(x,8)?

for all |«|#0 and .

We note that the above constants C,,; are independent of u>1.
Set

qu(x,E 1) = Os — [fe™"p (x,& + Fn){ p+y,(x + y, &) }dydn.

Since p,(x,£)e S(w™°), we see by Lemma 2.1 that {g,(x,¢;#)}o<n<, is bounded in
S(1) and that

(2.12) Q.(X,AD;h)=P(X,hD,) o {u+T(X,AD,)}.

We write

(213) g xR =14+H[od0Z,, = ,Os —[fe™ ¥ DPAx, & + Ohin)yy)x +y,E)dydn
= 1+7hr,(x,¢;h).

Integrating by parts, for even integers /; and /, we have

I 0P < 808 ey 7141 — Ay 1

(1 - Ay)h/zp:f)(x9£ + oh_")ys(a)(x +y9é)}dyd’7|
SCl.[cl)d02|a|=12|a'|51.,|p’|51;”<)’>_"<'7>_lz
P&+ 0, &+ 0hin)ysia 4 gr(x + ,E)\dydn

for a constant C, independent of # and u>1. Using (2.8) and (2.11), we get

Il < C1f6dOff >~ <n) ™ 2e(x, & + Ol)* ™1 CE+ Ohin* !

P E+ 0hn)wl(x +y,8) ™ 1 x+ p>* ™ dydn.

We can easily see (ﬁ(y))"(x}g(x+y>s\ﬁ<y><x> and so
(2)) 0lx, &;a,b) < w(x +,&;a,b) < (/2 DY olx, E;a,b),
(V24m) Poolx, Ea,b) < w(x, & +13a,b) < (/2{n))eo(x, £;a,b).

Hence we have
IrulsC2”<y>—“+a|s‘1'+Ia_1|<’1>_’2+b|s_1'+'b_1|+2bsdyd}7
X o(x, &) T HE T p (%, 6 wlx, £ T 1 {x)* !
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,(w(x, & Ix)” 1)(0)(76,5)’_ 1™ ’)
TN ptoxey s+ o(x, &

taking /, and /, large. Here we note

M (0<a<1)
Ox&aby ! | ptexd T

p+o(x,¢;a,by w(x, &~ 1
s+ o(x, &)

For it is clear when 0<a<1. When 1<a, it can be proved from w(x,¢)! 1/
={w(x,&)"}* 1 >(x>*"1. Apply (29) as O=w(x,£) to the above. Then we can
determine constants { ={(a,b,s) >0 and p* = u*(a,b,s) > 1 independently of  so that

(1<a).

1
Ir(x, &R < Co( p ¥

for all u>u* In the same way we get the following. For any a and f there exists
a constant C;, independent of 7 such that

1
(2.14) b IS CLp Y (a2

Now, noting (2.14), we obtain the following result from Theorem I.1 in
Appendix of [13] and its proof. We can determine a p(s;a,b)>1 and a bounded set
{zdx,&;h)}o<ne1 in S(1) such that

(2.15) Z(XhD ;h)={I+HR,(X,AiD;h)}™! on &.
Consequently we get from (2.12) and (2.13)
(2.16) Z(X,hD;h)o P,(X,BD,) o {u(s)+ I'(X,AD,)} =Identity.

Thus, using Lemma 2.1, we can determine a bounded set {w(x,&;%)}<y<y in S(@w™%)
such that W (X,hAD,;h) is the left inverse operator of u(s)+I'(X,AD,). In the same
way we can determine the right inverse operator. Since the right inverse operator
and the left one is equal, we could complete the proof of (i).
It follows from (i) that {w,(x,&;A,as,b5)}o<n<, is bounded in S(w(x,¢;as,bs)™!).
We have 275((x)*+<E) < <x>®+LOHP<A<x>+ (&) (520, x,LeR),
which can be derived from 275(1+00<1+4+6°<2(1+6)° (s=0, 0<0<1). So we
can easily prove (ii).
Q.E.D.
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Lemma 2.4. Let B; (k) and B, ;(h) (0<s< o) be the weighted Sobolev space
and its dual space defined in Introduction, respectively. Let y(x,&)=y{x,&;a,b) and
u(s)=p(s;a,b) be the symbol and the constant in Lemma 2.3. Then we have:

