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1. Introduction

This paper and the following paper are concerned with scattering theory
for pseudo-differential operators. The operators we consider are of the form

(1.1) P(D)+A(X, D)

in R”", where the unperturbed operator P(D) and the perturbation A(X, D) are
pseudo-differential operators. We examine in the present paper the existence
of wave operators, while we shall prove the completeness of wave operators in
the succeeding paper.

We briefly recall the definition of wave operators W.. Let H and H, be
the self-adjoint realizations of P(D)+A(X, D) and P(D) in L*(R"), respectively.
Then W. are defined by the limits
(1.2) e == s‘—_)l+iin et " HP, (H,) .

Here P, (H,) denotes the orthogonal projection onto the subspace of absolutely
continuity with respect to H,. (We refer to Kato [7, Chapter X] for definitions
and results from spectral theory.)

Some authors have studied scattering theory for pseudo-differential opera-
tors. Among others, recently Simon [10] has considered operators H=H +V
where H, is a pseudo-differential operator and showed that the main conclusions
of scattering theory hold (namely the wave operators exist and are complete
etc.). He does not necessarily require that V' be a differential operator, or
even a pseudo-differential operator. In fact, he only needs that V' be a sym-
metric operator with some falloff at infinity. He used the methods which
have been originally found by Enss [5]. The condition that Simon calls the
Enss condition (see [10]) plays an important role in proving the completeness
of wave operators. Enss and Simon used purely time-dependent methods.

Schechter [9] considered the operators of the form (1.1) and proved the
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main theorems of scattering theory. For the perturbations he took the specific
operators of the form

2 X)aw(D)
or of the form
Z7y(D)g(X)ox(D) .

Here ¢y(X) is an operator of multiplication by a function g(x); ox(D) and
7,(D) are pseudo-differential operators with symbols ¢,(£) and 7,(§) respectively.
He exploited time-independent methods.

The main purpose of the present paper is to give a sufficient condition for
wave operators to exist. It is easy to find examples which are covered by the
present paper but which are not included in the results of [9], [10]. Such an
example is given in Section 2. However, the hypotheses of both [9] and [10]
assure the completeness of wave operators, which suggests that our hypotheses
are too weak to assure the completeness of wave operators. In addition, we
prove the symmetry and the self-adjointness of pseudo-differential operators
under suitable hypotheses.

We make assumptions directly on the symbols of P(D)and A(X, D). But
Schechter [9] and Simon [10] did not do so.

We use Cook’s method, which is the main time-dependent technique, to
show the existence of wave operators. Our proof is similar to that of Hoér-
mander [6] which is based on the method of stationary phase, though he treated
differential operators only.

Finally, we sketch the contents of this paper. Section 2 contains the main
theorems and some examples. The proofs of the main theorems are given in
Sections 3 and 4 after we prove several lemmas except a key lemma. We prove
the key lemma in Section 5. In Section 6, we give a necessary and sufficient
condition for pseudo-differential operators to be symmetric. In Section 7, we give
sufficient conditions for pseudo-differential operators to have self-adjoint ex-
tentions.

The writer would like to express his sincere gratitude to Professors Y.
Saito and S. Ukai for their valuable advices and encouragements.

2. Existence of wave operators

In this section, we shall mention two basic theorems and some examples.
One of the theorems is a characterization of the subspace of absolute continuity
with respect to Hy=P(D). The other theorem gurantees the existence of wave
operators.
Before giving the assumption of P(D) and A(X, D) we shall list the notations
which will be employed in the sequel without further reference.
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R"; product of n copies of the real line R.

lx, E>=x,E,+ -+ +x,E,, (2, EER").

Z%; product of n copies of the set Z, of nonnegative integers.
|a|=a,+:--+a,; the length of the multi-index a€Z;. al=a;!--a,!.
supp u; the support of a function u.

Dj=—i0[0x;, (1=+/—1).

(8/0x)*=(0/0x,)™++-(3/0x,)",  (aEZ%).

f'=(0f/0x,, -+, 0f[0x,); the gradient of a function f.

f'=(0%0x;0%4); p=1,.. »; the Hesse matrix of f.

CJ‘u(E):ﬁ(E):S e~ =y(x)dx; Fourier transform of u=u(x).

Fo(x) =Se‘<"5>v(£)df; inverse Fourier transform of v=v(§), (d€=(2x) "dE).

A=(8/0x,)*+---+-(0/0x,)?; the Laplace operator.

C¥(Q) ; the space of complex-valued functions, defined and N times
continuously differentiable in an open set Q, equipped with the
topology of uniform convergence on every compact subset of
Q, of the functions and of each one of their derivatives of order
<N+1N€EZ, or N=+o0).

C7(Q) ; the subspace of C¥(Q) consisting of the functions having a com-
pact support; if u€ C7(Q) we write

|| y=max sup|(8/0x)"u(x)| .

L¥R"™) ; the Hilbert space of measurable functions % square integrable over
R", equipped with the norm

iz = ({ (o) 120y,

(if there are no risks of confusion we will omit the subscript L?
and write as ||u[|).
S(R") ; the space of C functions # in R" such that, for any nonnegative
integer N,
lu|y.s = max sup (14 || %42 (8/0x)"u(x) | < oo,

| +k<N
equipped with the topology defined by the seminorms | | NS
S'(R") ; the dual space of S(R"), also the space of tempered distributions
in R".
H/(R") ; the Sobolev space of order s€ R in R", i.e., the space of tempered
distributions # in R" whose Fourier transform # is a measurable
function such that

lall, = ([(1+ €17 12(8) 17d8) < oo,
equipped with the Hilbert space structure defined by the norm

Il 1ls.
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meas, ; the Lebesgue measure on RF.

[s] ; the integral part of sER.
H(H) ; the closed linear manifold spanned by all eigenvectors of an ope-
rator H in LA(R").

Hao(H); the subspace of absolute continuity with respect to a self-adjoint
operator H in L*(R").
P, (H) ; the orthogonal projection onto H,.(H).
H(H) ; the subspace of singularity with respect to a self-adjoint operator
H in L(R").
Now let us make the following assumption on symbols p(&) of P(D) and
a(x, £) of A(X, D). The set of all critical points of p(£) will be denoted by =.:

= {{cR"|p'()=0}.

