

Title	A note on the relation of Z ₂ -graded complex cobordism to complex K-theory
Author(s)	Yosimura, Zen-ichi
Citation	Osaka Journal of Mathematics. 1975, 12(3), p. 583–595
Version Type	VoR
URL	https://doi.org/10.18910/11134
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Yosimura, Z. Osaka J. Math. 12 (1975), 583-595

A NOTE ON THE RELATION OF Z₂-GRADED COMPLEX COBORDISM TO COMPLEX K-THEORY

ZEN-ICHI YOSIMURA

(Received December 16, 1974)

Let $MU^*()$ and $K^*()$ denote the Z_2 -graded complex cobordism theory and the complex K-theory respectively. The Thom homomorphism $\mu_{c^*}: \pi_0(MU) \rightarrow \pi_0(K)$ on coefficient groups is identified (up to sign) with the classical Todd genus $Td: \Lambda \rightarrow Z$. We denote by I the ideal of Λ to be the kernel of $Td: \Lambda \rightarrow Z$. Wolff [7] proved that the decreasing filtration $\{I^aMU^*()\}$ of $MU^*()$ consists of cohomology theories defined on the category of based finite CW-complexes, and the associated quotients $I^aMU^*()/I^{q+1}MU^*()$ are determined by the complex K-theories $KG^{q}_{\mathbf{q}}()$ with coefficients $G_q = I^q/I^{q+1}$.

The purpose of this note is to extend the Wolff's result to the category of based CW-complexes. Let F_qMU be the CW-spectrum associated with the cohomology theory $I^qMU^*()$, i.e., $\{Y, F_qMU\}^* \cong I^qMU^*(Y)$ for any based finite CW-complex (or finite CW-spectrum). We show that $\{F_qMU^*()\}$ is a decreasing filtration of $MU^*()$ consisting of Λ -modules so that the associated quotients are equal to $KG_q^*()$, and in addition that $F_{q+1}MU^*()$ is a direct summand of $F_qMU^*()$.

Moreover we give a tower

$$MU \rightarrow \cdots \rightarrow Q_q MU \rightarrow Q_{q-1} MU \rightarrow \cdots \rightarrow Q_0 MU = K$$

of MU-module spectra such that $KG_q \rightarrow Q_q MU \rightarrow Q_{q-1}MU$ is a cofiber sequence of MU-module spectra, which factorizes the Thom map $\mu_c: MU \rightarrow K$.

Baas [3] constructed a tower of CW-spectra

 $MU \rightarrow \cdots \rightarrow MU\langle n \rangle \rightarrow MU\langle n-1 \rangle \rightarrow \cdots \rightarrow MU\langle 0 \rangle = H$

factorizing the Thom map $\mu: MU \to H$. In appendix we show that the tower is of MU-module spectra and the sequence $\sum^{2n} MU \langle n \rangle \xrightarrow{m_{x_n}} MU \langle n \rangle \to MU \langle n-1 \rangle$ is a cofiber sequence where m_{x_n} is the multiplication by x_n a ring generator of Λ with degree 2n.

1. Decreasing filtration of $MU_{*}()$

1.1. A pair (E, ρ) is called a Z_2 -graded CW-spectrum if E is a CW-spectrum

and $\rho: \Sigma^2 E \to E$ is a homotopy equivalence. Such a pair (E, ρ) gives rise to natural isomorphisms

$$\rho_*: E_*(X) \to E_{*+2}(X), \quad \rho_*: E^{*+2}(X) \to E^*(X)$$

for any CW-spectrum X. So we can define Z_2 -graded homology and cohomology theories $E_{i}()$, $E^{i}()$ by putting

$$E_{\mathfrak{s}}(X) = E_{\mathfrak{o}}(X) \oplus E_{\mathfrak{1}}(X), \quad E^{\mathfrak{s}}(X) = E^{\mathfrak{o}}(X) \oplus E^{\mathfrak{1}}(X).$$

For a CW-spectrum E we put

$$E = \bigvee_{n} \Sigma^{2n} E$$
, $\overline{E} = \prod_{n} \Sigma^{2n} E$.

Taking the canonical identifications $\rho: \Sigma^2 E \to E$ and $\bar{\rho}: \Sigma^2 \bar{E} \to \bar{E}$ as structure morphisms E and \bar{E} admit structures of Z_2 -graded CW-spectra respectively. From definition it follows that

$$\begin{aligned} \boldsymbol{E}_{0}(X) &\simeq \sum_{n} E_{2n}(X) , \quad \boldsymbol{E}_{1}(X) \simeq \sum_{n} E_{2n+1}(X) , \\ \boldsymbol{\overline{E}}^{0}(X) &\simeq \prod_{n} E^{2n}(X) , \quad \boldsymbol{\overline{E}}^{1}(X) \simeq \prod_{n} E^{2n+1}(X) \end{aligned}$$

for all CW-spectra X. In particular, the canonical morphism $H \rightarrow \overline{H}$ becomes a homotopy equivalence for the Eilenberg-MacLane spectrum H.