() f(x) € BS (M) (s=>0) is equivalent to {u(s)+T(X,iD,)} fe L. Moreover, there
exists a constant Cg>0 independent of 0<hi<1 such that

2.17) Cos' 1{ps) + TLX D)} f I <11 135, pm < Coll {1t(s) + T X, AD )} £ |

Sfor all feB; (k).
(i) We can identify By j(h) with the space {fe & ;{u(s)+T(X,hD,)} ' feL?}.
Moreover, there exists a constant C.z>0 independent of 0<#h<1 such that
218)  Cop 'I{us)+ T XADY}  fI <11 S |3 g < Coll {s) + T(X, D)}~ £
Sfor all fe B, j(h).

Proof. (i) We see from Lemmas 2.1 and 2.3 that the set of symbols
{a({xD% o {u(s)+ T X, D)} ")} o<nc1 is bounded in S(1). So, applying the
Calderon-Vaillancourt theorem, we get

<% A = 1< 0 {uls) + T(X D)}~ o {ls) + T (X, AD )} £ |
<Cy|{uls)+ T (X, D)} f |

for all f such that {u(s)+((X,%D,)} fe L>. In the same way we obtain the second
inequality of (2.17) for all f such that {u(s)+T'|(X,AD,)}fe L%

Conversely suppose feB5,(h). We write {u(s)+T(X,AD)}f={u(s)+ T}
{u(1;as,bs)+T (X,AD,;as,bs)} ~ ' o {u(1;as,bs)+T(X,AD,;as,bs)} f.  Using (ii) of Le-
mma 2.3, we see from Lemma 2.1 that {a({u(s)+TI} o {u(1;as,bs)+T(X,kD,;as,
bs)} ™)} o <n<1 is bounded in S(1). So, applying the Calderon-Vaillancourt theorem,
we have

I{u(s) + TLXHED I} < CoI<- 2SI+ IKHED S £ ).

Thus we could prove (2.17).
(i) Set v=p(1;2as,2bs). We define an inner product in B} (%) by

(£ 8)ms.sm=V,8)+(C D% £,< - )8) + (D™ £, <HD ™)

and denote its norm by ||gll3; , Then we have
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(2.19) gl 55, om < 181135 som < O+ D)2 l1gll 55,y -

Let fe B, ;(%), which is a linear functional: B} ,(h)>g — f(g). Then the Riesz
theorem shows that there exists a unique fe BS (%) satisfying

(2.20) & )ps,0 =/ 8)
for all ge B; ,(fi) and that we have
@.21) 17 Vs =111 115z 500 -

If ge &, we have
@) =@ ss =&+ <XD> + (AD,H*)]).

It is easy to see that the mapping: B, 5(#)3f — (v+ (XD + {AD,>?%) fe {(v+ {X)?*
+{AD,y*);ve BS (h)} is one to one and onto, because & is dense in B ,(#) . So
we can identify f with

2.22) (v+ (X2 + (D, Y™,

Under this identification, noting v = u(1;2as,2bs), we see by Lemma 2.3 that fe B, ;(%)
is equivalent to (v4<{X>2*+(AD, )1 f (=f) € B ().

Suppose fe Bzi(). We write {u(s)+ T (X,iD,)} ™! f=[{u(s)+ T}~ o(v -+ X)2
+ (Ao () + T}~ 1o {ls)+ T, o v+ (XY + DY) ™1 f. Then as in the
proof of (2.17) we get

I{uls)+ T(X,HD)}~ £
S Gal{pls) + TX D)} o (v+ < XD2* +KHD, Y~ f |
= Cs | {uls) + T XD} I

and so from (2.17)

1{uls) + TUX D)}~ £ < C3ll s, m -

Hence we obtain the first inequality of (2.18) by (2.19) and (2.21).

Conversely suppose {u(s)+T(X,hD,)} " feL? We write {u(s)+ I (X,AD,)}-
0+ (X254 GADY™) ™ f=[{uls)+ T} o (v + X2 4 D™ o {(s)+T}]o {u
(5)+T,}~*f. Then as in the proof of the first inequality we can prove the second
one of (2.18). We see from the above arguments that fe B, j(#) is equivalent to
{us)+T(X,AD,)} "' fe L. Thus we could complete the proof of (i). =~ Q.ED.

