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1. Introduction

In this paper we describe a bilinear identity satisfied by certain multidimen-

sional g-hypergeometric integrals. We give two equivalent forms of the identity, cf.

Theorems 2.9 and 3.7. We call this identity the hyper geometric Riemann identity.

In the one-dimensional case the g-hypergeometric integrals can be expressed in

terms of the basic hypergeometric series nφn_γ and the hypergeometric Riemann

identity reduces to bilinear identities for these series, see Section 7.

There are two interpretations of the hypergeometric Riemann identity which

make it a subject of our interest. First, the hypergeometric Riemann identity is

an analogue of the Riemann bilinear relation for the twisted (co)homology groups

defined by the reciprocally dual local systems, see [3], [7]. An appropriate form of

the hypergeometric Riemann identity is given by Theorem 2.9. From this point of

view, the trigonometric and elliptic hypergeometric spaces correspond respectively

to the top cohomology and homology groups, the hypergeometric pairings provide

natural duality between them and the Shapovalov pairings play the role of the in-

tersection forms. This analogy can be seen directly from the explicit formulae. But

in fact, there is much deeper similarity, including the dual discrete local systems,

the difference twisted de Rham complex etc., see [1], [11]. The deformation of the

Riemann bilinear relation for the hyperelliptic Riemann surfaces was obtained in

[9].

The second interpretation of the hypergeometric Riemann identity comes from

the representation theory of quantum affine algebras, namely, via the quantum

Knizhnik-Zamolodchikov (qKZ) equation. The qKZ equation is a remarkable sys-

tem of difference equations introduced in [4]. It is a natural deformation of the

famous differential Knizhnik-Zamolodchikov equation inheriting many of its nice

properties.

In [11] Varchenko and the author constructed all solutions of the qKZ equa-
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tion with values in a tensor product of Uq(si2) Verma modules with generic highest

weights using the (/-hypergeometric integrals. The space of solutions of the qKZ

equation was indentified in [11] with the tensor product of the corresponding evalu-

ation Verma modules over the elliptic quantum group EP}Ί(si2) The dual version

of that construction is also available: the system of difference equations is dual to

the qKZ equation, its solutions take values in the dual space to the tensor product

of Uq(sI2)-modules and the space of solutions can be identified with the dual space

to the tensor product of EP}Ί(si2)-modules. In this context the hypergeometric

Riemann identity means that the g-hypergeometric solutions of the qKZ and dual

qKZ equations transform the natural pairing of the spaces of solutions to the nat-

ural pairing of the target spaces; namely, given respective solutions Φ and Ψ* of

the qKZ and dual qKZ equations we have that

( Value Ψ*, Value Φ) target spaces = <Φ*, Φ) spaces of solutions

In particular, we can say that the hypergeometric Riemann identity is a deformation

of Gaudin-Korepin's formula for norms of the Bethe vectors [6], cf. [13].

In the main part of the paper we make no references to the deformed (co)homo-

logy theory and limit ourselves to only a few remarks about the representation

theory; for more conceptual point of view see [11], [12].

The results of [11] are crucial for our proof of the hypergeometric Riemann

identity. It is shown in [11] that a matrix formed by certain hypergeometric inte-

grals satisfies a system of linear difference equations, cf. Theorem 4.1 in this paper,

which is equivalent to the qKZ equation. Moreover, this matrix has a finite limit in

a suitable asymptotic zone and the limit is a triangular matrix, cf. Propositions 4.3,

4.4. To prove the hypergeometric Riemann identity we first use the system of dif-

ference equations and its dual system, and show that it is enough to check the

identity as the parameters tends to limit in the asymptotic zone. The remaining

verification is quite straightforward since all the matrices involved have constant

triangular asymptotics in the asymptotic zone.

In this paper we consider the so-called trigonometric or multiplicative case,

which involves the g-hypergeometric integrals. There is the rational version of

the story which involves the multidimensional hypergeometric integrals of Mellin-

Barnes type, formulae being written in terms of the gamma function, rational and

trigonometric functions. The rational case can be considered as the logarithmic

deformation taking the intermediate place between the classical and trigonometric

deformed cases. The rational case of the qKZ equation and related deformed

(co)homologies were studied in [12]. The rational version of the hypergeometric

Riemann identity can be obtained similarly to the trigonometric one using results

of [12]. It will appear separately.
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The paper is organized as follows. In Section 2 we give definitions and for-

mulate the main result of the paper - the hypergeometric Riemann identity, cf.

Theorem 2.9. The equivalent form of the identity is given in Section 3, cf. The-

orem 3.7. In Section 4 we describe a system of difference equations satisfied by

the g-hypergeometric integrals and study their behaviour in a suitable asymptotic

zone. The final step of the proof of the hypergeometric Riemann identity is made in

Section 5. We give the restricted version of the hypergeometric Riemann identity

in Section 6 and consider the one-dimensional example in Section 7.

There are three Appendices in the paper. Appendix A contains the proof

of Proposition 2.8. Some of the determinant formulae from [11] relevant to this

paper are reproduced in Appendix B. In Appendix C we explain that the </-hyper-

geometric integrals which we are using in the paper essentially coincide with the

symmetric A-type Jackson integrals.

The author thanks K.Aomoto, A.Nakayashiki and A.Varchenko for helpful

discussions.

2. The hypergeometric liiemann identity

Basic notations

Let C x = C \ {0} . Fix a nonzero complex number p such that |p| < 1 . Set

CO

Let (lOoo = («;?)«, = ]J(l-psu) and let 0(u) = (ΌooίpOooίP)*, b e t h e

Jacobi theta-function. 5~°

Fix a nonnegative integer I. Take nonzero complex numbers η, a?i,..., xn ,

2/1) > 2/n called parameters. Say that the parameters are generic if for any r = 0,

..., ί — 1 and any fc, m = 1,..., n , we have

(2.1)
+ 1 z ± Z ± Ϊ P Z for kφm,

All over the paper we assume that the parameters are generic, unless otherwise

stated.
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(2.2)

For any function f(tι, .. .,tι) and any permutation σ E Si set

..••..«..) Π

Each of the formulae defines an action of the symmetric group S^ .

