

Title	On mappings between algebraic systems. II
Author(s)	Fujiwara, Tsuyoshi
Citation	Osaka Mathematical Journal. 1960, 12(2), p. 253- 268
Version Type	VoR
URL	https://doi.org/10.18910/11115
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On Mappings between Algebraic Systems, II

By Tsuyoshi FUJIWARA

In the previous paper [1], we have defined the P-mappings^{*)} and the P-product systems^{*)}, and shown that the algebraic Taylor's expansion theorem^{*)} holds between the P-mappings and the P-product systems. And some fundamental results with respect to P-mappings have been derived from this theorem.

The present paper is the continuation of the paper [1]. In the section 1 of this paper, we shall introduce the concept of the B_W -conjugate relation between families P and Q of basic mapping-formulas^{*)}, and it is a relation between P-mappings and Q-mappings. And, by using the algebraic Taylor's expansion theorem, we shall show that this relation is equivalent to the existence of some inner isomorphic mapping between the P-product system $P(\mathfrak{B})$ and the Q-product system $Q(\mathfrak{B})$ for every B_W -algebraic system \mathfrak{B} . In the section 2, we shall define the derivations between primitive algebraic systems, by using the concepts of the (A_V, B_W) -universality^{*)} and the B_W -conjugate relation. And we shall show that one of these derivations is the usual one in the case of the commutative algebras over a field of characteristic 0. Thus the derivations can be considered as the mappings which are some natural algebraic generalization of homomorphisms.

§1. Some relations between families of basic mapping-formulas.

Let R be a set of relations of the form

$$b_1 = F_1(a_1, \dots, a_m), \dots, b_n = F_n(a_1, \dots, a_m)$$

on a free ϕ_W -algebraic system $F(\{a_1, \dots, a_m, b_1, \dots, b_n\}, \phi_W)$. And let B_W be a system of composition-identities with respect to W. If there exists a set S of relations of the form

$$a_1 = F_1^*(b_1, \dots, b_n), \dots, a_m = F_m^*(b_1, \dots, b_n)$$

such that

*) Cf. [1].

$$F(\{a_1, \dots, a_m, b_1, \dots, b_n\}, B_W, R)$$

= $F(\{a_1, \dots, a_m, b_1, \dots, b_n\}, B_W, S)$

i.e., R and S are B_W -equivalent, then the system of W-polynomials

(1.1)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

is said to be B_W -regular, and the system of W-polynomials

$$F_1^*(y_1, \dots, y_n), \dots, F_m^*(y_1, \dots, y_n)$$

is called a B_W -inverse system of (1.1). From the above definitions, it is clear that any B_W -inverse system is B_W -regular.

Let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_n\}}$ of basic mapping-formulas respectively. If there exists a system of W-polynomials

(1.2)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

such that, for any system $\{\varphi_1, \dots, \varphi_m\}$ of **P**-mappings from any ϕ_{V^-} algebraic system \mathfrak{A} into any B_{W^-} algebraic system \mathfrak{B} , the system $\{\psi_1, \dots, \psi_n\}$ of mappings, each of which is defined by

$$\psi_{\nu}(a) = F_{\nu}(\varphi_{1}(a), \cdots, \varphi_{m}(a)),$$

is a system of Q-mappings, then the system (1.2) is called a B_W -translator from P into Q. In the above definition, if the system (1.2) is B_W -regular, then we say that P is B_W -conjugate to Q, and denote it by $P \stackrel{B_W}{\longrightarrow} Q$.

Theorem 1.1. Let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_n\}}$ of basic mapping-formulas respectively. And let

(1.3)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

be a system of W-polynomials. Then, in order that the system (1.3) is a B_W -translator from P into Q, it is necessary and sufficient that

(1.4)
$$\begin{cases} F_{\nu} \left(P_{\xi_{1}\nu} \begin{pmatrix} \xi_{1}(x_{1}), \cdots, \xi_{1}(x_{N(\nu)}) \\ \cdots \\ \xi_{m}(x_{1}), \cdots, \xi_{m}(x_{N(\nu)}) \end{pmatrix}, \cdots, P_{\xi_{m}\nu} \begin{pmatrix} \xi_{1}(x_{1}), \cdots, \xi_{1}(x_{N(\nu)}) \\ \cdots \\ \xi_{m}(x_{1}), \cdots, \xi_{m}(x_{N(\nu)}) \end{pmatrix} \\ \xrightarrow{B_{W}} = Q_{\eta_{\nu}\nu} \begin{pmatrix} F_{1}(\xi_{1}(x_{1}), \cdots, \xi_{m}(x_{1})), \cdots, F_{1}(\xi_{1}(x_{N(\nu)}), \cdots, \xi_{m}(x_{N(\nu)})) \\ \cdots \\ F_{n}(\xi_{1}(x_{1}), \cdots, \xi_{m}(x_{1})), \cdots, F_{n}(\xi_{1}(x_{N(\nu)}), \cdots, \xi_{m}(x_{N(\nu)})) \end{pmatrix} \\ for every \ \nu = 1, \cdots, n \ and \ every \ \nu \in V. \end{cases}$$

Proof of necessity. Let \mathfrak{A} be the free ϕ_V -algebraic system $F(\{x_1, \dots, x_{N(v)}\}, \phi_V)$, and \mathfrak{B} the free B_W -algebraic system $F(\{\xi_1(x_1), \dots, \xi_1(x_{N(v)}), \dots, \xi_m(x_1), \dots, \xi_m(x_{N(v)})\}, B_W)$. Then it is clear by Theorem 1.3 in [1] that there exists a system $\{\varphi_1, \dots, \varphi_m\}$ of P-mappings, each of which satisfies

(1.5)
$$\varphi_{\mu}(x_N) = \xi_{\mu}(x_N) \quad (N=1, \cdots, N(v)).$$

Now, let $\{\psi_1, \dots, \psi_n\}$ be the system of mappings from \mathfrak{A} into \mathfrak{B} , each of which is defined by

$$\psi_{\nu}(x) = F_{\nu}(\varphi_{1}(x), \cdots, \varphi_{m}(x))$$

Then $\{\psi_1, \dots, \psi_n\}$ is a system of Q-mappings from \mathfrak{A} into \mathfrak{B} , because the system (1.3) is a B_W -translator from P into Q. Hence we have the following computation:

$$\begin{split} F_{\nu} & \left(P_{\xi_{1}v} \begin{pmatrix} \varphi_{1}(x_{1}) & \cdots & \varphi_{1}(x_{N(v)}) \\ \cdots & \cdots & \cdots & \varphi_{n}(x_{N(v)}) \end{pmatrix} , \\ & \cdots & P_{\xi_{mv}} \begin{pmatrix} \varphi_{1}(x_{1}) & \cdots & \varphi_{1}(x_{N(v)}) \\ \cdots & \cdots & \varphi_{n}(x_{N(v)}) \end{pmatrix} \\ & = F_{\nu}(\varphi_{1}(v(x_{1}, \cdots, x_{N(v)})), \\ & \cdots & \varphi_{m}(v(x_{1}, \cdots, x_{N(v)}))) \\ & = \psi_{\nu}(v(x_{1}, \cdots, x_{N(v)})) \\ & = Q_{\eta_{\nu}v}(\psi_{1}(x_{1}), \cdots, \psi_{1}(x_{N(v)}), \\ & \cdots & \varphi_{m}(x_{1}), \\ & \cdots & \varphi_{m}(x_{1})), \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{1}), \\ \cdots & \varphi_{m}(x_{1})), \\ \cdots & \varphi_{m}(x_{1})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{1}), \\ \cdots & \varphi_{m}(x_{1})), \\ \cdots & \varphi_{m}(x_{1})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{1}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{1}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{1}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & F_{n}(\varphi_{n}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ \cdots & F_{n}(\varphi_{n}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(x_{n}), \\ & \cdots & F_{n}(\varphi_{n}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{n}(x_{n}), \\ & \cdots & F_{n}(\varphi_{n}(x_{n})), \\ & \cdots & \varphi_{m}(x_{n}) \end{pmatrix} \\ & = Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{n}(x_{n}), \\ & \cdots & F_{n}(\varphi_{n}(x_{n})), \\ & \cdots & \varphi_{m}(\varphi_{n}(x_{n})) \end{pmatrix} \\ & = Q$$

Hence, by (1.5), the identity

$$\begin{split} & F_{\nu} \left(P_{\xi_{1}\nu} \begin{pmatrix} \xi_{1}(x_{1}), \cdots, \xi_{1}(x_{N(\nu)}) \\ \cdots \\ \xi_{m}(x_{1}), \cdots, \xi_{m}(x_{N(\nu)}) \end{pmatrix}, \cdots, P_{\xi_{m}\nu} \begin{pmatrix} \xi_{1}(x_{1}), \cdots, \xi_{1}(x_{N(\nu)}) \\ \cdots \\ \xi_{m}(x_{1}), \cdots, \xi_{m}(x_{N(\nu)}) \end{pmatrix} \right) \\ & = Q_{\eta_{\nu}\nu} \begin{pmatrix} F_{1}(\xi_{1}(x_{1}), \cdots, \xi_{m}(x_{1})), \cdots, F_{1}(\xi_{1}(x_{N(\nu)}), \cdots, \xi_{m}(x_{N(\nu)})) \\ \cdots \\ F_{n}(\xi_{1}(x_{1}), \cdots, \xi_{m}(x_{1})), \cdots, F_{n}(\xi_{1}(x_{N(\nu)}), \cdots, \xi_{m}(x_{N(\nu)})) \end{pmatrix} \end{split}$$

is valid in \mathfrak{B} . This identity can be considered as the one with respect to $\stackrel{B_W}{=}$, because \mathfrak{B} is a free B_W -algebraic system.

Proof of sufficiency. Let \mathfrak{A} be any ϕ_{V} -algebraic system, and \mathfrak{B} any B_{W} -algebraic system. And let $\{\varphi_{1}, \dots, \varphi_{m}\}$ be any system of P-mappings from \mathfrak{A} into \mathfrak{B} . Moreover, let $\psi_{1}, \dots, \psi_{n}$ be the mappings from \mathfrak{A} into \mathfrak{B} , each of which is defined by

$$\psi_{\nu}(a) = F_{\nu}(\varphi_{1}(a), \cdots, \varphi_{m}(a)).$$

Then, by using (1.4), for any $v \in V$ and any $a_1, \dots, a_{N(v)} \in \mathfrak{A}$, we have

$$\begin{split} & \psi_{\nu}(v(a_{1}, \cdots, a_{N(v)})) \\ &= F_{\nu}(\varphi_{1}(v(a_{1}, \cdots, a_{N(v)})), \cdots, \varphi_{m}(v(a_{1}, \cdots, a_{N(v)}))) \\ &= F_{\nu} \begin{pmatrix} P_{\xi_{1}v} \begin{pmatrix} \varphi_{1}(a_{1}), \cdots, \varphi_{1}(a_{N(v)}) \\ \vdots \\ \varphi_{m}(a_{1}), \cdots, \varphi_{m}(a_{N(v)}) \end{pmatrix}, \cdots, P_{\xi_{m}v} \begin{pmatrix} \varphi_{1}(a_{1}), \cdots, \varphi_{1}(a_{N(v)}) \\ \vdots \\ \varphi_{m}(a_{1}), \cdots, \varphi_{m}(a_{N(v)}) \end{pmatrix} \end{pmatrix} \\ &= Q_{\eta_{\nu}v} \begin{pmatrix} F_{1}(\varphi_{1}(a_{1}), \cdots, \varphi_{m}(a_{1})), \cdots, F_{1}(\varphi_{1}(a_{N(v)}), \cdots, \varphi_{m}(a_{N(v)})) \\ \vdots \\ F_{n}(\varphi_{1}(a_{1}), \cdots, \varphi_{m}(a_{1})), \cdots, F_{n}(\varphi_{1}(a_{N(v)}), \cdots, \varphi_{m}(a_{N(v)})) \end{pmatrix} \\ &= Q_{\eta_{\nu}v} (\psi_{1}(a_{1}), \cdots, \psi_{1}(a_{N(v)}), \cdots, \psi_{n}(a_{1}), \cdots, \psi_{n}(a_{N(v)})) . \end{split}$$

Hence $\{\psi_1, \dots, \psi_n\}$ is a system of **Q**-mappings from \mathfrak{A} into \mathfrak{B} . This completes the proof.

Let P be a family $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ of basic mapping-formulas, and let \mathfrak{B} be a ϕ_W -algebraic system. Now let ψ be a mapping from $P(\mathfrak{B})$ into \mathfrak{B} . If there exists a W-polynomial $F(x_1, \dots, x_m)$ such that

$$\psi([b_1, \cdots, b_m]) = F(b_1, \cdots, b_m)$$

for every element $[b_1, \dots, b_m]$ in $P(\mathfrak{B})$, then ψ is called an inner mapping defined by $F(x_1, \dots, x_m)$. Moreover, let Q be a family $Q_{V,W}\{\eta_1, \dots, \eta_n\}$ of basic mapping-formulas. And let ψ_1, \dots, ψ_n be mappings from $P(\mathfrak{B})$ into \mathfrak{B} , and Ψ the mapping from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$ which is defined by

$$\Psi([b_1, \cdots, b_m]) = [\psi_1([b_1, \cdots, b_m]), \cdots, \psi_n([b_1, \cdots, b_m])]$$

for all elements $[b_1, \dots, b_m] \in \mathbf{P}(\mathfrak{B})$. If each ψ_{ν} is an inner mapping defined by a *W*-polynomial $F_{\nu}(x_1, \dots, x_m)$, then Ψ is called an inner mapping defined by the system of *W*-polynomials $F_{\nu}(x_1, \dots, x_m)$ ($\nu = 1, \dots, n$).

