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1. Introduction

Simulation of stochastic differential equations or numerical evaluation of their

functionals is an important issue in physics, chemical and engineering problems. For

diffusion without boundary the problem is investigated very well (see for example the

book of Kloeden and Platen [14]). The simplest method is the Euler scheme, where

we can go back on many results (see for example the articles of Bally and Talay [2]

and Bouleau and Lepingle [4]). If reflection is concerned, most methods have more

or less shortcomings. In this paper we suggest another ansatz of numerical schemes

for solving a stochastic differential equation directly including the boundary condition

with instantaneous reflection. The idea of this approach is to approximate the underly-

ing Poisson point process arising by cutting the diffusion at the level set of the bound-

ary and parametrizing by the local time these excursions. Additionly, this methods is

easily to implement on computers. First, we give a description, second we give a proof

of convergence. The last chapter deals with the rate of convergence.

Thus, we are interested in numerical schemes for diffusion with boundary, the so

called Skorohod problem. Such results have applications to PDE's with boundary con-

ditions of Neumann or Wentzell type. For dD being a hyperplane, i.e. D — {x G

Rn I xo > 0} and dD = {x G Mn | x0 = 0} the problem has been investigated since

the early sixties by many authors (just to mention a few: El Karoui [9], Ikeda and

Watanabe [11], Lions and Sznitzman [17], McKean [19] and Skorohod [28]).

Now, we are interested in a scheme for approximating the local time which is

based on the Euler scheme. The work of Costantini, Pacchierotti and Sartoretto [8] de-

scribes an approximation scheme for functionals of reflected diffusion processes by ap-

proximating the boundary, which is based on the articles of Smόlinski [29], [30] and

Costantini [7], respectively Saisho [25]. Furthermore Lepingle has designed in [16] and

an algorithm for simulating the reflected Brownian motion. He improved the sugges-

tion of [29] by introducing an exponential distributed random variable. Both algorithm

approximate the local time by approximating the boundary. Further, we have to cite
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Menaldi [20], where a penalization method is used.

In this paper we suggest an algorithm for simulating the local time, i.e. simulating

reflected diffusion. In contrast to well known penalty methods we give a completely

new approach, which avoids some of the shortcomings of penalty methods. The proof

is given only in one dimension, where we continue with the proof of Blumenthal, who

has shown the convergence of algorithm 2. Further, we give the rate of convergence.

1.1. Description of the algorithm: We can assume that the path is approxima-

ted the Euler scheme. Now, the question which arises: is there a scheme involving the

local time? Here, we confine ourselves to a martingal arising by stochastic integration

due to Brownian motion, i.e. a process given by

(1) dXt = σ(Xt)dBu

where σ(x) : R -» R is bounded away from zero, Lipschitz continuous and satisfies

the growth condition \σ(x)\ < C(\ + \x\) for some 0 < C < oo. The boundary of the

domain D C R is to be taken a singleton, i.e. dD — {d} and D — {x e R, x > d}.

Further, the starting point is given by Xo = x and X t

n denotes the process approximat-

ed by the Euler scheme with time step size 1/n. Let τ n = inί{t > 0 | X? £ {x > d}}

the discretized version of the first exit time and ηf (x) defined by

η*(A) = ί l/VΪHxe-χ2/2tdx.
JΛ

The total mass of ηB at time t is \\ηf \\ = ife((0,oo)) = /O°° l/VW^xe-χ^2tdx =

1/y/tπ.

Algorithm 1. Fix n G N and e > 0. e should not be smaller than 1/n.

• Step 1: Xo = x. Now the process will be simulated by the Euler scheme until

it hits the boundary, i.e. if t — i/n for a i, X™ is computed by

if

where Bj/n — B(j_ιyn are identical distributed Gaussian random variables

with expectation zero and variance 1/n. We take as first exit time τn =

Ίnf{i/n \ 3t < i/n with X t

n ^ D}. Since for arbitrary (i — l )/n < t < i/n it is

assumed that the process is generated by the operator at time (i — l)/n, the event

'hitting ά! happens either if {x?/n < d} or if {(i - l)/n <τn < i/n,x?/n > d}
happens. The second event is simulated by tossing a coin at each time step with

probability
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Ψ(head) — expί — n-

If X" hits the boundary, we continue with Step 2.

Step 2: Let σ = σ(d). The increment of the local time ΔL = t, where t is

exponential distributed with holding parameter βe = E[\\ηf\\]/σ — >/l/(eπ)l/σ.

Hence the original process Xr itselfs goes on excursion which takes shorter than

e, the time t increases as well while Xτ remains at d. The difference is the ex-

pectation of the sum over the lengths. Thus, we have to increase the time by

Step 3: At the first time step X"+T"+At ' s approximated by

• Step 4: We continue at Step 1 with starting point X rn

REMARK 1.1. Generalization by including a drift term can be easily achieved by

a simple modification of the entrance law, i.e. ηe = ηf(χ — eb(d)).

REMARK 1.2. Similarly smooth boundary instead of a singleton can be involved

by analog modifications.

REMARK 1.3. Hence the Excursion point process can be extended to a more gen-

eral domain (see for example exit systems of Maisonneuve [18] or Motoo theory [21].

Burdzy [6] pursued these ideas and extended it to the multidimensional case).

2. Theoretical background, notation and auxiliaries

The idea for approximating the local time1 is to approximate the underlying Pois-

son point process, where the local time corresponds to the parameter and the real time

or the time the process Xt passes through corresponds to the sum over the time inter-

vals, where Xt is removed from the boundary. A good introduction to this theory are

the books Blumenthal [3], Burdzy [6] and Rogers and Williams [15] and the articles

of Motoo [21], Salisburg [26], [27], Watanabe [32] and Roger [24].

Let r = inf ί > 0{Xί G dD}. Now, roughly speaking, we can split a path Xt{ω)

into pieces by cutting at the points {Xt{ω) G dD}. Each piece is a process starting

somewhere at the boundary and being killed upon reaching the boundary again. Such

a piece is called excursion. The set of excursion is denoted by U and the space U is

the set of all continuous functions et : (0, oo) H-» {X > d}, such that limί_>oet0d> and

1The local time is here defined as the unique continuous additive functional Lt which satisfies
Ex[e~τ] = Ex[f™ e-Xt dLt] , r = inft>o{Xt = d}.
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et = d for t > T. The function et is called excursion.

The set of excursions is equipped by an excursion law and the corresponding fil-

tration. The excursion law is strong Makov in regard to the transition probability of

Xt. Hence if x is regular, F x ( r > 0) = 0, the excursion law has to be seen as 'a lim-

it of properly renormalized distributions of diffusion in {x > d} starting at y where

y -¥ x' (see Burdzy [5]). The nonrenormalized version coincides with the entrance

law. For more details, please see Burdzy [6, p.19] or Blumenthal [3, p.102].

The idea is now using local time to parametrize the excursion. For covering the

case Xt spends a positive real time at the boundary, we create an empty path or grave-

yard δ, defined by δt — d and extend U by δ. Let Xt be a Markov process. Thus, to

every Markov process corresponds a so called excursion process, i.e. a set U and a

point process e = (e s, s > 0) defined by

e : [0, oo) -> U U δ

elsewhere.

