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0. Introduction

In the present paper we study the Schrόdinger equation, the Dirac equation,
the equation describing the motion of relativistic spinless particles, and somewhat
more general equation:

(0.1) / ) = * ( ' M O on [0,Γ] (xεRn\
dt

X-\-X
Here 0<S<1 is the Planck constant, H(0 = f("ι(0> >Wjv(0)» and K(t) = (Kjl(t9 - ,

X-\- X
7LD;r);fLl,2, ,ΛO where Kjj(t, - ftDx) is a pseudo-differential operator with the

Weyl symbol k^t.x.ξ) defined by

Throughout the present paper we assume that kjj(t9x9ξ)ιi^l929 ' 9N) is a Hermitian
matrix and that kβ(t9x9ξ) is a continuous function on [0,Γ]xΛ2w and
C°°-differentiable with respect to (x,ξ).

We use the following function spaces : L2 = L2(Rn) is the space of all square
integrable functions with inner product ( , ) and norm || ||; Let a, b, and s be
non-negative constants. We define the weighted Sobolev space Bl^ft) by

3L*(*) = {/e£2; l l / l lBi b W

s IK' >"/!! + IK* > t a/ll< 00} and denote its dual space
by 1OT with norm ||/||B-,(Λ), where <x> =(1 + M2)1/2 and

This research was supported by Grant-in-Aid for Scientific Research No. 05640196, Ministry of Education,
Science, and Culture, Japanese Government.



328 W. ICHINOSE

Let F be a Banach space with norm ||/||F. We denote by FN the direct product

space of TV copies of F with norm ||(Λ, Λ)IU = (ΣjLj/Jllf)1 '2 and by */([0,ΓJ;f)
(7 = 0, !,•••) the space of all F-valued j times continuously differentiable functions

in [0,Γ].

At first consider the Schrόdinger equation. Let N=l and set &(f,.x,<!;)

=kli(t9x,ξ) in (0.1). Assume the following:

(0.2) For any multi-indices α = (α1, ,αll) and J? = (0ι> 'Ά) with |α + )8| Ξ £"=1(0,.+
#/) > 2 there exists a constant Cα^ such that \k($(t9x9 ξ)\ < CΛtβ on [0, T] x R2n,

l 3 V1 /I 8

Then we get the existence and uniqueness of the unitary solution on L2 of
(0.1) and the regularity property on this solution stated just below from results in
[6], [12], and [18]. For any u(Q)E^Λ(H) (s>Q) the equation (0.1) admits a unique

solution ^Oe<f,0([0,Γ];l*ίfl(/ι)) and this u^t) satisfies

(0.3)

on

where CS(T) is independent of Q<fi< 1. The first equality in (0.3) implies that the
solution has the unitarity on L2 and the second one guarantees for many observables
G in quantum mechanics and initial data w(0) that the expectation value (Gu^ή.u^t))
exists for all fe[0,Γ]. Then ^-independence of CS(T) is also important for the
study on the classical limit lim^^o (Gu^(t\u^t)). For example see [21] for it. But
the assumption (0.2) is too restrictive. In fact this result is applicable to the
Schrodinger equation with an external electro-magnetic field

(0.4) ΰ ί t ) = ̂ j = 1 ( - - a fax)) o ( - afax))u + V(t,x)u

only if all real valued a}(t,x) are polynomials of degree one in x9 where " o "denotes
the product of operators. We note that the right-hand side in (0.4) can be written

X+ X
as K(t,—^—JiDx)u with the Weyl symbol k^x.^^^-afax^ + nt.x).

One of our purposes in the present paper is to show that we can obtain the
same result as in the above under a more general assumption (A) than (0.2):

(A) For any α and β with |α + /?|>1 there exists a constant CΛtβ such that

(1 + W + \ξ\) on [0, T} x R2n.
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Then our result is applicable to (0.4) if d^a^t.x) (j =1,2, •••,«) are bounded on
[0,71x7?" for all \β\*0 and we have \dβ

xV(t,x)\<Cβ(x} for all \β\*0. So, for
example, we can apply it to (0.4) with periodic vector potential (av(t,x\ - - -,an(t,x)) in x.