Assumption 2.1.
4) a(x, £) is a complex-valued C= function on R} X R} such that for all
multi-indicies «, G the estimate

| (8/08)*(0/0x)Pa(x, £) |
S Cop(14[x] )N (A4 | E|)mtoIel, xER" EER",

is valid for some constant Cog, where /, m, § and T are constants with
I,m>0,0<53, 7<1

(P.1) p(§) is a real-valued C~ function on R} such that for every multi-
index a, the estimate

[(3/08)*p(§) | < Ca(14-|E|)Ne

is valid for some constants C, and NN,
(P.2) There is a closed set EC R" with the following properties:
(a) meas,(E\X)=0;
(b) every point £, R"\E has a neighborhood where rank p”'(£) is con-
stant;
(c) rank p”(£)=1, EeR"\E.
(H) P(D)+A(X,D) with domain S(R") has a self-adjoint extention in LA R").

Let H be a self-adjoint extention in L*(R") of P(D)+A(X, D) with domain
S(R") and let H, be the closure in L% R") of P(D) with domain S(R"). Our
main results are:

Theorem 1. Let hypothesis (P. 1) be fulfilled. Then we have

Hoo(Hy) = {us L R")|4(E) = O for almost every E 3}
I (Hy) = {usL¥R")|4(&) = O for almost every EE R"\3} .
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Theorem 2. Let Assumption 2.1 be fulfilled and put
Q, = {EER"\E IP'(tf) +0, rankpll(g):k} (k:l’ “esy n) .

For every k such that Q,==¢ assume that,
(¢x) for any r>0 and any compact set K C ), there is an integer N> [k|2]+42
such that

o]

1

1/2
% { max (sup | (3/08)a(+-1ty, )| )3 dy] dt < oo

|¥|<2K, ESK

Then the wave operators (1.2) exist. Here [k|2] is the integral part of k|2 and dx(y)
is the distance from y to the set

P'(K) = {p'()[E€K} .
Theorems 1 and 2 will be proven in Sections 3 and 4, respectively.

ReMaRK 2.1. Since p(£) is a real-valued C* function, P(D) with domain
S(R") is essentially self-adjoint. Its unique self-adjoint extention H, is given
by its closure. The domain 9(H,) consists of those # in L*(R") such that p#
is also in L*(R").

In the rest of this section we illustrate some applications of Theorems 1 and

ExampLE 2.2. Let =1 and let p(§)=p(£)8* (EER) where p=C~(R)
with @(§)=0 (resp. 1) for |£| <1, (resp. =>2). Suppose that

Ep'(E)+20(5)+0,  |E[>1.
Then it follows immediatly from Theorem 1 that
Hoo(Hy) = {u€ LY R)|%(E) = 0 for almost every [E|<1}.

It is easy to see that H, has a single eigenvalue which is equal to zero (see the
proof of Proposition 3.5).

Let A4 be a multiplication operator by a real-valued C* function a(x) such
that

2.1) la(x)| <CA+|x])"", xR, &>0.

Put H=H,+A. Then H isself-adjoint since 4 isbounded. Applying Theorem
2, we will show the existence of wave operators (1.2). Suppose that p”(£) +0
for |£|>1 except finitely many points &, --+, Ey. Put

E={feR|-1<E<BIU{E, -, Ex} .
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Then Assumption 2.1 is fulfilled. Since
o 1/2 o
(7 oy iay) a<c e
1 r<lyl<or 1

for every r>0, the condition (¢;) holds. Hence, from Theorem 2, it follows

that the wave operators (1.2) exist.
On the other hand, the proper wave operators W.=s—lim ¢'*#¢~"*Ho do

trtoo
not necessarily exist. For example, let us assume, in addition to (2.1), that
a(x) does not vanish almost everywhere and suppose that the proper wave opera-
tors exist. Let u be an eigenvector of H, corresponding to the eigenvalue
zero. Then e *Huy=y for all t&R. Since the proper wave operators exist,

”eitHu_u” — l,ei(t+s)He—i(t+s)Hou__eisI{e—isHou”
converges to zero as s tends to co. Therefore
(2.2) ey =u.

It follows immediately from (2.2) that u€ 9(H) and Hu=0. Since H=H A4
and since Hu=0, we have au=0. Thus u=0 because a=0 a.e.. This con-
tradicts the fact that « is an eigenvector. Hence the proper wave operators do

not exist.

Next, we shall give an example which satisfies the conditions of Theorem 2
but which does not satisfy the Enss condition [10]. Let us first recall the de-
finition of the Enss condition. Let 4 be a symmetric operator in L*R") such
that 9(A)DH,y for some N. Put

23) I(R) = LA(—A)¥+1)"F(1x| >Rl
where

(lx|<R)

F(lxl>R)u(x)={ u(x) (|x|>R).

The norm in (2.3) is the operator norm. Simon [10] calls the condition
2.4) R(0)< oo, Sm H(R)AR< oo
0

the Enss condition. Roughly speaking, the Enss condition implies the existence
and the completeness of the wave operators.

Exampre 2.3. Let n=2 and let 4 be a multiplication operator by a real-
valued C ~ function a(x) on R? such that



ScATTERING THEORY FOR PSEUDO-DIFFERENTIAL OPERATORS 367

la(x)| <C, x = (x;, x,) €R?
(2.5) la(x)| >C(1+|x])7%, xs>x1+1, 0<E<1

a(x) =0, x3<xf.
Then 4 is a bounded operator on L*R?). But the integral in (2.4) diverges.
We show this by using the fact that when A(0)<< oo,

S“ W(R)dR< o
0
if and only if

(2.6) [ 1474~ 2)Y+ 1) R <o

Here J is the multiplication operator by the function Ji(x)=e(x/R) with
pEC=(R?) and @(x)=0 (resp. 1) for |x| <1, (resp. >2). (The details can be
found on p. 124 of Simon [10].)
Now, let N be an integer. Choose v&C7 such that
supp vC {xER?| |x| <1}, ||(—A)¥+1)2]|,2=1
and put
vr(x) = v(x—3Re;), €, = (0, 1)
ug(®) = ((—A)"+1og(x) .
Then it follows that
el = {1(1817+ 1)0(E) 1748 = 1.

Noting that
supp vxC {xE R?| |x| >2R} ,

we have
AT e((— A1) Z AT ((— AV +1) gl
= || 4] gvxll
= || Avgl|
=>C(1+R)~®||vl] .

Since €<1, the integral in (2.6) diverges. Thus sm A(R)dR diverges and the
0

Enss condition is not satisfied.