It follows e π-> βt(s) φ δ for only countable many s. Further, one excursion starts,

where the last were stopped, i.e. eo(s) = e r(ro), where r 0 = sup r < s {e(r) φ δ}. The

parameter s turns out to be the local time of the boundary. If we sum up the lengths

of the excursion,

U<S

we get the time, the process passed through, i.e. L~ι = Ts or Lτa = s. It follows, that

Tt is a Poisson point process. We denote the associated Levy measure by ι/([ί, oo)) =

P(τ > ί) = Hfftll.

Now, we can reverse this construction by starting with a set of excursions and an

excursion process and linking together the excursions to get a Markov process. By do-

ing these, our time parameter passes through the local time and the real time of the

process is given by the subordinator Ts. But first we want to introduce some defini-

tions. Let be T~ = limu_> S 5 M < 5 Ts the left limit point of Ts, DGω these points, where

e(s) φ δ, i.e. Deω = {s\Ts~(ω) < Ts(ω)} and Lt = infr>0{TΓ > t] = infr>0{Γr >

t} the inverse of Ts. Lt turns out to be the local time of D at time t. Let t > 0 and

s = Lt. We define Xt by:

Xt = / β t-r,-(*) i f τΓ<Ta

l e τ ( e ( r 0 ) ) M elsewhere,

where r0 = supΓ<s{e(r) φ δ} = sup r<s{e(r) φ δ}. The last equality holds because

e(s) =δ.
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Since in almost all examples such as Brownian motion the point d of reflection is

assumed to be regular, i.e. Ψd(τ = 0) = 1 or the Levy measure v has infinite mass at

zero. This means, the number of points in a finite time interval [0,5], where Xt goes

on an excursion with length larger than e tends to infinity as e tends to zero, i.e.

1 -» oo as e \ 0.
r(e(r))>e

0<r<s

But for example in the case of Brownian motion it holds almost surely (see Karatzas

and Shreve [13, p.413])

a s

τ(e(r))<e
0<r<s

Further, the time interval between two excursions with length r > e are exponential

distributed with holding parameter tending to infinity as e \ 0. Therefore, to give an

explicit construction, we have to approximate Xt for e > 0 by only considering ex-

cursion with length r > e (see Blumenthal [3, p. 136]). Let et be an excursion with

r > e. At time e the excursion is removed from the boundary. Roughly speaking, it

jumps from the boundary into the interior of D. This fact leads to an entrance law.

Then, et behaves like Xt up until the hitting time r where it is killed. Given a regu-

lar process Xt9 this killed version is called minimal process.

DEFINITION 2.1. The minimal (killed, taboo) process Xt of the process Xt is the

semigroup, killed upon reaching the first time the boundary.

DEFINITION 2.2. A family {ηs]s > 0} of measures on the Borel sets {x > d} is

called an entrance law for the semigroup {Xt,Pt} if

ηsPt — ηt+s, s > 0, t > 0 and lim Xt = d η0 - a.s.

REMARK 2.1. Considering continuous stochastic processes, the entrance law can

also be defined by ηf(A) - Ψ(Bt G A At <τB).

REMARK 2.2. {77*} can be described also as last exit decomposition (Roger and

Williams [15, p.417]) P t(α,Γ) = P(3s € [0,ί] : X, = a) = Έa[f*ηt_s(Γ)dLs].

For the sake of clarity, we will write E instead of E, if we compute the expecta-

tion value of a function with respect to the minimal process.

Let e > 0. We give here a description of the algorithm getting a process X\ which

converges to Xt as e \ 0 almost surly. Blumenthal [3, p. 139] proved that the resol-
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vent operator converges for all λ uniformly in C(Mm)2 and further that the limit is a

resolvent of a strongly continuous probability semigroup (Blumenthal [3, Theorem 2-8

p. 142]).

Algorithm 2.

• Step 1: s = 0. Xo = xo We pick out an minimal process with starting point

xo
• Step 2: Let d = Xτ be the point, the excursion is killed. The increment of

the local time is tAL, where t is exponential distributed with holding parameter

β€ = \\ηe\\. Xt is assumed to remain at d, thus the time increases also by

• Step 3: We jump into {x > d) distributed by the entrance law ηe, i.e. Ψ(x G

A) = η€ (x — d). Let x be the point we touched.
• Step 4: We continue at Step 1 with starting point x, i.e we pick out a minimal

process e{s) starting at x.

If we identify an minimal process with entrance law η by an excursion with τ >

e, we formulate the approximated time Ts
€ of Ts by

(me+o(e))s,
r(e(r))>e

where the delay coefficient m€ (see Blumenthal [3, p. 144]) is given by

/•OO

me = 1 - (η€, Vίl) = 1 - (η€, 1 - e~r) = 1 - / η€(x)Ex[l - e~τ\dx
Jo

((•, •) denotes the inner product in C2).

REMARK 2.3. If the Levy measure has infinite mass at zero m is equal to zero.

This is the case for the Brownian motion and therefore for all continuous martingal

with non zero quadratic variation.

REMARK 2.4. Hence the excursions are approximated by the Euler scheme on a

compact interval, almost surely convergence depends on the convergence of the subor-

dinator T£.

2.1. Approximation of entrance law and holding parameter For obtaining the

algorithm described in (1), first, we approximate the holding parameter in Step 2 and

second we approximate the entrance law in Step 3 of Algorithm 2.

2We denote by C(S) the set of real valued continuous functions on S which vanish at oo.
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The approximation of the holding parameter is implicitly given by the approxima-

tion of the entrance law, since β€ is the mass of η at time e. In the algorithm the en-

trance law ηx is approximated by the entrance law ηB of the Brownian motion. The

idea is first to map the path X.{ω) onto a Brownian path B.(ω) by a random time

change and then to consider the entrance law of the corresponding Brownian motion.

The time change is given by the theorem of Dambis, Dubins-Schwarz (see Karatzas

and Shreve [13] or Revuz and Yor [23]).

Corollary 2.1. Suppose Xt is the stochastic integral defined before, 7 the ran-

dom time change ηt — Jo σ2{Xs)ds and pt — Jo σ~2(Xs)ds its inverse. The stop-

ping times of a regular point x is given by τB — Ίnfs>o{Bs = x} and rx =

inf5 >o{X s = x} respectively. Then it holds:

pτB = τx and ηrx — τB.

Proof. For the stooping time τB of the Brownian motion it holds almost surely

Xp B — BTB = x and for t < τB Bt is smaller than x. Let t < ρτB. Since p : JR+ ->

E + is continuous and non decreasing, hence surjectiv, there exists a s, 0 < s < τB

with Bs = Xt. Therefore Btφx and it follows that ρτB is the infimum. D

Considering stochastic processes arising by stochastic integration, the entrance law

can also be defined by ηf{A) = Ψ(Bt G AM < τB). In the sequel we denote by ηj3

the entrance law of the Brownian motion and by ηx the entrance law of the stochastic

integral Xt. In case of Brownian motion, the entrance law is given by the formula

(Blumenthal [3, p. 110])

= ί
JA

^

with mass

1 y/ϊi'

What is now the entrance law of Xt, or how can we express ηx in terms of the en-

trance law of the Brownian motion?