The following lemma can be easily shown from Lemmas 2.1, 2.3, 2.4, and the
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Calderon-Vaillancourt theorem.

Lemma 2.5. Let p(x,¢)e S(w(x,&¢;a,b)") (—oo <m< o). Then P(X,hD,) 0<%
<1) is a bounded operator from B () to B;,"(%) for all —oo<s<oo. Moreover,
its operator norm is bounded in 0<#<1.

3. Proof of Theorem

Our proof of Theorem is analogous to that of the similar result on hyperbolic
equations in [13] and [20]. We will give the proof when N=1. General result
can be proved similarly.

Let N=1 and set k(t,x,&)=k,(t,x,£). Then it follows from our assumption
that k(¢,x,£) is real valued. Using u(s;a,b) and y,(x,&;a,b) in Section 2, we define

G.1) Af(x,&;a,b)=p(s;a,b) +v4(x,¢;a,b).

Let x(0) be a real valued C*-function on R! with compact support such that y(0)=
1. Then we have the following:

Lemma 3.1. Suppose that k(x,&) satisfies the assumption (A) or (B). When
(A) is assumed, we define x(x,£) by x(e({x>+<K&))) for each ¢>0. When (B) is
done, we do y,(x,£) by x(e({xDM+<¢&D)). Here M>1 is the constant appearing in
(B). In both cases we set

(3.2 k(x,8) = x(x, Ek(x,£).
Let s>0. Then there exists a bounded set {q.(x,E;M)}o<sn<y in S(1) such that

0. (XD, = —[As(X iD,), K(X—”—( 7D,)]o A(XAD) .

Here A(X,hD,) denotes A(X,hD,;1,1) when (A) is assumed and A(X,iiD,;M,1) when
(B) is done, respectively.

Proof. At first we will prove this lemma under the assumption (A). Let
w=w(x,¢;1,1). It follows from (A) that k(x,&)e S(w?). It is easy to see that

xx.&e () S(™ for each 0<e<1 and that {1,(x,&)}o<,<; is @ bounded set

—wo<m<oo

in S(1). In addition, if |a+ f|= 1 then {x%}o<e.<1 is bounded in S(™1!). In fact
we can prove it by using x,:(x 6= s(<x>+<f>)_( (x> +<{&Y)) ((x>+(é))

.I

1
X (————) where z=x and £. Consequently we have from Lemma 2.1 together
x>+
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with (A)

@) k,(x,£)eS(1) for each 0<e<]l,
(3.3) 4 (i) {k(x.8)}o<s<1 is bounded in S(w?),
@iii) if Jo+Bl=1, {kG)(x,8)}o<.<1 is bounded in S(w).

We define k,.(x,&;%) by

(3.4) ko, &)= 05 — [fe ™k (x +§, &+ tn)dydy.
Then
(35) eL(Y th!h) K( h—Dx)

holds and we have from (3.3)

@) k. (x,ER)eS1) for each O0<e, A<,
(3.6) (i) {k. }o<sw<i is bounded in S(w?),
(iii) if e+ Bl=1, {k{Dp}o<en<1 is bounded in S(w).

Their proofs are analogous to that of Lemma 2.1.
Set

1 .
(37) pulx,Cih) =205~ [§e™ "M Ax, &+ Tindker(x + 3, &) — keor(%, & +)Adx +,8) }dydn.

1
Then we have P,G(X,h‘Dx;ii)zf—i[As(X,h"Dx), K, (X,;hD,)] from Lemma 2.1 and so

(38) P (XD ;)= h[As(X D), K(ﬁf #D,)]

by (3.5). Its symbol p.(x,&;%) can be written as
Ela] = 15(1)‘1003 - ,“e - iy-q{lga)(x’ é + eh_n)keL(a)(x + Y, 6) - kgal}(x’é + Gh-")ls(a)(x + Y, ﬁ)}dyd'l

Using (2.8) with a=b=1, we get 1§ (x,£)eS(w*™?) for |a+p|=1. Consequently,
applying Lemma 2.1, we see by (3.6) that {p,}o<.n<; is bounded in S(w®). Hence
we can complete the proof from Lemmas 2.1 and 2.3.
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The proof under the assumption (B) can be given similarly as follows. Let
w=w(x,&;M,1). It follows from (B) that k(x,£)e S(w). We see that y(x,¢)e

() S(@™ for each 0<e<1 and that {),}o<,<; and {¥®}o<.<; With Ja]=1
—o<m<o

are bounded in S(1) and S(w™?), respectively. Consequently we have together
with (B)

(i) kA (x,6)eS(1) for each 0<e<]1,
3.9 () {k(x,9)}o<.<1 is bounded in S(w),

(ii)) for any |a|#0 and f there exists a constant C, ; independent of &
such that [k{}(x,&) < C, p<x).