On the other hand, if we regard 4 as a perturbation of P(D)=(1+D})"?, then
the existence of wave operators follows from Theorem 2. In fact, Assumption
2.1 is clearly fulfilled (with E={§=R?|£,=0}). Since the symbol of P(D) is
(14+&%)¥2, we have
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(€)= EA+EN ™ 0)

vy _ [AFE)™ 0
p(@—[ A OJ

and

Q= {EERZI& *0}
Qz= ¢

(see Theorem 2 for the definition of ;). We examine that the integral in (¢,)
converges for any >0 and any compact set K ©Q,. Set

O; = {yeR|r<|y|<2r, t'y; >£yi} .
Noting that the set p’(K) is in the y,-axis, we have
(2.7) dr(y)=Ct™2,  yeE0,.
By (2.5) and (2.7)

[F0n((, 0 ot ro)
<C S:’ 112 (S@, (1 + t1/2)—N1dy >]/2dt
<C S? (142)@ Vol gy,

Hence the condition (c,) holds if we take N;=7. Thus the wave operators
exist. Incidentally it follows from Theorem 1 that 4, (H,)=L*R?. We
should note that if we take P(D)=A then (¢;) does not hold.

ExampLE 2.4 (Higher order perturbations). Let us consider two self-
adjoint operators

(2.8) H,= (1—A)
2.9 H = (1= ) (1 [ (1 — AP+ ]

in L% R®), where £>1. Since the right side of (2.9) with domain S(R®) is a
real operator, it admits a self-adjoint extention. We want to check the hypo-
theses of Theorem 2. The symbol of the perturbation

(14 121?41 — A) 1+ | ]2

is given by the following oscillatory integral:

a(s, &) = Ou— [ [ e (1 11971+ | E+n |91+ |-ty 1) dy
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(see Kumano-go [8]). By repeated integration by parts, we have

(2.10) a(x, &)
= (U L9 [ [ O )1 AP 17191+ £ 1
X (1—A,) (14 |x+y |5~ dydn .
= (t+1=) [ eomrayan.

Since, as can be easily verified,

|(0/0)"(2/0x)° 1|
S Cha(l+ D)™ (14 1) (1 |14 £

with a constant C, for all multi-indices a, 3, it follows by differentiation under
the integral sign that

a(x, £)eC~(R*X R®)
and
(2.11) |(0/0)*(8/0x)°a(x, E)| < Cia(14-|x])*(1+1&])*'

with a constant CZg for all a, 8. Hence the hypothesis (4) is satisfied. The
symbol p(§) of H, is (14 |E|%)Y?, so it follows that S={0} and rank p”(£)=3
at every £ R®. Thus Assumption 2.1 is fulfilled (with E={0}). Finally, we
check the condition (c;). In this case, we have Q,;=Q,=¢ and Q,=R*\{0}.
Notice that, by (2.11),

[ (supl(@/e)a(ty, )| Ydy<C(1-+12)™

r<lyl<2r (€K
for any >0, any compact set K CQ; and any multi-index «. Then it is ob-
vious that (c;) holds. Thus the wave operators exist. By Theorem 1, we
have also A, (H,)=L* R?).

3. Proof of Theorem 1

In the present section we shall prove Theorem 1 and some propositions on
the spectral structure of H,. First we should note that the hypothesis (P. 1)
can be further relaxed. We only need that p(£) be » times continuously di-

fferentiable.
As a preliminary to the proof, we note that since the Fourier transforma-
tion is unitary, it is sufficient to consider the self-adjoint operator H, defined by

H,= FHTF

instead of H,. It is easy to see that
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(3.1) uE Il (Hyothe H,(Hy) .
This implies that
(3.2) eIl (Hyshe I (H,).

The operator H, coincides with the multiplication operator defined by
D(Hy) = PELXR")| pheL(R")}
{ H(E) = pEYA(E)
Let E’(B) be the spectral measure associated with H,, where B varies over all
Borel sets of real line. Then

(3.3) BB = S,,-um'ﬁ(f)‘zdf’ A€ L (R")

(see Kato [7], p. 520).
We prepare a lemma which will be used later.

Lemma 3.1. Let o= CYQ) be a real-valued function in an open set QC R"
and assume that @'(£) %0 for every E€Q. If Bis a Borel set of R with meas,(B)=
0, then @Y (B) is also a Borel set of R", and meas, (¢~ (B))=0.

Proof. It is easily seen that @~ %(B) is a Borel set of R". We have only to
show that meas, (@'(B))=0. Note that if

meas, ({{€K |p(§)eB}) =0
for every compact set K C{) then
meas, (@ (B))=0.

So it suffices to show that to every £,&Q there corresponds a neighborhood
U of &, such that

meas,({£€U |p(E)B})=0.

Suppose £,€Q. Since @'(&,) 0, we may assume, without loss of generality,
that 0p(&,)/05,34=0. The Jacobian matrix of the map

f:E— (p(8), & -, E1)

is non-singular at &,. By the inverse function theorem, there is a neighborhood
U of £, such that fis a diffeomorphism of class C* between U and f(U). Since

f({EeU|pE)eB})CBX R,

we have
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meas, (f({E€ U |p(E)eB}))<meas,(BXR") =0.
Thus
meas, ({£ €U | p(£) €B}) = meas,(f(f({E€U|p(E)EB})) =0

where we use the fact that if g is a C* map of a neighborhood of a null set NC R"
into R", then meas, (g(N))=0. Q.E.D.

Throughout this section, we assume that p is real-valued.
Proposition 3.2. If pC"(R"), then
34 H.o(Hy)) = {us LAR")|4(E)=0 for almost every E =3}
(3.5) H(H,) = {us L R")|4(£)=0 for almost every E€ R"\3} .

Remark 3.3. To prove Proposition 3.2, we apply Sard’s theorem (see
Sternberg [11], p. 47):

Let M, and M, be C* manifolds of dimension #, and n, respectively. Let
f be amap of class C* of M;—M,. The critical values of f form a set of measure
zero if k—1>max(n,—n,, 0).

Proof. As remarked before, we consider Ho instead of H,. Define
L = {# LY R")|%(£)=0 for almost every £ €3}
M = {d= L (R")|4(E)=0 for almost every EE R"\3} .
Let #=_L, and let B be a Borel set of the real line with meas;(B)=0. Then
by (3.3) we have

I1@)aP = | |d(E) %4

™ 1B N (R™3)
Since p’(£) %0 for every £ R"\=, we have
meas, (p (B)N(R"\Z)) =0
by Lemma 3.1. Thus
IE®BIP =0

which means that #€%,.(H,). Thus we have -LC %, (H,).
Similarly, we show that HC.H (H,). Let 4 H, and let B, be the set of
critical values of p. Then, by Sard’s theorem

meas,; (B)) = 0.
Moreover, B, is a Borel set. In fact, with B;={{€R"| || <}

B,=p(z) = [ p(=n B)
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decomposes B, as the union of a countable collection of closed sets. If BC
R\B,, then p~(B)N==¢, and
1Byl = | |4(E) |2dE = 0.