η?(A) = E[lA{Xt)Λt<τx] =E[lΛ(XΊt)Ayt <-

= Έ[lA(BΊt)ΛΊt<τB]=Έ[ηB(A)].

The mass is given by

11̂ 11 = E[l { t < τ x } ] = E [ l { Ύ ( < 7 τ X } ] = E [ | | < | | ] .
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The entrance law: In our algorithm, first the random time j t = /0* σ2(Xs)ds at time

t — e is approximated by % = eσ2 where σ = σ{d). Now, this approximation is put in

the formula for the entrance law. Further we use the scaling property3 of the Brownian

motion or the normalized entrance law, respectively, to get a better expression. The

jump of the excursion at time e is distributed like p*{A) = F(X€ G A \ e < τx) which

is given by the normalized entrance law, i.e.

" € V / M\\ L K I I J L Itofll
Approximating j e = / 0

6σ 2(:r s)ds by σ2e leads to the following approximation

IWΊI LK.IIJ L Ilifll

The holding parameter: Further, the approximation of the holding parameter βf —

P(e < τx) - \\η*\\ is given by

β? =

Algorithm 3. This algorithm coincides with Algorithm 2 except the approxima-

tion of the holding parameter and entrance law.

• Step 1: s = 0. XQ = xΌ. We pick out an minimal process with with starting

point x0.

• Step 2: Let d = Xτ the point, the excursion is killed. The increment of the local

time is ΔL = t{\ + (η^V\l)) ~ t, where t is exponential distributed with with

holding parameter β€ = \\ηf \\/σ. Xt is assumed to remain at of, thus the time

increases also by At = t(l + y/e/π).

• Step 3: We jump into {x>d} distributed by the entrance law ήe=ηf((χ - d)/σ).

Let x be the point we touched.

• Step 4: We continue at Step 1 with starting point x, i.e we pick out a minimal

process e(s) starting at x.

3. Convergence of the algorithm

In this paragraph we show the convergence of the pair (X?, Lψj for a fix T < oo.

The convergence is shown in several steps via Algorithm 2 and Algorithm 3. The last

step is to approximate the minimal process by the Euler scheme. First, for the sake of

clarity we introduce the following notation:

), A/c = {a/c\a € A}.
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Xt : the process defined by the stochastic integral dXt — cr(Xt) dBt

X\ : the process arising by only taking into account the excursion longer than e, i.e.
Algorithm 2

XI : the process arising by XI by approximating the entrance law and the holding
parameter, i.e. Algorithm 3

Xf
€'n: the process arises by X\ by approximating the excursion by the Euler scheme,

i.e. Algorithm 1 (here, the path between the grid point is a dif-fusion generated

by the coefficients of the last grid points.)

Xt : the mean square Euler scheme is applied

U\, U{, U{, Uχn denote the corresponding resolvents, i.e.

Ux : C(D) -> C(D) with Uxg(x) = Ex \ Γ e-λrg(Xr)dr\,

where C(S) denotes the set of real valued continuous functions on S which van-

ish at oo. The resolvent of the minimal process, we dente by Vχ> i.e. Vχg(x) =

E x [ / O

r e ~ λ r g(Xr) dr]. Furthermore, we say mean square Euler scheme, if Xt for

i/n < t < (i + l)/ra is approximated by E[Xt

n] where X t

n satisfy the SDE X£

n =

3.1. Convergence of algorithm (2) Blumenthal proved in [3, p. 138] the con-

vergence of XI via resolvents by applying the Hille-Yoshida theorem to the limit

Theorem 3.1 (One form of the Hille-Yoshida theorem:). In order that a fam-

ily {R\} of endomorphisms of the Banach space C(S) with the norm \\g\\oo —

s u p x G 5 \g(x)\ be the resolvent of a semigroup {Qt} of contractions it is necessary and

sufficient that

• R\ satisfies the resolvent equation:

Rχ-Rμ = (μ- λ)RxRμ

• \Rχ is a contraction

• \Rχ —> 1 as X ->• oo.

The theorem is cited from Feller [10, p.461].

A short calculation shows:

(1) Ux9(x) = Vχg(x) + Έx[e-Xτ]Uχg(d)

(2) U{g{x) =

Stepl
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We can get U^g(d) by the Algorithm 2:

U{g{d) =g(d)Ed\[ e~xtdt

Step3, J=Δ

(3) +Ed[e-χJ) EXj[Vxg] +Ed[

Step3 and 4

= +h{-> ™ + - Λ<7

where J is exponential distributed with holding parameter β9 Xj is independent of

J and distributed by 7 = 7y€/||ι/e||. Verifying the parameter β we have to take into

account, that the time is increased by t/a€9 the local time increases by t. Thus β —

β€a€. Solving this equation we obtain

g(d)/ae+β<(η(/\\η(\\,Vχg)

and ae — 1/y/πe + l - * l a s e — » 0 . Further V\ denotes the λ potential of the corre-

sponding minimal process, i.e.

Vxg(x) =E\JT e-χtg(Xt)dt\.

Blumenthal [3, Theorem 2-6, p. 138] shows first, that for all λ > 0 fixed

lim U{g(d)

exists uniformly in C(D) with 0 < g < 1. Hence the first term of the right hand-side

of (2) is independent of e, it follows for a fixed λ

limUtg(x)=:Uxg(x)

exists uniformly in C(D) with 0 < g < 1 and therefore the limit does it as well.

Further, since X\ is Markov for each e > 0, each family {U{,\ > 0} solves the

resolvent equation. Together with the uniform convergence follows that the limit solves

the resolvent equation as well. For applying the Hille-Yoshida theorem it remains to

show that it holds:

(5) λ lim Ut -» 1 as λ -> oo

and that λ limc_>o U{ is a contraction. (5) follows by

fXτ -tXV\g(x) = I e g(Xt/χ)dt —ϊ g(x) as λ —> oo
Jo
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and XU{g(d) —> 0 as λ -» oo, which is proved by Blumenthal [3, Theorem 2-8,

p. 143]. The fact that XU{ is a contraction, follows by considering the Equation (2).

The first part is a contraction since V\ is the resolvent of the minimal process and

therefore is λVλ a contraction. Thus, it holds by the uniform convergence for the lim-

it. For the second part it follows, since E x [e~ λ τ ] < 1 and U{g{d) < g(d). Since, the

Laplace transform and therefore the resolvent is unique, it follows that the limit coin-

cides with Uχ, the resolvent of Xt.

