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Introduction

This paper classifies locally projectively homogeneous surfaces in P3 that are

either ruled or degenerate, and thus complements the classification in [6]. A surface

M is said to be locally projectively homogeneous in P3 if for all points p and q of

M, there exists a neighborhood Up of p in M, and a projective transformation A

of P3, such that A(p) = q and A(UP) C M. If Up = M for all p, then M is said
to be homogeneous. Projectively homogeneous surfaces which are non-ruled and

nondegenerate are classified in [6].

Theorem. Let M2 be a locally projectively homogeneous surface in P3 which

is non-ruled and nondegenerate. Then M2 is projectively equivalent to

||0|| nondegenerate quadratic surfaces,

\\l\\ (Y - X2)3 = k(Z + 2X3 - 3XY)2, k ϊ -1/4

||5|| Y2 + cZ2 = Xl~2/x where λ > 2;

||6|| Y2 - eZ2 = Xl~2/λ where 0 < λ < 2;

||7|| X = exp(eY2-Z)

\\S\\ Y2-eZ2 = ex;

\\9\\ (Y2 - eZ2} = (X2 + l)exP(-(4/λ)arctanX);

The second-named author was supported by the Research Council of Katholieke Universiteit
Leuven during the stay in Leuven in 1995, when the main part of this paper was completed.
The first and last author are Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(Belgium) (F.W.O.). Research supported by the grant OT/TBA/95/9 of the Research Council of
the Katholieke Universiteit Leuven.
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\\12\\ Z = (X2 + y2

Z = (l/2)logpf2

arctanZ -

Similar questions, dealing with different groups such as the group of all

equiaffine transformations, centroaffine transformations and general affine transfor-

mations, have been treated amongst others in [5], [8], [1], [4] and [2].

Main Theorem. Let M2 be a locally projectίvely homogeneous surface in

P3 which is ruled or degenerate. Then either M2 is a plane or a conic, or M2 is

projectίvely equivalent to one of the following nondegenerate ruled surfaces

||15|| arctanZ = /carctan(y/X), k > 1;

k > 0;

||20|| log((X2 + Y2)/(l + Z 2 ) ) = /c(arctan(y/X) - arctanZ), k > 0;

\\23\\ Z = XY + (1 + X2) arctanX;

\\27\\

or to a cylinder (or rather a cone) over one of the following planar curves

||28|| Y = Xm where m ^ ±1;

||29|| X — eλs cos μs, Y = eλs sin μs, μ ^ 0, cα/feί/ logarithmic spiral',

\\30\\ Y = Xex,

or to the tangent-developable surface over the cubic curve

We remark that a degenerate surface is automatically ruled. The methods used

in order to obtain Main Theorem are based on the construction of a suitable frame.
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Unfortunately, in the cases considered here, there never exists a unique choice of
frame. Therefore, a careful analysis on how the fundamental equations change under
a change of structure is necessary in order to construct data which remain invariant
under such a change. Since M is locally projectively homogeneous, it then follows
that these data have to be constant.

1. Fundamental Equations

We recall the notion of projective structure and fix notations used in this paper.
Two torsion-free affine connections D and D are said to be projectively equivalent
if there is a 1-form φ such that

(1.1) DxY = DxY + φ(X)Y + φ(Y)X

for any vector fields X and Y. A projective structure on a manifold is a union
of locally defined torsion-free affine connections patched together by this equiva-
lence relation. We will tacitly assume that each affine connection is torsion-free and
Ricci symmetric, i.e., admits a parallel volume element. When two such equiaffine
connections are projectively equivalent, it follows that dφ = 0 in (1.1).

Let M be an (n + l)-dimensional differentiate manifold with a projective
structure P and / an immersion of a manifold M into M. We fix for the moment
a torsion-free affine connection D in the structure P defined on an open set U and
consider M immersed in U. Let ξ be an arbitrary vector field transversal to M. For
any vector fields X, Y on M we write

(1.2)

(1.3) Dxξ = -

thus defining an affine connection V, a symmetric tensor h of type (0, 2), a tensor
5 of type (1, 1), called the shape operator, and a 1-form r on M. Let RD and R
denote the curvature tensors of D and V respectively and let RicD and Ric be the
Ricci tensors. The normalized Ricci tensors 7D and 7 are defined by

Ί

D(U,V) = -RicD(U,V) = -lτ{W —> RD(W,U)V}
Tt Tli

Ί(X,Y) = ̂ ~Ric(X,Y) = γf{z — R(Z,X)Y}

Assuming that D is projectively flat, we have the following fundamental equations:

(1.4) -Gauss- R(X,Y)Z

= Ί

D(Y, Z)X - -jD(X, Z)Y + h(Y, Z)SX - h(X, Z)SY

(1.5) -Coclazzi- (Vxh)(Y,Z) + τ(X)h(Y,Z)
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(1.6) -Codazzi- (Vy S)(X) - τ(Y)SX - -ϊ°(Y,

= (VxS)(Y)-τ(X)SY-Ί

D(X,ξ)Y

(1.7) -Ricci- h(SX, Y) + (Vχτ)Y

= h(X, SY) + (Vγτ)X.

From the first identity we have the relation

(1.8) Ί(X, Y) = Ί

D(X, Y) + ̂ ^{trS - h(X, Y) - h(SX, Y)}.
(n- 1)

Referring to these identities we define the following invariants:

(1.9) -cubic form- C(X, Y, Z) = (Vxh)(Y, Z) + τ(X)h(Y, Z)

(1.10) -shape form- S(X,Y) = h(SX,Y) - jD(X,Y).