For any [ = ( [ 1 ? . . . , in) E Z ^ o set [m = [x + . . . + [m , m = 1, . . . , n . Set

For any ί, m E 2 " , ί / m, say that

(2.4) [ < m if ί^^m^ for any Ar = 1,.. . ,n - 1.

REMARK. We can identify [ G ^ o with a partition ίn ^ . . . ^ I1 . The intro-

duced above ordering on Z™ coincides with the inverse dominance ordering for the

corresponding partitions.

For any x E C n and ί E Z™ we define the point x > [[77] E Cxί as follows:

(2.5) x >i[η] = (ry1"1 1^!, ry2"1 1^!, .. ., a?i, τ?1" t 2x2, , ̂ 2, , ηl~inxn, , xl~inx xn) ,

For any function / ( ί i , . . ., tι) and a point /+ = (t\, .. ., tj) we define the mul-

tiple residue Res f(t)\ _ + by the formula

(2.6) Res / W | t = t * = R e s ( . . . Res / ( ^ , . . . M)\u=t* . ) | t l = t *

We often use in the paper the following compact notations:

t = (tu...,tt), χ = (χi,...,χn), y= (2/1,..., y n ) .

For any vector space V we denote by V* the dual vector space, and for a

linear operator A we denote by A* the dual operator.

In this paper we extensively use results from [11]. We have the following

correspondence of parameters x\,..., xn , y\, . . . , yn in this paper and parameters

ξi, -,ξn, zγ,...,zn in [11]:

(2.7) Xm-ίmZm, Vm = ξ^1 Zm , m = l , . . . , Π .
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The hyper geometric integral

Let Φ(t;x;y;η) be the following function:

Π

For any function f(t\,.. . ,tι) holomorphic in Cxl we define below the hyper-

geometric integral Int(fΦ) .

Assume that \η\ > 1 and \xm\ < 1, \ym\ > 1, m — 1,..., n . Then we set

(2.8) Int[x;y;η](fΦ) = —ί-j [ f(t)Φ(t;x;y;η) (dt/t)1

ι

where (dt/t)1 = Π * α A α and Ίι = {t e Cι \ \tλ\ = 1, . . . , | ^ | = 1} . We de-
a=l

fine Int[x; y; η](fΦ) for arbitrary values of the parameters η , a?i,. . ., xn , ΐ/i,. . .,

yn by the analytic continuation with respect to the parameters.

Proposition 2.1. For generic values of the parameters η, xι,. . . ,xn 7 yi,

.. ., yn , see (2.1), the hypergeometric integral Int[x]y;η](fΦ) is well denned and

is a holomorphic function of the parameters.

Proof. For generic values of the parameters η , a?i,..., xn , yχ) ..., yn singularities

of the integrand f(t) Φ{t\x\y]η) are at most at the following hyperplanes:

(2.9) tα = 0, tα=psxm, tα=psym, tα=p-sηtb,

α, 6 = 1, ...,£, α φ b , ra=l,...,n, sG ̂ ^o The number of edges (nonempty

intersections of the hyperplanes) of configuration (2.9) and dimensions of the edges

are always the same for nonzero generic values of the parameters. Therefore, the

topology of the complement in C^ of the union of the hyperplanes (2.9) does not

change if the parameters are nonzero generic.

The rest of the proof is similar to the proof of Theorem 5.7 in [12]. D

It is clear from the proof of Proposition 2.1 that for generic value of the

parameters the hypergeometric integral Int[x\y\η](fΦ) can be represented as an

integral

(2.10) Int[x;y;η](fΦ) = ^ i j ϊ j f(t)Φ(t;x;y;η) {dt/tf

T'lx y η]
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where Ύι[x\ y\ η] is a suitable deformation of the torus Ίι which does not depend

on / .

REMARK. In what follows we are using the hypergeometric integrals Int(fΦ)

only for symmetric functions / which have a certain particular form. In this case

the hypergeometric integrals coincide with the symmetric A-type Jackson integrals,

cf. Appendix C.

The hypergeometric spaces and the hypergeometric pairing

Let ^[x η ί] be the space of rational functions f(t\,... ,tι) such t h a t the

product

1 Π Π β - ^ ) Π ΨΞr
a = 1 m = l α = l ζζ

is a symmetric polynomial of degree less than n in each of the variables 11,..., tι.

Elements of the space T[x\η]ί] are invariant with respect to action (2.2) of the

symmetric group Ŝ  . Set

Tl[x;η;ί} = {/(«i, . . . ,**) | h .. Λtf{tu . . . ,</) 6 T[x\ η~\ I]}.

The spaces T and T' are called the trigonometric hypergeometric spaces.

REMARK. We have quite a few motivations to call the spaces T and T1

trigonometric, though no trigonometric functions will appear actually in the paper.

Fix a G C x . Let ^[a x η ί] be the space of functions g(tι,...,tι) such

that

π π >('./*,») π
m = l α = l l ζ < ζ

is a symmetric holomorphic function of ^ i , . .., tt in C x ^ and

Elements of the space Telι[a]x\η]t] are invariant with respect to action (2.3) of

the symmetric group Ŝ  . Set

Γjtla x η i] = ^ [ α " 1 ; x\ η'^ί] .

The spaces 7{n and Tjn are called the elliptic hypergeometric spaces.

REMARK. The parameter a here is related to the parameter K in [11]:

α = κ τ ί - 1 Π ί m 1 . cf (2.7).
m = l
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In what follows we do not indicate explicitly all arguments for the hyper-

geometric spaces and related maps if it causes no confusion. The suppressed argu-

ments are supposed to be the same for all the spaces and maps involved.

REMARK. The trigonometric hypergeometric spaces can be considered as de-

generations of the elliptic hypergeometric spaces as p —>• 0 and then a —> 0 . In

this limit the spaces Teil[oi\ and TJXa] degenerate into the spaces T and T1, re-

spectively. Because of this correspondence we use two slightly different versions of

the trigonometric hypergeometric spaces.