3.2. Convergence of algorithm (3) For the convergence of Algorithm 3, i.e. the

convergence of U{ —> U\ as e \ 0, we have to show that it holds \U{ — U{\

—> 0 as e \ 0 uniformly in C(D) for all function g :R-ϊ R, 0 < g <l. Here we

have to add some considerations to Blumenthals proof. Substituting the approximated

entrance law and holding parameter in (4), we get

λ(l/at + β<(ήt/\\ή€\\,Vχl))

Since for a function g, g = 1 it holds 0 < g < 1. It remains only considering the case

iΓlT'^λtf) ~~ β* ( T F l ϊ ' ^ λ f l f ) — ^ ^ a s e N o -

where 0 < g < 1 is arbitrary. First, we write the term in another form:

Γη€(x)Ex[Vxg]- Γη€(x)Ex[Vxg]
Jo Jo

where E denotes the expectation value in regard of the minimal semigroup. Changing
the order of integrals, it follows

(6)

I Z OO /»OO

= / E[η*t(x)]Έ'[Vλg]- ηX(x)F
\Jo Jo

<v[\l°° iϊf. (x)EX [VX9] - Jo°° ηX(x)Ex [Vxg]

=E[\(ηB,Vxg)-(ηX,Vxg)\].

For a arbitrary minimal semigroup, (ηf,V\g) is uniformly bounded in s and for g G

C(D), 0 < g < 1. Further, we know in the case of the Brownian motion, ηf is contin-

uous and differentiate in s. Therefore d/ds(ηf,V\g) = (ηf ,VχAg) is differentiable.
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Is the derivative also uniformly bounded in 5? Hence it holds

-λr 1

J
e-Xrg(Xr)dr-τ>t\ + e~

/o J

the following inequality can be shown:

(ηf,Vxg)-(ηf+t,Vxg)

= (ext - l)(ηf, Vxg) + ext(ηf, Vχl) - (ηf+t, Vχl)

= (ext-l){ηs,Vxg)

+ext \£e-Xrg(Xr)dr;τ< t] +E"? ί / e-Xrg(Xr)dr;τ > t] V

Considering the differential quotient we get

= lim][{η?,Vxg)-{η?+t,Vxg)]

'* [ Γlimeλt Γ E ' [ Γ e-λrg(Xr)dr;τ < ίl + E " f Γ ί e~Xτg{Xr)dr; r

By a short calculation we obtain

> v\y/ ^ vis > L e / Ii/||oo5

<1

which is bounded in s. Thus, we can give an upper bound independent of g. The next

step is applying the Taylor expansion up to the first order to verifying the convergence

of (6). Since 7, = /Q
€ σ2(Xt)dt, it follows E[7e] = σ 2 e + o(e) and we get

E[\(τfi€,Vχg) - (n?2€,Vχg)\] < E [ O ( | 7 « - σ2e\)(ηf, 1 - e~Xσ)]

where J^ = (τ^f, 1 — e~Xσ) only depends on λ. Thus, for fix λ,

\U{g(d)-U{g(d)\—>0 as e \ 0

uniformly in C(D) and therefore U{ — > U\ where U\ coincides with the resolvent of

Xt. Thus, the convergence of algorithm (3) is shown.



A NUMERICAL SCHEME 117

3.3. Convergence of algorithm (1) We know from the literature, for example

Bouleau and Lepingle [4], Bally and Talay [2], given the Lipschitz hypothesis and the

Holder property, the Euler scheme converges almost surely and in Cp on compact sets

to the solution of the stochastic differential equation.

The problem which arises is, we have the convergence only on compact sets, but

the potential of the minimal process is defined on [0, oo). The way to manage it is

considering a point process being stopped if an excursion takes longer than T. In fac-

t, we simulate the process only until a fixed T, such this restriction is in reality no

restriction and we need only the convergence of τn on the compact set [0,Γ].

Thus we must modify the Equations (1), (2) and (3). What happens now introduc-

ing the stopping? First, if an excursion takes longer than T, the excursion will be send

to a graveyard and we set r = oo. Further we introduce the following functions:

Θ(x) = Fx(τ <oo)

= Fx(r <Γ)

ψ(x) = Ψx{τ = oo)

= 1 - Θ(x).

All functions concerning only the stopped version are denoted by a superscript *, i.e.

Vfg(x) = E*[/o

r Λ Te-X rg(X r)dr] and T* = τΛT. Thus, we have for the resolvents:

Uϊ*g(x) = VZg{x) + Ex[e'Xτ | r

We obtain U%*g(d) by

U€
χ>*g(d) = g(d)Έ

The third summand is Ed[e~XJ]Ue

x'*g(d) times

EXj[e~Xτ Λτ<T] = E x ' [e- λ < r Λ T ) - φ(x)e-χτ]

e-
χ(τATΛ ί^-ω l\e~λT

||
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r A eXrsince it holds 1 - e~~A( r A T) = λ /Q

r A eXrdr. Solving the equation we obtain for the

resolvent at d:

Now, we can approximate the excursions by the Euler scheme.

[ ί ΛT e~XS[9{Xs) - s(Xΐ)]ds
rTΛτn

λ r> / e-Xsg(X?]
JTΛT

e-λ(TΛr

T A τ

+ΈX[\TΛT-T Λrn|].

Since we have convergence in distribution of X™ to Xt uniformly on [0,Γ], g(X?)

converges to g(Xt) uniformly on [0, Γ], which implies the convergence of the Laplace

transform, i.e. the resolvent. Hence, the first summand of the term of the right hand

side tends to zero. The second term tends to zero, since we have almost surely con-

vergence in [0, T]. Thus we have

V*'ng{x) - » VZg{x)

as n -> oo, where g is a uniformly continuous real valued function. It follows

UVn'*q(d) -» UV*q(d) as n -> oo and therefore UVn'*q(x) -> UV*q(x) -> Uχq(x)

as n -^ oo and e \ 0. Going back, we have convergence in distribution of the pair

(X^n,Le

τ) to (XT,LT). •

4. Rate of Convergence

Assuming we have simulated the process Xt described by the stochastic integral

in (1) until a fixed time T, we are interested in the difference

Ex[f(Xτ))-Ex[f(X€^n)] and ΈX[LT] - Ex[L^n],

where / is twice differentiable. The diffusion coefficient is assumed to satisfy the lin-

ear grow condition, further to be differentiable and bounded away from zero.

The algorithm arises by first cutting the path at the time points Xt hits the bound-

ary and then sticking the pieces together. Thus, analyzing the convergence, we have to

go the same way by dividing the estimation into two steps. First, we consider the cor-

responding Poisson point process, parametrized by the local time and being killed if

an excursion takes longer than T.
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That is, we investigate in the difference

where ξ — Ίnϊt>o{et(s) > T} is a Tτs stopping time. Further, hence the process is

killed at least at time T, we restrict the set of excursion onto Uτ — {e £ U \ τ(e) <

T}. Therefore we consider the convergence of the Euler schema on a compact set

[o,n
In the second part, the error of the displacement of time is lifted up to the error

of XT by letting start the process ones at time 0 and once at time ΔT, where Δ T is

the error. The last chapter deals with the accuracy of the local time.

4.1. Convergence of the Subordinator T.: Hence, if 5 increases the error of

Ts increases as well, we can confine ourselves to the case s — ξ. ξn denotes the stop-

ping time of the modified Euler scheme. Now, the error decays into four independent

parts in a natural way:

error(T) < Έ[\Tξ - f^n\

< \Tξ - T{\ + |Γξ

e - T£| + \fl - T | ' n | + |T£'n - ί £ n | ] .