- UBINS

Thus the measure HE(B)ﬁIl2 is singular with respect to the Lebesgue measure,
SO ﬁeé’{s(m). Therefore we have ﬂflcﬂs(ﬂo).

It is easy to see that £ and ¥ are closed linear subspaces of L(R"), are
orthogonal complements to each other. This implies that [ =ﬂ[ac(ﬁo) and
H=I{(H,). Thus, by (3.1) and (3.2), we obtain the conclusions. Q.E.D.

Proof of Theorem 1. It is an immediate consequence of Proposition 3.2.
Q.E.D.

ReEMARK 3.4. As mentioned before, the hypothesis (P. 1) can be further
relaxed. Simon [10] allows the possibility of singular points to include an
example like p(§)=|&|. In such cases we are also able to show a result
similar to Theorem 1:

Hao(Hy) = {us LA(R")|#(E)=0 for almost every E=C,U S,}
H(H,) = {usLA(R")|4(£)=0 for almost every EC,US,}.

Here C, (S,) is the set of critical (singular) points of p. (See [10] for the defini-
tion.) The proof exactly follows from that of Proposition 3.2 with a minor
change.

If meas,(2)>0 and the boundary 9%=3\Int3 is of measure zero, then
we can improve Proposition 3.2. It should be noted that that p& C*(R") does
not imply that 0%, is of measure zero.

Proposition 3.5. Let meas,(2)>0. If peC'(R") and meas,(02)=0, then
we have
Hao(Hy) = {us LY R")|4(E) = O for almost every £ €3}
H(H,) = {us LY R")|4(E)=0 for almost every £ R"\3} .
Moreover,
I(H) = I (H,) .

Proof. We also consider the operator H, and define £ and . as in the
proof of Proposition 3.2. It is obvious that LCd,(H,). We show that
M=IL,(H,) which implies that M H(H,).

Let {O;} be the collection of connected components of Int= (note that
Int 3 4=¢). Then, as can be easily verified, there exists A;ER corresponding
to O; such that
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p(E) =1, £€0;.
Since the characteristic function 1, (&) satisfies that
P(E)1o,(&) = Ajloj(£) s EER",

we have {\;} Co-p(Ho), where a-p(ﬂo) denotes the set of eigenvalues of A,
Furthermore, if H#A=x#% with A& R\{),}, then #=0 by

(3.6) meas, ({£SR"[ p(E) = 2}) = 0.
In (3.6) we used the hypothesis
meas, (02) = 0
and the fact
meas, ({EER\Z[p(E) =1} =0
which follows from Lemma 3.1. Thus we have o,(Hy)={\,}. Finally, writing
M; = {#= L R")|4(E)=0 for almost every EE R"\O;} ,

we see that (H; is the eigenspace of I?o corresponding to the eigenvalue )\; and
that the closed linear manifold spanned by all (¥, coincides with 9. Hence,
by the definition of J,(H,), H coincides with H,(H;).

Thus we have shown that -.LC H,(H,) and M=, (H;). By the arguments
in the last step of the proof of Proposition 3.2, the result follows. Q.E.D.

It is well known that when p&C'(R"), that meas,(Z)=0 implies that
H..(H)=L*R"). The converse is also true when p=C"(R").

Proposition 3.6. Suppose pC*(R"). If H..(H,)=L*R"), then meas,(X)
=0.

Proof. We consider ﬁo instead of H;,. Let B, be the set of critical values
of p. 'Then, by Sard’s theorem, meas,(B;)=0. Recall (3.1). Since Ho(Hy)=
LX(R"), the measure ||[E(B)4| is absolutely continuous with respect to the
Lebesgue measure for all Z& L(R"), and so ||E(B,)#|[2=0 for all 2 L R").
Noting (3.3), we have meas,(p~}(B,))=0. Thus we obtain

meas,(Z) =0

since ZC p~Y(B,). Q.E.D.

4. Proof of Theorem 2

In the present section we shall prove Theorem 2. For the proof we need
several lemmas.
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Lemma 4.1. Under hypothesis (A) the psuedo-differential operator A=
A(X, D) is continuous from S(R") to S(R").

Proof. Suppose u=S(R"). Then
Au(x) = S e KoPa(x, EYA(E)E .

Since #=S(R"), we can differentiate with respect to x under the integral sign
as often as we like. Therefore, it follows that 4usC=(R"). Moreover, for
every multi-index & and every integer k>0 we obtain

(#.1) (14 [2[)~"*2077%| (3/0x)" Au(x) | < Cy0lul s

where C, o is a constant and N=|a|+[m]4-2(n+k)+3. Indeed, by differen-
tiation under the integral sign and integration by parts, we see that

(14 ]2)4(8/0) Au(x)

= Jeer—n {31 o2 @)on)Pals, BYiEPAE) |4t

Bl( IQ)I
where the integrand can be estimated by
(121 H A TED ™ B] ) s 28425
Noting that for every integer j >0
|%1;,s<Cilulj1nirs

with a constant C;, we obtain (4.1). Since 7<<1, —I4+2(1—7)k—> oo as
k—>oco. Hence (4.1) means that 4ucS(R") and A is a continuous map of
S(R") into S(R"). ‘ Q.E.D.

Lemma 4.2. Under hypothesis (P. 1) we have

(4,2) (e'“ffou) (%) = S ei(<x,£>—tp(s))ﬁ(§) 4t

for all us S(R").

Proof. Put U,=Fe **®F. Then U, —oco<t<oo,isa group of unitary
operators in LA(R"). Let K be the infinitesimal generator of U,. For uc D(H,)

17 Us—Du—(—iHoull* = S [t Y (e~ ® —1)—(—ip(E)) I”|4(E) |?2E — 0

as t—'0, where we use the Lebesgue dominated convergence theorem. Thus
we have
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(4.3) —iH,CK.

According to the theory of semi-groups, K has the resolvent (K—aI)™! for
every A>0. Since H, is self-adjoint, —iH, also has the resolvent (—iH,—a\I)™*
for every A>0. Therefore, both

K—\I: 9(K)— L¥R")
and
—iH,—\I: 9(H,) — L}(R")
are bijective, provided that A>>0. Combining this fact and (4.3), we see that
DK)=9D(H,). Thus
—iH, =K
which implies that U,=e™ "o, Q.E.D.