Next we consider the Dirac equation and the equation describing the motion
of relativistic spinless particles. Assume the following in general :

(B) We have |fy,$M,ξ)|£Cβf,<Jc> on [0,Γ] x R2n (JJ=192,-9N) for all |α|^0 and
β. In addition, there exists a constant M> 1 such that \kjl(β)(t,x,ξ)\ < Cβ((x)M +

for all β.

Then we can also get the existence and uniqueness of the unitary solution on (L2)N

of (0.1) and the regularity property on it. To show this is our second purpose.
The method of proving our results is much different from and much easier

than that in [6], [12], and [18], where the theory of Fourier or oscillatory integral
operators was used. In the present paper we will use the theory of pseudo-differential
operators with basic weight function which will be studied in Section 2. Then
our proof becomes analogous to that of the similar result on hyperbolic equations
in [13] and [20]. We will state our results in Section 1. Their proof will be
given in Section 3.

1. Results

We state the main theorem.

Theorem, (ί) Suppose that all kβ(t,x,ξ) satisfy the assumption (A). Then for

any ι/(0) e ff^i^Kf9 ( - °° <^ < °°) ίfιere exists a unique solution u^t) e ̂ f([0,Γ] B\Λ(ft)N)
n^^Γ];^2^)") 0/(0.1). In addition, there exits a constant CS(T) independent
ofO<1ϊ<\ such that

(1-1) Ht/,(OllB!ιl(^<Cs(Γ)||^0>||β!ι(Λ), on [0,

In particular, when s = 0, we have

(1.2) WOII(L2 )N=l|w ( 0Ίl (L2)- on [0,71.

(iί) Suppose the assumption (B). Then for any u^eB^^^Kf (— oo<s<oo)

there exists a unique solution w^Oe^P^J ^^^n^i ̂ Γ];̂ ^^) of
(0.1). In addition, (1.1) where 5*lf ^Λ)* is replaced by Bs

MΛ(tyN holds and (1.2) also does

when s = 0.

EXAMPLE 1.1. Consider the Dirac equation

Ot
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where M = ί(w1, ,wN) and α,, y, and V(t,x) are TV by N Hermitian matrices, α,- and
γ are constant ones. Suppose that all elements F;,(f,jc) of V(t,x) are continuous
on [0,Γ]x/?w and C°°-differentiable with respect to x and that there exists a
constant M>1 satisfying

(1.3)

for all β. Then we can apply (ii) of Theorem to this Dirac equation.

EXAMPLE 1.2. Let

where a^t.x) and V(t,x) are real valued continuous functions on [0,Γ]x/Γ and
C°°-differentiable with respect to x. Then the equation (0.1) where N=l and
ku(t,x,ξ)=k(t,x,ξ) describes the motion of relativistic spinless particles in an external
electro-magnetic field (e.g. [4], [7], and [9]). Suppose that \dζaj(t9x)\ are bounded
by C,log<jc> on [0,Γ]xΛw for all \β\*Q and that V(t,x) satisfies (1.3) for all
β. Then we can apply (ii) of Theorem.

Let Sf be the space of rapidly decreasing functions and 9" its dual
space. Suppose that (kjj(x9ξ)'9{^l,29 ,N) is independent of t and satisfies the

X+X
assumption in (i) or (ii) of Theorem. Then K( - ,#Ac) *s a continuous operator

on yN and can be extended uniquely to a continuous one on (&")N

9 defining

)N for fe(<7')N by

(e.g. Chapter XVIII in [8]). Then we get the following :

X-\-X
Corollary. Under the assumption above we denote K( - 5&DX) with domain

X+X
^* and that with domain [fe(L2f \K(-^-— JDx)fe(L2)N} by KQ and K,

respectively. Then K0 is essentially self-adjoint on (L2)N and its self-adjoint extension
is K.

X-\-X
Proof. It follows from the definition of K(-——^Dx)fG (&")N for /e (#")N that

we can easily have Kξ = K. So if we can prove that K0 is essentially self-adjoint, the
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proof of Corollary can be completed. For we have K=K^=(KQ)*=ΈQ from
Theorem VIII. 1 in [16]. KQ denotes the closure of K0.