Proposition 2.2([11]). For any α, η, x\,..., xn we have that

dΐmT[x\η\ί] = άimF[x;η;£] = dimFelι[α;x;η;ί] =

Let Φ(t;x;y;η) be the following function:

(J.11) .(.;.;„,)= ΠΠ ψSf Π
m = l α=l ^ ^

We call the function Φ(£; x; y; η) the phase function. Notice that

Φtt y x η'1) = (Φ(t;x]y]η))~\

The hypergeometric integral (2.10) induces the hypergeometric pairings of the

trigonometric and elliptic hypergeometric spaces:

(2.12) I[a;χ-y]η}: Fell[a]x^]®F[x]ri -> C,

f®9^ j \ I n t

Γ[a;x;y;η] : ^ [ α ; y; η) ® F[y; η] ^ C,

-

We also consider these pairings as linear maps from the elliptic hypergeometric

spaces to the dual spaces of the trigonometric hypergeometric spaces, denoting

them by the same letters:

(2.13) I[<*\x\V\η] : &[<*', *',η] -> (^M])*>

Γ[a;x;y;η] : ^[a y η] -+ {T'[y\η\)\

REMARK. In this paper we multiply the hypergeometric pairings by an addi-
tional factor . compared with the hypergeometric pairing in [11].

[2πι)1 ί\
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P r o p o s i t i o n 2 . 3 ( [ 1 1 ] ) . L e t the parameters η, a ? i , . . . , a ? n , 2/i, ,2/n be

generic.

Assume that

α φ psηr , α T?2"2^ ft xm/ym φ jΓ'" V , r = 0,..., ί - 1 , s G ^ 0 .
m=l

Then the hyper geometric pairing I[α; x\ y; η] : T&n\α\ x; η] -» (̂ "[a?; 77]) is nonde-

generate.

The statement follows from Corollary B.3.

Corol lary 2.4. Let the parameters η , xι,... ,xn } yi,... ,yn be generic.

Assume that

α φ p-s~ιηr , α η2~2ί ft m̂/2/m φ p'η~r , r = 0, . . ., ί - 1 , s G ^ o
m=l

Then the hypergeometric pairing Γ[α\x\y\η] : ^ ' [ ^ y r/] —>• (^[y;^])* is non-

degenerate.

Proof. Let π be the following map: π : /(ί 1,.. ., tι) ι-> ί 1 . . . ίι j(i\,.. ., t̂ ) . Then

the next diagram is commutative:

(2.14) π I j π*

and the vertical arrows are invertible, which proves the statement. D

The Shαpovαlov pairing

Let the points x>l[η]e Cxί, ί G Z? , be defined by (2.5). For any function

f(tι,...,tι) set

Res[x;η](f) = £ Res fc1. . . ί / " 1 /(<i , ,</)) | t = a ? m M •
me 2*

Lemma 2.5([11]). For any / G ̂ [x;^;^] and g £ F'[y\η;l] we have

Res[x;η](fg) = (-l^Λe^y iy" 1 ]^) = ^ ^ ί / /(*)*(*) (*/<)'

where Ύι[x;y;η] is the deformation of the torus Tι denned by (2.10).
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Lemma 2.6([11]). For any f e Jίu[α;x;η;ί\ and g £ ̂ [ α ; y; η\ £] we have

Res[x;η]{fg) = (-1)1 Res[y; η'^fg) .

We define the Shαpoυαlov pairings of the trigonometric and elliptic hyper-

geometric spaces as follows:

(2.15) S[x\y\η\: T'[y\η\f\®T[x\η\f\ -> C,

f®g^ Res[x;η](fg),

Selι[a;x;y;η} : ̂ [a y η i]^ Telι[a;x;η;£] -+ C,

f®g>-> Res[χ ,η](fg).

We also consider these pairings as linear maps, denoting them by the same letters:

(2.16) S[x',y;η]:Γ'[y;η] -> ( ^ η])\

Selι[a]x;y;η] : ^[α;i/;τ?] -> ( ^ [ α ar; »/])*.

Proposition 2.7. Let the parameters η , a?i,..., a?n , yi,. . ., ΐ/n be generic.

Then the Shapovalov pairing S[x;y;η] : ̂ '[y;^] —> (^[^ ̂ ?]) is nondegenerate.

The statement follows from Lemma 3.5.

Proposition 2.8. Let the parameters η , x\,..., xn , y\,..., yn be generic.

Assume that

m=l

Then the Shapovalov pairing Selι[α; x y η] : ^ ' [ α ; y; T/] -4- (•£«[<*; ̂  7?]) is nonde-

generate.

The statement follows from Proposition A.4.

The hyper geometric Riemαnn identity

In this section we formulate the main result of the paper, the hypergeometric

Riemann identity which involves both the hypergeometric and Shapovalov pairings,

see Theorem 2.9. We prove this result in Section 5.
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T h e o r e m 2.9. Let the parameters η, xι,...,xn, y i , . . . ,2/ n be generic.

Then the following diagram is commutative:

Telι[α;x;η]

(Selι[α;x;y;η]γ

( % [ , v , ι ] Y [v\η]
(Γ[α;x;y;η])

REMARK. Given bases of the hypergeometric spaces, Theorem 2.9 translates

into bilinear relations for the corresponding hypergeometric integrals. In the next

section we describe an important example of the bases — the bases given by the

weight functions (3.1), (3.2).

3. Tensor coordinates on the hypergeometric spaces

In this section we give an equivalent form of the hypergeometric Riemann

identity, see Theorem 3.7.

Bases of the hypergeometric spaces

For any ί E Z™ define the functions wι and W[ by the formulae:

(3.1)

ΠΠ(rτ- Π H
m=l α€Γm ° Xm l<α<m "

m=l S = l L η <τ€s /m=l α€Γm ° Xm l<α<m

Wί(t;a;x;y;η) =

V [ί ΓΓ TT ( θ(r)2a~ίam1ta/^m) -ΓT θ(ta/yi) \T|

where Γ m = {1 + I™-1,..., lm} and α m = a \[ xi/yi , m = 1,. . . , n . Set

(3.2) *>{(*;*;!/;»;) = Π ώ Π t-'w^t y x η-1),
m = l α = l

Wί(ί;α;a?;y;ι/) = W{{t\ α " 1 ^ ; a:; r?"1) .