I II III IV

The first part I is just the sum over all excursion not taking longer than e, i.e. the

excursion which we cancelled out. We add the expectational time the cancelled excur-

sions takes, but we have to take into account, that this expectation value is an approx-

imation. The second part is the error arising by approximating the entrance law. The

two summands III and IV arise by applying the Euler scheme to simulate the excur-

sion.

Hence, we have a Poisson point process, the distribution of ξ is independent of Tt

and exponentially distributed with holding parameter βτ = \\ητ\\. Therefore, if we can

give an upper bound of 1/βτ, it is enough to consider the error of one excursion.

4.1.1. The upper bound of l/βτ The upper bound is given by

i.e.

E[jτ] = Έ[X$] = E

(linear growth condition) < E
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<K2\T + Jo E[Ίs]dA-

Applying the Gronwall inequality, we can give an estimate for E[7χ] by

E[yr] <

Hence the function 1/y/x is convex, we have by the Jensen inequality

T
7Γ7T J " V π E [ 7 τ ] '

Therefore 1/βτ is bounded.

4.1.2. The Error of Part I: While the local time increases by ΔL, the real time

increases by

Δ t = τ(e(s)),
τ(e(s))<e
0<s<AL

where the expectation value is equal to JQ
€ sΨd{τx — s)ds. In our algorithm we ap-

proximate the expectation by the expectation of a Brownian motion with variance σ2.

The difference is given by

- ί sfd(τB=σ2s)ds.
Jo

Replacing Ψd(τx=s) by Ψd(Pτ
B=s) resp. by P d ( r β = 7 s ) and substituting 7S by σ 2s, we

get

/
Jo

/
Jo

The next step is to split the difference in the following sum of differences:

= E

•ds\ .

Taking into account that it holds

estimates for each difference:

σ2(Bs)

τB=σ2s) — O(e" 3 / 2 ) , we can give the following
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0 - O(e3/2).

• Έ[σ2-σ2(Bs)] = O(s)
=» E[/(σ 2 - σ 2 ( £ s ) ) . ds] - £ 0(β" 3 /2)0( β ) β d β = O(e3/2).

It follows that the difference is of order O(e3/2).

4.1.3. The Error of Part II: We can put the error arising by the approximation

of the holding parameter into the error of the Levy measure arising by the approxima-

tion the entrance law, i.e. the error of r* = τ Λ T arising by starting at a wrong place.

The approximation can be formulated by an approximation of the underlying minimal

process:

ί / σe{s,Xs)dBs t<τΛT
X\ = { Jo

d t>T AT

where

, , J σ 2 for ί < e

' \ σ(£, x) otherwise

X\ can be seen as a process, equal to the Brownian motion with variance σ 2 until

time e and then agreeing with the original process Xt. Now, we denote by f the stop-

ping time of X\ upon reaching the boundary. The error can be formulated as

|E [ f*o0 € ] -E[τ o0 e] |,

which is equivalent to \{ή€,f*) - (77e,τ*)|. Hence, the stochastic differential equations

agree on [e, Γ], we can remove the hat at r and get

As we pointed out in chapter (2.1.), we obtained ή€ by approximating ηe by σ2e. The

inverse transformation, we denote by ρt, and it holds pt — Jo σ~2(Bs)ds. It follows

for the expectation E[p€] — σ2e + o(e) and for the second moment E[p2] = o(e). Let

s,t > 0 and s + t smaller than Γ. Now, we want to look up at the function (ηf, V\l),

where the entrance law is the law of the Brownian motion and the second term is de-

termined by the process Xt. For clarity, we denote the shift operator by θf, if the pro-

cess follows in the time interval [0, s) along a Brownian motion. Now, we can write
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= E

= E
' / τ *o*f+t rτ*Xoθ?
/ e " λ r dr - / e"

Jo Jo
,τΛoθf >pt

=τ B o0?>t •

- E

Hence r * x o θj3 + pt = τ*x if r * x > pu we can combine the two integrals of the

first term in one:

= E

- E

= E

- E

ΓXpt I *+t " e~Xrdr - I e~Xrdr,TB oθf >t

τ'xoβfAptoθf
e-Xrdr\

r*x°ef

-*x oθf Λptoθf

e-Xrdr

where Λ denotes the minimum. Taking the differential quotient

dsvu ' t-yθ

= λli
t->o t

>t\
htoβf

-YLmm{r*xoθB)/\{ptoθB)\,
t

we obtain for the first term \E[i/σ2(Bs)](ηf, Vλ*l). For the second term we can give

an upper and lower threshold

\ΠτBoθf>t)Έ[Ptoθϊ,t<τBoθϊ] < \t [(T** oθ?)Λ(Ptoθ?)] < j
t t t

Ψ{rBoθf>t)E[(l/σ2(Bs)n(o(t)/t)] < Έ[(τ*xoθf)Λ(ptoθf)] < E

Since F(rBoθB>t) /* 1 as t± 0, we get for the limit

E

Jim h[(τ*x o θf) Λ ( Λ o flf)] = .)] = (ηf, 1/σ2).
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Now, we have found the derivative:

Next, we know for the Laplace transform

.)] (\(ηf,Vxί) -

Partial integration on the right side leads to

^ ) - fo

To give an upper bound, we apply the Tayler approximation of the first order and

change the order of differentiation. The difference σ2e — ηe — f* σ2-σ2(xa)ds is of or-

der e. Further, we have assumed that the diffusion coefficient σ : R -> E + is bounded

away from zero. Thus we can say

E\(\(d/d\)+i)(η*2e-η*€,v;i)\
LV 7 Jlλ=c

4.1.4. The Error of Part III: The error can be seen as the expectation of

the difference Έx[τ — fn] due to the entrance law. Thus, in the sequel, we consid-

er a diffusion starting at x. The term above we can split in two independent parts:

Έx[τ - fn] =Έx[τ- τn] + Ex[τn - fn]. The second term is always smaller than 1/n,

hence the grid is of that size. One can write for the first term

/ (1-P(τ<t))dt- ί (1-P(τn <t))dt
Jo Jo

I {P(rn <t)-P(τ<t))dt
Jo

< I \P(rn < t) - P{r < t)\dt
Jo

We can give an upper bound for the difference P(τn < t) — P(τ < t) by applying

corollary (5-1):

\Ψx(τ <t)-Fx(τn <t)\ < -
l-u
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Now, we have to evaluate the estimate due to the entrance law, i.e.

Eη[Ex[r - τn}} <Eη\ \Fx(τ < t) - Fx(τn < t)\dt

l-u

Eη £\l + \x\«\dt]κ'(T)

= O
n

l/2-u

Thus we know: The difference τn — τn is smaller than 1/n, thus the expectation is of

order T/nι~u and the error of Part III of the same order.

4.1.5. The Error of Part IV: The error is induced by simulating the scheme

until a time ξn instead of ξ. Since the holding constant for an excursion longer than

T is 1/y/yr, the expectation of ξ - ξn is equal to

1 1

Hence it holds E[|/(X£) - f(Xτ)\] ~ l/n for / two times differentiable, we get

f
Jo

< Eηe

-
y n

Now, knowing 77- is bounded away from zero and applying the Taylor formula, we

get

E[ξ -ξn]<0 ((1 + 2e)T^Λ .