Define k,;(x,&;h) and p,(x,&;%) by (3.4) and (3.7), respectively. Then we also
get (3.5),3.8), and

(i) k.(x,&H)eS1) for each O0<e, AL,
(3.10) (i) {k. }o<en<y is bounded in S(w),

(ii)) for any |a| #0 and f there exists another constant C, ; independent
of ¢ # such that [k, (x,&)| < C, g<xD.

Now, using (2.8) with a=M and b=1, we see that A?(x,&)e S(w*~?) for |¢|=1
and that |4 (x, &)< C; go(x, &)~ '(x)™~* for all « and |B|#0. Hence, applying
Lemma 2.1, we can prove together with (3.10) that {p,}o<,x<; is bounded in
S(w®). Thus we can complete the proof by Lemmas 2.1 and 2.3. Q.ED.

Proof of Theorem. We will prove Theorem only under the assumption
(A). The proof under the assumption (B) can be given similarly. We write a
solution u,(f) as wu(f), omitting #, and Bj ,;(#) as B(h). Let w=w(x¢;1,1) and
Ai=2Adx,&;1,1) (d=0). We will decompose the proof into three steps.

X+X

7
KD,) as K,(f). Throughout this step we suppose u® e B**?(h) (— oo <s<oo) and
fOe&X[0,T];B°**(h). We consider the equation

Ist step. Let k.(,x,&) = x(e({x> + <EDNk(t,x,€) (0<e<1) and write K(t,

(3.11) ih%(t) = K(f)u(f) + i () on [0,T], u(0)=u.

Using (3.5) and (3.6), we see by Lemma 2.5 that K,(f) is a bounded operator on B%(%)
for any —oo<d<oo. The equation (3.11) is equivalent to
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3.11y ifu(t) = i + j'{, {K(0)u(0) + iff (0)}dO.

So we can find a solution u,(t)e £X([0,T]; B %(%)) of (3.11) by the succesive iteration
for each fixed O<e¢, Ai<1.

At first suppose 0<d<s+2. We denote by Re(-) its real part. Since K,(¢) is
symmetric on L2, we can easily have

d
E" A XD, Ju (1)1 = 2Re(A (X, KD, )0u 1), A u(0)
= —2Re i(%_A,, o K (O)u,, Au)+ 2Re(A £, A ju,)
1 1
=—2Re i(;f[Am K Ju,, Aju;)—2Re i(%Ka o Agug Agup) + 2Re(Ayf,A )

1
= 2Re l(;i[Ad, Ks] © Ad— ! ° AduesAdua) + 2Re(Adj; Adus)'

Applying Lemma 3.1, we get
IALGED Ju )| < CATYIALXED Ju || + fo | Ad X, D,) £(6) 1 d6)
for a constant C(T) independent of ¢,%%. Consequently, using Lemma 2.4, we obtain
et D) pegmy < CATHN 4 gy + [ 11/ (0) | aeryd6)
for another constant C(T).

Next let d<0 and d<s+2. Then we have

d 1
EIIA-.;(X,h‘Dx)‘ 'u(?)lI*= —2Re i(ﬁ/\I} o Ky AZju)+2Re(AZ5 f,AZ ju,)

~ _2Re i(%_AZ} LKA _s]o A”du, A Ju)+ 2Re(A =5 £ A ).
Hence we can also get the similar inequality as in the case 0<d<s+2. Thus for
any — oo <d<s+?2 there exists a constant C,(T) independent of 0 <¢, #< 1 such that

(3.12) o) pany < CAT YN oy + [ 611 £ O pamed)-

We see by (3.12) that for each fixed 7 {u(f)}o<,<; is uniformly bounded as
a family of functions from [0,7] to B**?(#). Moreover, using (3.5) and (ii) of
(3.6), we see from this and (3.11) that {u,(f)}o<.<; is equi-continuous as a family
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of functions from [0,7] to B%(%). See page 29 in [16] about the terminology
above. The compactness of the embedding map from B2(%) into L? follows from
the Rellich criterion (e.g. Theorem XIIL 65 on page 247 of [17]). So we can prove
from Lemmas 2.4 and 2.5 that the embedding map from B**2(%) into BS(%) is
compact. Hence we can apply the Ascoli-Arzela theorem to {u(f)}o<.<1-
Consequently- there exist a sequence {¢;}2, tending to zero and a u(f)e &X([0,T];
Bi(#)) so that

(3.13) lim; . oo, ()=0(t) in E2([0,TT; B(A).