The *BU*-spectrum K may be regarded as a Z_2 -graded *CW*-spectrum because it possesses the Bott map $\beta: \Sigma^2 K \rightarrow K$ which is a homotopy equivalence.

Denote by F_n the direct sum of *n*-copies of the integers Z and by F the direct limit of F_n , i.e., F is a free abelian group with countably many factors. Putting

$$BU_{F_n} = BU \times \cdots \times BU$$
, the product of *n*-copies of BU ,
 $BU_F = \bigcup BU_{F_n}$, the union of BU_{F_n} ,

we obtain

Proposition 1. There exists a natural isomorphism

$$[X, BU_F] \rightarrow KF^{\circ}(X)$$

for any based connected CW-complex X.

Proof. Let Y be a based connected finite CW-complex. Then we have a sequence of natural isomorphisms

$$[Y, BU_F] \leftarrow \varinjlim [Y, BU_{F_n}] \leftarrow \varinjlim [Y, BU] \otimes F_n \to \varinjlim K^{\circ}(Y) \otimes F_n$$
$$\to K^{\circ}(Y) \otimes F \to KF^{\circ}(Y) .$$

Therefore the contravariant functor KF° defined on the category of based connected CW-complexes is represented by BU_F (use [1, Addendum 1.5]).

Proposition 1 implies that BU_F is homotopy equivalent to $\Omega_0^2 BU_F$ where Ω_0^2 means the component of the base point in the double loop space. Hence we have

(1.1) in the BU-spectrum KF with the coefficients F every even term is the based CW-complex BU_F .

1.2. Let us denote by MU the unitary Thom spectrum and by $\mu_c: MU \rightarrow K$ the Thom map which is a ring morphism. The composition

$$\boldsymbol{\mu}_{\boldsymbol{c}} \colon \boldsymbol{M} \boldsymbol{U} \to \boldsymbol{K} \to \boldsymbol{K}$$

of $\forall \Sigma^{2n} \mu_c$ and $\forall \beta^n$ is a morphism of Z_2 -graded ring-spectra, called the Z_2 graded Thom map. As is well known, it is characterized by the coefficient homomorphism $\mu_{c\mathfrak{f}} : \pi_{\mathfrak{f}}(MU) \to \pi_{\mathfrak{f}}(K)$ which coincides (up to sign) with the classical Todd genus Td. Putting $\Lambda = \pi_{\mathfrak{f}}(MU), \pi_{\mathfrak{f}}(K) = Z$ is viewed as a Z_2 -graded Λ module via $\mu_{c\mathfrak{f}} = Td$ and it is written Z_{Td} for emphasis.

Using the kernel I of $Td: \Lambda \to Z$ we define a decreasing filtration $\{I^q\}_{q \ge 0}$ consisting of ideals of Λ . Denoting by G_q the associated Z_2 -graded Λ -module I^q/I^{q+1} , we see easily [7, Satz 3.8] that

(1.2) $G_0 \simeq Z_{Td}$ and G_q is a free abelian group with countably many factors for $q \ge 1$.

For a Z_2 -graded Λ -module A we have a decreasing filtration $\{I^q A\}_{q\geq 0}$ consisting of submodules of A, whose associated Z_2 -graded Λ -module $I^q A/I^{q+1}A$ is written $G_q(A)$. Applying the commutative diagram

with exact rows, we get an isomorphism

(1.3)
$$G_q \bigotimes_{\Lambda} A \xrightarrow{\simeq} G_q \bigotimes_{Z} (Z_{Td} \bigotimes_{\Lambda} A) \xrightarrow{\simeq} G_q \bigotimes_{Z} G_0(A)$$

by means of "4 lemma".

Proposition 2. Let A be a Λ -module with $\operatorname{Tor}_{k}^{\Lambda}(Z_{Td}, A)=0$ for all $k \geq 1$. Then, for every $q \geq 0$ both $I^{q} \bigotimes_{\Lambda} A \to I^{q}A$ and $G_{q} \bigotimes_{\Lambda} A \to G_{q}(A)$ are isomorphisms and $\operatorname{Tor}_{k}^{\Lambda}(I^{q}, A)=\operatorname{Tor}_{k}^{\Lambda}(G_{q}, A)=0$ for all $k \geq 1$.