ReMaRk 4.3. The hypothesis (P. 1) in Lemma 4.2 is not essential; by the
arguments in the proof of Lemma 4.2, one can show that e”*#o=% e "*©OF even
if p is a real-valued continuous function.

Lemma 4.4. Let hypothesis (P. 1) be fulfilled. If usS(R") then
t— e oy
s a continuous function with values in S(R").

Proof. By Lemma 4.2, it is easy to see that (e”**#oy)(x) is a complex-valued
C~ function. Integrating by parts after differentiating under the integral sign,
we have

44) (14 |x|D¥0/0x)"(e”Hou)(x) = S EED(1—Ag)t {e PO (E)U(E)} dE

for every multi-index « and every integer £>0. The integrand is integrable
by (P. 1), thus

sup (14| 2|%)"|(8/0x)"(e™*Hou)(x) | <oo.

Thus e *#ucsS(R"). It follows from (4.4) that for every integer N >0

(4.5) le‘“”ou——e"’”ou[Ms
<Cy max [ 1(1—ag (e O—c o) UE} | dE

with a constant Cy. Letting [t—s|—0, we see that the right side of (4.5)
tends to zero, by the Lebesgue dominated convergence theorem, so that the



376 T. UMEDA

left side of (4.5) tends to zero, which proves the lemma. Q.E.D.

Lemma 4.5. Let hypotheses (4), (P. 1) and (H) be fulfilled. If usS(R"),
then

1 — eitHe—itHou
is a C* function with values in LA(R") and

(4.6) % (&7 e~ Moty = g™ A~ oy |

Proof. First note that S(R")C9D(H,) and S(R")CD(H). Since, by
Lemma 4.4, e *#ouc S(R"), we have

4.7) He oy—He " Hoy=Ae "oy .
Using (4.7), we write
(4.8) h—l(ei(t+h)1{ PRLGEOV: AP e—itﬂou)_ieitHAe—itHou

— UTIE {h—l(e—i(t+h)ao_e—imo)u__(_iHo)e—itHou}
+(ei(t+h)}1_eitH)(_iHo)e—imou
+ {h—1(ei(t+h)11_eim)e—imou_(iH)eitH e—imou} .
By the unitarity of ¢*# and the fact that us 9(H,), the first term in the right
side of (4.8) tends to zero in the L? norm as /—>0. Note that for every vE L¥(R")

t— ey

is a continuous function with values in LA R"). Then it is clear that the second
term tends to zero in the L? norm as ~—0. The third term goes to zero in the
I? norm as h—0, since e *HoucP(H). Thus we obtain (4.6). It follows
immediately from Lemmas 4.1 and 4.4 that

t— Ae itHoy

is a continuous function with values in S(R"), so that it is a continuous function
with values in L*(R"). Thus,

t— ieitHAe—ityou
is an L?-valued continuous function. Q.E.D.

The following is a key to the proof of Theorem 2. The proof will be
given in Section 5, as it is fairly long.

Lemma 4.6. Let all of the hypotheses of Theorem 2 be fulfilled. Then for
every non-empty Q,, we have



SCATTERING THEORY FOR PSEUDO-DIFFERENTIAL OPERATORS 377

(4.9) S" e *oul|dt <oo,  AECH().
Proof of Theorem 2. First let Y be the subspace of L R}) defined by
Y =C7(Q)D--PCT(L,) .

If Q, is empty, we interpret C7(£;) as {0}, i.e., the space consisting of the
only function which is identically zero in Q,. Since

kL:Jle = R"\(EUX)
and since
meas,(R\E)\ [J 0) = 0,
@ is dense in the subspace
{d=LA(R")|#4(£) = 0 for almost every €3}

of LR%). Writing X=% 4, it follows from Theorem 1 that ¥ is dense in
Hao(Hy).
Now, let u¥. Then, by Lemmas 4.5 and 4.6,

Sm i(eitlie—itliou)
This implies that ¢/ ¢"#Hoy converges in the L? norm (i.e., converges strongly)

dt
as t—>+co. Since ¥ is dense in I, (H,) and since [|e"7 e Ho||=1, we see
that the limits

dt<< oo,

s—lim e'*# e~ #*Hoy
t>too

exist for every u&H,.(H,). Thus, we have proved the existence of the wave
operators (1.2). Q.E.D.

5. Proof of the key lemma 4.6

We now turn to the proof of Lemma 4.6. We shall divide the proof into
two cases: (i) k=n (ii) k<n.

Proof of Lemma 4.6. It suffices to show that to each £,&(, there corres-
ponds a neighborhood U of &, such that

(5.1) SK”.@”A"_“H°“”‘1’<°°’ 4eCy(U).

In fact, by a partition of unity we then obtain (4.9).
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(i) Assume that £,€Q,. Then det p”(£)=+0 which means that the
Jacobian of the map
P E—=>p'(§)

is non-zero at §,. By the inverse function theorem there exists a neighborhood
U of &, such that p’ is a diffeomorphism between U and p’(U). Here we
may assume that U CQ, and

PO {ir<|y| <27}
for some positive number 7.
Now, let = C7(U). Then, by Lemma 4.2,
(5.2) (de~mou)(ty) = | e O-2®a(ty, EYU(E)E .

Let y4€p’'(supp4). Then we can find a unique critical point 7, U of the
phase function

with det p”(74) +0. By Lemma II of Appendix and the remarks following
it, there is a sufficiently small number &4 >0 such that for y with | y—y.| <<€

(5.3) S DOty EYU(E)AE
— |det p”’(n)[2m | ~2e™ e * ™ L a(ty, n)u(n)|t]

<C'a(t)& ')ﬁ[[n/2]+3lt,—n/2_1; t>1

where L, is a constant depending on y and o=sgn p”(74) (i.e., the signature
of the symmetric matrix p”(4)), y=p'(n) (@< U). From (5.2) and (5.3) we
have

(5.4 [(Ae *Hou)(ty)| <C{ max ( sup |(8/8’g’)"’a(ty, E))} 2]~

|@|<[#/21+3 * £csupp

when |y—y,| <&, [t[>1. Since p’(supp #) is compact, we can choose a
neighborhood V' of p’(supp %) so that ¥'C p’(U) and so that (5.4) remains
valid for y V. Furthermore, we choose a compact set K C U so that p'(K)=V.
Thus we have

—itH 2 n \¥2
69 [l aemas

<C Sl<|tl<m“r<|y|< (I+[2[dx(y)) ™"
X { max (sup | (8/0¢)%a(ty, £)|)%} dy] 7

X|<2Ny EEK



SCATTERING THEORY FOR PSEUDO-DIFFERENTIAL OPERATORS 379

Here we have used the facts that dg(y)=0 when yeV and
Vci{r<|yl|<2r}.