4.2. Convergence rate of E[f(Xτ)]: In the chapter below, we have shown the

the error can be estimated by the following function:

error(T) - KuO{e2) T)

2e)T-,
n



A NUMERICAL SCHEME 125

where u > 0 arbitrary. We want to give an estimate of the amount Ex[f(Xτ)] —

E[f(Xτ )], where / is twice differentiable. Let T and ϊ e > n , respectively be the last

time, XT respectively Xγn hits the boundary. Assume, we have approximated the pro-

cess until time T€ 'n, the parameter is denoted by s and it holds Xy — I γ £ , n Thus,

the error of the approximated process to the original process arises the displacemen-

t of time, i.e. T — T e ' n and applying the Euler scheme to the last Excursion, i.e.

XT-Ύ -XT-Ύ L e t Φ>t) defined by Ex[f(Xt)}.

Ex[f(Xτ)}-E[f(X^n)

= Ex

= Ex

< Ex

u(xΎsτ, τ s τ ) - u(

u(d, T s τ ) - u(d, Ύ ti(d, - u(ljn, d)]

where C(T) is a constant. Since / is two times differentiable, the derivative

(d/dt)u(d,t) is bounded and we have

4.3. Convergence rate of the local time: The excursions are parametrized by

the local time. The waiting time between two excursions are exponential distributed

with holding parameter β. Thus, the error of the local time between two excursions

is induced by the approximation of the holding parameter. Therefore we have for one

excursions

β

E _ /

Thus, the error of Le and L€ at one time hitting the bundary is of order O(e3/2).
Hence the error of the local time is the difference between the parameters of the point
process which arises by approximation and the point process, only the approximation
of the holding parameter influences the error, not the lenght of the excursions. Taking
into account the number of excursions which takes place, we can conclude that the
error is smaller than

O = βt E[ξ) O

=number of expected
excursions
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where 1/βτ is bounded (please see Chapter 4.1..1). Thus, this is the order of conver-

gence for the local time.

5. Appendix

We know from Theorem 3.1 of Bally and Talay [2] that under

• (UH) CL', + infx e Rd VL(X) > 0 for some integer L

• (C) The derivative of any order of the function b, σ are bounded i.e. b, σ G C°°.

where b : Rr -» Rd and σ : Rr -> Rd x Rr. It holds

1 4- \\x\\Q 1
^ " -

for some Q, q and nondecreasing function K. Our problem is no, that the right side

tends to infinity if T tends to zero. Thus, what happens if T is rather small? For small

T we the order of convergence is l/n 2 / / 2 ~ u where u > 0 can be arbitrary small.

To investigate what happens, we follow the idea of Bally and Talay in [2] and use

some localization argument. If t is small, i.e. t < 1/n, the process X t

n arising by the

Euler scheme can be seen a Taylor expansion of σ(X) up to the first order. For in-

creasing t the coefficients of the Taylor expansion are updated at each grid point k/n,

k = 1, , [Tn]. The exact definition will be given below. For applying a localization

argument one need a quantity to measure the difference between Xt and X™. A good

choice is the difference σ2(Xs) -σn2(X")4 which is dominated by the Malliavin ma-

trix.

For simplicity we define the function [ ] n : M -> N : s H-> [sn]/n and denote by θ

the shift operator.

To classify the speed of a stochastic process starts at t = 0 and removes from the

boundary, we introduce the notion of flat functions:

DEFINITION 5.1. A function / : [0, oo) -> E is called flat, if l i m ^ o e~p/(e) = 0

for all peN.

Clearly if / and g are flat, / + g is flat. In addition if / is flat, JJ f(s)ds is flat

as well. Now one can classify the speed a process Xt starts at XQ by considering the

functions e H> Ψ(X* > tk-δ) respective e H> Ψ(X* < tk+δ) where X*, = s u p t < τ \Xt-

Xo\ and taking this exponent, the function is flat.

• Let u > 0 be arbitrary, but small enough. Let Ωo be the set of events where

|σ2(Xs_[s]n oθ[s]n) - σn2(X?_[s]n oθ[s]n)\* < 7 ; (s - MJ-"- 1 / 2

Aσn denotes the diffusion matrix of X n , where the diffusion coefficient is constant on every
intervall [k/n,(k + l)/n) and equal to σ(Xk/n), i.e. σn{Xs) = σ(Xk/n) for all 5 G [k/n,(k +
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for all s E [0,Γ]. Here we use the fact, P(Ω0) is small, for example

P( |σ 2 (X s ) - σn2(Xs)\* < 7s*s"u) for s < 1/n is flat.

• on the complementary set of Ωo, σ 2(X s_[ s] n o 0[β]n) — σn2(Xs_[s]n o 0[s]n) is

small, i.e. Xt behaves like X™ and the Monte Carlo error is small.

We are operating on the space (Ω,^7, P), (T}t>$ o n which the Brownian motion

is defined. Further one considers the following classes of stochastic processes:

Co = {X : [0, oo) x Ω -> R : X is a continuous, adapted process which is

constant at t = 0 and E[(X£)P] < OO VT < ooVp > 1},

where X£ = s u p ί < τ \Xt — XQ\ and

Ck+1 = lxt=X0 + Σ f XJsdBί;XjeCk for j = 0,l},

where β^ is a 1-dimensional Brownian motion and B® = ί. Further we define

Next we consider a projection of Coo o n t ° Ck- F i χ J — 0,1. First we define

Prj : d -> Co

Now, for a multiindex K — (κ l 5 Λ 2 5 ^m)> /ίi € {0,1}, z = 1 , . . . m, the projection is
defined by

±TK '. Coo ' Coo

X ^PrKmo...oPr

and

X ^ (PrκX)0.

To get unitary representation we define the projection for the void index φ by

PrφX = X, prφX = X0.

In addition, to get an ordering of the multiindecis we define p(κ) = p((fti, «2,. . . « m ))
= φ{k \κk Φ 0} + 2φ{k I ACjfe = 0}. In addition we write \κ\ for the number of com-
ponents of a multiindex K and R for the multiindex where the components are can-
celled which are equal to zero and κ~ for the multiindex obtaining by deleting the
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last component of K. Further we define the symbol o(X) = min{p(κ) \prκ(X) φ 0}.

Throughout this chapter we denote by κm the last component of a multiindex.

Now one can represent a process X G Coo as a stochastic Taylor expansion in

terms of iterated integrals driven by Brownian motion Bt or the time t, i.e.

Σ pr^χ)Btκ) = Σ r / 2 Σ
m=0 p(κ)=m m=0 p(κ)=τn

where B\κ' = Jo B^κ ^dB*™. The convergence in C2 is given since first, X can

be represented as a sequence of iterated integrals due to functions over [0, Γ ] m , i.e.