The functions iϋ[, tt j and Wr, ̂  are called the trigonometric and elliptic weight

functions, respectively.

REMARK. In this paper we use a slightly different normalization of the trigono-

metric weight functions compared with [11].
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P r o p o s i t i o n 3 . 1 ( [ 1 1 ] ) . L e t t h e p a r a m e t e r s η , a ? i , . . . , a ? n , 2 / 1 , . . . , 2/n h e

generic. Then the functions {wi(t;x;y;η)} n form a basis in the trigonometric

hypergeometric space T\x\ η].

The statement follows from Proposition B.I.

Corollary 3.2. Under the above assumptions the functions {w[(t',x',y\η)}i 2 n

form a basis in the trigonometric hypergeometric space T'[y\ η].

P r o p o s i t i o n 3 . 3 ( [ 1 1 ] ) . L e t t h e parameters η, # i , . . . , a ? n > y i , ' , y n be

generic. Assume that

(3.3) αη~r Π xι/w&PZ, m = l , . . . , n - l , r = 0 , . . . , 2£ - 2 .

Then the functions { W[(t; α; x; y; η)} z n form a basis in the elliptic hypergeometric

space TM[ot\x\ή\.

The statement follows from Proposition A.3.

Corollary 3.4. Under the above assumptions the functions

{ W[ (t α x y; η)} z n form a basis in the elliptic hypergeometric space Tjn \OL\X\T\\.

The next lemma shows that the bases {wi} and {w[} of the trigonomet-

ric hypergeometric space are biorthogonal with respect to the Shapovalov pairing

(2.15), and the same holds for the bases { W[) , { W[} of the elliptic hypergeometric

spaces.

Lemma 3.5.

S{whwm) = S[m I M
Λ ,4 1-

ί — 1

m=l s=0

I | m = α fl ^Xj/yj and

Proof. The formulae are respectively equivalent to formulae (C.9) and (C.4) in

[11]. •

The tensor coordinates and the hypergeometric maps

Let V- 0 Cvm and let F * = φ C < be the dual space. Denote by (,)

the canonical pairing: (v*, υm) =
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Introduce the tensor coordinates on the hypergeometric spaces, cf. [11], [14].

They are the following linear maps:

B[x\y\η] : V* -> T[x\η], Belι[a;x;y;η] : V* -» felι[a;x;η] ,

• v^ H> wm(t\x]y;η), v*m H-> Wm{t]a;x;y;η) ,

B'[x]y;η] : V* -> ^'[y η], ^ J α x y;??] : y* -> ^ [ α y ry],

fm i—y wm(t') x\y^τj), fm i—y Wm(t] ĉ j x\ y\ ^f)

Under the assumptions of Propositions 3.1 and 3.3 the tensor coordinates are iso-

morphisms of the respective vector spaces.

REMARK. The tensor coordinates used in this paper differ from the tensor

coordinates in [11] by normalization factors.

The tensor coordinates and the Shapovalov pairings (2.16) induce bilinear

forms

(,)[#; y; η] : V Θ V -^ C, ( ( , ) ) [ α ; x ; y; η] : V* <S> V* —> C ,

We omit the common arguments in the second line. The explicit formulae for these

pairings are:

( 3 4 (vι,vm) = Sίm I I I I ^ !— '-,

mil .=o (ϊ-v)vsym

(3.5) ((Vί,vm)) = δ
lm

where a^m — a Y[ η~2ijXj/yj , cf. Lemma 3.5. These formulae imply the next
lζj<m

proposition.

Proposition 3.6. Let the parameters η , a?i,..., xn , y\,. . ., yn be generic.

Then the form (,) is nondegenerate. The form ((,)) is nondegenerate provided

that

and

<*rfr Π xilviϊV1, m = l , . . . , n - l , r = 0,. . . , U - 2 .
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REMARK. The space V can be identified with a weight subspace in a tensor

product of Uq(sί2) Verma modules, the form (,) coinciding with the tensor product

of the corresponding Uq(sί2) Shapovalov forms. The space V also can be identified

with a weight subspace in a tensor product of evaluation Verma modules over the

elliptic quantum group Epπ(sί2) The last space has a certain natural bilinear

form which is an elliptic analogue of the tensor product of the Shapovalov forms.

The form ((,)) on V* and the "elliptic Shapovalov form" on V correspond to each

other.

Consider the following linear maps:

ϊ[a;x]y;η]:V*^ V, Γ[a;x; y; η] : F* -* V,

Ϊ=B*IBM, ϊ' = (B'yi'B'elι,

where / and /' are given by (2.13) and we omit the common arguments in the

second line. We call 7 and Γ the hyper geometric maps.

Theorem 2.9 is equivalent to the following statement.

T h e o r e m 3 . 7 . Let the parameters η , # i , . . ., x n ,yι,. . ., y n be generic.Then

the hypergeometric maps ϊ[α; x y η], Γ[α;x;y;η] respect the forms (,)[x;y;η],

( ( , ) ) [α; x ; y; η]. That is, for any u,v (Ξ V* we have

((u,v))[α}= (Γ[α]u,J[α]υ) .

4. Difference equations and asymptotics

In this section we describe a system of difference equations satisfied by the

hypergeometric maps and asymptotics of the hypergeometric maps in a suitable

asymptotic zone of the parameters x\, .. ., xn , y\,. . ., yn .