By condition (c,) the right side of (5.5) is convergent. Thus we have shown
that

(5-6) Sl<|t|<«($x/tev | Ae™ou(x) [*da )1l2dt< -

Now, we shall show that

5.7 Aeou(x)|%dx ) d
( ’ ) Sl<|tl<»<$x/t$V l ¢ ou(x)l x> b o
To do so we shall apply Lemma A.1 of Hormander [6] to the integral
(Ae o) (x) = S UAFINRE= O (=4It EYA(E)E .
Let @ be the set of phase functions given by
D = {E—->(x, &—tp(E) (|| + | 2]) |2/t R"\V} in C"*Y(R", R).
Then @ is a compact subset of C¥*}(R", R) such that for every fE®
f(&+0 ifEssupp?h.

In fact, writing

Z = {(z,9)€R""|(2,s) = (%, 1)/(|x| +|¢]) for some xtcR"\V'}

we have
@ = {& > <z, E>—sp()l(2, )2} .
It is easily seen that

(2, 9) = <z, E>—sp(§)ECV(R", R)

is continuous. Since Z is compact, it follows immediately that ® is a compact
subset of C¥*}(R", R). Thus Lemma A.1 of [6] shows that for every N

(5.8) [(de " ou)(x) | <KCy(14 x|+ |2]) V| a(x, <)%y
if xteR"\V. By Assumption (2.1) (4) the right side of (5.8) is bounded by
B(LH ] [y

Thus we see that

Sz/t$V | Ae™Hou(x) |*de< Cl/"(g(l“*‘ x| )_”_‘dx)(l-l— ] )rtieei-2a-nN
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for every integer N with (n+41)/2+I—(1—7)N<—1. This proves (5.7).
Thus we have proved (5.1) in the case k=n.

(i) Assume that £,€Q,. Since the rank of the symmetric matrix p”(,)
is k, we can find a principal minor of order £ which does not vanish. So we
may assume that

det (621’(50)/6& 65,‘)5,,‘=1’4..,k +0.
Let
¥ = pe(Eo)
= (8p(go)/6§1, R ap(so)/afk) .

Then, by the implicit function theorem, there is a neighborhood W of yg, a
neighborhood U’ of &, a neighborhood U” of £¢’ and a unique function

P = (¢1) °t% ¢k)EC‘”(WX U”)
such that

{0, O EWXU' XU"|y' = pe(E)}
= {(y', E)ER*XR"|¢ = @(y’, &) for some (y', & \eWxU"} .

Here £'=(&,, -+, &), E'=(E4s1, -+, E,) and y'=(3y, =+-, y1). We now set

U= {ESR"|E = @(y', £") for some (', E)EWX U"} .
Obviously U is a neighborhood of &. We may assume that U CQ, and that
(5.9 p'(U)c{yeR"|5r/4< | y| <T7r|4}

for some r>0. Using Assumption (2.1) (P. 2) (b) we shall show that pg-(p(y’,
£”), £”) is independent of £”. Put

&' &) =0p(p(y', £"), EM[OE;  (j=k+1, -, m).

Then we have the differential

(5.10) dg; = 33 (F°p[OEDE )i+ 31 (FpJOEOE )E:
On the other hand, since y,=8p(e(y’, £”), £”)[0; (j=1, ---, k) we have
(5.11) dy; = 3} (Op|OEE )i+ 3] (O'P[OEE)dE,

Since the rank of p”(p(y’, &), &) is k and since
det pere((y', £7), £”) #0,
(5.10) and (5.11) imply that
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k
dg; =2eily', ENy: (j=k+1, )
where c;;(y’, ") are suitable functions. Hence
gy, Ef0E: =0  (i,j =k+1, -, n)

which means that pg(p(y’, £”), ) is independent of £”. Hence there is a
function g € C=(W') such that

p'(U)={yeR"|y'eW,y" =gy} .

Let us now estimate the L? norm of e ##oy. LetucsCg7(U). We write

Ae""”’ou(ty) = S d;;:" S eit(<y»$>-ﬁ(£))a(ty, E)ﬁ(E)dSI .
Set
T = {'eR"*| (¢, £’)Esupp % for some £ ER'} .

Let y,€p’ (supp %) and let £ T". We consider the phase function
§ = {yi, ED+0%, EO—pE', EX) .

Since yh=pe(p(y%, E¥), £¥), this phase function has a unique critical point
o(yk, E¥)€U’. By Lemma II and the remarks following it, for every integer
N>0 there is a positive number &, such that when |y—y,| <&, and

|87 —EX | <€xs
(512) | {enonroauy, pig)dr—Sdet per ', £7)j2m |

¢ M4 it (Y 1 5+ = p(0 ) Lyyri(a(ty, EYR(E)) | g | 8] 7742
<Cyla(ty, -, EYa(+, €)1t 77, 1] >1.

Here »'=@(y’, £”), s=2N+[k/2]41 and o=sgn pye(p(yk, EY), E¥). Differ-
ential operators L,;+; depend on y, £’ and by virtue of Lemma A.5 of [6] their
coefficients are C* functions of y, £”. Since p’(supp %) and T" are compact, we
can find a neighborhood ¥ of p’(supp #) such that (5.12) remains valid for y& V/
and £”’TI'. Here we may assume that

p'(supp#)CV Np’(U)
and
(5.13) Vc{yeR"|r<|y| <2/}

with the same » as in (5.9). At the critical point »'=g@(y’, &) the phase
E' =<y EDHLY, ED—pE', )
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is of the form
J)+<"—8(5), &> .
Indeed, writing
T, &)=<y, (a's D+, ED—p(p(y', E7), E)
and using the fact that y'=pe(p(y’, £”), £”), we see that
df = <dy', p>+<ay”, E">+<y"—g(y"), d€"> .

Therefore fer=y"—g(y").
Summing up, we have for every N >0 and every yEV

(5.14) | Ae~*Hou(ty)|
<cSt S et 8ONED | det pee(p(y', E7), E7)| TV

j=0

X Ly (a(ty, EYAE)) | gr—pty en@E" | X | 8] 742

+Culel ™= (atey, -, €1, €)1, 8"

=L |t| e Oy ]|
j=0
Applying Lemma I to I,, we see that for every integer L
LSCy(1+ 2] 1y"—g(y))™" max ( sup [(9/98)%a(ty, £)]).
|@|<2j+L Essupp @

It is obvious that

J<Chipz( aup, O e, ).