Definitions and formulas above all depend on the choice of a transversal vector

field ξ and a connection D; we summarize this dependence in the next two sets of

formulas:
By a change of ξ to ξ' = (U + £)M» several quantities will change by the following
rules:

(111)
XS'X = SX- VXU + (τ(X)

C'(X, Y, Z) = λCpί, y, Z) + *CycXiYiZ(h(X,

S'(X, Y) = S(X, Y) + C(£7, X, Y) - (Vxη)(Y)

where ?7( ) = Λ.(ί7, •) and Cyc^- γ z means cyclic summation over X, Y and Z. By a
change of the connection D to a connection D related by (1.1) we have the formulas:

(1.12) S = S-φ(ξ)I,

Ί°(X,Y) = ΎD(X,Y) - {(Dxφ)(Y) - φ(X)φ(Y)},

S(X,Y) = S(X,Y) - 2φ(ξ)h(X,Y) + {(Vxφ)(Y) - φ(X)φ(Y)},

C(X, Y, Z) = C(X, Y, Z) - Cycx^z{φ(X)h(Y, Z)}.
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Part I. Nondegenerate ruled projectively homogeneous surfaces

In Part I, we assume that the fundamental form h is nondegenerate and classify
nondegenerate ruled surfaces that are locally projectively homogeneous. In Section
2 we recall from [6] how to attach a frame to the immersion for general dimension
that has a special form. In Section 3, we further normalize the choice of frames
suitable for nondegenerate ruled surfaces assuming projective homogeneity. Then
in Section 4 we give the concrete forms of the immersions corresponding to such
distinguished frames, hereby completing the classification for the present part.

2. Special Choice of (jD,u;,£)

The triple (D,ω,ζ) consists of a connection D from a given projective structure

that is throughout assumed to be projectively flat, a parallel volume element ω, i.e.

(N.I) Dω = 0,

and a transversal vector field ξ along /. As proved in [6], there always exists a triple

(Z), α;, ξ) satisfying the following three conditions when h is nondegenerate:

(N.2) T = 0,

(N.3) tτ(Kx) = 0,

(N.4) trhS = 0.

Here, KX is the tensor denned by

) = -~

and tih means the trace relative to h. Such triples, say, (D,ω,ξ) and (£>,ω,£) are
related as follows.

DXY = DXY + φ(X)Y + φ(Y)X,

(2.1) ω = σω,

where U is a tangent vector field, σ is a non-vanishing scalar function, and φ =

( l / ( n + 2))cilogσ is a 1-form they need to satisfy the identities

(2.2) Λ(C7, X) = φ(X), d\ogλ = 20| M, Φ(U + 20 = 0.

This says that such triples are determined along the immersion up to scalar functions
σ. Certain combinations of formulas in (1.11) and (1.12) show

(2.3) S(X, Y) = S(X, Y) + C(U, X, F),
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(2.4) λ7

π(X,ξ) = - / D ( X , ξ ) -S(U,X) - ±C(U,U,X).

For more details, we refer to Section 1 of [6].

REMARK. Lemma 2.5 of the paper [6] claims that we can choose a triple

satisfying (N.I) to (N.4) and one additional condition (requiring the Fubini-Pick
invariant to be a nonzero constant) uniquely as long as the Fubini-Pick invariant
does not vanish. However, this claim is too strong because we can argue the behavior
of the connection D and the volume form ω only along the immersion. To be precise,
we can claim as follows : If the Fubini-Pick invariant does not vanish, we can choose
a triple so that the induced objects V, ft, S, S and the tensor 7D restricted to the
immersion are unique, and moreover, the 1-form 7D( ,£) is also unique.

3. Distinguished frames for ruled surfaces

We now suppose n = 2 and consider immersed surfaces in M — P3 with the
canonical projectively flat structure D. We assume that ft is nondegenerate. The
Fubini-Pick invariant J is by definition

(3.1) J=^h(K,K}.

Since the classification of locally projectively homogeneous surfaces for the case
J φ 0 was done in [6], we consider the case J = 0. Any surface with J — 0
is known to be ruled (see [7], p. 90), while the surface with K = 0, namely with
C = 0, is a quadratic surface. Hence we can assume that (7^0 and ft is indefinite.

In this section we choose a special frame {Xι,X2,ξ} and a scalar function λ
so that several geometric quantities have simple forms. We look for frames with the
property that ω(Xι,X2,ξ) = 1; such a frame is said to be unimodular.

We first choose {Xι,X2} by requiring

(3.2) ft(Xι,Xι) = 0, h(Xl,X2) = 1, h(X2,X2) = 0.

Then the condition (N.3) is equivalent to C(Xι,X2, ) = 0 and the Fubini-Pick
invariant is J = C(Xι,Xι,Xι)C(X2,X2,X2)/8. Hence we can assume

(3.3)

on a certain open set we put

(3-4) C(X1,X1,X1) = -2c,

where c Φ 0 by the assumption C -φ 0.
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Lemma 3.1. For an appropriate frame {Xι,X2}, the connection V is written
as follows:

(3.5) VX l Xl = aXl + cX2, VXlX2 = -aX2, Vχ2X± = Vχ2X2 = 0.

Proof. Because of (3.3), the differentiation of (3.2) implies

h(Vχ2X2,X2) = h(VX2Xl,X2) + ftpfi, VX aX2) - Λ(Vχ 2Xι,Xι) = 0.

Hence, we can put Vχ2X2 = bX2 and Vχ2Xι = —bXi for some function b. Let

now YI = μXi and ¥2 = M-1^2 for some unknown function μ. Then

VY2Y, = (X2(\ogμ) - b)Xl and Vγ2Y2 = μ~2(b - X2(logμ))X2.

Hence, choosing μ so that X2(logμ) = 6, we see that {Fι,F2} satisfies the last
condition. By renaming, we assume that {Xι, X2} already satisfies the condition.
Then the differentiation of (3.2) relative to Xι implies

= c, h(VXlXl,X2) + ft(Xι, VXlX2) = 0, h(VXlX2,X2) - 0.

Hence, we have proved the lemma. Π

Lemma 3.2. There exists a frame such that c= 1.