We follow the proof of the Stone theorem in [16]. Suppose that there is an
fe D(Kξ) so that Kξf= — if. Let g be an arbitrary function in &*N and u^t) the
solution of (0. 1) with t/(0) =g. We write un(t) as U(ήg. Then U(t)g e <#([0, Γ]) 9> N)

follows from Thorem, because we can easily prove that π Wab(fy = y for a>0
— oo <s< oo

and fr>0. Hence we have ^CMzJ)H-^o^O&Λ^dt n n n
f ) and so (U(t)g,f) = etl*(g,f). The equality (1.2) implies that U(t) is unitary on
(L2)N. So both sides must be bouded, which implies (g,/) = 0. Hence we have
/=0. A similar proof shows that K$f=ifcan have no non-zero solutions. Thus
K0 is essentially self-adjoint. Q.E.D.

REMARK 1.1. In [22] the equation (0.4) was studied. There a similar result
to (i) of Theorem was obtained (Teorem 3 in [22]). See also [23], where the
problem was studied under a different situation. The assumption imposed in both
papers is more restrictive than (A). For example their assumption can not be
satisfied by (0.4) with periodic vector potential in x.

REMARK 1.2. We can get from Corollary the result on the self-adjontness of
the Schrόdinger operator, the Dirac one, and the one describing the motion of
relativistic spinless particles. As to the essential self-adjoin tness, more general
results have been obtained. See [2], [3], [5], [9], [10], [1 1], and their references.

2. Pseudo-differential operators with basic weight function

For constants a>0 and b>0 we set

(2.1) ω(*,£;0,ό) = <x

Letp(x,ξ) be a C°° -function in Hormander's symbol class S(ω(x,ξ\a,b)m, \dx\2-\-\dξ\2)
(— oo<w<oo). That is, for any α and β there exists a constant Cα>/3 such that

(2.2) \P$](x,ξ)\<CΛ,βω(x,ξ;a,br on R2n.

Then the pseudo-differential operator P(X,DX) with symbol σ(P(X,Dx))=p(x,ξ) is

defined by

for/(x) e Sf. It is easy to see that P(X9DX) is a continuous operator on Sf and can be
extended uniquely to a continuous one on &" ([8]). We write S(ω(x,ζ\a,b)m,

\dx\2 + \dξ\2) as S(ω(x,ξ\a,b)m) and call ω(x,ξ\a,b) a basic weight function, following
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[13], [14], and [19].
Set

(2.3) |p|j">

Following the proof of Theorem 2.5 of Chapter 2 in [13] (c.f. Theorem 18.5.4 in
[8]), we can easily have

Lemma 2.1. Let pj{x,ξ)eS(ω(x,ξ;a,b)mj) (7 = 1,2) and set

(2.4) q(

where Os — ̂  -dydη means the oscillatory integral (Chapter 1 of [13]). Then for

any / t=0, 1,2, there exist an integer /2>0 and a constant Ctl independent of
such that

(2.5) Mίr
So {#(*,ξ;fr)}0<fr<ι makes a bounded set in S(ωmί+nt2). We also have

(2.6) Q(XίWx^ = Pί(X9Wx)op2(XίJiDx) on P.

Lemma 2.2. Let {pε(x,ξ)}o<ε<ι be a bounded set in 5(1) such that

limε_0^
α)(Λ:,ξ) = 0 pointwisely on R2n

for all |α|<2>z. Then we have for all feL2

\imε_0\\Pε(X,Dx)f\\=0.

Proof. Let/e^ and / an integer such that -<l<n. Then, integrating by
4

parts, we have

Pε(X9 Dx)f(x) = !<f"*

Using f^y and the assumptions on {pε(x,ξ)}o<ε<ι, we see that gε(x) are uniformly
bounded on Rn in 0 < ε < 1 and that

limε_*0 gε(x) = Q pointwisely on Rn.