Theorem 1.2. Let P and Q be families $P_{V,W} \{\xi_1, \dots, \xi_m\}$ and $Q_{V,W} \{\eta_1, \dots, \eta_n\}$ of basic mapping-formulas respectively. And let

(1.6)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

be a system of W-polynomials. Then, in order that the system (1.6) is a B_W -translator from P into Q, it is necessary and sufficient that, for any B_W -algebraic system \mathfrak{B} , the inner mapping Ψ from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$, which is defined by the system (1.6) of W-polynomials, is a homomorphism.

Proof of necessity. Let \mathfrak{B} be any B_W -algebraic system. And let $\varphi_1, \dots, \varphi_m$ be the mappings from $P(\mathfrak{B})$ into \mathfrak{B} , each of which is defined by

$$\varphi_{\mu}([b_1, \cdots, b_m]) = b_{\mu}.$$

Then it is clear that $\{\varphi_1, \dots, \varphi_m\}$ is a system of **P**-mappings from $P(\mathfrak{B})$ into \mathfrak{B} . Now let ψ_1, \dots, ψ_n be mappings from $P(\mathfrak{B})$ into \mathfrak{B} , each of which is defined by

$$\psi_{\nu}([b_1, \cdots, b_m]) = F_{\nu}(\varphi_1([b_1, \cdots, b_m]), \cdots, \varphi_m([b_1, \cdots, b_m])), \quad \text{i.e.,}$$

$$\psi_{\nu}([b_1, \cdots, b_m]) = F_{\nu}(b_1, \cdots, b_m).$$

Then, $\{\psi_1, \dots, \psi_n\}$ is a system of **Q**-mappings from $P(\mathfrak{B})$ into \mathfrak{B} , because the system (1.6) is a B_W -translator from **P** into **Q**. Hence, by Theorem 1.1 in [1], the inner mapping

$$\Psi: [b_1, \cdots, b_m] \to [F_1(b_1, \cdots, b_m), \cdots, F_n(b_1, \cdots, b_m)]$$

is a homomorphism from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$.

Proof of sufficiency. Let \mathfrak{A} be any ϕ_{V} -algebraic system, and \mathfrak{B} any B_{W} -algebraic system. Now suppose that $\{\varphi_{1}, \dots, \varphi_{m}\}$ is a system of P-mappings from \mathfrak{A} into \mathfrak{B} . Then, by Theorem 1.1 in [1], the mapping

$$\Phi: a \to \Phi(a) = \left[\varphi_1(a), \cdots, \varphi_m(a)\right]$$

is a homomorphism from \mathfrak{A} into $P(\mathfrak{B})$. Since the inner mapping

$$\Psi: [b_1, \cdots, b_m] \to [F_1(b_1, \cdots, b_m), \cdots, F_n(b_1, \cdots, b_m)]$$

is a homomorphism from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$, it is clear that the mapping

$$\Psi\Phi: a \to \Psi\Phi(a) = [F_1(\varphi_1(a), \cdots, \varphi_m(a)), \cdots, F_n(\varphi_1(a), \cdots, \varphi_m(a))]$$

is a homomorphism from \mathfrak{A} into $Q(\mathfrak{B})$. Hence, by Theorem 1.1 in [1], the system $\{\psi_1, \dots, \psi_n\}$ of mappings from \mathfrak{A} into \mathfrak{B} , each of which is defined by

$$\psi_{\mathfrak{p}}(a) = F_{\mathfrak{p}}(\varphi_{\mathfrak{p}}(a), \cdots, \varphi_{\mathfrak{m}}(a)),$$

is a system of Q-mappings. Thus, the system (1.6) of W-polynomials is a B_W -translator from P into Q. This completes the proof.

Theorem 1.3. Let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_n\}}$ of basic mapping-formulas respectively, and let

(1.7)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

be a B_W -regular system of W-polynomials. And let \mathfrak{B} be any B_W -algebraic system. Now suppose that the inner mapping Ψ from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$, which is defined by the system (1.7) of W-polynomials, is a homomorphism. Then Ψ is an isomorphism from $P(\mathfrak{B})$ onto $Q(\mathfrak{B})$, moreover the inverse mapping Ψ^{-1} is an inner mapping defined by a B_W -inverse system

(1.8)
$$F_1^*(y_1, \dots, y_n), \dots, F_m^*(y_1, \dots, y_n)$$

of the system (1.7).

Proof. Let $[b_1, \dots, b_m]$ be any element in $P(\mathfrak{B})$. Then, by the definition of the inner mapping Ψ , we have

$$\Psi([b_1, \cdots, b_m]) = [F_1(b_1, \cdots, b_m), \cdots, F_n(b_1, \cdots, b_m)].$$

On the other hand, it is clear that

$$F_{\mu}^{*}(F_{1}(b_{1}, \cdots, b_{m}), \cdots, F_{n}(b_{1}, \cdots, b_{m})) = b_{\mu} \qquad (\mu = 1, \cdots, m).$$

Hence we have

$$\Psi^{-1}([c_1, \cdots, c_n]) = \Phi([c_1, \cdots, c_n])$$

for every element $[c_1, \dots, c_n]$ in the domain of Ψ^{-1} , where Φ denotes the inner mapping from $Q(\mathfrak{B})$ into $P(\mathfrak{B})$ which is defined by the B_W inverse system (1.8). Therefore the inner mapping Ψ is a one to one mapping. Hence it is the rest of our proof to show that Ψ maps $P(\mathfrak{B})$ onto $Q(\mathfrak{B})$. Now let $[c_1, \dots, c_n]$ be any element in $Q(\mathfrak{B})$. Then we have

$$F_{\nu}(F_{1}^{*}(c_{1}, \cdots, c_{n}), \cdots, F_{m}^{*}(c_{1}, \cdots, c_{n})) = c_{\nu} \qquad (\nu = 1, \cdots, n).$$

Hence we have

$$\Psi([F_1^*(c_1, \cdots, c_n), \cdots, F_m^*(c_1, \cdots, c_n)]) = [c_1, \cdots, c_n].$$

Therefore Ψ maps $P(\mathfrak{B})$ onto $Q(\mathfrak{B})$. This completes our proof.