X = Σ " = o / m ( / m ) 5 > w h e r e fm(') = E[DmXτ\Γ.] G £2[0,Γ]l^l and 7™(/m) -

/ 0 * JQ

m fm(tι,... tm)dBtl .. d # t m . Since σ is an infinitely differentiable function

in x with bounded derivatives of all order greater or equal to one, DkXt exists and

belongs to £p(Ω,[0,Γ]) for all p > 1 and jfe < 0. (please see Nualart [22, Theorem

2.2.2]). The convergence of this sequence is given in £ 2(Ω, T, P). Second, each func-

tion / can be approximated by polynomials in £°°[0,T]m. The last equality holds

because of the scaling property of the Brownian motion, i.e. B\ — tp(κ^2B[ . The

coefficients prκ(X) can be founded by iterating the Itδ-formula:

Xt =χo+ f σ(Xtl)dBtl

Jo

Γ σ(X0) + / l σ(X0)σ'(X0) + / \σ"(Xta)σ(Xt3) + σ'(Xta)
2)dBts

o Jo Jo

\ f\σ'"{Xtz)σ{Xt3) +3σ'(Xt3)σ"(Xt3))dt3dBt

* Jo

1 f1σ"(Xt2)σ(Xt2)
2dBtldt2

* Jo
t2

i1) + σ(Xo)σ'(Xo))B[lι) 4- (σ"(σ(X0)Bi

t

1) + σ(Xo)σ'(Xo))B[lι) 4- (σ"(X0)σ(X0) + σ1 {

+ (σ(X0)σ(X0) + 3σ(X 0 )

=• prΦ(X) = X0,pr(1)(X) = σ(X0),pr{lι)(X) = σ(X0)σ'(X0)

For clarity we omit in the sequel (X) and write prκ instead of prκ(X). Let L be

the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. We summerize some

properties in the following proposition:

Proposition 1. Let X G Coo w/ίΛ stochastic Taylor expansion given in (2) and let

Γ the inverse of j (For definition of η please see Ikeda and Watanabe [12] or Nualart

[22]). The norm \\%\\p is defined by \\F\\P = Έ[\F\P]1/P. Then it follows:

5for definition of / and D, please see for example the book of Nualart [22, chapter 1.1]
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1. \\LXt\\p = V~t C£x< where C£x' < oo.

2 IMIp = tC? where C? < oo.
3. | |Γ t | | p = (l/ί)Cp

Γ« where C$< < oo.

Proof. First, it is easy to verify that the following holds:

K — 0

where ( Λ Γ , 0 ) = ( « i . . . , / c m _ i , 0 ) for « = ( « i , . . . , Λ m ) .

1. 1. holds just by computation:

LXt = - ί ' / V w ^ ί " - 2tpr{n)B[n)

JV - 2Vtpr{n)B[n) -•••)

e£"([O,T],Ω)

2. To show 2. first we have to compute DXt:

DsXt=

m=l p(κ)=m

Then we have

oo m

7t = (DXt,DXt)Hs =
m=l r=0

+t2(3pr{i)pr{in)B
i

1

n) + 2pr{1)pr{10)B[1} + pr{1)pr{01) + 2pr2

{1))

3. Since Γt7t = 1 we see at once that

1 1 1 4 p r ( u ) ( 1 0 )

and, since σ is bounded away from zero, pr^ also and therefore all coefficients be-

long to £P(Ω, [0,Γ]) for p > 1. Thus we can verify 3.). D
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REMARK 5.1. In analogy we can show that it holds \\(D2Xt,DXt ® DXt)Hs\\p

= t2Cp resepctively \\(DLXt,Xt)\\p = \\tpr^ + . . . | | p = tCp for some constant Cp,

C'p<oo.

Next, we can give an exact definition of a numerical scheme of g'th order:

DEFINITION 5.2. Now, the approximation of gth order can be seen as approxima-

tion the stochastic processes b(X) and σ(X) by a stochastic Taylor expansion up to

order g

Σ prκ(KX))BM and £ prκ(σ(X))B^.
p(κ)<g P(κ)<9

Further, the coefficients prκ(b(X)) and prκ(σ(X)) are updated at each grid point k/n.

Now we can give an answer to the question: How is the asymptotic behavior of

Xt for small tl Therefore we introduce the following classification due to the speed,

a process grows at zero. Let X e Coo and fceN arbitrary:

Sk/2 = {Y e Coo I the functione ι-> P( sup Yt < e

k/2+u) is flat}
0<£<e

and

Ck/2 = {Y e Coo I the functione *-> P( sup Yt > ek/2~u) is flat}.
0<t<6

We list some elementary properities of the classes Cq and Sq. The proof can be found

in the paper of Bally [1, Proposition 1.4.]:

Proposition 2.

1. C = C0DC1/2DC1 2C3/2D'"

2 Sχ/2 C Si C <S3/2 C

4. l G 5 g , F G £ p /or some p>q=> X + Y e Sq

5. βW € £ p W / 2 n 5 p W / 2 =• Σm=ik Σ p W = m c.fl(4) e ck/2 n 5 f c / 2

6. I E Ck/2, Y e Cι/2 and Xo = Yo = 0 =>

Proof. Our goal is to get an asymptotic behavior of σ2(Xs) —σn2(Xs) in terms

of j s . Let s < 1/n. The difference can be written by the Ito formula as an integral

with respect to the Brownian motion and time, i.e.

σ\X,) - σ2(X0) = 2 ί σ'(Xr)σ2(XΓ)dBr + ί\(σ'(Xr))2 + σ"(XΓ))σ2(Xr)dr.
Jo Jo
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Thus prΦ(σ2(X)) = σ2(X0) and pr{1)(σ2{X)) = 2σ'{X0)σ2{X0). Therefore it holds

o(σ2(X) -σ2(X0)) > 1 and it yields (please see [1, Theorem 3.3])

σ2(X) - σ2n(X) = σ2(X) - σ2(X0) € £ 1 / 2 .

To classify j s one can go an analog way and write first ηs as an integral6:

Ίs = Γ(DrXs)
2dr = j S σ2{Xr)exVU j S σ'{Xt)dBt - Γ (σ2)'(Xt)dt\dr.

Therefore it holds 0(7) = 1 and by [1, Theorem 3.3] we have 7 € Si.
Since the scheme can be seen as expanding the Taylor formula of first order at

the grid points k/n, k = l, ,[Γ] n and updating the coefficient, one has to apply

the consideration above to each interval [k/n,(k + l)/n) for classifying σ 2 (X s _[ 5 ] n )o

θ[a]n -σ n 2 (X s _[ s ] n )o0[ s j n and 7 s_[ s]n °θ[s]n for arbitrary s G [0,T]. Therefore it holds

σ 2 ( X s _ W n ) o θ[s]n - σn2(Xs_[s]n) o θ[s]n e C1/2 and 7 o θs_[s]n G Si

Let φ e C^°{R) such that φ(x) = 1 for ||x|| < 1, φ{x) = 0 for \\x\\ > 5/4 and

0<φ(x) < 1 for \\x\\ e (1,5/4).

Set

r . = s u p \σ2(Xs-[s]n)oθ[s]n-σ«2(Xs_[s]n)oθ[s]n\*

for k = 1, , [Tn] - 1 and for k = [Γn]:

Γjfe : = s u p

We have

- nkφ(rk))}

+E[(f(Xτ(x)) - f(XΪ(x)))πkφ(rk)}

=: I + II.

To upper bound |/ | we use the estimate in (1):

(3) |/| < Wf\\ooK{T)l-^-±E*[(l - Ukφ(rk))}.