Proof. Fix {Xι,X2} satisfying the condition above and choose ξ so that

{Xι,X2,ξ} is a unimodular frame then define a new unimodular frame {Yί , Y2, ξ}

by the equations

Yl=μXl, Y2 = vX2, ξ=^(ξ + U) where \μv = 1.
A

Then, relative to the change of the connection D to D, we have by (1.1 1) and (1.12)

φ(Y2)Yl - h(Y^Y2}U

X2 + φ(X2)X1 - U)

the last equality follows from (3.5) and (2.2). Similarly,

- h(Y2, Y2)u
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because of (2.2) and \μv — 1. On the other hand, the cubic form C for {Yi, Y2} has

the property (3.3) and C(Yi,Yi, YΊ) = -2λμ3c. Hence, λ = 1/c, μ = 1, and v = c
suffice to get a required frame. D

The computation above shows that the frames with the properties above are
determined up to a scalar μ satisfying X2(μ) — 0:

(3.6) Yι

Lemma 3.3. Relative to the frame chosen above, we have

(3.7) 7 = -α2Λ, trS = α2, 5 = 0, 7

D(*, ̂ ) - M ,̂ Y),

where a2 = X2(a).

Proof. It is easy to see that

R(Xι,X2)Xι = -02X1 and R(Xl,X2)X2 = a2X2,

from which follow j(Xι,Xι) — ̂ (X2^X2] — 0 and 7(^1, X2) = — α2; hence 7 =
-a2h. Then S(X,Y) = (trS + a2)h(X,Y) by (1.8) and (1.10). Now refer to (N.4):

we see tr5 — — α2 and 5 = 0. The identity (1.10) implies the last claim.
We put

(3.8) SXl = pXl + qX2, SX2 = rXi + sX2.

Because of (1.7), we have s = p and, because of (3.7),

(3.9) 2p + α2 - 0.

Remark that

(3.10) Ί

D(X1,X1)=q, Ί

D(Xl,X2)=p, Ί

D(X2,X2)=r.

We compute the left-hand side of the Ricci identity (1.6):

LHS = (n - p2 + 2ar)Xl + (pl -q2 + r)X2,

where ri = -XΊ(r), p2 = X2(p), and so on. This implies

(3.11) 7D(*ι,0 =Pi - 92 + r, 7D(*2,0 = P2 - n - 2αr.

The projective flatness of .D implies the following:

(3.12) pi = q2, r2 = 0, p2 = ri 4- 2αr.
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In fact, the projective flatness of D implies the vanishing of

L(X, Y, Z) = (DXΊ

D)(Y, Z) - (DYΊ

D)(X, Z).

By the data in (3.10) and (3.11), we see

L(X1,X2,X1) = 2(pι -<β), L(X1,X2,X2) = -2Ί

D(X2,ξ),

ι,X2,0 = ~X2(Ί

D(X2,ξ)).

This implies (3.12). In particular,

(3-13) 'TD(Xι,ξ)=r, Ί

D(X2,ξ)=0. Ώ

Now let us assume that the surface is locally project! vely homogeneous. By
checking the transformation rules we can further diminish ambiguity of choosing
frames. In the following, for a quantity Q, its transformed quantity is denoted by
Q. First note that U = -(3/2)Xl(logμ)X2. Then, (2.4) implies

Hence, whether r = 0 or not is a projective invariant property. Since X2(r) — 0 and
X2(μ) = 0, we can assume r| = 1 in case r ^ 0, by letting μ — I?-*!"1/4. In this case,
the frame {Xι,X2,ξ} is uniquely determined and, hence, α, b, p and q are constant
by homogeneity. Moreover, (3.9) and (3.12) show that

a — p = 0.

Next suppose that r = 0. Since U = -(3/2)ΛΊ(logμ)X2 and X2(μ) = 0, we
see φ(U) = 0; then φ(ξ) = 0 because of (2.2). We also see Vχ2ί7 = 0. Hence, the
transformation formulas in Section 1 shows that SY2 = μ^Xϊ, namely,

P = t^P-

If p φ 0, then μ = Ipl"1/3 gives |p| — 1. Since p2 = 0 by (3.12), we can assume
that p=l and in this way the frame is uniquely determined. Since α is a constant,
we have a2 = 0 this leads to p = 0 by (3.9), which is however a contradiction.
Therefore p = 0. As the final step of the present argument, we pay attention to the
connection V. The formulas in Section 1 imply that

Vy,^ = μ2(a - 2Xl(logμ))Xl + μ2X2

Since X2(a) = 0, we can solve α = 2-XΊ(logμ) and may assume that α = 0 and μ is
a constant. Then, the identity SYi = μ^SXi implies

(3.14) q = μ2q
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If q is constant, then we can assume q — 0, 1, or —1. If q is not constant, then (3.14)

shows

which is a nonzero constant also by homogeneity. Since [Xi,X2] — a^2 = 0, we
can choose a coordinate system {-u, v} so that Xι = d/du and X% = d/dv. Because

of X<z(q) — 0, we have

(3.15) q = au~2

for a constant a.
By the whole argument above we have seen that any locally projectively homo-

geneous surface has one of special frames listed below:

(II. a) α = p = 0, r = ±1, q is any constant;

(Π.b) a=p = q = r = fy

(II.c) α = p = r = 0, ςf = ±1;

(II. d) α = p — r = 0, q = au~2, a ^ 0.

4. The associated system of differential equations and its integration

We give in this section explicit forms of the surfaces with the distinguished

frames that are fixed in the previous section.
In Section 1, we considered an immersion Mn into Mn+1. Assume now M =

Pn+1 with projectively flat connection D. To any hypersurface in Pn+1 we associate
its (local) lift, an immersion of codimension 2, into Rn+2 - {0} c Rn+2, which is
denoted by

z : Mn — > Rn+2.

In [6], we saw that such a z is determined by solving the system of differential
equations:

(4.1)

Vxη = z*X,

where η denotes the position vector of the mapping z and V the ordinary flat
connection on Rn+2.

Since the relevant quantities are all determined in the previous section, we can
write down the systems corresponding to the distinguished frames. Let us choose a
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coordinate system {u, v} so that Xι = d/du and X2 = d/dv\ this is possible because

[XL, JΓ2] = 0 in all cases. Thus we get the systems as follows.