Difference equations for the hypergeometric maps

Let Lk[x] y; η] and Lk[x; y; η], k = 1,..., n , be linear operators acting in the

trigonometric hypergeometric spaces T[x\y\η\ and T'\x\ y; η], respectively. The

operators are defined by their actions on the bases of the trigonometric weight

functions:

/ i _ / π λ [k k k

Lk[ot\x\y\η\wι{'\x\y\η) - [aη [[ xm/ym) Wk{( ; x\ y; η) ,
m = l

1 ι f[ xm/ym) w'k[( ;kx;ky;η) ,
m=l
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where kl= ( C Λ + i , . . . , ίn, lu . . . , ίk), kx = ( a ? * + i , . . . , xnj xι,..., a:*),

Using the tensor coordinates we introduce operators Km, K'm G End (V) , m =

1,..., n , by the formulae:

(4.1) ifm[α;a?;y;τ7] = {{B[x\ y\ η])"1 Lm[a; x\ y; η] B[x; y; η])\

K'm[a;x;y]η] = ((B^x y η])'1 Lf

m[a;x;y;η]Bf[x;y;η})\

We also define operators Mm[a; X] y\ η] G End (V*) , m = 1,. . . , n :

(4.2) Mm[a;x;y;η]v* - μί}m[a;x;y;η]v*, μ[m - {aηι~[ Π Xj/Vj)~

Let T^ , m = 1,..., n , be the multiplicative shift operators acting on functions of

= f(hxi,. ,Λa?m,a?m +i,... ,#n;fy/i) j hym,ym+i, 32/n)

Set Tm^T^, m = l , . . . , n .

Theorem 4.1 ([11]). Tiie hypergeometric map ϊ[α',x;y;η] satisfies the fol-

lowing system of difference equations:

TmI[α; x\ y; η] = Km[α; x; y; η] /[α; x; y; r?] Mm[α; x; y; ry], m = 1,. . ., n .

Corollary 4.2. Tiie hypergeometric map ϊ'[α;x;y; η] satisfies the following

system of difference equations:

Tmϊ'[α\ x\ y\ η] = K'm[α; x\ y; η] T[α; x\ y\ η] (Mm[α; x; y; η])'1 , m = 1,.. ., n .

The last claim results from the commutativity of diagram (2.14) and formulae (3.2).

REMARK. The numbers μ^m are related to the transformation properties of

the elliptic weight functions:

τ m w ( = μ [ ) m Π (*j/υj)ιWι, τmw[ = μiλ

m Π {χilvjTιw[.

REMARK. The system of difference equations T m Φ = AΓmΦ , m = 1,. . . , n ,

can be identified with the qKZ equation with values in a weight subspace ( = V) of

a tensor product of Uq(sί2) Verma modules. Its solutions have the form Φ = IY ,

where Y G End(F*) solves the system of difference equations TmY = M^ιY . No-

tice that the operators M\,..., Mn are invariant with respect to the shift operators

T/ 1 , . . . , T% for any nonzero h . The factor Y plays the role of an adjusting map

in [11].

The system T m Φ ; = K^Ψ , m = 1,. . . , n , corresponds to the dual qKZ equa-

tion, if we identify the spaces V and V* using the Shapovalov form (,) .
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Asymptotics of the hyper geometric maps

Let A be the following asymptotic zone of the parameters # 1 , . . . , xn , yι,...,

Vn :

f \xm/xm+i | < 1 , m = 1,. . . , n - 1 ]
} .

\xm/ym\~l, m = l , . . . , n J

We say that (x; y) tends to limit in A and write (x\ y) =} A if

xm/xm+ι -* 0, m = 1,.. ., n - 1,

and the ratios Xm/ym and ym/xm remain bounded for any m = 1,.. . ,n . If a

function f(x; y) has a finite limit as (x\ y) =3 A, we denote this limit by limA / .

Notice that the limit limA / can depend on # i , . . . , xn , y i , . . . , yn , but it is in-

variant with respect to the shift operators Tf,..., T% for any nonzero h .

REMARK. The operators A Ί , . . . , Kn , K[,..., Kf

n , cf. (4.1), have finite limits

as (x y) =4 A, and the limits are respectively lower and upper triangular with

respect to the basis {vί}iez? and ordering (2.4). The diagonal parts of the limits

limA K^1 and limA K'm are equal to M^ .

Define the functions Iιm(x,y) and I[m(x,y) by the formulae:

I[m(x9y) = /'[α x

P r o p o s i t i o n 4.3([11]). For any [,m E 2 " ϋ e hypergeometήc integral

Iim(x] y) has a finite iimit as (x; y) =^ A. Moreover limA /[m = 0 unless i <^ m

or I — m, cf. (2.4), and

7 V7 iool7/ α[m/oo\P7 &ί,mxm/ ym Joo

Recall that αιίTn = α Π η~2ijXj/yj .

P r o p o s i t i o n 4.4. For any ί, m E ^ the hypergeometric integral If

[m(x;y)

has a finite limit as (a?;y)=|A. Moreover limA 7[m = 0 unless O m or [ = m,

cf (2.4), and

m=l s=0 ^ ' /ooVl ymf

The proof is similar to the proof of Proposition 4.3.
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Corollary 4.5. For any α,η the hypergeometric maps ϊ[α;x;y;η] and

Γ[α;x;y;η] have unite limits as (x\ y) =t A. Moreover,

limA ϊv* = V[ limA /[( + 2 ^ vm limA 7 ί m

and

l i m A Fvϊ = v{ l i m A Γi{ + ^ vm l i m A Γim .

5. Proof of the hypergeometric Riemann identity

In this section we prove the bilinear identity for the hypergeometric integrals.

Its equivalent forms are given by Theorems 2.9 and 3.7. We will prove the latter

theorem.

Proof of Theorem 3.7. Let G[m(α; x; y; η) = (Γ[α;x]y;η]v*J[α;x;y;η]v^)[x]y;η].

We have to prove that

(5.1) Gίm(α;x;y;η) = ((vlv*m))[α;x;y;η], t,m£Z?.

Since both sides of the above equality are analytic functions of α , we can assume

that α is generic. In particular, we will use the next statement.

L e m m a 5 . 1 . Let α be generic. Let μijk be denned by (4.2). i f [ , m E Z™

are such that μ^ — μm^ for any k — 1 , . . ., n , then ί — m .

From the definitions of operators Lm , L'm and the Shapovalov pairing S it

is easy to see that

S[x\y\η] - (Lm[α;x;y;η]yS[x;y]η]L'm[α;x]y;η] , m - l , . . . , n .

Therefore, for any u, v G V we have

(5.2) (K^lα x y ^u.Kmlα x y ^v^x y η] = (u, v)[x; y\ η] , m = l , . . . , n .