Choose a compact set K so that supp #C K and so that VN p'(U)Cp’(K). Then

14+ [tlde(p) <1+ 2| 1" —2(¥")], yEV
and
1+ tlde(y)<Clt], yEV, [t|=1.

Thus we have
(5.15) gl<|tl<°°< SZ/!EV I Ae~itH° u(x) I de)llzdt
< (n—k)/2 —ar
CN’L Sl<|l|<°°|t| [Sr<!yl<2r(1+ 12l dx(y))

x max_(sup|(0)oF)a(ty, )| dy " dt

|6 <2N +L=2 {EK
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o] geeme (e de()
1<t <o r<lyl<er

lo|<s

x max (sup| (0/08)"a(ty, £) Yy | dt

where we use (5.13). If we choose N, L so that N,<2N=2L<N,+1, then
2N+4L—2<2N, and s<2N,. Thus, by condition (c;), the integrals in the
right side of (5.15) are convergent.
Finally, (5.7) is shown in quite the same way as in (i). Thus we have
proved (5.1) in the case k<<n. Q.E.D.
6. Symmetry of A(X, D)

In this section we shall determine completely when the pseudo-differential
operator A=A(X ,D) is symmetric on S(R"). To avoid confusion, we denote
A S(R") by A4,.

Lemma 6.1. Let hypothesis (A) be fulfilled. Then the domain D(AF) of
the adjoint A contains S(R") and

(Aio)(x) = S e.-<,.5><5 i Ba(x’| E)o(x’) dx') aE,  veSER.

Here a(x, £)=a(x, ).
Proof. See [8], p.61. Q.E.D.

We wish to get the representation of the form
(o)) = § 0bs, EE)2E.

Following ideas in [8], we shall consider the symbol b(x, &) defined by the
oscillatory integral

6.1) b, &) = O, (| eomatety, B+ maydy .

For oscillatory integrals we refer to [8, Chapter I].

Lemma 6.2. Let hypothesis (A) be fulfilled and let b(x, &) be as in (6.1).
Then b= C=(R" X R") and for all multi-indices o, B the estimate

(6-2) | (3/08)(0/0x)Pb(x, &)
K Cop(14 [ x| )1 702IH21@) (| | £ | ym+edBl+2mE)

is valid for some constant Cag, where l(a)=[(l4+n+7|a|)/2(1—7)]+1, m(B)=
[(m+n+3]B1)[2(1—8)]+1.
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Proof. First put
(63) b &) = [[eomxey, enaity, Etmdydy, €0,

where X(y, n)ES(R" X R") and X(0, 0)=1. Since we can differentiate under
the sign of integration as often as we like, we conclude that b,&C~. Further-
more, by repeated integration by parts, we have

(6.4) (6/08)"(8/0x)°by(%, E)
=([eomariyn@a—ay@ariqm e
X(1=A,)"®(X(ey, En)am(x+y, E+n))dydn
=({eonr i £, 3, mdyan

with the notation a)™=(0/08)"(0/0x)Pa. By using hypothesis (4) we have

(6_5) ,Iel gc{»ﬂ(l‘f“ lx')l+‘r‘|aﬁl+2'rl(w)(1+ lg,)m+8lﬁl+2§m(p)
% (1+ ' y|)1+flwl+2(f—1)1(¢)(1+ l’? I )m+8|ﬂ|+2(8—1)m(ﬁ)

where Cg is independent of & Since /47|a|42(7—1)l(@)<—n and since
m+8|B|+2(8—1)m(B)<—n, we can derive from (6.4) and (6.5)

(6.6) [(9/0F)*(8/0x)by(ix, &)
< C‘:é(l_{_ |x l )I+-r|w|+2'rl(m)(1_1_ |§ | )m+8[ﬁl+28m(ﬁ)

with a constant C; independent of €.
Now, let

bap(x, £) = OS—SS e g gy x+-y, E4n)dy dy .
Then, by repeated integration by parts,
(6.7) bas(x, &) = gg e (14| y |1 —A,) @ {1+ |52 "®

X (1—=A,)"Pag) (x-+y, E+n)}dydn .

From (6.4) and (6.7) we see that for every compact set K CR"X R" and all
multi-indices a, B

(6.8) 59 bus(et, £)—(0/05)°(0/obx. £)]
<Crap | (, max 1(0/07)"(0/05)" (1=, én))

X (1+ l,y l )l+¢|m|+2(1—1)1(¢)(1+ l’? I )m+8|ﬂl+2(a—1)m(¢3)dyd77
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is valid for some constant Cyas, Where Ngp=2(l(a)+m(B)). Since (3/07)"x
(8/0y)*(1—X(Ey, €n))—0 as £€—0, (6.8) implies that for all multi-indices a, B
(8/08)*(0/0x)Pb, converges uniformly on every compact set to bug as E—0. In
particular, b, converges uniformly on every compact set to b as €—0. Hence
beC> and

(6.9) (9/08)*(0/0x)°b(, &) = bup(x, &)
Thus (6.2) follows from (6.6) and (6.9). Q.E.D.

The proof of the following lemma is virtually identical to some arguments
of [8, chapter 2].

Lemma 6.3. Let hypothesis (A) be fulfilled and let b(x, £) be as in (6.1).
Then

(6.10) (Aio)(x) = S F=bh(x, EE)IE,  veSR".

Proof. Let b(x, £) be as in the proof of Lemma 6.2. Then the Fubini
theorem and a change of variables give

(6.11) S KaDb(x, EYD(E)dE

=([§ exwo-iomx(ey, enatety, 4miE)ayanae

- S ei<x.s’>{S K a(x’ | £

x ([ ecxox(ew—n), o'~ £)oE)at s L

ES SO (x, E)AE .
By (6.6), (6.11) and the Lebesgue dominated convergence theorem
(6.12) lim { = 07,x, £)dE" = [ eccone, £)0() a
By repeated integration by parts it follows that for every integer >0
613) | [ e —a), e —enoE dE <t 1)

with C, independent of €. Therefore, by the Lebesgue dominated conver-
gence theorem,

(6.14) lim I,(x, £") = S e a(x’ ) ENo(x")dx' .
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Here we have used Fourier’s inversion formula
o(x') = S &< DH(E) dE .
Note that for every integer j >0
(6.15) I(x, "
= (+H1g 1 e oa—apfaw, )
X ($ DX (' —x), E(E’—g))ﬁ(g)d5>}dx' .
Since, by (6.13) and hypothesis (4), the integrand in (6.15) can be estimated by
(L &7y (1 | [ )2
for every integer k>0, it follows that for every infeger j=0
[Ie(x, £)| SCH(1+ £ [0~

with a constant C} independent of €. Choosing j so that m+2(8—1)j<—n
and using the Lebesgue dominated convergence theorem, we see that

(6.16) limS A (3, E)dx!

e e
(Recall (6.14).) By Lemma 6.1, the right side of (6.16) equals (4¥v)(x). Thus,
combining (6.16) with (6.12), we obtain (6.10). Q.E.D.