(ILa) zuu = -qz + zυ, zuv = ξ, zvv = -rz,

ξu = rz - qzv, ξυ = -rzu, where r = ±1;

^11. DJ ZHU %vι Zuv ζ > %vv — U,

ξu = 0, &, = 0;

(II.c) zuu = -qz + zυ, zuv = ξ, zvυ = 0,

ξu = -qzυ, ξv = 0, where q = ±1;

(H.d) zuu = —au~2z + zv, zuv = ξ, zvv = 0,

ξu = -au~2zv, ξυ = 0.

The actual integration of these systems shall be sketched. We treat only with

the immersion z\ notice that the affine normal ξ is given by zuv for all cases.

For the case (ILa), assume first r — — 1. Depending on the value of q, we have

five cases: q>l, q = l, l>q> —1, q = —1, and q < —I. The respective sets of

independent solutions in this order are

{e~v cosλi£, e~v sinλw, ev cos μu, ev siuμu} where λ2 = 1 + <?, μ2 = q — 1,

{ev, ueυ, e~vcosV2u, e~vsmV2u},

{e~v cosλu, e~v siuλu, eμu+v , e~μu+v} where λ2 - 1 + q, μ2 = 1 - q,

{e~v, ue~v, e^u+v, e~^u+v},

{eλu-\ e~Xu~v, eμu+v, e~
μu+v] where λ2 - -1 - 9, μ2 = 1 - q.

Each set defines an immersion into P3 with inhomogeneous coordinates

[1,X,Y,Z]. The image is (included in) the surface, which we list in the following

with numbers following the list of surfaces in [6]:

||15|| arctanZ = &arctan(F/Jf), k > 1;

|| 16 1| Z = arctan(y/Jf);

||17|| arctanZ = k\og(Y/X), k > 0;

\\19\\ Z=(Y/X)k, 0 < f e < l ;

The parameter k is determined by q.

Assume next r = 1. Then the set of independent solutions is

where 2λ2 = — q + \J\ + q2. The resulting surface is
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= fc(arctan(y/J*0 - arctanZ), k> 0;

The system (Π.b) has a solutions given in the form

z = (6Au + 2B)v + Au3 + £u2 + Cu + £>,

where A, B, C, and D are independent constant vectors. The surface is equivalent

to the Cay ley surface

The set of independent solutions for the case (II.c) when q = — 1 is

{e~u, eu, (u + 2v)eu, (u - 2v)e~u}

and that when q = 1 is

{cos w, sin u, u sin u + 2υ cos w, u cos w — 2v sin u} .

The surfaces are respectively

\\23\\ Z = XY + (1 + X2) arctanX;

To solve (Π.d), it is better to transform the variables {u,v,z} to new variables
{w, v, ζ} by putting w — eu and ζ — e~w/2z. Then the transformed system is

ζww = (\ -cλζ + e2wζv and ζυυ = 0.

If 1/4- a > 0, then put λ = ^/l/4 - α. In this case, if λ ̂  1 (i.e., α / -3/4), a set
of independent solutions is

<e~λw eλw ve~Xw H __ ?: _ e(
2-A)^ τ;eλt/; H __ -

' ' + ' +

the surface is projectively equivalent to

Here fc=l + l / λ > l and we exclude the case k Φ 2 since λ ^ 1. A subcase
when fc = 3 (i.e., α = 0) is already counted above in ||21||. If λ = 1, then a set of
independent solutions is

wew,vew

which defines the surface
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25|| Z =

When 1/4 — a = 0, a set of independent solutions is

the corresponding surface is projectively equivalent to

||26|| Z = XY + ex-,

For the last case when 1/4 — a = — λ2 < 0, a set of independent solutions is
given by

{cos λw , s'm λw , v cosλw H — (1 + X2)e2w(cosXw + λsinλiί;),

vsiiϊXw H—— — e2w(—XcosXw + sinλκ;) > .

Now the surface is equivalent to

||27|| log((X + YZ)/(1 + Y2)} = k arctan y,

where k = 2 / X > 0.
Thus we end the listing of surfaces. As is easily seen, all surfaces are locally

projectively homogeneous.

Part II. Degenerate projectively homogeneous surfaces

In the second part, we assume that rank/i = 1 and thus complete the classifica-
tion of locally projectively homogeneous surfaces. In Section 5, we first prove the
existence of a structure {D,ω,ξ} such that C = 0 and of a frame {Xι,X2} such
that τ(X2) = 0. In Section 6, we then deal with the case that ΎD(Xι,X2) = 0 and
show that such projectively homogeneous surfaces are congruent to cylinders on
projectively homogeneous plane curves. Finally, in Section 7, we conclude the clas-

sification by assuming that ΊD(Xι,X2) Φ 0. The surface obtained in that section
turns out to be a tangent-developable surface over a cubic curve.

5. Specialized choice of {D,ω,ξ} for degenerate surfaces

Throughout this part, we will assume rank/i = 1 then the surface is said to
be 1-degenerate. In the following lemmas, we will gradually improve our choice of
structure {D,ω,ξ} and of a frame {Xι,Xz} specially adapted to the problem. At
each step, we will also investigate the invariance of such a frame.

Lemma 5.1. Given a structure {D,ω,ξ}, there exists a frame {Xι,X2} such
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that

ft(*ι,*ι) = 1, h(X^X2) = h(X2,X2) = 0, ω(Xl,X2,ξ) = 1.

Moreover, for such a frame, we have that C(X2,X2, •) = 0, and that Vχ2X2 only
has a component in the X2-direction.

Proof. The first statement is obvious. In order to prove the second, we notice
that

C(V,X2,X2) = Vh(X2,X2) - 2h(VvX2,X2) = 0,

for any vector field V. Applying Codazzi's equation now completes the proof. D

Since h is degenerate, we cannot use the normalization in Section 2. We start
with a triple {D,ω,ξ} satisfying the condition Όω = 0 and make special choices
to know what kinds of invariants we get in the following. Let us remark that two
structures {D,ω,ξ} and {D,ΰ;,ξ} have relations as in (2.1), where we have the
relation φ — (l/4)dlogσ, because of equiaffineness.