Hence, the function G[m(α; x; y; η) satisfies a system of difference equations

(5.3) TkG[m = ^

see Theorem 4.1, Corollary 4.2 and formulae (4.2), (5.2). On the other hand,

Corollary 4.5 shows that the function G[m(x]y) has a finite limit as (x]y) =4 A,

and equations (5.3) imply that

limA Gim = μgfcVm,* limA Gίm , k = 1,.. ., n .
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Therefore, limA G[m = 0 for [ φ m by Lemma 5.1.

Using once again equations (5.3) we obtain that Gιm(x;y) — 0 for ί φ m,

and Gu(x y) = limAGπ In particular, the functions G[m(x;y) are invariant

with respect to the shift operators T± , . . . , T% for any nonzero h .

Obviously, the right hand side of (5.1) enjoys the same properties: ((v*, ujjj) =

0 for ί ^ m , and ((v*,v*)) is invariant with respect to T / 1 , . . . , ^ . Hence, it

remains to show that

l i m A G , [ = (K,«?)), I € 2 ? ,

which is a straightforward calculation using formulae (3.4), (3.5), Propositions 4.3,

4.4 and Corollary 4.5. Theorem 3.7 is proved. D

6. The restricted hypergeometric Riemann identity

Let us write down the hypergeometric Riemann identity using the bases of the

weight functions in the hypergeometric spaces:

(6.1) >^ MmΓ(Wl,w'JI(Wn,wm) = SlnNt, [, n €

11 — Γ Γ
i-l s = 0

m = 1 s=ΰ

where α[> m — a \\ η~2ίjXj/yj , cf. Theorem 2.9 and Lemma 3.5. Formula (6.1)

holds for generic values of the parameters η , x\,.. ., xn , yi, . . . , yn , cf. (2.1), and

all the coefficients N[, i £ Z" , are clearly regular in this case. Suppose now that

xλ — ηry1 for some nonnegative integer r less than ί, thus violating (2.1), and all

other assumptions (2.1) hold. Then the coefficients N[ with ίi ^ r remain regular

while the coefficients N[ with i\ > r have a pole at x\ — ηry\ . This suggests that

if the parameters η , xι,..., xn , y\)..., yn are slightly nongeneric, then some of

the hypergeometric integrals can survive and still satisfy a certain version of the

hypergeometric Riemann identity. We study such a possibility in this section.

Fix integers iλ,..., ίn such that 1 ^ tm ^ I, m = 1,..., n . Set
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A s s u m e t h a t for any r = 0, ...,£— 1 a n d any k, m — 1 , . . . , n , we have

(6.2) ηr+1$p\

η±rxk/xm 4 Λ η±rVk/ym i pZ, η'rXk/ym g pZ, A #

η-Xm/ym iV%, β = 0 , . . . , ^ m - l .

Comparing with (2.1), here we impose weaker conditions for the ratios

Proposition 6.1. Assume that nonzero parameters η, # i , . .., xn , y\

yn satisfy conditions (6.2). Then for any I G £™ , tn G Z™ the hypergeometric

integrals I{Wu wm) &nd Γ(Wl, w'm) are well denned and are holomorphic functions

of the parameters.

Proof. Assume that \η\ > 1 and \xm\ < 1 , \ym\ > 1 , m = 1,.. ., n . Then

, .. .,

cf. (2.8) and (2.12). Observe that the integrand Wι(t)wm(t)Φ(t) is a symmetric

function of ίχ} . . . ,<£. Since the integration contour T^ is invariant with respect

to permutations of the variables tfi,...,tf£, we can drop the summation in the

definition of the function W\, cf. (3.1), multiplying the result of the integration by

t\:

ίPi{t)wXCί{t)Φ(t){dt/t)1 ,
j

ΘWP(A - TT TT ΘW U TT /

here Γ m = {1 -f r " 1 , . . . , ( m ) and αm = α Π *//2Λ , m = l , . . . , n .

Under assumptions (6.2) singularities of the integrand P[(t)wm(t)Φ(t) are at

most at the following hyperplanes:

(6.3) tα = 0, tα=p-sηtb, l^α<bζ£,

tα = p'xj , α̂ - Psy/c , α G {1 + Γ " 1 , . . . , Γ } , 1 ̂  j ζ m ζ k ζ ί,

The number of edges of configuration (6.3) and dimensions of the edges

are always the same provided that the parameters are nonzero and assumptions
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(6.2) hold. Therefore, the topology of the complement in C^ of the union of the

hyperplanes (6.3) does not change under the assumptions of Proposition 6.1. The

rest of the proof is similar to the proof of Theorem 5.7 in [12].

The proof for the hypergeometric integral I'(W[,w'm) is similar to the proof

for the hypergeometric integral I(W[,wm) given above. Proposition 6.1 is proved.

D

REMARK. More detailed results for a similar problem concerning the multidi-

mensional hypergeometric integrals of Mellin-Barnes type are obtained in [8].

Theorem 6.2. Assume that nonzero parameters η , # i , . . . , xn , yi,..., yn

satisfy conditions (6.2) and xm = ηlrnym if An < ί Then

(6.4) Σ MmI'(Wiw'JI(Wn,wm) = SinNi} UGI?,

where the coefficients Mm,N[ are defined by (6.1). Moreover, if Nm φ 0 for all

me Zf, then

(6.5)

Proof. Formula (6.4) follows from formula (6.1), because all the terms in (6.1)

are well defined under the assumptions of the theorem, see Proposition 6.1, and

Mm = 0 unless m G ^ n .

Writing down relation (6.4) in the matrix form: VMI1 — N , for matrices

/, /', M, TV with entries

/ , Tί\A/f ID \ T T^ (\A/^ II) \ λ/fr Λr λ/fr Aft Λr J\f r

we immediately get that /* N~λΓ = M" 1 , which is the same as formula (6.5). D

We call relations (6.4) and (6.5) the restricted hypergeometric Riemann identities.