Theorem 1.4. Let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_n\}}$ of basic mapping-formulas respectively. Then the following three propositions are equivalent:

- (a) **P** is B_w -conjugate to **Q**.
- (b) There exists a B_W -regular system of W-polynomials

(1.9)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

such that, for any B_W -algebraic system \mathfrak{B} , the inner mapping from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$, which is defined by the system (1.9), is an isomorphism from $P(\mathfrak{B})$ onto $Q(\mathfrak{B})$.

(c) There exists a B_W -regular system of W-polynomials

$$F_1(x_1, \cdots, x_m), \cdots, F_n(x_1, \cdots, x_m)$$

such that

Algebraic Systems

$$\begin{split} & F_{\nu} \left(P_{\xi_{1}v} \begin{pmatrix} \xi_{1}(x_{1}) & \cdots & \xi_{1}(x_{N(v)}) \\ \cdots & \cdots & \cdots & \vdots \\ \xi_{m}(x_{1}) & \cdots & \xi_{m}(x_{N(v)}) \end{pmatrix} \right), \cdots, P_{\xi_{m}v} \begin{pmatrix} \xi_{1}(x_{1}) & \cdots & \xi_{1}(x_{N(v)}) \\ \vdots & \cdots & \vdots \\ \xi_{m}(x_{1}) & \cdots & \xi_{m}(x_{N(v)}) \end{pmatrix} \end{pmatrix} \\ & \stackrel{B_{W}}{=} Q_{\pi_{\nu}v} \begin{pmatrix} F_{1}(\xi_{1}(x_{1}) & \cdots & \xi_{m}(x_{1})) & \cdots & F_{1}(\xi_{1}(x_{N(v)}) & \cdots & \xi_{m}(x_{N(v)})) \\ \cdots & \cdots & \vdots \\ F_{n}(\xi_{1}(x_{1}) & \cdots & \xi_{m}(x_{1})) & \cdots & F_{n}(\xi_{1}(x_{N(v)}) & \cdots & \xi_{m}(x_{N(v)})) \end{pmatrix} \end{split}$$

for every $\nu = 1, \dots, n$ and every $v \in V$.

Proof. (a) \Leftrightarrow (c) is clear from Theorem 1.1. (a) \Leftrightarrow (b) is obvious from Theorems 1.2 and 1.3.

Theorem 1.5. The B_W -conjugate relation $\stackrel{B_W}{\sim}$ is an equivalence relation.

Proof of reflexive law is easy.

Proof of symmetric law. Let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_n\}}$ of basic mapping-formulas respectively. Now suppose that $P \xrightarrow{B_W} Q$. Then, by Theorem 1.4, there exists a B_W -regular system of W-polynomials

(1.10)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$

such that, for any B_W -algebraic system \mathfrak{B} , the inner mapping Ψ from $P(\mathfrak{B})$ into $Q(\mathfrak{B})$, which is defined by the system (1.10), is an isomorphism from $P(\mathfrak{B})$ onto $Q(\mathfrak{B})$. Moreover, by Theorem 1.3, Ψ^{-1} is an inner mapping defined by a B_W -inverse system of (1.10). Hence $Q \stackrel{B_W}{\frown} P$ follows from Theorem 1.4, because the B_W -inverse system is B_W -regular.

Proof of transitive law. Let P, Q and R be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$, $Q_{V,W}{\{\eta_1, \dots, \eta_n\}}$ and $R_{V,W}{\{\zeta_1, \dots, \zeta_l\}}$ of basic mapping-formulas respectively. Now suppose that $P \xrightarrow{B_W} Q$ and $Q \xrightarrow{B_W} R$. Then, by Theorem 1.4, there exist two systems

(1.11)
$$F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)$$
 and

(1.12)
$$G_1(y_1, \dots, y_n), \dots, G_l(y_1, \dots, y_n)$$

of W-polynomials such that, for any B_W -algebraic system \mathfrak{B} , the inner mappings $\Psi: \mathbf{P}(\mathfrak{B}) \to \mathbf{Q}(\mathfrak{B})$ and $\Theta: \mathbf{Q}(\mathfrak{B}) \to \mathbf{R}(\mathfrak{B})$, which are defined by the systems (1.11) and (1.12) respectively, are onto isomorphisms. Hence it is clear that the mapping $\Theta \Psi$ is an isomorphism from $\mathbf{P}(\mathfrak{B})$ onto $\mathbf{R}(\mathfrak{B})$ and it is an inner mapping defined by the system of W-polynomials

(1.13)
$$\begin{cases} G_1(F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)), \\ \dots \\ G_l(F_1(x_1, \dots, x_m), \dots, F_n(x_1, \dots, x_m)). \end{cases}$$

Now let

$$F_1^*(y_1, \dots, y_n), \dots, F_m^*(y_1, \dots, y_n)$$
 and
 $G_1^*(z_1, \dots, z_l), \dots, G_n^*(z_1, \dots, z_l)$

be B_W -inverse systems of the systems (1.11) and (1.12) respectively. Then it is easily obtained that the system of W-polynomials

 $F_1^*(G_1^*(z_1, \dots, z_l), \dots, G_n^*(z_1, \dots, z_l)), \dots, F_m^*(G_1^*(z_1, \dots, z_l), \dots, G_n^*(z_1, \dots, z_l)),$

is a B_W -inverse system of (1.13). Hence the system (1.13) is B_W -regular. Therefore $\mathbf{P} \stackrel{B_W}{\sim} \mathbf{R}$ follows from Theorem 1.4. This completes the proof.

Finally we shall introduce the concept of B_W -similarity as a special case of the concept of B_W -conjugate. Now let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_m\}}$ of basic mapping-formulas respectively. If, for any ϕ_V -algebraic system \mathfrak{A} and any B_W -algebraic system \mathfrak{B} , any system of P-mappings from \mathfrak{A} into \mathfrak{B} is a system of Q-mappings, and conversely, then we say that P and Q are B_W -similar. As an easy consequence of the above definition we obtain

Theorem 1.6. Let P and Q be families $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ and $Q_{V,W}{\{\eta_1, \dots, \eta_m\}}$ of basic mapping-formulas respectively. Then, in order that P and Q are B_W -similar, it is necessary and sufficient that

$$P_{\boldsymbol{\xi}_{\mu\nu}}\left(\begin{array}{c}y_{1\ 1}\ ,\ \cdots \ ,\ y_{1\ N(\nu)}\\ \vdots\\ y_{m\ 1}\ ,\ \cdots \ ,\ y_{m\ N(\nu)}\end{array}\right) \stackrel{B_{W}}{=} Q_{\eta_{\mu}\nu}\left(\begin{array}{c}y_{1\ 1}\ ,\ \cdots \ ,\ y_{1\ N(\nu)}\\ \vdots\\ y_{m\ 1}\ ,\ \cdots \ ,\ y_{m\ N(\nu)}\end{array}\right)$$

for every $\mu = 1, \dots, m$ and every $v \in V$.