Lemma 5.2. There exist a structure {D, ω, ξ} and a frame {Xι, X2}, satisfying
the conditions of Lemma 5.1, such that the cubic form C vanishes identically. More-
over, if{D,ω,ξ} and {D,ω, ξ} determine two such structures, with corresponding
frames Xι, X2 and Xι, X2, then they are related by

DXY = DXY + φ(X)Y + φ(Y)X,

ί = I^ + «'(*) _ Λ

X2 = μX2,

~Xl =vXl+cX2,

where U = (l/4)ΛΊ(logσ)AΊ + bX2, λ = z/~2, μ = v^a'1, φ(Xi) = η(Xi) =
h(U,Xi) andX2(σ) = X2(v) = 0.

Proof. We consider a change of structure given by

DXY = DXY + φ(X)Y 4- φ(Y)X,

ω = σω, ξ = -(U + ξ),

where φ = (l/4)dlogσ. Under such a change, the frame {Xι,X2} can be varied in
the following way:
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Since T i ( X ι , ' X ι ) = Xh(Xι,~Xι) = λz/2 , we deduce that λ = ι/~2. Similarly, by
computing α;(Xι, X^ξ), we deduce that μ = λ/(z/σ) = v~3σ~l. Also, we find

C(X2,Xί,X1)=C'(X2,X1,Xl)-φ(X2)h'(Xl,X1)-2φ(Xl)h'(X1,X2)

- φ(X2)h'(X1,Xl) - 2φ(Xl)h'(X1,X2)

= \C(X2,X1,Xl) - Xφ(X2)h(Xί,X1).

Hence, using Lemma 5.1, we also get

(5.1) C(X2,Xι,Xι) = μ^2\(C(X2,X1,X1) - φ(X2)).

Hence, by choosing φ (i.e., by choosing σ) appropriately, we may assume
C(X2,Xι,Xι) = 0. As follows from (5.1), this restricts the possible freedom of
changing the structure and the frame by imposing the condition that φ(X2) = 0,
(i.e., X2(σ) = 0).

Next, we compute

Xι,Xι) - C"(Xι,Xι,Xι) - 3φ(Xl)h'(Xl,Xl)

Taking into account that we are restricting ourselves to changes for which
Xι,Xι) remains zero, we see

Hence, by choosing U appropriately, we may assume C(-XΊ,ΛΊ,ΛΊ) = 0. By
restricting now to changes of structures which preserve this property we find that
η(Xι) := h(U,Xι) = φ(X\). Since, we already know 77(^2) = 0 = φ(X2), we have

Φ\M = Ή
Finally, we have

= μ(r(X2)-X2(logλ)).

Hence, we may assume r(X2) = 0 and restrict ourselves to changes for which X2X =
0. This completes the proof of the lemma. D

Let us now take a structure {D,ω,ξ} and a frame {X^X^} satisfying the pre-

vious lemmas. We write

2 —

X2 = a6X2.
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Then, we have the following lemma:

Lemma 5.3. We have
(1) o4 = α5 = α6 = 0,
(2) Ί

D (Xs,X2) = 0 = S(X2,X2),
(3) Ί

D(X1,X2)=X2(a2),

(4) τ(ΛΊ) = 2α0,
(5) Xt(Ί

D(X1,X2))=0,
(6)

Proof. Since the cubic form C vanishes identically from the previous lemma,
we get

0 = C(X2,X1,Xl) = τ(X2) - 2h(Vx,X1,X1) = -205,

0 = C(X1,X2,Xl) = -ΛίV^JCa.Xi) = -o4,

0 = C&^X^XJ = τ(AΊ) - 2h(VXlX1,X1) = r(Xj) - 2α0.

Using the previous equations together with the fact that Dω = 0, we obtain

ι,Xa,0 = -ω(Dχ,X1,Xί,ξ)-ω(X1,DχaX2,ξ)-ω(X1,X2,Dx,ξ)

Hence Vχ2X2 = 0 and this proves (1) and (4).
Next, we use the Gauss equation. On one side we have

R(X1,X2)X2 = Ί

D(X2,X2)X1-^D(X1,X2)

but, on the other side, by an immediate computation we find

Thus by comparing components, we obtain (2) and (3).
Since the structure determined by D and ω is projectively flat, we obtain

= Xl(Ί

D(X2,X2))-2Ί

D(VXlX2,X2).

Hence, using also (1) and (2), we obtain (5).
Finally, we are going to use the Ricci equation. We have

- X2(r(Xι)) - τ(V χ2X^ = X2(

= Xι(r(X2)) - τ(VXlX2) = 0.
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So it follows from the Ricci equation that

X2(r(Xι)) = h(SXl9X2) - h(Xl9SX2) = -h(X^SX2). D

To conclude this section, we will now investigate how some of the invariants

appearing in the previous lemma may change under a change of structure as given
by Lemma 5.2.

Lemma 5.4. Let {D,ω,ξ} with frame {Xι,X2} and {D,ω,~ξ} with frame

{Xι,'X2} be two structures satisfying the conditions of Lemma 5.2 (and related

as in Lemma 5.2). If we denote the invariants with respect to the second structure

by adding a ~, we have

(1) r(X1) = ι/(r(X1) + Λ:1((l/2)logσ-logλ)),

(2) SX^= (μ/X)(SX2 - (l/4)X1(logσ)VX2X1 + X2(b)X2 - φ(ξ + U)X2),

(3) h(SX2,Xl)
(4) 5(x, y)_= s(x, Y) - Φ(u
(5) S(_X± χι)
(6) Ί

D(Xl,X2)

Proof. We have

= τ(X 1 )+XιQlogσ-logλ

= τ(vXι +cX2) + (vXi + cX2) ( - log σ - log λ

This proves (1). The proof of (2) follows by a similar computation. In order to

obtain (3), we use (2). We have

= μvh(SX2,Xι).