It is possible to introduce restricted versions of the hypergeometric spaces, the

Shapovalov pairings and the hypergeometric pairings, and reformulate Theorem

6.2 similarly to Theorem 2.9. This will be done elsewhere.

7. Bilinear identities for basic hypergeometric series

In this section we consider the hypergeometric Riemann identity in the one-

dimensional case. That is, all over this section we assume that ί = 1.
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Let n ^ > n _ 1 ( α i , . . . , α n ; 61, . . . ,"6n_i; ^) be the basic hypergeometric series [5]:

k=0

k-1

5=0

For any k = 1,. . ., n we define functions fk , /£ , ίfc , F^ by the formulae:

~Xrn
 TT

 f~ y™ f/u\ yk

xm Vk — Vm I — Vk

t

tx
m _ 1

 τ xm m _ 1

mφk
θ{t/ym) _ «

o m=l

The functions {/m}^=1, {/^}^=1 , {Fm}^,= 1 ) {F^}n

m=ι form bases in the re-

spective hypergeometric spaces T, T1 ^ Jin[a] , ̂ '[α] , and these bases are biortho-

normal with respect to the Shapovalov pairings:

S{f!,fm) = &lm , Sell(F(,Fm) = ~ί/m

The hypergeometric integrals I(Fι,fm) and /'(F/,/^) can be expressed via the

basic hypergeometric series n ^ n - i For instance,

mφk

>Pχnyϊ1;py2yϊ\ ,p2ykyΐ\.. .^j/n-i^ 1;5" 1)

J/(FiJi) = nΨn-ι{yιχϊ1,- -,yιχn

n n

/'(F/./i) = α-^yΓ^jfe-pi/i)-1 JJ (j/m - j/i)"1 JJ (a:m -
m=2 m=l

,pyiχn1>pyiy21>- i P 2 y y 1 p y y ΰ
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k — 2, . .., n . General formulae for I(Fι,fm) , If(F[, /^) can be obtained by a

•suitable change of indices.

In the one-dimensional example in question, Theorem 2.9 is equivalent to each

of the next formulae:

(7.1) Σ I(Fk,fm)Γ(F!,f'm) = δM, Σ I(Fm,fk)Γ(F^,fl) = δkl.
m = l m=l

These formulae deliver bilinear identities for the basic hypergeometric series. They

read as follows:

n — l

h \

,pan]p2bi,pb2,.. .,p6n_i; z)

X

n — l

Σ (1_"
1; 'iPha~1;pb1,pb1b~\ . ..,p2bιb^,

αi> . , α n ; 6 i , . . . , 6 n _i;

n - 1 n Λ Λ

_ .

md^ pbmb^1,...,p26m,.

^αΓ1) ' ' Pan l \ P \ \ Pb2

pb±1b2,. . . ̂ δ ^ ^ n . i ; z)

; 6i, 6162 X, , ^ 1 ^ 1 ^ )



430 V. TARASOV

zAm(p-bι)

X n^n-l(Λ l f l l> -iP&anlPbΆ, , P^, . . . , ̂ " X - l I *)

x n^n-ib^mαΓ1' -,pbmCi'1 pbm,p^mb^1,pbmb^1,.. . ,p6 m 6^ 1 ; 5)

where

~- HfiϋL A - π α - M , _ π K - ̂ )

n n — 1

= l , . . . , r c — 1. Here and below Y[ stands for Y[ and Y[* stands for Y[ .
m=l m=l

Propose 7.1. de,[/(fi,/m)]"m=, = { a . ^

Proof. Let e(m) = (0 , . . . , 1 . , . . . , 0), m = 1,.. . ,n . Let wm(t) = w^m)(t]X]y,η)

and Wm(ί) = W^e(m)(t; α; #; y; 77) be the weight functions. We have that

and
fm(yι) = 0, Fm{yι) = 0,

Therefore,

fm)]lm=1 = ft
m = l

and the claim follows from Proposition B.2 for ί — 1. •

Calculating a matrix inverse to the matrix [Γ(F(, f!m)\™γn_ι in two different

ways using either formulae (7.1) or Proposition 7.1, we obtain that

(_Λ\l+m ί^-lΛ
I{Fhfm) = L-'πv /x Γ d«t[^WΛ)];*=i' i.m=l. ,«

For n = 2 these relations are equivalent to

2<p1(a1,a2]b;z)(z)oo = 2^ 1(6αf 1, 6α^"x; 6; za1a2b~1) (za1a2b~1)o
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and for n = 3 they give

b b )

- ^2) (Q2 ~

- 6 2 ) (6X - 62)2 (6X - pb2) (pb1 - b2)

;p2b1,pb2;z)^

- 62) (α2 - 62) («3 - 62)

- 62) (1 - p62) (61 - 62) (p6i - 62)

where z - za1a2a3b^1b2

1. Notice that {z)^/^)^ = ^0(z/z;z) = λφ0(z/z]

The rational version of the hypergeometric Riemann identity in the one-

dimensional case gives similar formulae for the generalized hypergeometric func-

tion nFn-\ . They can be obtained from the formulae for the basic hypergeometric

series after the standard substitution am — parn , bm — p^™- in the limit p —>• 1

which degenerates n ^ n _ i ( α i , . . . , α n; 6 1 , . . . , 6n_i; z) to n F n _ i ( α i , . . . , an; βu ...,

Appendix A. Nondegeneracy of the elliptic Shapovalov pairing
n

Let A — aηι~ι \\ xm . Let S[A] be the space of holomorphic functions on
m=l

C x such that f(pu) = A(—u)~nf(u). It is easy to see that dim£[A] = n, say by

Fourier series.

Let ω — exp(2πi/n) . Fix complex numbers <̂  and ζ such that ζn = p and

ζn = -A-1. Set
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n

ΰι(u) = u1-1 Y[ θ{-ζiι-ιωmu) , / = 1,.. ., n .