Here we used the Lebesgue dominated convergence theorem. Applying the
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Lebesgue theorem again, we obtain limε^0\\Pε(X,Dx)f\\=Q.
Let /EL2. We have assumed that {pε(x,ζ)}o<ε<ι is bounded in 5(1). So,

applying the Calderόn-Vaillancourt theorem in [1], for any η>Q we can determine
a Ό e £f independent of ε such that

\\PJίX9DJ(v-f)\\<η

for all ε. Then we have

because of limε_0||P£B||=0. Hence we can complete the proof.

We set for s>0

(2.7) γ£x,ξ a,b) = ω(x,

Then there exist constants Cβιί such that

Q.E.D.

χ κγ-l/χ\a-l

for all α and

for all |α|^0 and 0.

(2.8)

Lemma 2.3. Lei 5>0. ΓΛew we have:
(ί) There exist a constant μ(s) = μ(s',a,b)>l independent ofQ<fi< 1 and a bounded

set {ws(x,ξ;S)}0<fr<1 = {ws(Λ:,ξ;^α,6)}o<lf<1 in S(ω(x,ξ\a,b)~s} such that Ws(xJϊDx'JΪ)
^J-1 on ST.

(2.9)

(ii) {wi(x9ξι1ϊ,as,bs)}Q<ιί<ί is bounded in S(ω(x,ξ'9a9b) s).

Proof. Let τ > 0 and K > 0 be constants. By direct calculations we get for μ > 0

μ"1, whenO<τκ;<l,

μ~1/tιc, whenτfc>l andμ>-

max

τκ-\

We set for μ>l

(2.10)

Then we have from (2.8)
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(2.11) for all α and |)S|/0,

for all |α|^0 and β.

We note that the above constants C^β are independent of μ>l.
Set

^(x,ξ;fi) = 0*-ίίe-^

Since pμ(x.)ξ)eS(ω~s), we see by Lemma 2.1 that {#μ(x,ξ;/ί)}o</r<ι is bounded in
and that

(2.12)

We write

(2.13)

|̂

Integrating by parts, for even integers l± and /2 we have

for a constant Cί independent of ft and μ>l. Using (2.8) and (2.11), we get

Pμ(x,ξ + OΛηf

We can easily see and so

Hence we have

x ω(x,ξγ~
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taking /t and 12 large. Here we note

( (o(x,ξ)s -i

μ + <a(x,ξ ,a,bγ

For it is clear when 0<α<l. When l<a, it can be proved from cφc.ξ)1 1/Λ

= {ω(x,ξ)l/a}a-1>(xya-1. Apply (2.9) as θ = ω(x,ξ) to the above. Then we can
determine constants ζ = ζ(a,b,s) > 0 and μ* = μ*(a,b,s) > 1 independently of H so that

.1.,

for all μ>μ*. In the same way we get the following. For any α and β there exists
a constant C^tβ independent of ft such that

(2.14) -)

Now, noting (2.14), we obtain the following result from Theorem I.I in
Appendix of [13] and its proof. We can determine a μ(s\a,b)> 1 and a bounded set

in 5(1) such that

(2.15)

Consequently we get from (2.12) and (2.13)

(2.16) Z5(X,hDx',ti) o Pμ(s)(X,tϊDx) o {μ(s

on

= Identity.

Thus, using Lemma 2.1, we can determine a bounded set {Wafoξ ft)}^^! in S^co"5)
such that ^(A^/zD^ ft) is the left inverse operator of μ(s)-\-Γs(X9tiDx). In the same
way we can determine the right inverse operator. Since the right inverse operator
and the left one is equal, we could complete the proof of (i).

It follows from (i) that {w1(x,ξ;S,^,fo)}0<Λ^1 is bounded in S(ω(x9ξ;as,bs)~l).

We have 2-s«x>fl + <Of?< <x>as + (ξybs<2(<x>a + <O*T (*>0, x,ξeRn),
which can be derived from 2~s(l + 0)s<l+05<2(l + 0)s (^>0, 0<0<1). So we
can easily prove (ii).