6please see [22, Excercise 2.2.1].
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It holds 1 — ΐίkφ(rk) = 0 iff there exists a k, such that \rk\ < 1. Thus we have to

consider the case that for all k it holds \rk\ > 1 and we have

[l - Ukφ(rk)} < ΠkF(\rk\ > 1)

= Σ / P(V2(**-M J o *[.]„ - σn2(Xs_[s]n)o θ[s]n I* >
k J o

hs-ls]noθ[s]n\
2(s-[s]n)-ήds

Σ ( ί vhs-[suoθ[s]n <(s- [s)nγ-ήds
W o V v v ' 7

^ Σ

[\(\σ2(Xs_[s]n)
rT

From the consideration above we know, that for all k the functions 5 *-> P(/ < s1+u)

respective s •->> P(/J > sλ/2~u) are flat for u > 0 arbitrary but small enough. There-

fore the sum is flat and since the integral over a flat function is also flat, it follows

that E[l - Ukφ(rk)] is flat. Since E*[(l - Ukφ(rk))] in (3) is bounded by any poly-

nom in m m ( l / n , T) and tends to zero for T -> 0, we can neglect the term.

To give an upper bound of the second part we choose the same way as Bally in

[2] and define u{t,x) = Έx[f{X$_t)]. Thus we have

(4) E*[f(Xτ)) - Ex[f(Xft] = E[u(Γ,0) - u(0,Xr)]

-u(k/n,Xk/n)]
k=l

Έ[u(T,Xτ)-u([T]n,X[τ]n)]

(Jk+l)/nΛΓ pt

In Jk/nJk/n

+LnLnu(s,Xs)]dsdt,

where we denote the infinitesimal generator of the process Xt by L and the gen-

erater of the process Xp by L n . Hence the coefficients are constant in each in-

terval [k/n,(k + l)/n) and updated at each grid point, we have Ln(u(t, Xs)) =

L(u(t,X[8]n)). Thus we can evaluate the expectation in regard to the grid points. Fur-

ther in order to avoid writing clumsy terms we assume that it holds [s]n = 0. Now we

get

~r X \ \ X I I \
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,,-2u

Further we denote by Γ the inverse of 7 and by φ the function:

φ(8,X,)= (ζ;U(s,

Applying Theorem 2-1 of Watanabe [31] or rule (4.5) of Ikeda and Watanabe [12]

we get

d

where δ the adjoint operator to D (for the exact defintion please see the articles men-

tioned above). Further for shortness we write just (.,.) instead of (., .)HS Applying

the theorem twice and the rules described in Theorem 3-4 and (4.4) in Ikeda and

Watanabe [12] we get

= E[φ(8,X.)δ(Γ.LX.DX.)]

= Έ[φ(a,X.)(Γt(DLX.,DX.) + LXS(DTS,DXS) + TSLXSLXS]

= E[φ(8,X.)(Γ.(DLX.,DX.) - LXsT
2

s(DΊs,DXs) + TSLXSLXS)]

= E[φ(s,Xs)(Γs(DLXs,DXs) - LXSΓ
2

S2(D2XS,DXS ® DXS) + ΓSLXSLXS)].

Substituting the Taylor expansion of Proposition 1, we can see that the constant terms

of (DLXS,DXS) and LXSLXS cancelled each other. That it holds Hs = ^/sHs for

some random variable Hs belonging to Cp(ίl, [0,Γ]) for all p > 1.

= E

= E

= E

(6) =

δ(ΓsΊsHsDXs)

s,Xs) ((DHS,DXS) + HSLXS)

=HS

x (ΓS(DHS,DXS) + 2HSΓ
2

S(D2XS)DXS ® DX.)HS + TSHSLXS)}

=HS
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Hence the terms DXS and LXS appears in the definition of Hs, we can conclude that

it holds ||-Hs||p = y/sCp for some constant C'p' < oo. Further, the term of the worst

order is TSHSLXS. Applying [12, Theorem 3-3] to Hs we get

\\βs\\2 = ||Γ||β||LX.||β||Jϊβ||β < -Cl'y/iC^x'y/iC'^ <C<oc.
s

A second and third application leads to the following estimate of E[(d2/x2)φ(s,Xs)js]:

< y/8E[u{8,X.)R.]<y/ϊ\\u(8,X.)\\2\\H.\\2

for some constant C < oo. Going back to Equation (4) and applying the consideration

above to the differentiation we can give an upper bound of the second part

:?)] = E[«(Γ,O)-

k=l J k / n

where u > 0 arbitrary but small enough. D

REMARK 5.2. Let / G H-(m '°°), where 7/(m'P)(Rd) denotes the space of all

functions /, whose derivative of order m is in Cp(Rd) and Ή~(m'P) = %(-m>p')? pi

= (p—l)/p denotes the dual space of Ή( m ' p )(R r f ). Then the Monte-Carlo error is giv-

en by l / n 3 / 2 " u ( Γ V ( l / n ) ) " m / 2 where the norm of | | / | | is the norm of 7ί-(m'°°), i.e.

the sup-norm of the ra-th integral. This fact arises by applying the [31, Theorem 2-1]

m times to function f(Xτ_s) in Equation (6). Each time a factor Γτ-sLXτ-s aris-

es which is of order O(\/T — s). Integration of the last step of the theorem gives the

result.

Corollary 5.1. Let 0 G R regular and Xt be a real valued process and so-

lution to dXt = σ(Xt)dBt. Further, σ fulfills the conditions mentioned above. Let

T = inf ί > 0{Xί G D} and τn = in{t>0{X^ G D}> where X? denotes the by the

Euler scheme approximated process. Then we can see that it holds for x > 0

r < T) -
Tv
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Proof.

r ( T < Γ) = E*[1R- (Xτ)} - E* |jΓ <5t(r)lR+(Xτ)dί]

P* (r" < T) = E*[1R- (Xϊ)} - E* |jf ί t(τn)lR+(X?)dt]

Thus it follows

P*(r < Γ) - P x ( r n < Γ) = E*[1R- (Xτ)] - EX[1R- (Xτ)]

] r

E* EΛ*/

Γl/n

+ΈX

The third difference arises by interpreting the entrance law as last exit time. Since

δy(x) G Ή"^ 1 ' 0 0 ) (for the definition please see remark 5.3). Furthermore, the Doob s-

tooping theorem should be added before applying Watanabe [31, Theorem 2-1]. Since

δx{Xτ) = 0 for x φ 0, the error is of order ( l / n ) ^ / 2 ) - ^ " 1 / 2 , u > 0 arbitrary.

\Ψx(τ<T)~Ψx(τn <T)\q

< (1/n V Γ)( 2/ 2)- + £ ( l / n V

E*

l / n

E* \ f δt-k/n{τ)lR+(XT-k/n)dt

E

k=o

UT-[Tn]/n

+ (l/n V T - (k/n) - ί) ( 2 / 2 )- uί t(r") | lR +(x)Udί
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/ - . x l / 2 - u

< (1/n V T)(2/2)~u(l + (1/n V Γ)"1/2 4- |P*(τn = t)^) ~ ί - J . D
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