§2. Families of (A_V, B_W) -homomorphism type and families of (A_V, B_W) -derivation type.

Let P be a family $P_{V,W}{\{\xi_1, \dots, \xi_m\}}$ of basic mapping-formulas. If the basic mapping-formulas of P are of the form

$$\xi_{\mu}(v(x_{1}, \cdots, x_{N(v)})) = P_{\xi_{\mu}v}(\xi_{\mu}(x_{1}), \cdots, \xi_{\mu}(x_{N(v)})) \quad (\mu = 1, \cdots, m; v \in V),$$

then P is called a family of (ϕ_V, ϕ_W) -homomorphism type. Moreover let A_V and B_W be systems of composition-identities with respect to Vand W respectively. If P is (A_V, B_W) -universal and B_W -similar to some family of (ϕ_V, ϕ_W) -homomorphism type, then P is called a family of (A_V, B_W) -homomorphism type.

Next let **P** be a family $P_{V,W}{\{\xi_1, \dots, \xi_m, \delta\}}$ of basic mapping-formulas. If the basic mapping-formulas of **P** are of the form

$$\xi_{\mu}(v(x_{1}, \cdots, x_{N(v)})) = P_{\xi_{\mu}v}(\xi_{\mu}(x_{1}), \cdots, \xi_{\mu}(x_{N(v)})) \qquad (\mu = 1, \cdots, m; v \in V)$$

and

$$\delta(v(x_1, \cdots, x_{N(v)})) = P_{\delta v} egin{pmatrix} \xi_1(x_1) \ , \cdots \ , \xi_1(x_{N(v)}) \ \cdots \ \xi_m(x_1), \ \cdots \ , \xi_m(x_{N(v)}) \ \delta(x_1) \ , \ \cdots \ , \delta(x_{N(v)}) \end{pmatrix} (v \in V) \ ,$$

then P is called a family of (ϕ_V, ϕ_W) -derivation type. Moreover let A_V and B_W be systems of composition-identities. If P is (A_V, B_W) -universal and B_W -similar to some family of (ϕ_V, ϕ_W) -derivation type, then P is called a family of (A_V, B_W) -derivation type.

Let P be a family of (A_V, B_W) -derivation type. If there exists a family Q of (A_V, B_W) -homomorphism type such that P and Q are B_W -conjugate, then P is called a family of improper (A_V, B_W) -derivation type. Otherwise, P is called a family of proper (A_V, B_W) -derivation type.

If V=W and $A_V=B_W$ in the above definitions, then we simply say " A_V -homomorphism" or " A_V -derivation" in place of " (A_V, B_W) -homomorphism" or " (A_V, B_W) -derivation". Let P be a family of A_V -homomorphism (or A_V -derivation) type, and let U be a subset of V. If the family, which consists of all the basic mapping-formulas of P concerning all the compositions $v \in V - U$, is of homomorphism type, then P is called a family of A_V -U-homomorphism (or A_V -U-derivation) type.

Let P be a family of A_{V} -U-derivation type. If P is A_{V} -conjugate to some family of A_{V} -U-homomorphism type, then P is called a family of U-improper A_{V} -U-derivation type. Otherwise, P is called a family of U-proper A_{V} -U-derivation type.

Let K be a commutative field of characteristic 0, and V the set-sum of $\{+, \cdot\}$ and K. And let R_V be the system of composition-identities with respect to V, which define the commutative algebras over K. In the following, we shall determine the form of the family $P_{V,V}\{\varphi_1, \dots, \varphi_m\}^{*}$ of R_{V} - $\{\cdot\}$ -homomorphism type, and that of the family $P_{V,V}\{\varphi, \delta\}^{*}$ of R_{V} - $\{\cdot\}$ -derivation type.

Theorem 2.1. Let P be a family $P_{V,V}\{\varphi_1, \dots, \varphi_m\}$ whose basic mapping-formulas concerning the compositions different from \cdot are of homomorphism type. Then, in order that P is a family of $R_V \{\cdot\}$ -homomorphism type, it is necessary and sufficient that the basic mapping-

^{*)} For convienence, we use below the letters φ, ψ in places of the letters ξ, η .

formulas of P concerning \cdot are of the form

$$arphi_{\mu}(xy) = P_{arphi_{\mu}}(arphi_{\mu}(x), arphi_{\mu}(y)) \stackrel{K_V}{=} h_{\mu} arphi_{\mu}(x) arphi_{\mu}(y) \,, \quad h_{\mu} \in K \qquad (\mu = 1, \cdots, m) \,.$$

Proof. The sufficiency can be easily obtained by Theorem 3.2 in [1]. In the following, we shall prove the necessity. Since the composition-identity (x+y)z = xz+yz is contained in R_V , and P is R_V -universal, it follows from Theorem 3.2 in [1] that

$$F_{\varphi_{\mu}((x+y)z)}(\varphi_{\mu}(x), \varphi_{\mu}(y), \varphi_{\mu}(z))$$

$$\stackrel{R_{V}}{=} F_{\varphi_{\mu}(xz+yz)}(\varphi_{\mu}(x), \varphi_{\mu}(y), \varphi_{\mu}(z)).$$

Hence, by Theorem 2.1 in [1], we have

$$egin{aligned} &P_{arphi \mu^{\star}}(arphi_{\mu}(x) + arphi_{\mu}(y), \ arphi_{\mu}(z))\ &= P_{arphi \mu^{\star}}(arphi_{\mu}(x), \ arphi_{\mu}(z)) + P_{arphi \mu^{\star}}(arphi_{\mu}(y), \ arphi_{\mu}(z)) \ . \end{aligned}$$

Similarly we have

$$egin{aligned} &P_{arphi \, \mu} (arphi_{\mu}(x), \, arphi_{\mu}(\, y) + arphi_{\mu}(z)) \ &\stackrel{R_{V}}{=} P_{arphi \, \mu} (arphi_{\mu}(x), \, arphi_{\mu}(\, y)) + P_{arphi \, \mu} (arphi_{\mu}(x), \, arphi_{\mu}(z)) \, , \end{aligned}$$

because the composition-identity x(y+z) = xy+xz is contained in R_v . Therefore we have

$$P_{\varphi_{\mu}} \cdot (\varphi_{\mu}(x), \varphi_{\mu}(y)) \stackrel{R_{\nu}}{=} h_{\mu} \varphi_{\mu}(x) \varphi_{\mu}(y), \qquad h_{\mu} \in K.$$

This completes the proof.