Here the norm of g(f)e £X([0,7]; B(h)) is max, ., 7lg(®dll Bs(h)-
Since u,(f) is a solution of (3.11), we have

itiu, (£) = iru'® + [ K, (0)u(6)d0 + ifif;, 10)dO + [, K, (0){u, (6) —u(6)}d6.

Let j tend to infinity. Then, using (3.5),(ii) of (3.6), and (3.13), we can prove from
Lemma 2.5 that the last term in the right-hand side tends to zero in
B~ 4(%). Moreover, noting (3.4) and (3.5), we can see by the analogous arguments
used in the proof of Lemma 2.1 that we can apply Lemma 2.2 to the second
term. Then the second term tends to {4 K(0)u(0)d0 in B~ 2(#). Hence u(f) defined
by (3.13) belongs to &X([0,T];B°~%(h)) and satisfies

(3.149) ih‘%(t):K(t)u(t)+l'h’f(t) on [0,77], u(0)=u®.

Thus we could find a solution wu(f)e&%([0,T];BH)NENO0,T];B " 4#) of
(3.14). In addition, we have

(3.15) ()| 3=y < CLTI N4 | gy + [l f(O) | pwyd0)

from (3.12) and (3.13).

2nd step. In this step we will prove that the solution of (3.14) is unique in
&A[0,T]; B h)n&X[O,T]; B~ 2(h)) for any — oo <d< 0.
Let g(f) be an arbitrary function in &2([0,7];B!“**(#)) and consider

ihg(;(t)=K(t)v(t)+ihg(t) on [0,T], o(T)=0.

Then we can find a solution »(f)e £2([0,T]; B'“*2(h) &[0, T]; B'“#)) from the
arguments in the Ist step. Let u(f)e &X[0,T]; BH)n&L[0,T];B* () be a
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solution of (3.14) to u®=0 and f(f)=0. Then we have
a
0= jg(ih:;;l(()) — K(0)(0), w0))d0
= ifif g(g—l:(o), «0))d0 — [5(K(0)u(6),:6))d0

= [T(u(0), m%j{e) — K(0)«(0))d0

and hence
0= [5(1(0),g(6))d0.
This shows that u(f) vanishes on [0,T7].

3rd step. Let u@eB(h) and f(1)e &X([0,T]; B(%). We can take sequences
{2, in B*2(h) and {0}, in £([0,T];B°*?(M)) such that lim

j— o
in B(h) and lim;, f()=f() in &X[0,T];B(H). Let uft)e&N[0,T];BH)N
&/([0,T]; B°~2(f) be the solution of (3.14) to u{” and f{r). Then, noting the
uniqueness of the solution, we have by (3.15)

(3.16) lu{8) — up (Ol pscmy
< C(TX u}"’ — || psgry + j S Il £140) =1 (O) | ps(yd0).

Consequently there exists a u(f)e &£2([0,T];B(h)) such that

(0) —,,(0)
u;"'=u

(3.17) lim,, ,u{f)=u(t) in &[0,T];BY(H).

Then we can prove as in the proof of the 1st step that this u(f) belongs to
&H[0,T]; B~ %(h)) and satisfies (3.14) and (3.15). The uniqueness of the solution
of (3.14) in &°([0,T]; Bh)n&L[0,T]; B~ *h)) has been proved in the 2nd
step. Thus we could prove Theorem except for (1.2).

Let u®eB*(#) and u(f)e &X([0,T]; BXh)n&X[0,T];L?) be the solution of
(0.1). Then we get

lu@ =141 (te[0,T])

as in the proof of (3.15). We can prove (1.2) from this by repeating the arguments
above in the 3rd step. Thus the proof could be completed. Q.E.D.
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