Proof. Choose a free Λ -module F such that A is isomorphic to a quotient F/B. By induction on q we shall show that the sequences

$$0 \to I^{q}B \to I^{q}F \to I^{q}A \to 0, \quad 0 \to G_{q}(B) \to G_{q}(F) \to G_{q}(A) \to 0$$

are exact. The q=0 case is evident because of (1.3). Applying induction

hypotesis and " 3×3 lemma" we find easily that $0 \rightarrow I^q B \rightarrow I^q F \rightarrow I^q A \rightarrow 0$ is exact. So we have a commutative diagram

with exact rows. Since all vertical arrows are epimorphisms and in particular the central one is an isomorphism, all vertical arrows become isomorphisms. Consequently we get that $0 \rightarrow G_q(B) \rightarrow G_q(F) \rightarrow G_q(A) \rightarrow 0$ is exact.

Next, we consider the commutative diagrams

with exact rows. Remark that $\operatorname{Tor}_{k}^{\Lambda}(Z_{Td}, B)=0$ for all $k \geq 1$. By use of "4 lemma" and (1.3) we see that all vertical arrows are isomorphisms, and hence we obtain the required results.

For a Λ -module A we put $J_q(A) = A/I^{q+1}A$ and abbreviate $J_q = J_q(\Lambda)$ when $A = \Lambda$. As an immediate corollary of Proposition 2 we have

Corollary 3. Let A be a Λ -module with $\operatorname{Tor}_{k}^{\Lambda}(Z_{Td}, A) = 0$ for all $k \ge 1$. Then $J_{q} \otimes A \to J_{q}(A)$ is an isomorphism and $\operatorname{Tor}_{k}^{\Lambda}(J_{q}, A) = 0$ for all $k \ge 1$.

1.3. Let \mathcal{MU} denote the category of comodules over $MU_*(MU)$ which are finitely presented as Λ -modules. Notice that \mathcal{MU} is an abelian category which has enough projectives, and also that $MU_*(Y)$ lies in the category \mathcal{MU} whenever Y is a finite CW-spectrum. Since the functor $M \to Z_{Td} \bigotimes_{\Lambda} M$ is exact on \mathcal{MU} [5, Example 3.3] it follows immediately that

(1.4)
$$\operatorname{Tor}_{k}^{\Lambda}(Z_{Td}, M) = 0$$
 for all $k \geq 1$ if M lies in \mathcal{MU} .

Proposition 1 and Corollary 2 combined with (1.4) say that

(1.5) the functors $M \to I^q M \cong I^q \bigotimes_{\Lambda} M$, $M \to G_q(M) \cong G_q \bigotimes_{\Lambda} M$ and $M \to J_q(M) \cong J_q \bigotimes M$ on \mathcal{MU} are exact.

Theorem 1 (Wolff [7]). i) Both $I^{q}MU_{*}()$ and $MU_{*}()/I^{q+1}MU_{*}()$ are

homology theories defined on the category of CW-spectra, so that $I^q \bigotimes_{\Lambda} MU_*(X) \rightarrow I^q MU_*(X)$ and $\Lambda/I^{q+1} \bigotimes_{\Lambda} MU_*(X) \rightarrow MU_*(X)/I^{q+1}MU_*(X)$ are natural isomorphisms for all CW-spectra X.

ii) $I^{q}MU_{*}()/I^{q+1}MU_{*}()$ is a homology theory defined on the category of CW-spectra such that there exists a natural isomorphism $I^{q}MU_{*}(X)/I^{q+1}MU_{*}(X) \rightarrow KG_{q^{*}}(X)$ for any CW-spectrum X which is induced by the Z_{2} -graded Thom map μ_{c} .

Proof. i) and the first half of ii) are immediate from (1.5). The latter half of ii) is also valid because we have a natural isomorphism

$$G_{q}(MU_{*}(X)) \stackrel{\simeq}{\leftarrow} G_{q} \underset{\Lambda}{\otimes} MU_{*}(X) \stackrel{\simeq}{\to} G_{q} \underset{Z}{\otimes} (Z_{Td} \underset{\Lambda}{\otimes} MU_{*}(X))$$
$$\stackrel{\simeq}{\to} G_{q} \underset{q}{\otimes} K_{*}(X) \stackrel{\simeq}{\to} KG_{q^{*}}(X) .$$

Let $\phi: E_*(X) \to F_*(X)$ be a natural transformation for any *CW*-spectrum *X*. According to [1, Addendum 1.5] there exists a morphism $f: E \to F$ inducing ϕ , and it is unique up to weak homotopy. The proof in [1] is actually given for the category of based connected *CW*-complexes, but it is easily extended to that of *CW*-spectra. Such a morphism f is uniquely chosen (up to homotopy) under the assumption that $F^{\circ}(E)$ is Hausdorff.

Let $E_*()$ be a Z_2 -graded homology theory defined on the category of CW-spectra, i.e., a homology theory equipped with a natural isomorphism $E_*(X) \rightarrow E_{*+2}(X)$ for any CW-spectrum X. Then it gives E a structure of Z_2 -graded CW-spectrum. In particular, the induced structure is unique if $E^0(E)$ is Hausdorff.