Q.E.D.
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Lemma 2.4. Let B^ffl and B'ffi) (0<^<oo) be the weighted Sobolev space

and its dual space defined in Introduction, respectively. Let ys(x,ξ) = γs(x9ξ;a,b) and

μ(s) = μ(s'9a9b) be the symbol and the constant in Lemma 2.3. Then we have:

(i)f(x)eBs

a,b(ft) (s>0) is equivalent to [μ(s) + Ts(XjϊDx)}feL2. Moreover, there

exists a constant CsB>0 independent 0/0</ι<l such that

(2.17) CSB' || {μ(s) + WΛDJJ/H < ll/ll,,.^ < CsB|| {μ(S)+Γs(X,JίDx)}f\\

for al

(ii) We can identify B~ffi) with the space

Moreover, there exists a constant CS'B>0 independent o/0<ίΓ<l such that

(2.18) C'a ' II MS) + ΓJtXjDJ} ~ lf\\ ^ ||/||B-ΪW < CS'B|| (μ(s

for allfeB-t(K).

Proof, (i) We see from Lemmas 2.1 and 2.3 that the set of symbols

{σ«x>flSo{ju(^)4-Γs(^^Z)x)}-1)}0<^<1 is bounded in 5(1). So, applying the

Calderόn-Vaillancourt theorem, we get

II < r/ll = IK >" ° M*) + ΓAXJDJ} - i o {μ(s) + rjix,KDj}f\\

for all /such that {μ(s) + Γs(X,ftDx)}feL2. In the same way we obtain the second

inequality of (2.17) for all /such that [μ(s) + Γs(X,nDx)}feL2.

Conversely suppose feBs

a,b(H). We write [μ(s) + ΓJiX91iDj}f={μ(s) + Γ,}<>

{μ(ί ;as,bs) + Γ^X.W^as.bs)} ~ 1 o {μ(l \as,bs) 4- Tv(X,Wx\as9bs)}f. Using (ii) of Le-

mma 2.3, we see from Lemma 2.1 that {σ({μ(s)-\-T^°{μ(\\as,bs) + Yι(X,fiDx\as,

bs)} ~ !)}0 <»£ i is bounded in S(l). So, applying the Calderόn-Vaillancourt theorem,

we have

\\{μ(s) + Γs(X, HDx)}f\\ <ΞC2(||< >ΎH + ||<^>fcs/ll)

Thus we could prove (2.17).

(ii) Set v=μ(l;2as,2bs). We define an inner product in B^ab(h) by

>asf, <
and denote its norm by ||f||BS(,w. Then we have
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(2-19) M*.tm*M*.t

Let feB~l(H), which is a linear functional: ffaΛ(H)^g -»/fe). Then the Riesz

theorem shows that there exists a unique /e B*ab(K) satisfying

(2.20)

for all geB^Jfi) and that we have

(2-21)

If g E $f, we have

It is easy to see that the mapping : BJ(K) 3/-> (v + <A^2os + <&/>,> 26s)/e {(v + <JO2αs

+ <SZ)J.>
2ί>s)ϋ;ϋe5Jj6(S)} is one to one and onto, because y is dense in B^^K) . So

we can identify / with

(2.22) (v + < A-) 2αs + <ΠDxy
ϊbs)f.

Under this identification, noting v=μ(ί;2as,2bs), we see by Lemma 2.3

is equivalent to (v + < JST>2flS + <ft0«>2ta)- V ( =7) ε ̂ ,(,(β).

Suppose/e 5Λ7(/ί). We write {μ(ί) + Γ^SDJ) ->/= [ W*)+ Γ.} ~ ' °(v
+ (Wxy

2bs) o (μ(s) + Γs} -
 J] c (μ(j) + ΓJ o (v + < J>2αs + <JiDx^

bs) ~ lf. Then as in the

proof of (2.17) we get

£ C3 II (μ(s) + Γs(X,fiDx)} o (v

=

and so from (2.17)

|| {μ(s) + Γ$( ί̂Z)x)} - VΊ| < C^ 11/11 BS>b(Λ) .

Hence we obtain the first inequality of (2.18) by (2.19) and (2.21).

Conversely suppose {μ(s)-\-Γs(X,JiDx)}~ίfeL2. We write {μ(s) + ΓJ(X,1ϊDj}°

(v + <JO2α*+<;/Z)x>
2*T^ o{^) + Γs}]o{μ

(s) + Γs} ~ lf. Then as in the proof of the first inequality we can prove the second

one of (2.18). We see from the above arguments that fe B~§(K) is equivalent to

[μ(s) + ΓJiX9KD^}''ifeL2. Thus we could complete the proof of (ii). Q.E.D.