Theorem 2.2. Let P be a family $P_{V,V}\{\varphi, \delta\}$ whose basic mappingformulas concerning the compositions different from \cdot are of homomorphism type. Then, in order that P is a family of R_{V} -{ \cdot }-derivation type, it is necessary and sufficient that the basic mapping-formulas of P concerning are of the form

~

(2.1)
$$\varphi(xy) = P_{\varphi}.(\varphi(x), \varphi(y)) \stackrel{R_{\nu}}{=} h\varphi(x)\varphi(y) \quad and$$

(2.2)
$$\delta(xy) = P_{\delta}(\varphi(x), \varphi(y), \delta(x), \delta(y))$$
$$\stackrel{R_{\nu}}{=} a\varphi(x)\varphi(y) + b\varphi(x)\delta(y) + b\delta(x)\varphi(y) + d\delta(x)\delta(y),$$

where a, b, d, $h \in K$ and $bh + ad = b^2$.

Proof. The sufficiency can be easily obtained by Theorem 3.2 in [1]. In the following, we shall prove the necessity. Now suppose that P is a family of R_{V} -{·}-derivation type. Then (2.1) can be similarly obtained as in the proof of Theorem 2.1. Next, since the composition-

identity (x+y)z = xz+yz is contained in R_v , and P is R_v -universal, it follows from Theorem 3.2 in [1] that

$$F_{\delta((x+y)z)}(\varphi(x), \varphi(y), \varphi(z), \delta(x), \delta(y), \delta(z)) = \frac{R_{V}}{m} F_{\delta(xz+yz)}(\varphi(x), \varphi(y), \varphi(z), \delta(x), \delta(y), \delta(z))$$

Hence, by Theorem 2.1 in [1], we have

$$egin{aligned} &P_{\delta}.\left(arphi(x)+arphi(y),\,arphi(z),\,\delta(x)+\delta(y),\,\delta(z)
ight)\ &\stackrel{R_{V}}{=}P_{\delta}.\left(arphi(x),\,arphi(z),\,\delta(x),\,\delta(z)
ight)+P_{\delta}.\left(arphi(y),\,arphi(z),\,\delta(y),\,\delta(z)
ight). \end{aligned}$$

Similarly we have

$$\begin{split} & P_{\boldsymbol{\delta}}.(\varphi(x),\,\varphi(y) + \varphi(z),\,\delta(x),\,\delta(y) + \delta(z)) \\ & \stackrel{R_{\nu}}{=} P_{\boldsymbol{\delta}}.(\varphi(x),\,\varphi(y),\,\delta(x),\,\delta(y)) + P_{\boldsymbol{\delta}}.(\varphi(x),\,\varphi(z),\,\delta(x),\,\delta(z)) \,, \end{split}$$

because the composition-identity x(y+z) = xy + xz is contained in R_V . Therefore we can easily obtain

$$P_{\delta}.(\varphi(x), \varphi(y), \delta(x), \delta(y)) \ \stackrel{R_{V}}{=} a\varphi(x)\varphi(y) + b\varphi(x)\delta(y) + c\delta(x)\varphi(y) + d\delta(x)\delta(y) ,$$

where a, b, c, $d \in K$. Moreover we have b=c, because the compositionidentity xy=yx is contained in R_V . Hence we have

(2.3)
$$P_{\delta}.(\varphi(x), \varphi(y), \delta(x), \delta(y)) \\ \stackrel{R_{\nu}}{=} a\varphi(x)\varphi(y) + b\varphi(x)\delta(y) + b\delta(x)\varphi(y) + d\delta(x)\delta(y) .$$

Since the composition-identity (xy)z = x(yz) is contained in R_v , it follows from Theorem 3.2 in [1] that

$$\begin{split} F_{\delta((xy)z)}(\varphi(x), \, \varphi(y), \, \varphi(z), \, \delta(x), \, \delta(y), \, \delta(z)) \\ &= F_{\delta(x(yz))}(\varphi(x), \, \varphi(y), \, \varphi(z), \, \delta(x), \, \delta(y), \, \delta(z)) \, . \end{split}$$

Hence, by using (2.3) and Theorem 2.1 in [1], we have

$$bh+ad = b^2$$
.

This completes the proof.

Theorem 2.3. Let P be a family $P_{V,V}\{\varphi, \delta\}$ whose basic mappingformulas concerning the compositions different from \cdot are of homomorphism type. Then, in order that P is a family of $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type, it is necessary and sufficient that the basic mapping-formulas of Pconcerning \cdot are of the form

(2.4)
$$\begin{cases} \varphi(xy) = P_{\varphi}.(\varphi(x), \varphi(y)) \stackrel{R_{r}}{=} h\varphi(x)\varphi(y) \quad and \\ \delta(xy) = P_{\delta}.(\varphi(x), \varphi(y), \delta(x), \delta(y)) \\ \stackrel{R_{r}}{=} a\varphi(x)\varphi(y) + h\varphi(x)\delta(y) + h\delta(x)\varphi(y), \\ where \ a, \ h \in K, \ and \ at \ least \ one \ of \ them \ is \ not \ 0. \end{cases}$$

Proof of sufficiency. Suppose that P is of the form (2.4). Then it is clear from Theorem 2.2 that P is a family of R_{V} -{·}-derivation type. Hence it is sufficient to prove that P is not R_{V} -conjugate to any family $Q = Q_{V,V} \{\psi_1, \dots, \psi_m\}$ of R_{V} -{·}-homomorphism type, i.e., there exists no R_{V} -regular R_{V} -translator from Q into P. Now, by Theorem 2.1, we may assume that the basic mapping-formulas of Q concerning \cdot are of the form

$$(2.5) \qquad \psi_{\mu}(xy) = Q_{\psi_{\mu}}(\psi_{\mu}(x), \psi_{\mu}(y)) \stackrel{R_{\nu}}{=} h_{\mu}\psi_{\mu}(x)\psi_{\mu}(y) \qquad (\mu = 1, \cdots, m) \ .$$

And let

(2.6)
$$F_1(x_1, \dots, x_m), F_2(x_1, \dots, x_m)$$

be an R_V -translator from Q into P. Then, by Theorem 1.1, we have

$$\begin{split} F_{\nu}(\psi_{\mathbf{i}}(x)+\psi_{\mathbf{i}}(y), \cdots, \psi_{m}(x)+\psi_{m}(y)) \\ & \stackrel{R_{\nu}}{=} F_{\nu}(\psi_{\mathbf{i}}(x), \cdots, \psi_{m}(x))+F_{\nu}(\psi_{\mathbf{i}}(y), \cdots, \psi_{m}(y)) \qquad (\nu=1,2) \,. \end{split}$$

Hence we have

$$F_{\nu}(x_1, \cdots, x_m) \stackrel{R_{\nu}}{=} \alpha_{\nu} x_1 + \cdots + \beta_{\nu} x_m, \quad \alpha_{\nu}, \cdots, \beta_{\nu} \in K \qquad (\nu = 1, 2).$$