Recall that the Z_2 -graded CW-spectrum MU is equipped with the canonical identification $\rho: \Sigma^2 MU \to MU$ as structure morphism. Since $MU^*(MU)$ is Hausdorff (use Proposition 6 below), the Z_2 -graded CW-spectrum (MU, ρ) is characterized only by the Z_2 -graded homology theory $MU_*($).

Denote by $F_q M U$ and $Q_q M U$ the representing spectra of the new homology theories $I^q M U_*()$ and $M U_*()/I^{q+1} M U_*()$ respectively, i.e.,

$$I^{q}MU_{*}(X) \simeq \{\Sigma^{*}, F_{q}MU \wedge X\}, \quad MU_{*}(X)/I^{q+1}MU_{*}(X) \simeq \{\Sigma^{*}, Q_{q}MU \wedge X\}$$

for any CW-spectrum X. Of course, they are both Z_2 -graded CW-spectra. Then there exist morphisms

$$i_q: F_{q+1}MU \to F_qMU, \quad j_q: Q_qMU \to Q_{q-1}MU,$$
$$\iota_q: F_{q+1}MU \to MU, \quad \pi_q: MU \to Q_qMU$$

which induce the canonical morphisms in homology groups, and moreover we have morphisms

$$\mu_q: F_q M U \to K G_q, \quad \nu_q: K G_q \to Q_q M U$$

such that μ_{q^*} : $F_q M U_*(X) \to K G_{q^*}(X)$ and ν_{q^*} : $K G_{q^*}(X) \to Q_q M U_*(X)$ in homology groups are natural homomorphisms induced by the Z_2 -graded Thom map μ_c .

Lemma 4. Let $E \xrightarrow{f} F \xrightarrow{q} G$ be a sequence which satisfies the property that $0 \rightarrow E_*(X) \rightarrow F_*(X) \rightarrow G_*(X) \rightarrow 0$ is a short exact sequence for every CW-spectrum X. Then it is a cofiber sequence.

Proof. Let C_f be the mapping cone of f, i.e., $E \to F \to C_f$ a cofiber sequence. Then for any CW-spectrum X we have a commutative diagram

$$\begin{array}{c|c} 0 \to E_*(X) \to F_*(X) \to C_{f^*}(X) \to 0 \\ & & & \downarrow \phi = h_* \\ 0 \to E_*(X) \to F_*(X) \to G_*(X) \to 0 \end{array}$$

with exact rows. Clearly $h: C_f \rightarrow G$ which induces ϕ is a homotopy equivalence.

By virtue of Lemma 4 we verify that

(1.6) $F_{q+1}MU \rightarrow MU \rightarrow Q_qMU, F_{q+1}MU \rightarrow F_qMU \rightarrow KG_q \text{ and } KG_q \rightarrow Q_qMU \rightarrow Q_{q-1}MU \text{ are all cofiber sequences.}$

2. Z_2 -graded *MU*-module spectra

2.1. The inclusion $Z \subset Q$ induces a natural transformation $ch: E^*(X) \rightarrow EQ^*(X)$ for any CW-spectrum X, called the Chern-Dold character.

Proposition 5. If $ch: E^*(X) \rightarrow EQ^*(X)$ is a monomorphism, then $E^*(X)$ is Hausdorff.

Proof. Since $EQ^*(X)$ is always Hausdorff [8, Proposition 4], the result is immediate.

Let W be a connective CW-spectrum with $H_*(W)$ free and assume that $\pi_*(E)$ is torsion free. Then $H^*(W; \pi_*(E)) \rightarrow H^*(W; \pi_*(E) \otimes Q)$ is a monomorphism, and hence the Atiyah-Hirzebruch spectral sequences for $E^*(W)$ and $EQ^*(W)$ collapse. Therefore we get that

(2.1) ch: $E^*(W) \rightarrow EQ^*(W)$ is a monomorphism. (Cf., [8, Lemma 11]).

Applying Proposition 5 we obtain

Proposition 6. Let W be a connective CW-spectrum with $H_*(W)$ free. If $\pi_*(E)$ is torsion free, then $E^*(W)$ is Hausdorff.

By means of Proposition 5 we get the following lemmas.

Lemma 7. Assume that $\pi_0(\mathbf{E})$ is torsion free and $\pi_1(\mathbf{E})=0$. Then $E^0(KG_q \wedge MU \wedge \cdots \wedge MU)$ and $E^0(Q_q MU \wedge MU \wedge \cdots \wedge MU)$ are Hausdorff and $E^1(F_q MU \wedge MU \wedge \cdots \wedge MU)=0$.