The following lemma can be easily shown from Lemmas 2.1, 2.3, 2.4, and the
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Calderόn-Vaillancourt theorem.

Lemma 2.5. Let p(x,ξ)eS(ω(x,ξ;a,b)m) (-00 <m< oo). Then P(X,WX) (0</f
<1) is a bounded operator from Bs

ab(K) to B^ϊfi) for all — ao<s<ao. Moreover,
its operator norm is bounded in 0<7f<l.

3. Proof of Theorem

Our proof of Theorem is analogous to that of the similar result on hyperbolic
equations in [13] and [20]. We will give the proof when JV=1. General result
can be proved similarly.

Let JV=1 and set k(t,x,ξ)=kn(t,x,ξ). Then it follows from our assumption
that k(t, x, ξ) is real valued. Using μ(s a, b) and γ s(x, ξ a, b) in Section 2, we define

(3.1) λs(x,ξ'9a9b) = μ(sιa,b) + ys(x9ξ'9a9b).

Let χ(θ) be a real valued C°° -function on Rl with compact support such that χ(0) =
1. Then we have the following:

Lemma 3.1. Suppose that k(x,ξ) satisfies the assumption (A) or (B). When

(A) is assumed, we define χε(x,ξ) by χ(ε((xy + <O)) for eacrl £>0. When (B) is
done, we do χε(x,ξ) by χ(ε«x>M f <£»)• Here M>\ is the constant appearing in
(B). In both cases we set

(3.2)

Let s>0. Then there exists a bounded set {<7s«(*»£^)}o<£,fr<i |>n S(l) such that

1

Here \s(X,frDx) denotes \£XJiDχ 9l,i) when (A) is assumed and Λs(XJϊDx;M9l) when
(B) is done, respectively.

Proof. At first we will prove this lemma under the assumption (A). Let
ω = ω(x,ξ;l,l). It follows from (A) that k(x,ξ)eS(ω2). It is easy to see that

χε(x,ξ)e P) S(ωm) for each 0<ε<l and that {χε(x,ξ)}o<ε<ι is a bounded set
— ao <m< co

in S(l). In addition, if |α + j5| = l, then {*$)}<, < ε<ι is bounded in SίαΓ1). In fact

we can prove it by using —&(*,£) = ε(<*> + <<D)—(ε«*> + <O))-̂
dzj dθ dzj

x ί 1 where z—x and ξ. Consequently we have from Lemma 2.1 together
\\X/ -r \ζ//
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with (A)

' (i) kε(x,ξ)eS(l) for each 0<ε<l,

(3.3) \ (ii) {fcε(x,ξ)}0<ε<ι is bounded in S(ω2),

(iii) if |α + J?| = l, {k(

ε^β)(x9ξ)}0<ε<l is bounded in S(ω).

We define kεL(x,ξ;Jΐ) by

(3.4) A

Then

(3.5)

holds and we have from (3.3)

(i) kεL(x,ξ'9fi)εS(l) for each 0<ε, 7f<l,

(ii) {fcεL}0<ε,iτ<ι is bounded in S(ω2),

(iii) if |α+ /?| = 1, {^εlWo<ε,Λ<ι is bounded in

(3.6)

Their proofs are analogous to that of Lemma 2.1.

Set

^

Then we have Psε(X,Wx\ty=-[λJ(X,Wx\KεL(XJiD3] from Lemma 2.1 and so

1 X4-X
(3.8)

by (3.5). Its symbol psε(x,ξ'Jί) can be written as

Using (2.8) with α = 6 = l, we get λ(^}(x9ξ)eS(ωg'1) for |α + ]8| = l. Consequently,

applying Lemma 2.1, we see by (3.6) that {/>sε}0<ε,*<ι is bounded in S(ωs). Hence

we can complete the proof from Lemmas 2.1 and 2.3.
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The proof under the assumption (B) can be given similarly as follows. Let
ω = cφ;,£;M,l). It follows from (B) that k(x,ξ)eS(ω). We see that χε(x,ξ)e

f) S(ωm) for each 0<ε<l and that {χε}0<ε^ι and {χ(?}0<ε<l with |α| = l
-oo<m<oo

-1are bounded in S(ί) and S(ω 1), respectively. Consequently we have together
with (B)