Therefore the R_V -translator (2.6) is not R_V -regular in the case of $m \pm 2$. Hence, in the following, we may assume that m=2, i.e.,

$$F_1(x_1, \cdots, x_m) = F_1(x_1, x_2) \stackrel{K_V}{=} \alpha_1 x_1 + \beta_1 x_2,$$

$$F_2(x_1, \cdots, x_m) = F_2(x_1, x_2) \stackrel{R_V}{=} \alpha_2 x_1 + \beta_2 x_2 \quad \text{and}$$

$$\boldsymbol{Q} = \boldsymbol{Q}_{V,V} \{ \psi_1, \cdots, \psi_m \} = \boldsymbol{Q}_{V,V} \{ \psi_1, \psi_2 \}.$$

Therefore, by using (2.4), (2.5) and Theorem 1.1, we have

$$lpha_1h_1\psi_1(x)\psi_1(y)+eta_1h_2\psi_2(x)\psi_2(y)\ \stackrel{R_V}{=}h(lpha_1\psi_1(x)+eta_1\psi_2(x))(lpha_1\psi_1(y)+eta_1\psi_2(y))$$

and

$$egin{aligned} &lpha_2h_1\psi_1(x)\psi_1(y)+eta_2h_2\psi_2(x)\psi_2(y)\ &\stackrel{R_{r'}}{=}a(lpha_1\psi_1(x)+eta_1\psi_2(x))(lpha_1\psi_1(y)+eta_1\psi_2(y))\ &+h(lpha_1\psi_1(x)+eta_1\psi_2(x))(lpha_2\psi_1(y)+eta_2\psi_2(y))\ &+h(lpha_2\psi_1(x)+eta_2\psi_2(x))(lpha_1\psi_1(y)+eta_1\psi_2(y))\,. \end{aligned}$$

Hence we have

(2.7)
$$h\alpha_1^2 - \alpha_1 h_1 = 0$$
,

$$h\alpha_{1}\beta_{1}=0,$$

(2.9) $h\beta_1^2 - \beta_1 h_2 = 0$,

and

$$(2.10) a\alpha_1^2 + 2h\alpha_1\alpha_2 - \alpha_2h_1 = 0,$$

(2.11)
$$a\alpha_1\beta_1 + h\alpha_1\beta_2 + h\alpha_2\beta_1 = 0,$$

(2.12)
$$a\beta_1^2 + 2h\beta_1\beta_2 - \beta_2h_2 = 0.$$

By using (2.7)-(2.12), we shall prove that the R_v -translator (2.6) in not R_v -regular in any case.

(a) The case of h=0. By the assumption of this theorem, we have $a \neq 0$. Hence, by using (2.7), (2.9), (2.10) and (2.12), we have $\alpha_1 = \beta_1 = 0$, and hence the R_V -translator (2.6) is not R_V -regular.

(b) The case of $h \neq 0$ and $h_1 = h_2 = 0$. By using (2.7) and (2.9), we have $\alpha_1 = \beta_1 = 0$. Hence the R_V -translator (2.6) is not R_V -regular.

(c) The case of $h \neq 0$, $h_1 \neq 0$ and $h_2 = 0$. By (2.9), we have $\beta_1 = 0$. Hence by (2.11) we have $\alpha_1\beta_2 = 0$, i.e., $\alpha_1 = 0$ or $\beta_2 = 0$. Therefore the R_V -translator (2.6) is not R_V -regular.

(d) The case of $h \neq 0$, $h_1=0$ and $h_2 \neq 0$. It is similarly obtained as in the case (c) that the R_V -translator (2.6) is not R_V -regular.

(e) The case of $h \neq 0$, $h_1 \neq 0$ and $h_2 \neq 0$. By (2.8), we have $\alpha_1 = 0$ or $\beta_1 = 0$. If $\alpha_1 = 0$, then by (2.11), we have $\alpha_2\beta_1 = 0$, i.e., $\alpha_2 = 0$ or $\beta_1 = 0$. Hence, in the case of $\alpha_1 = 0$, the R_V -translator (2.6) is not R_V -regular. If $\beta_1 = 0$, then by (2.11), we have $\alpha_1\beta_2 = 0$, i.e., $\alpha_1 = 0$ or $\beta_2 = 0$. Hence, in the case of $\beta_1 = 0$, the R_V -translator (2.6) is not R_V -regular. This completes the proof of sufficiency.

Proof of necessity. In Theorem 2.2, we have shown that, if P is a family of R_{V} -{·}-derivation type, then the basic mapping-formulas of P concerning • are of the form

$$\begin{split} \varphi(xy) &= P_{\varphi}.(\varphi(x), \, \varphi(y)) \stackrel{R_{V}}{=} h\varphi(x)\varphi(y) \quad \text{and} \\ \delta(xy) &= P_{\delta}.(\varphi(x), \, \varphi(y), \, \delta(x), \, \delta(y)) \\ &\stackrel{R_{V}}{=} a\varphi(x)\varphi(y) + b\varphi(x)\delta(y) + b\delta(x)\varphi(y) + d\delta(x)\delta(y) \,, \end{split}$$

where $bh+ad=b^2$. Hence it is sufficient to show that, if the basic mapping-formulas of P concerning \cdot are not of the form (2.4), then P is not a family of $\{\cdot\}$ -proper R_V - $\{\cdot\}$ -derivation type in any case.

(a) The case of d = 0. Let Q be a family $Q_{V,V}{\{\psi_1, \psi_2\}}$ of homomorphism type. Then it is clear from Theorem 1.4 that the system of V-polynomials

$$F_{1}(x_{1}, \, x_{2}) = x_{1}\,, \ \ F_{2}(x_{1}, \, x_{2}) = bx_{1} + dx_{2}$$

is an R_v -regular R_v -translator from P into Q. Hence, in this case, P is not a family of $\{\cdot\}$ -proper R_v - $\{\cdot\}$ -derivation type.

(b) The case of d=0. From $bh+ad=b^2$, we have that b=0 or b=h. Hence we have that

$$\begin{split} P_{\delta}.(\varphi(x),\,\varphi(y),\,\delta(x),\,\delta(y)) &\stackrel{R_{V}}{=} a\varphi(x)\varphi(y) \quad \text{or} \\ P_{\delta}.(\varphi(x),\,\varphi(y),\,\delta(x),\,\delta(y)) &\stackrel{R_{V}}{=} a\varphi(x)\varphi(y) + h\varphi(x)\delta(y) + h\delta(x)\varphi(y) \,. \end{split}$$

Now it is sufficient to show that P is not a family of $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type in the case of a=0 and h=0. Since, in this case, we have

$$P_{\boldsymbol{\delta}}.(\varphi(\boldsymbol{x}), \varphi(\boldsymbol{y}), \delta(\boldsymbol{x}), \delta(\boldsymbol{y})) \stackrel{R_{V}}{=} 0$$
,

it is clear that P is not a family of $\{\cdot\}$ -proper R_{v} - $\{\cdot\}$ -derivation type. This completes the proof.