The proof of (4), (5) and (6) is now done in a similar way. D
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6. Cylinder over projectively homogeneous plane curves

We now consider the case where ^D(Xi,X2) — 0 and prove that any

1-degenerate projectively homogeneous surface with this property is a cylinder over

a projectively homogeneous plane curve. First, notice that the fact jD(Xi,X2) = 0

is independent of the choice of frame and structure satisfying the conditions of

Lemma 5.2, because of Lemma 5.4. We put

SXi = pXi + qX2, SX2 = rXi + tX2.

From Lemma 5.3, it now follows that X2(a2) = 0 and from the Gauss equation it

follows that

Hence

(6.1) -Ί

D(X1,X1)X2-SX2

= Xι(a3)X2 + a3a2X2 — X2(a0)Xι — aoa3X2 — X2(aι)X2.

Hence by comparing the Xι -components, we obtain

(6.2) r = X2(α0).

Since D and ω determine an equiaffine structure, we also have

(6.3) Q = (DXlω)(Xl,X2,ξ)

= — α0 — a2 — τXι).

Comparing this with Lemma 5.3, it follows that a2 = — 3α0. This in turn implies

0 = X2(a2) = -3X2(a0) = -3r.

Hence r = 0 and X2(τ(Xl)) = 0.

Lemma 6.1. Let {D,ω,ξ} be a structure and {Xι, X2} a frame such that

the conditions of Lemmas 5.1 and 5.2 are satisfied. Assume that jD(Xι,X2) = 0.

Then there exist a structure (Z), a;, £} and a frame {Xι , X2} which also satisfies the

conditions of Lemmas 5.1 and 5.2, and has τ(Xι) = 0.

Moreover, any two structures {D,ω,ξ} with corresponding frame {Xι,X2} and

{D,ω,^} with corresponding frame {Xι,X2} satisfying the first part of the lemma
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are related by (*), where U = (l/4)ΛΊ(logσ)ΛΊ + bX2, λ == ι/~2, μ = v~3σ~l,
X2(σ) = X2(ι/) = 0, φ(Xi) = η(Xi) andX^logσv4) = 0.

Proof. It follows from Lemma 5.4 that τ(Xι) = v(τ(Xι) + ΛΊ((l/2) logσ -
log λ)). We now consider the following system of differential equations for a function

a. We put

X1(a) = τ(X1), X2(a)=0.

The integrability condition for this system is satisfied since

*ι(*2(α)) - XS(Xι(a)) = (VXlX2 - V x^X^a = 0.

The required structure is now obtained by putting a = logσzA

If we now have two structures (with corresponding frames) satisfying these

conditions, it follows once more from Lemma 5.4 that JΓι(logσz/4) = 0. Π

By using now the Gauss equation, the Codazzi equation for 5, and the projective

flatness, a straightforward computation yields the following lemma.

Lemma 6.2. Let {D,ω,ξ} be a structure with corresponding frame satisfying

the conditions of Lemma 6.1. Then, we have

-7D(*ι, Xι) ~ t = Xι(a3) -

Lemma 6.3. Let {D, ω, ξ} be a structure and {Xι, X2} a frame such that the

conditions of Lemma 6.1 is satisfied. Assume thatjD(Xι,X2) = 0. Then there exist

a structure {D,ω,~ξ} and a frame {Xι,lX2} which also satisfies the conditions of

Lemma 6.1 and has^S(Xl,~Xl) = 0, V^^i = 0 andV^lXl = 0.

Moreover, any two structures {D,ω,ξ} with corresponding frame {Xι,X2} and

{D,ω^} with corresponding frame {X^X2} satisfying the first part of the lemma

are related by (*) where U = (l/^)Xl(\ogσ)Xl + bX2, λ = ι/~2, μ = v~3σ~l,

X2(σ) = X2(v) = 0, ψ(U + 2ξ) = 0, X2(c) = -ι/^(Xι), b = X^c/v), φ(Xi) = η(Xτ)
and Jfι(logσz/4) = 0.

Proof. We have

S(Xlt XJ = ι^2(S(X1,Xl) - φ(U + 20).
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Hence, by choosing φ(ξ) appropriately, we may assume that S(Xι,Xι) = 0 and if

we have two structures with this property, then it follows that φ(U + 2ξ) = 0.
Next, we compute V-% Xι. Then we see

Hence, by choosing c appropriately, we may assume that α3 = 0 and it follows that

if we have two structures with this property, then Xϊ(c) = —vφ(Xι) = Xι(v).
Finally, we compute V-^ X\. We get

from which we deduce that by choosing b appropriately, we may assume ~a\ = 0.

Furthermore, any two structures with this property are related by

= ι/Xι(c) + cX2(c) -h

= vX^c) + vcφ(Xl) = vX^c] - cXι(ι/). D

Let us now assume that we have two structures {D,ω,ξ} with corresponding

frame {Xι,X2} and {D,ω,^} with corresponding frame {Xι,X z} satisfying both
the previous lemmas. Then, we obtain

X2(b) = X2 X, = X, X2 = X, = -Xι(Φ(Xι))

By a straightforward computation, we also get

(6.4) Xp = p-

Since 5(-XΊ,-XΊ) = 0, we have p = 7D(Xι, JΪΊ).We also have by Lemma 6.2

X2(p) = 7D(^2,0 = -X2(7D(^ι,^ι)) = -Jf2(p).

Hence X2(p) = 0. Expressing then the identity

we have

which is equivalent to
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-Xl(X2(P)) = X2(-Xι(p) -

Hence, we find that X2(X2(q)) = 0.
Now, since X2(p) = 0, it follows that we can choose φ(X\) in such a way that

p — 0 in view of (6.4). Therefore, let us now assume that we work with structures
with this additional property. Then, we already know

1,X2,ξ) = l, S(Xi,Xj)=0,

= qX2, SX2 = 0,

Ί

D(X1,X2)=Ί

D(X2,X2)=Ί

D(X1,X1) = 0,

Ί

D(X1,ξ) = -X2(q), Ί

D(X2,ξ) = 0,

with X2(X2(q)) = 0. Moreover, we still have the following degree of freedom:

DXY = DXY + φ(X)Y + φ(Y)X,

X1 = vXl+cX2,

U = φ(Xι)Xι + bX2,

where

X2(σ) = X2(v] = 0 = X2(λ) = X2(μ), X^σS) = 0,

φ(X1)
2 + 2φ(ξ) = 0, φ(Xi) = η(Xi),

(^), Xl(φ(Xl}}=l-φ(Xl)
2.