Proof. Since $E^{2n-1}(BU_{G_q} \wedge MU_{\wedge} \dots \wedge MU) = EQ^{2n-1}(BU_{G_q} \wedge MU_{\wedge} \dots \wedge MU) = 0$ we have a commutative square

such that the horizontal arrows are isomorphisms. The left arrow is a monomorphism because so is the right one by use of (2.1). Since Theorem 1 implies that $0 \rightarrow EQ^*(Q_{q-1}MU \land MU \land \cdots \land MU) \rightarrow EQ^*(Q_qMU \land MU \land \cdots \land MU) \rightarrow EQ^*(KG_q \land MU \land \cdots \land MU) \rightarrow 0$ is exact, an induction on q involving "4 lemma" shows that $ch: E^0(Q_qMU \land MU \land \cdots \land MU) \rightarrow EQ^0(Q_qMU \land MU \land \cdots \land MU)$ is a monomorphism. Then we find that $E^0(Q_qMU \land MU \land \cdots \land MU) \rightarrow E^0(MU \land MU \land \cdots \land MU)$ $\cdots \land MU)$ is a monomorphism because so is $EQ^0(Q_qMU \land MU \land \cdots \land MU)$ $\rightarrow EQ^0(MU \land \cdots \land MU)$. Therefore $E^1(MU \land \cdots \land MU) \rightarrow E^1(F_{q+1}MU \land MU \land \cdots \land MU)$ $\cdots \land MU)$ is an epimorphism, and hence $E^1(F_{q+1}MU \land MU \land \cdots \land MU) = 0$.

Lemma 8. $KG_p^0(F_qMU \wedge MU \wedge \cdots \wedge MU)$ and $Q_pMU^0(F_qMU \wedge MU \wedge \cdots \wedge MU)$ are Hausdorff and $KG_p^1(F_qMU \wedge MU \wedge \cdots \wedge MU) = Q_pMU^1(F_qMU \wedge MU \wedge \cdots \wedge MU) = 0.$

Proof. Putting $X = F_q M U_{\wedge} M U_{\wedge} \cdots \wedge M U$, we note by Theorem 1 i) that $K_0(X)$ is free and $K_1(X) = 0$. Applying the universal coefficient sequence

$$0 \to \operatorname{Ext}(K_{\sharp-1}(X), G_p) \to KG_p^{\sharp}(X) \to \operatorname{Hom}(K_{\sharp}(X), G_p) \to 0$$

for K (see [9, (3.1)]) we get immediately that $ch: KG_p^0(X) \to KG_p \otimes Q^0(X)$ is a monomorphism and $KG_p^1(X) = 0$. By induction on p we obtain that $ch: Q_p MU^0(X) \to Q_p MUQ^0(X)$ is a monomorphism and $Q_p MU^1(X) = 0$ because $0 \to KG_p \otimes Q^*(X) \to Q_p MUQ^*(X) \to Q_{p-1} MUQ^*(X) \to 0$ is exact.

Assume that $\pi_*(E)$ is free and of finite type and put again $X = F_q M U_{\wedge} M U_{\wedge} \cdots_{\wedge} M U$. Using the universal coefficient sequence for E [9, (1.8)] we have a commutative diagram

$$\begin{array}{ccc} 0 \to \operatorname{Ext}(\hat{E}_{*-1}(X), Z) \to E^{*}(X) & \to \operatorname{Hom}(\hat{E}_{*}(X), Z) \to 0 \\ & \downarrow & \downarrow \\ 0 \to \operatorname{Ext}(\hat{E}_{*-1}(X), Q) \to EQ^{*}(X) \to \operatorname{Hom}(\hat{E}_{*}(X), Q) \to 0 \end{array}$$

with exact rows where \hat{E} is the dual of E constructed in [9]. Note that $\pi_*(\hat{E})$ is free and hence so is $\hat{E}_*(X)$. Then the central arrow becomes a monomorphism. Considering the commutative square

in which the upper arrow is an isomorphism, we find that the left one is a monomorphism. Thus we get that

(2.2)
$$\overline{E}^*(F_q M U \wedge M U \wedge \cdots \wedge M U)$$
 is Hausdorff.

Let \widetilde{MU} denote the mapping cone of the canonical morphism $MU \to \overline{MU}$. Since $\prod Z / \sum Z \to \prod Q / \sum Q$ is a monomorphism we remark that

(2.3)
$$\pi_0(\widetilde{MU}) = \prod_n \pi_{2n}(MU) / \sum_n \pi_{2n}(MU)$$
 is torsion free and $\pi_1(\widetilde{MU}) = 0$,

(see [4, Exercise IV 20]). Then \widetilde{MU} has a unique structure of Z_2 -graded CW-spectrum so that the cofiber sequence $MU \rightarrow \widetilde{MU} \rightarrow \widetilde{MU}$ is of Z_2 -graded CW-spectra.