(3.9)

(i) kε(x,ξ)eS(\) for each 0<ε<l,

(ii) {&ε(*,<!;)}o<ε<ι is bounded in S(ω),

(iii) for any |α| ̂ 0 and β there exists a constant CΛtβ independent of ε
such that \k$fx,ξ)\ <Cα,/*>.

Define kεL(x,ζ'JΪ) and psε(x9ξ;K) by (3.4) and (3.7), respectively. Then we also
get (3.5),(3.8), and

(3.10)

(i) kεL(x,ξ\fi)eS(\) for each 0<ε,

(ϋ) {£εί,}o<ε,fr<;i ™ bounded in S(ω),

(iii) for any |α| Φ 0 and β there exists another constant CΛ>β independent
of ε, H such that \k%(β)(x,ξ)\<CΛ,β(xy.

Now, using (2.8) with a = M and 6 = 1, we see that λ(^(x,ξ)eS(ωs~ί) for |α| = l
and that \λ^β}(x,ξ)\<C^βω(x,ξγ-\xyM-1 for all α and \β\^0. Hence, applying
Lemma 2.1, we can prove together with (3.10) that {/?sε}0<ε,fr<ι is bounded in
S(ωs). Thus we can complete the proof by Lemmas 2.1 and 2.3. Q.E.D.

Proof of Theorem. We will prove Theorem only under the assumption
(A). The proof under the assumption (B) can be given similarly. We write a
solution 14$) as u(t\ omitting fr, and Uίfl(7ι) as &(%). Let ω = cφc, £;!,!) and
λd = λj(x,ξ;l,l) (d>0). We will decompose the proof into three steps.

X-\- X'
1st step. Let k^t,X,ξ)=χ(ε^Xy + <ξy))k(t,X,ξ) (0<ε< 1) and write Kt(t ,

ftDx) as Ke(t). Throughout this step we suppose umeBs+2(H) ( — oo<s<oo) and
/(O e <f ,°([0, Γ\ BS+2(K)). We consider the equation

(3.11) ) = Ke(t)u(t) + ίtif(t) on [0,Γ]
ot

Using (3.5) and (3.6), we see by Lemma 2.5 that Kε(t) is a bounded operator on Bd(fi)

for any — oo<J<oo. The equation (3.11) is equivalent to
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(3. 1 1)' Λu(t) = ΛM<O) + f0{*:ε(0M0) + ihf(θ)}dθ.

So we can find a solution uε(t)ef}([09'Γ\'9B
s+2(Jίί) of (3.11) by the succesive iteration

for each fixed 0<ε, fr<l.

At first suppose Q<d<s + 2. We denote by Re( ) its real part. Since Kε(t) is

symmetric on L2, we can easily have

2Re iAd o A&K.Λ/0 + 2Re(A,/,A((«£)

2Re ίφΛ* AJK.ΛA) - 2Re i(~Ke

= - 2Re [A* AJ o ΛJ » o Λ/*β A,uJ + 2Re(Λ()/,Λ<(M£).

Applying Lemma 3.1, we get

IΛ^/ίAXWII < C^ΓXHΛ^,^)^0'!! +$'0\\λd(X,Wx)f(θ)\\dθ)

for a constant ί̂  T) independent of ε, ̂ . Consequently, using Lemma 2.4, we obtain

for another constant

Next let rf<0 and d<s + 2. Then we have

dt

Hence we can also get the similar inequality as in the case 0<d<s + 2. Thus for

any — oo <d<s + 2 there exists a constant CJ(T) independent of 0<ε, fi< 1 such that

(3.12) lk(/)||B.w< QΓ)(||«<0'||Bd(Λ)+ί'0||/(θ)||B,(Λ)̂ ).