Since VχiXj = 0, we can choose coordinates u and v such that Xι = d/du and
X2 = d/dv. Then we use again the local lift from an immersion of M into P3 to an
immersion z : M2 — > R4, as recalled in Section 4. Using the obtained information,
we get

,r C\ ZUU = S5 ZUV == "j ZVV == U,

ξu = 92^-^2^, Cυ = 0,

where q% = X^q), a function only of u. Solving the system (6.5), we obtain

z(u, v) = A(u) + Bv,

where B is a constant vector and A satisfies:
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(6 6) ~~ '
' A'" = ξ' = q2(A + υB) - vq2B = q2A,

from which we deduce that A is a planar curve and that B is transversal to this

plane. Our aim in the following is to show that the plane curve is projectively

homogeneous. For this aim, we look after the invariants above more carefully.
Since the functions σ, z/, λ and μ only depend on the variable u, we can find

functions / and g of u and a non-vanishing constant a such that

ι
g —4gf 9 \ —2g

OL

where g is a solution of the differential equation:

We then obtain

q = J-(q-f"-9'nΛμ

and since X2(X2(q)) = 0, we can write q = q\(u) + vq2(u). Since

(6-7) Xz(q)

we see that whether q2 vanishes or not is independent of the choice of basis. Let us

assume first q? •£ 0. Then, we have

Xl =2

-f'-g'f

<12

μ \qι qz qz μ
,(qι ϊ" 9'f\ f . fqi ϊ"

= -ag ----- - oίj + OL\

Hence, by choosing / appropriately, we may assume

q2
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So, there exists a constant β such that qι = βq2. Therefore, by translating the in-
coordinate, if necessary, we may assume qι = 0. We now put q2 — X2(q) and
q<2 — X2(q} By (6.7), we know

(6.8) q2=e3°q2,

and thus

*ι(logft) = 3</'e* +

- 3(g"

Hence, since #" = -(l/2)(^)2, we deduce that

(6.9) Xι
Ό

Now, we use the fact that M is homogeneous. It follows from (6.8) and (6.9) that
there exists a constant K such that

(6.10) κ=\q2-*(XιXι(logq2)-±(Xl(logq2))*)
6

We now introduce a variable s and a curve C by,

Then,

Hence, using (6.6) and (6.10) we deduce that

0 = A'" - q2A,

= -q$
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because K is constant. Applying now the formulas for projectively homogeneous

curves, see [9], which are also recalled in Appendix, we deduce that C (and hence

also A) is a projective planar curve which is projectively homogeneous.

If q2 = 0, then the curve A is a quadratic curve, which is also projectively

homogeneous. This completes the proof in the case where 7D(^ι, X2) = 0.

7. Tangent-developable surfaces of projectively homogeneous space curves

In this section, we consider the case where ^D(Xι^X2) ^ 0. We will show that

any projectively homogeneous surface with this property is a tangent-developable

surface over a cubic curve.

We recall from Lemma 5.4 that

Hence there exist a structure {D, ω,ξ} and a frame {Xι,X2} such that

The proof of the following lemma is straightforward from Lemma 5.2 and is

therefore omitted.

Lemma 7.1. There exists a structure {D,ω,ξ} with corresponding frame

{Xι,X2} such that [Xι, X2] = 0, ie. a2 = α3. Moreover, any two such structures with

corresponding frames have to be related by (*) where U = η(Xι)Xι + bX2, λ = v~2 ,
μ = ϊ/-ι, σ = ϊ/-2 f χ2(ή = o, φ(χ2) = 0, φ(Xl) = η(X^) = -(l/2)-Xι(logι/) and

We now further improve our choice of structure and frame. Since [ΛΊ, Jf2] = 0>

we can introduce coordinates u and υ such that X± — d/du and X2 — d/dυ. Using

the above formulas, we can introduce local functions a and /?, depending only on

the variable u9 such that

(7.1) ι/ = α(w),

(7.2) c = β(u)-υa'(u).

Since α2 = ^α2 - (3/2)-XΊ(z/), we get

4- cX2) ι/α2 - Xι(
(7.3)

= vXi(v)a,2 -h

From Lemma 5.3 (3), it follows that we can write a2 = v + f ( u ) . Hence, by using
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also (7.1) and (7.2), equation (7.3) reduces to

_ 3
X\(<ΐ>ϊ) = OLOLV + OίOL 'f + Oί(β — VOί) -- OLOί'

= aa'f + aβ- -αα".

Hence, by choosing β appropriately, we may assume X 1(0,2) = 0, and by a trans-
lation of the ^-coordinate, if necessary, we may therefore assume α2 = v.

We have now seen that for an appropriate choice of the structure {.D,^,^} and
the frame {Xι,X2} it holds

- vX2, Vχ2X2 = 0,

= 1, h(Xl,X2) = h(X2,X2) = 0,

Hence, for a local lift z of the immersion, we get the equation

^uv % ~τ~ vZ"v^ %vv — '-'•

Solving the above system of differential equations, we first get

z(u, v) = A(u)v + B(u).

Then

A'(u) = zUV:= -A(u)v - B(u) + vA(u) = -B(u).

Hence

z(u,v) = A(u)v — A'(u).

This implies that the surface in question is a tangent-developable surface over a
space curve A(u).

On the other hand, we can prove the following proposition.

Proposition 7.2. Let z(u,v) = f ( u ) + vf'(u) be a l-degenerate tangent-
developable surface where f is a space curve. Then the surface is projectively
homogeneous if and only if the space curve is a cubic curve.