Lemma 9. $F_{p}MU^{\circ}(F_{q}MU \wedge MU \wedge \dots \wedge MU)$ is Hausdorff and $F_{p}MU^{\circ}(F_{q}MU \wedge MU \wedge \dots \wedge MU)=0$

Proof. We put $X = F_q M U_{\wedge} M U_{\wedge} \cdots \wedge M U$. From Lemma 7 it follows that $F_p M U^1(X) = 0$. In the sequence

$$F_{p}MU^{0}(X) \rightarrow MU^{0}(X) \rightarrow \overline{MU}^{0}(X)$$

the former arrow is a monomorphism because of Lemma 8 and the latter one is so by means of (2.3) and Lemma 7. Thus the above composition is a monomorphism. On the other hand, (2.2) says that $\overline{MU}^{\circ}(X)$ is Hausdorff. So we get the remaining result.

2.2. Since $F_q M U^{\circ}(F_q M U)$ and $Q_q M U^{\circ}(Q_q M U)$ are both Hausdorff, we verify that

(2.4) the Z_2 -graded homology theories $I^q M U_*()$ and $M U_*()/I^{q+1} M U_*()$ give $F_q M U$ and $Q_q M U$ unique structures of Z_2 -graded CW-spectra respectively.

Moreover, by virtue of Lemmas 7, 8 and 9 we see that

(2.5)
$$i_q: F_{q+1}MU \to F_qMU, \quad \iota_q: F_{q+1}MU \to MU, \quad \mu_q: F_qMU \to KG_q$$
$$j_q: Q_qMU \to Q_{q-1}MU, \quad \pi_q: MU \to Q_qMU, \quad \nu_q: KG_q \to Q_qMU$$

are uniquely determined (up to homotopy), which induce the canonical morphisms in homology groups. In particular, the composition $\iota_{q-1} \cdot i_q$ is homotopic to ι_q and $j_q \cdot \pi_q$ is so to π_{q-1} .

Consider the diagram

consisting of cofiber sequences. With an application of Verdier's lemma (see [2, Lemma 6.8]) we get a cofiber sequence $KG_q \rightarrow Q_q MU \rightarrow Q_{q-1}MU \rightarrow \Sigma KG_q$ (denoted by dotted arrows in the above diagram) which makes the diagram homotopy commutative. Clearly this yields the canonical exact sequence $0 \rightarrow KG_{q*}(X) \rightarrow Q_q MU_*(X) \rightarrow Q_{q-1}MU_*(X) \rightarrow 0$. By uniqueness of ν_q , j_q the above cofiber sequence coincides with $KG_q \stackrel{\nu_q}{\rightarrow} Q_q MU \stackrel{j_q}{\rightarrow} Q_{q-1}MU \rightarrow \Sigma KG_q$.

above conder sequence coincides with $KG_q \rightarrow Q_qMU \rightarrow Q_{q-1}MU \rightarrow Z_kG_q$. The multiplication $\phi: MU \wedge MU \rightarrow MU$ gives rise to natural Z_2 -graded

homomorphisms

$$m_q: \ F_q MU_{\sharp}(X) \otimes MU_{\sharp}(Y) \to F_q MU_{\sharp}(X \land Y)$$

$$\overline{m}_q: \ Q_q MU_{\sharp}(X) \otimes MU_{\sharp}(Y) \to Q_q MU_{\sharp}(X \land Y)$$

for all CW-spectra X and Y. By use of Lemmas 7 and 9 there exist unique pairings

$$\phi_q: F_q M U \wedge M U \to F_q M U, \quad \overline{\phi}_q: Q_q M U \wedge M U \to Q_q M U$$

which induce the above m_q and \overline{m}_q respectively. Then it follows that

(2.6) both F_qMU and Q_qMU are (associative) Z_2 -graded MU-module spectra.

Proposition 10. Let M be a Z_2 -graded ring spectrum, E, F and G Z_2 -graded M-module spectra and $E \rightarrow F \rightarrow G$ a cofiber sequence. Assume that $E^{\circ}(E)$, $E^{\circ}(E \land M)$, $G^{\circ}(F)$ and $G^{\circ}(F \land M)$ are Hausdorff, or that $F^{\circ}(E)$, $F^{\circ}(E \land M)$, $G^{\circ}(G)$ and $G^{\circ}(G \land M)$ are Hausdorff. If for any CW-spectrum $X \ 0 \rightarrow E_{\sharp}(X) \rightarrow F_{\sharp}(X) \rightarrow$ $G_{\sharp}(X) \rightarrow 0$ is a short exact sequence of Z_2 -graded $M_{\sharp}()$ -modules, then the cofiber sequence $E \rightarrow F \rightarrow G$ is of Z_2 -graded M-module spectra.