L e m m a A . I . The functions # i , . . . , τ?n form a basis in t ie space

Proof. Clearly, fy E £[A] for any / = 1,. . ., n . Moreover, ϋι(ωu) = ωι-ιϋι{u) ,

that is the functions ϋι,... ,ϋn are eigenfunctions of the translation operator with

distinct eigenvalues. Hence, they are linearly independent. D

For any ί E Z™ let Gι(t;a;x;y;η) be the following function:

(A.I) dit a x y η) =

Λ ^ 7 ) Π^ 7 )
= i α =l VV*!*™) l^a<b<:i[ηta/tb) σeSt m=l α

Here Γ m = {1 + I™"1 , . . ., [m} , m = 1,.. ., n .

L e m m a A.2. The functions G[(t; a x η) , i e Z™ , form a basis in the elliptic

hypergeometric space Tell [α x η ^ ] .

Proof. The elliptic hypergeometric space ^ [ ^ 5 #; f?;^] is naturally isomorphic to

the ^-th symmetric power of the space S[A] — the space of symmetric functions

in tι,. . . ,tι which considered as functions of one variable tα belong to S[A] for

any α = 1, . . . , £ . The isomorphism reads as follows:

" ' θ(ηta/tb)

Now the proposition follows from Lemma A.I. D

Let W[, ί E Z™ , be the elliptic weight functions. Define a matrix Q(a\x\y\η)

by the rule:

Wί(t]a;x;y;η) = ^ Qίm(^;x;y;η)Gm(t;a]x;η) , ί E Z" .

Set

(A.2) d(n,m,e,s)= E ( m _ ! ) „ _ , „ _ !
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Proposition A.3([ll]).
l-l n-l

1 ± /~\ / \ i—i 1 I 1 I Λ ( o_|_/ 1 1 -i—r / \ d(iΊ ,1Ύl,£.,s)

detQ(a x y η) = ^ [[ [[ θ(ηs^ί~1a~1 Π yι/xή
s = l — l m = l

t-s-2\
"1—Γ \'iib —Ί*> ) \ „ / T—f T—r / β / \ I

X Π «ίr n n - J Π Π
m = l

where

(*•») s [ω- Π ( S ) 1 "
m=l

Let Sell = Sell[a] x\ y\ η] be the elliptic Shapovalov pairing.

Let Gι = Gi(t;a;x;η) and G'[ = Gι(t;a-1;y;η-1).

Proposition A.4.

m=l

χ γr

n n n
Here Ξ is given by (A.3), Π stands for Y[ and J ]J | stands for f] fj .

m=l i = l m=l

Proof. By Lemma 3.5 we have that

To get the final answer we use Proposition A.3 and simplify the triple product

changing the order of the products and applying Lemma A.5 several times. D

Lemma A.5. The following identity holds:

v~̂  (3 -\- oΛ f j -\- k -\- a\ ίl -\- m — a\ f j -f k\ ίj + fc + / + m -+•

The statement can be proved by induction with respect to / and m.
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Appendix B. Three determinant formulae

For any [ £ Z™ let gι(t;x;y;η) be the following function:

(B.I) gι{t;x;y;η) =

n ί Λ n

ϊ i t _x 1 1 ηi _t λ^i 1 1 1 1 τ°
m = l α = l α m l<α<fe<^ α ^GS/ m = l α € Γ m

Here Γ m = {1 + I™"1 , . . . , im} , m = 1,.. . , n . The functions g{{t\ x; η) , [ £ Z^n ,

form a basis in the trigonometric hypergeometric space T\x\r\\t\.

Let W{, [ £ £ " , be the trigonometric weight functions. Define a matrix

X(x; y; η) by the rule:

Xim(x]y;η) gm(t;x;η) , Ϊ G ^ n .

Proposition B.l([10], [11]).

άetX(x;y]η) =

Let VF[, I £ Z™ , be the elliptic weight functions and let I = I[a\x\y\η\ be the

hypergeometric pairing.

Proposition B.2([ll]).

^ Π ^

n
Here Y[ stands for Y[ and the exponents d(n,m,£,s) are given by (A.2).

m = l

Let functions G[, I £ Z " , be given by (A.I).

Corollary B.3([ll]).

„ 1

f f [ OΓ
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n n n
Here Ξ is given by (A.3), Y\ stands for fj and Y\Y[ stands for Y[ f] .

m=l 1 = 1 m=l

Proof. The statement follows from Propositions A.3, B.I and B.2. D

Appendix C. The Jackson integrals via the hypergeometric integrals

Consider the hypergeometric integral Int[x; y; η](fΦ), cf. (2.10), for a func-

tion

f(tu...)U) of the form

(B.2) / ( * ! , . . . , * * ) = P(<1, . .

where P(tχ,.. . ,tι) is a symmetric polynomial of degree at most M in each of the

variables ί i , . . . , tι and Θ ( ί i , . . . , tι) is a symmetric holomorphic function on

such that

(B.3) θ(<i, . . . , ptα,...,tt) = A{-ta)-nQ{tu...,U)

for some constant A . The hypergeometric integrals which appear in the definition

of the hypergeometric pairings, see (2.12), fit this case for M — n — 1 and A

determined by α, η , Xι, . . ., xn , Vi, , Vn

For any x G C n , [ G 2 ? , S G 7Lι, let a? > ([, s) [η] £ C x £ be the following point:

For instance, if s = ( 0 , . . . , 0) , then x > (I, s) [η] = x > l[η] , cf. (2.5).

Proposition B.4. Let the parameters η , x\, . . ., xn , yγ, . . ., yn be generic.

Let a function / ( t 1 } . . .,tι) have the form (B.2), (B.3). Assume that

IpMjJa:-1! < minα,!,,!1^).
m=l

Til en the sum beiow is convergent and

jiM[x;y;η](fΦ) = ^ ^ R e s ^ 1 . . Λj'fit) Φ(t;x; y η)\=χ>(m •

Similarly, if \pMA Y[ yrγ^\ > max (1, \η\ι λ), then the sum below is convergent
m = l

and

— Int[x;y;η](fΦ) = (—l)έ Y ^ Y ^ R e s ^ j " 1 . . Λ~[ι f(t) Φ(t; x\ y\η))\ _ _x .

The proof is similar to the proof of Theorem F.I in [11]. The sums in Proposition
B.4 coincide with the symmetric A-type Jackson integrals, see for example [2].
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