Proof. The l-degenerate condition is f" φ 0 (mod/,/',/"), i.e., / is not
planar. Assume that the surface z is projectively homogeneous and let F be a

projective transformation. Since P transforms any line to a line, we may assume
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that P transforms tangent lines to tangent lines as far as P is near to the identity;

this implies that P acts as

P(f(u) + «/'(«)) = (aυ + b ) f ( ψ ( u ) ) + (cυ + d)f(φ(u)),

where φ is a local diffeomorphism of the u-space and α, 6, c, and d are functions
only of u. Then we have

P(f(u)) = bf(φ(u))+df'(φ(u)),

P(f'(u)}=af(ψ(u)) + cf'(ψ(u)).

Since / is not planar, it is easy to see α = 6', c — bφ', d = 0. Hence P ( f ( u ) ) =

bf(φ(u)\ which shows that the curve / is projectively homogeneous. Then we get

P(f + vf) = bf(φ(u)) + v(bf(φ(u))Y.

This identity means that the transformation φ determines the transformation P.

Therefore, in order that the surface be projectively homogeneous, the linear isotropy

of the projective automorphism group of the space curve / must be at least

1-dimensional. This is the case only for cubic curve, as will be shown in Proposition

A2 of the appendix.

Conversely, given a cubic curve in the form A(u) — [I,u,u2,u3], the corres-

ponding surface is

z(u, v) = [1, u — v, u2 — 2m;, u3 — 3u2v].

It is now easy to see that the surface is projectively homogeneous and the coordinates

[l,X,y,Z] satisfy

(7.4) (Y - X2)3 =v6 = -i(Z + 2X3 - 3XY)2.

This corresponds to the degenerate surface of the Enriques family of surfaces that

was excluded in the list ||1||. D

Appendix: Projectively homogeneous plane curves and a characterization of
cubic curve

In this appendix, we give a sketch on how to classify projectively homogeneous

plane curves by modifying the discussion in [9], and complete the proof of Propo-

sition 7.2.
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1. Plane curves

We consider nondegenerate plane curves. We regard the curve as the immersion
of ί-space into P2:

By taking appropriate homogeneous coordinates, each coordinate of the immersion
z is a solution of an ordinary differential equation of third order, which we can
write as

(a.l) z'" + 3P2z' + P3z = 0.

A set of linear independent solutions {zl,z2,z3} defines an immersion t — »
[ z l ( t ) , z 2 ( t ) , z 3 ( t ) ] G P2. Put P = P3 - (3/2)P£, then the cubic form Pdt3 is an
invariant called the Laguerre-Forsyth invariant; it is independent of representation
of the curve ([9, III, §1]). When P = 0, the curve is equivalent to a quadratic curve.
When P φ 0, the curve has a parametrization s for which Pdt3 = ds3 and this
parameter is called the projective length parameter. Relative to s, the curve is
defined by the equation

(a.2) z'" + 2kz' + (1 + k')z = 0.

The coefficient fc is called the projective curvature.
Now assume that the curve is projectively homogeneous. Then, if the curve is

not a quadratic curve, the corresponding equation is

(a.3) z'" + 2kz' + z = 0,

where k is a constant. By integrating this equation, we can see that such a curve is

equivalent to one of the following curves represented by inhomogeneous coordinates

[1,X,Y]:

[PI] Y = X™ where m φ ±1;

[P2] X = eλs cosμs, Y = eλs sinμs, μ ^ 0, called logarithmic spiral;

[P3] Y = Xex.

The quadratic curve is included in [PI]. Since these curves are all projectively

homogeneous, we end the classification:

Proposition Al. Any nondegenerate projectively homogeneous plane curve is
projectively equivalent to either a quadratic curve or one of the curves listed above.
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2. Space curves

We next consider space curves, curves in the projective 3-space, which are non

degenerate in the sense that they are not included in any lower dimensional linear

subspace. It is an immersion of ί-space into P3:

Each coordinate of the immersion z is a solution of an ordinary differential equation

of fourth order, which we can write as

(a.4) z"" + 4pιz'" + 6p2z" + 4p3z' + p±z = 0.

By a change of z to w = Xz for an appropriate function λ, we can make w to satisfy

the equation

(a.5) w"" + 6q2w" + 4q3w' + q±w = 0.

where qι are defined by the formulas:

<?2 =P2 -p( -P\,

(a.6) q3 = p3 - p'{ -

Then we define two forms #3 and ^4 by

(a.7)

They are invariants to the space curve: given a transformation of coordinates and

the parameter such as

(a.8) z i—> u = μz, t ι—> s = φ(t),

define two forms τ% and τ± to the curve u by the same procedure. Then we have

r3 = φ*θ3 and τ4 = φ*θ±.

These two invariants are fundamental for the study of space curves; for example, if

#3 = #4 = 0, then the curve is necessarily a cubic curve. Refer to [9, Chapter VIII].

Now it is easy to prove the next proposition.
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Proposition A2. For a projectively homogeneous space curve in the projective
space P3, assume that the linear isotropy of the automorphism group is at least
l-dimensional. Then the curve is a cubic curve.

Proof. We have seen that a space curve is determined by an ordinary differ-
ential equation

(a.9) /""

Suppose there is a φ : R — » R such that φ(Q) = 0 and

(a. 10) b(t)f(ψ(f)} = P(/(ί))

for some projective transformation P. Then two immersion / and bf(φ) are projec-
tively equivalent. Hence, by the argument above, we have

and = 4,

where Θ3 and Θ4 are the invariants to (a.9). Since <p(0) = 0, we can see φ'(ϋ) = 1 if
6/3(0) / 0 and φ'(ϋ) = ±1 if 04(0) ̂  0. Hence, both 03 and 04 vanish simultaneously
at 0, because the linear isotropy has to be infinite. Then by the assumption that the
curve is projectively homogeneous, this holds everywhere and therefore the curve is
cubic. D
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