Proof. Assuming that $F^{\circ}(E)$, $F^{\circ}(E \wedge M)$, $G^{\circ}(G)$ and $G^{\circ}(G \wedge M)$ are Hausdorff, we consider the diagrams

with cofiber sequences. Under the first two assumptions two left squares become homotopy commutative because they induce the Z_2 -graded homomorphism $E_{\mathfrak{t}}(\) \to F_{\mathfrak{t}}(\)$ of $M_{\mathfrak{t}}(\)$ -modules. Therefore there exist morphisms $\Sigma^2 G \to G$ and $G \land M \to G$ which make the above diagrams into morphisms of cofiber sequences. As is easily cheked, they give $G_{\mathfrak{t}}(\)$ a structre of Z_2 -graded $M_{\mathfrak{t}}(\)$ -module, which coincides with the original one. So, using the remaining assumptions again we see that the above morphisms are homotopic to the given ones respectively. Consequently the cofiber sequence $E \to F \to G$ becomes the required one.

Another case is similarly proved.

The ring spectrum K may be regarded as a Z_2 -graded *MU*-module spectrum via the Z_2 -graded Thom map $\mu_c: MU \to K$.

Applying Proposition 10 to three cofiber sequences of (1.6) we get

Theorem 2. The sequences $F_{q+1}MU \rightarrow MU \rightarrow Q_qMU$, $F_{q+1}MU \rightarrow F_qMU \rightarrow KG_q$ and $KG_q \rightarrow Q_qMU \rightarrow Q_{q-1}MU$ are cofiber sequences of Z_2 -graded MU-module spectra.

Proof. The assumptions needed in Proposition 10 are satisfied by Lemmas 7,8 and 9.

As a result we have a tower

$$(2.7) MU \to \cdots \to Q_q M U \to Q_{q-1} M U \to \cdots \to Q_0 M U = K$$

of Z_2 -graded MU-module spectra such that $KG_q \rightarrow Q_q MU \rightarrow Q_{q-1}MU$ is a cofiber sequence, which factorizes the Z_2 -graded Thom map $\mu_c: MU \rightarrow K$.

2.3. Here we extend the Wolff's result to the case of based *CW*-complexes.

Proposition 11. There exists an (unstable) natural homomorphism

$$\Phi_q \colon KG_q^*(X) \to F_q MU^*(X)$$

for any based CW-complex X, which satisfies the equality that $\mu_{q^*} \cdot \Phi_q = id$.

T

Proof. We may assume that X is connected. Let $i: BU_{G_q} \to KG_q$ be the inclusion. Then we can choose a morphism $c_q: BU_{G_q} \to F_q MU$ such that *i* is homotopic to the composition $\mu_q \cdot c_q$, because $F_{q+1}MU^1(BU_{G_q})=0$. In the commutative diagram

$$[X, BU_{G_q}] \xrightarrow{f_0} \{X, BU_{G_q}\} \xrightarrow{\iota_*} \{X, KG_q\} = KG_q^0(X)$$

$$c_{q^*} \searrow \qquad \uparrow \mu_{q^*}$$

$$\{X, F_q MU\} = F_q MU^0(X)$$

the composition $i_* \cdot J_0$ is an isomorphism because of Proposition 2 (see [6, Theorem 14.5]). So we put that $\Phi_q = c_{q*} \cdot J_0 \cdot (i_* \cdot J_0)^{-1}$.

REMARK. If Φ_q is stable, then we have a natural split exact sequence

 $0 \to F_{q+1} \mathcal{M} U^{\sharp}(X) \to F_q \mathcal{M} U^{\sharp}(X) \to K G^{\sharp}_q(X) \to 0$

for every CW-spectrum X. Therefore F_qMU becomes homotopy equivalent to the wedge $F_{q+1}MU \vee KG_q$. However $H_*(F_qMU)$ is a free abelian group and $H_*(KG_q)$ is a Q-module. This is a contradiction.

We now obtain our main result.

Theorem 3. For any based CW-complex X the natural sequences

$$0 \to F_{q+1}MU^{\sharp}(X) \to F_{q}MU^{\sharp}(X) \to KG^{\sharp}_{q}(X) \to 0$$
$$0 \to KG^{\sharp}_{q}(X) \to Q_{q}MU^{\sharp}(X) \to Q_{q-1}MU^{\sharp}(X) \to 0$$

of Z_2 -graded Λ -modules are split exact.

Proof. The first case is immediate from Proposition 11. On the other hand, a diagram chase shows that the second sequence is exact for any based CW-complex X and hence it is split.