Let **P** be a family $P_{V,V}\{\varphi, \delta\}$ of $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type. Then, by Theorem 2.3, the basic mapping-formulas of **P** concerning are of the form

$$\begin{split} \varphi(xy) &= P_{\varphi}.(\varphi(x), \, \varphi(y)) \stackrel{K_{V}}{=} h\varphi(x)\varphi(y) \quad \text{and} \\ \delta(xy) &= P_{\delta}.(\varphi(x), \, \varphi(y), \, \delta(x), \, \delta(y)) \\ &\stackrel{R_{V}}{=} a\varphi(x)\varphi(y) + h\varphi(x)\delta(y) + h\delta(x)\varphi(y) \,, \end{split}$$

where $a \neq 0$ or $h \neq 0$ or both. Now, if h=0, then P is called a family of trivial $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type. And if $h \neq 0$, then P is called a family of non-trivial $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type.

Theorem 2.4. (I) Any family $Q_{V,V}\{\psi, \theta\}$ of trivial $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type is R_{V} -conjugate to the family $P_{V,V}\{\varphi, \delta\}$ of trivial $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type whose basic mapping-formulas concerning are of the form

$$\varphi(xy) = 0$$
 and $\delta(xy) = \varphi(x)\varphi(y)$.

(II) Any family $\mathbf{Q}_{V,V}^*\{\psi^*, \theta^*\}$ of non-trivial $\{\cdot\}$ -proper R_{V} - $\{\cdot\}$ -derivation type is R_V -conjugate to the family $\mathbf{P}_{V,V}^*\{\mathcal{P}^*, \delta^*\}$ of non-trivial $\{\cdot\}$ -proper R_V - $\{\cdot\}$ -derivation type whose basic mapping-formulas concerning \cdot are of the form

Algebraic Systems

$$\varphi^*(xy) = \varphi^*(x)\varphi^*(y)$$
 and
 $\delta^*(xy) = \varphi^*(x)\delta^*(y) + \delta^*(x)\varphi^*(y)$

(III) Any family of trivial $\{\cdot\}$ -proper R_{v} - $\{\cdot\}$ -derivation type is not R_{v} -conjugate to any family of non-trivial $\{\cdot\}$ -proper R_{v} - $\{\cdot\}$ -derivation type.

Proof of (I). By the above definition, the basic mapping-formulas of $Q_{V,V}{\{\psi, \theta\}}$ concerning \cdot are of the form

$$\psi(xy) = Q_{\psi}.(\psi(x), \psi(y)) \stackrel{K_{\nu}}{=} 0 \text{ and}$$

 $\theta(xy) = Q_{\theta}.(\psi(x), \psi(y), \theta(x), \theta(y)) \stackrel{R_{\nu}}{=} a\psi(x)\psi(y).$

Then, by Theorem 1.4, the system of V-polynomials

$$F_1(x_1, x_2) = x_1$$
, $F_2(x_1, x_2) = ax_2$

is an R_V -regular R_V -translator from $P_{V,V}\{\varphi, \delta\}$ into $Q_{V,V}\{\psi, \theta\}$. Hence $P_{V,V}\{\varphi, \delta\}$ is R_V -conjugate to $Q_{V,V}\{\psi, \theta\}$.

Proof of (II). By the above definition, the basic mapping-formulas of $Q_{V,V}^*\{\psi^*, \theta^*\}$ concerning \cdot are of the form

$$egin{aligned} \psi^*(xy) &= Q^*_{\psi^*}(\psi^*(x),\,\psi^*(y)) \stackrel{R_{\mathcal{V}}}{=} h\psi^*(x)\psi^*(y) & ext{and} \ heta^*(xy) &= Q^*_{\theta^*}(\psi^*(x),\,\psi^*(y),\, heta^*(x),\, heta^*(y)) \ &\stackrel{R_{\mathcal{V}}}{=} a\psi^*(x)\psi^*(y) + h\psi^*(x) heta^*(y) + h heta^*(x)\psi^*(y) \end{aligned}$$

where $h \neq 0$. Then, by Theorem 1.4, the system of V-polynomials

$$F_1(x_1, x_2) = \frac{1}{h}x_1, \quad F_2(x_1, x_2) = x_2 - \frac{a}{h^2}x_1$$

is an R_V -regular R_V -translator from $P^*_{V,V}\{\varphi^*, \delta^*\}$ into $Q^*_{V,V}\{\psi^*, \theta^*\}$. Hence $P^*_{V,V}\{\varphi^*, \delta^*\}$ is R_V -conjugate to $Q^*_{V,V}\{\psi^*, \theta^*\}$.

Proof of (III). It is sufficient to show that $P_{V,V}\{\varphi, \delta\}$ is not R_{V-V} conjugate to $P_{V,V}^*\{\varphi^*, \delta^*\}$. Now let a system of V-polynomials

$$(2.13) F_1(x_1, x_2), F_2(x_1, x_2)$$

be an R_{V} -translator from $P_{V,V}^{*}\{\varphi^{*}, \delta^{*}\}$ into $P_{V,V}\{\varphi, \delta\}$. Then it is similarly obtained as in the first part of the proof of sufficiency of Theorem 2.3 that the V-polynomials (2.13) are of the form

$$F_1(x_1, x_2) \stackrel{R_V}{=} \alpha_1 x_1 + \beta_1 x_2$$
 and $F_2(x_1, x_2) \stackrel{R_V}{=} \alpha_2 x_1 + \beta_2 x_2$.

Hence, by Theorem 1.1, we have

$$F_1(\varphi^*(x)\varphi^*(y), \varphi^*(x)\delta^*(y)+\delta^*(x)\varphi^*(y))\stackrel{R_V}{=}0$$
,

and hence we have

$$lpha_1 \varphi^*(x) \varphi^*(y) + eta_1(\varphi^*(x) \delta^*(y) + \delta^*(x) \varphi^*(y)) \stackrel{R_F}{=} 0.$$

Therefore $\alpha_1 = \beta_1 = 0$, and therefore the system (2.13) is not R_V -regular. Hence $P_{V,V}\{\varphi, \delta\}$ is not R_V -conjugate to $P^*_{V,V}\{\varphi^*, \delta^*\}$. This completes the proof.

(Received July 8, 1960)

Reference

 T. Fujiwara: On mappings between algebraic systems, Osaka Math. J. 11 (1959), 153-172.