We see by (3.12) that for each fixed Tϊ {«ε(0}o<ε<ι ^s uniformly bounded as
a family of functions from [0,Γ] to Bs+2(Jϊ). Moreover, using (3.5) and (ii) of
(3.6), we see from this and (3.11)' that {wε(0}o<ε<ι is equi-continuous as a family
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of functions from [0,Γ] to Bs(1ί). See page 29 in [16] about the terminology

above. The compactness of the embedding map from B2(fi) into L2 follows from

the Rellich criterion (e.g. Theorem XIII. 65 on page 247 of [17]). So we can prove

from Lemmas 2.4 and 2.5 that the embedding map from Bs+2(ti) into Bs(fi) is

compact. Hence we can apply the Ascoli-Arzela theorem to {«ε(/)}o<ε<ι

Consequently there exist a sequence {ε;}JLι tending to zero and a u(t)e£?([Q9T] 9

Bs(1ή) so that

(3.13) lim^αoifβ/0 = κ(ί) in<f°([0,Γ];£*(/0).

Here the norm of g(t) e £ t°([0, Γ\ Bs(ft)) is max0iS^rlleMII*w

Since uε(t) is a solution of (3.11), we have

iΠuεj(f) = ihu^ + ̂ Kεj(θ)u(θ)dθ + Ά&mdθ 4- ft/ς/0)K/0) - u(θ)}dθ.

Let j tend to infinity. Then, using (3.5),(ii) of (3.6), and (3.13), we can prove from

Lemma 2.5 that the last term in the right-hand side tends to zero in

B8'2^). Moreover, noting (3.4) and (3.5), we can see by the analogous arguments

used in the proof of Lemma 2.1 that we can apply Lemma 2.2 to the second

term. Then the second term tends to \t

QK(θ)u(θ)dθ in B?~2(Π). Hence u(t) defined

by (3.13) belongs to */([(), Γj Λ '^Λ)) and satisfies

(3.14) Λ O = AftMO + */W on
dt

Thus we could find a solution f^Oe^P^ ^^n^O,!1];̂ "2^)) of

(3.14). In addition, we have

(3-15)

from (3.12) and (3.13).

2nd step. In this step we will prove that the solution of (3.14) is unique in

];Λί(R))nί,1p,Γ];Λ'-2(Λ)) for any -oo«/«x>.

Let g(t) be an arbitrary function in £?([0,T];Bl4+*(n)) and consider

on
at

Then we can find a solution v(t)e^([0,T^;B^2(Ji))n^([0,T^;B^(Ji)) from the

arguments in the 1st step. Let M(Oe<ft

0([0,Γ];5<'(^))n<([0,7'];βd"2(Λ)) be a
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solution of (3.14) to w(0)=0 and/(f) = 0. Then we have

ct

υt

ύt

and hence

0=Γo(u(Θ),g(θ))dθ.

This shows that u(t) vanishes on [0,Γ],

3rd step. Let u^eFfi) and /(/) e ̂ °([0, Γ] &(%)). We can take sequences

{iiΠf-i in BS+2Φ) and {//f)}j°=ι in *?(U>,Γ}',B +2(K)) such that lim^wf = w(0)

in BW and lim^ ̂ //ί) =/(ί) in °̂([0, Γ] )̂). Let ιι/ί) 6 ̂ °([0, Γ] 5S(S)) n
*}(W,in;P~2W) be the solution of (3.14) to uf and //ί). Then, noting the
uniqueness of the solution, we have by (3.15)

(3.16)

<Cs(n\\uf^unB^ + ^\\fj^^^

Consequently there exists a u(t)e <ft°([0, Γ] 5S(S)) such that

(3.17)

Then we can prove as in the proof of the 1st step that this u(f) belongs to
^([O,^];^"2^) and satisfies (3.14) and (3.15). The uniqueness of the solution
of (3.14) in (̂[O Ĵ ^^n^p,!1];^-2^)) has been proved in the 2nd
step. Thus we could prove Theorem except for (1.2).

Let w(0)e52(#) and MWe^^ΓJ ^^n^^Γj L2) be the solution of
(0.1). Then we get

as in the proof of (3.15). We can prove (1.2) from this by repeating the arguments
above in the 3rd step. Thus the proof could be completed. Q.E.D.
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