Appendix

Recall that MU is a ring spectrum with coefficients $\Lambda_* = Z[x_1, \dots, x_n, \dots]$ where deg $x_n = 2n$. By killing certain bordism classes Baas [3] constructed homology theories $MU \langle n \rangle_*($) with coefficient $\pi_*(MU \langle n \rangle) = \Lambda_*/(x_{n+1}, \dots)$, whose representing spectrum we denote by $MU \langle n \rangle$. $MU \langle n \rangle_*($) is an (associative) $MU_*($)-module, thus there exists a natural homomorphism

$$m_n: MU_*(X) \otimes MU \langle n \rangle_*(Y) \to MU \langle n \rangle_*(X \land Y)$$

for any CW-spectra X and Y. This gives us a pairing

$$\phi \langle n \rangle \colon MU_{\wedge} MU \langle n \rangle \to MU \langle n \rangle$$

by which the above m_n is induced.

An easy computation shows that $MU\langle n\rangle \hat{Z}/Z^{2k-1}(MU_{\wedge}\cdots_{\wedge}MU_{\wedge}MU\langle n\rangle)$ =0 because $\pi_{2l+1}(MU\langle n\rangle)=0$ for all *l*. Then [8, Theorem 1] says that

(A.1) $MU \langle n \rangle^{2k} (MU_{\wedge} \cdots_{\wedge} MU_{\wedge} MU \langle m \rangle)$ is Hausdorff (see also [9, Corollary 13]).

Hence $\phi\langle n \rangle$ is uniquely determined (up to homotopy) and moreover

(A.2) $MU\langle n \rangle$ is an (associative) MU-module spectrum.

An important relationship between $MU\langle n\rangle_*()$ and $MU\langle n-1\rangle_*()$ is given in the form of a natural exact sequence

$$\rightarrow MU\langle n \rangle_{*-2n}(X) \xrightarrow{\cdot x_n} MU\langle n \rangle_{*}(X) \xrightarrow{t_n} MU\langle n-1 \rangle_{*}(X) \rightarrow MU\langle n \rangle_{*-2n-1}(X) \rightarrow MU\langle n \rangle_{*-2n-1$$

of $MU_*()$ -modules where $\cdot x_n$ denotes the multiplication by x_n . Because of (A.1) there exists a unique morphism $\tau_n: MU\langle n \rangle \rightarrow MU\langle n-1 \rangle$ of MU-module spectra whose induced homomorphism is the above t_n . On the other hand, the composition

$$m_{x_n}: \Sigma^{2n} MU\langle n \rangle \xrightarrow{x_n \wedge 1} MU \wedge MU\langle n \rangle \xrightarrow{\phi \langle n \rangle} MU\langle n \rangle$$

is characterized by the above multiplication $\cdot x_n$.

Lemma A. Let $E \xrightarrow{f} F \xrightarrow{g} G$ be a sequence of CW-spectra such that the composition $g \cdot f$ is homotopic to the zero. If $0 \to \pi_*(E) \to \pi_*(F) \to \pi_*(G) \to 0$ is exact, then $E \to F \to G$ is a cofiber sequence. (Cf., Lemma 4).

Proof. Let C_f be the mapping cone of $f: E \to F$. Then $g: F \to G$ admits a factorization $F \to C_f \xrightarrow{h} G$. Considering the commutative diagram

with exact rows, we see easily that $h: C_f \rightarrow G$ is a homotopy equivalence.

Using (A.1) the composition $\tau_n \cdot m_{x_n}$ becomes homotopic to the zero. We get therefore that

(A.3)
$$\Sigma^{2n} MU\langle n \rangle \xrightarrow{m_{x_n}} MU\langle n \rangle \xrightarrow{\tau_n} MU\langle n-1 \rangle$$
 is a cofiber sequence.

OSAKA CITY UNIVERSITY

References

- [1] J.F. Adams: A variant of E.H. Brown's representability theorem, Topology 10 (1971), 185–198.
- [2] J.F. Adams: Stable Homotopy and Generalized Homology, Chicago Lecture in Math., Univ. of Chicago Press.
- [3] N.A. Baas: On bordism theory of manifolds with singularities, Math. Scand. 33 (1973), 279-302.

- [4] P.A. Griffith: Infinite Abelian Group Theory, Chicago Lecture in Math., Univ. of Chicago Press.
- [5] P.S. Landweber: Homological properties of comodules over $MU_*(MU)$ and $BP_*(BP)$, to appear.
- [6] R. Vogt: Boardman's Stable Homotopy Category, Lecture notes series 21, Aarhus Univ. (1970).
- [7] G. Wolff: Der einfluss von K*(-) auf U*(-), Manuscripta Math. 10 (1973), 141-161.
- [8] Z. Yosimura: On cohomology theories of infinite CW-complexes, III, Publ. Res. Inst. Math. Sci. 9 (1974), 683-706.
- Z. Yosimura: Universal coefficient sequences for cohomology theories of CW-spectra, Osaka J. Math. 12 (1975), 305-323.