Now we give a theorem.

Theorem 3. Let hypothesis (A) be fulfilled. The operator A, is symmetric
if and only if

(6.17) I fal(n, &) = F.[al(n, E+n)  in S'(RIXRY).
Here F [a] is the Fourier transform of a with respect to x.

Proof. Letb beasin (6.1). If
(6.18) F[b](n, E) = F.fal(n, E+n)  in S(RIXRY),
then (6.17) is equivalent to

(619) ff',[a](n, E) = gz[b](’?) E) in ‘S’(R:XRZ) ’
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or what is the same thing,
(6.20) a(x, £) = b(x, £) .

Hence, by Lemma 6.3, (6.17) is equivalent to the fact that A, is symmetric.
Thus, it suffices to show (6.18)
(6.18) means that for every o(», £)ES(R; X R)

(6.21) [] o, ©YF 11w, £)avde
= ([ a o)([ e er, £~y )ana
Choose X,eS(R") so that X,(0)=1 and replace X(€y, &) in (6.3) by

Xo(€Ey)Xo(En). Then b, has the same properties as before. By (6.6) and the
fact that b;—b as €—0, the left-hand side of (6.21) is equal to the limit of

(6.22) [§ 8.5, OF L1, Epna
which, by the definition of b,, equals
623 ([[§ e xenienatty, e+m)F lplx, vy dsde.
By a change of variables, (6.23) equals
624 ([ atw e)([{ eonienien)Tlpla—y, E—n")dydn' )ard

= SS a(x, £)].(x, E)dxdE .
Finally we should examine J,. Using the Fubini theorem, we see that
625)  Jux, &) = [ et e—naten)([ e xer)dy Jindy'
Writing y'=¢&y, we see that the right side of (6.25) is equal to

[[ e m o, e—nxoen )Rl or' —m))e"dnatn’

Thus a change of variables gives

Je(x, &) = SS e~ Ko 001! g0, E—n")X(En")Xo(0) dOd ' .

Hence
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(6.26) lim J.(x, &) = S gy, E—n’)(S ﬁo(e)de)dn'
= Se““""’/@(n', E—n")dn’'
where we use X (0)=1. On the other hand, since F,[p]ES(R"XR"), it
follows that for every integer k>0
(6.27) | Je(x, E) | <Cy(1+ |2 )* (A4 1E1)7*
with a constant C, independent of €. Hence, by (6.22)-(6.24), (6.26), (6.27)

and the Lebesgue dominated convergence theorem, (6.21) now follows.  Q.E.D.

7. Self-adjoint extensions of P(D)+ A(X, D)

In this section we give sufficient conditions for P(D)-+ A4(X,D) with domain
S(R") to have self-adjoint extensions. Let 4, be as in Section 6 and let P;=
P(D) | S(R™). Throughout this section, we assume that A, is symmetric.
The following is an extension of a proposition of [1].

Theorem 4. Let hypothesis (A) be fulfilled and assume that p is a real-
valued continuous function so that

[p(E)I<C(+ &Y

for some real numbers C and j. If there is a symmetric and orthogonal matrix M of
type n X n such that

(7.1) p(—ME)=p(E), a(Mx, —ME) = a(x, £)
then Py+ A, has a self-adjoint extension.
Proof. For us L} R"), define
(Un)() = (D).

Since M is symmetric and orthogonal, U is a conjugation in the sense of [4,
Definition 17, p. 1231].  Using (7.1), we shall show that Py+4, commutes with
U. LetusS(R"). Since |Mx|=|x|, we see that UusS(R"). By (7.1) and

the fact that F[Uu)(§)=S[u](—ME),
(Pyt-Ag) Uu(w) = | =0 (p(—ME)+a(Ms, —ME)F[l(—ME)dE .
A change of variables gives

(72 (Pot-A)Un(x) = | 5 (p(n)+a(M, )(m)y
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Thus, by Theorem 18, p. 1231 of [4], P,+4, has equal deficiency indices,
which implies that Py+ A4, admits a self-adjoint extension. Q.E.D.

Next, we shall give a sufficient condition for P44, to be essentially self-
adjoint. We will need a stronger condition on A(X, D).

Theorem 5. Let m, p, 8 be real numbers with 0<8<p<1, 8<1 and
assume that a is a C* function so that

(7.3) [ (3/0E)*(8/0x)Pa(x, £)| < Cug(|E|)(1-4 | E|)mretpi-pi

Sor all multi-indices at, 3. Here Cog(|E|) is a continuous function on R" such that
Cus(1E1)—>0 as |E|—>oco. Moreover, assume that p is a real-valued continuous
Sunction so that

(7.4) CI+EN"< | pE) | <CL+ED”
for some Cy, C, and . Then P+ A, is essentially self-adjoint.

Proof. For every R>0, choose a function ¢,C"(R") with @&)=1
when [£| <R and @(£)=0 when || >R-+1. Let ®4(D) be a pseudo-differen-
tial operator with the symbol @g(£). We make a decomposition

(7.5) A(X, D)(1—A)~""
= A(X, D)(1—@k(D))(1—A) ™"+ A(X, D)PD)(1—A)™">.

Note that the symbol of the first term on the right side is

a(x, E)(1—prE)(1+E]5) 7.
Since 1—@g(£)=0 for |£|<R, we obtain for all multi-indices e, 3
| (8/08)*(0/0x)" {a(x, E)(1—p@r(E))(1+ |E|D)™ ™%} |
<Mwﬁ(ff§§ égg Cuw(1E))(14+|E] yoiei-ele

v<B

with a constant M,s. Here we have used (7.3). From a theorem due to
Calderon and Vaillancourt ([8], p. 215) it follows that

(7.6) [JA(X, D)(1—®x(D))(1—A) ™2%|| 2< Cllvll,2, velA(R"),
where
(7.7) Ca = C max sup [1(2/08)"(0/0) {a(w, £)

1:5.

X(1—¢’R(§))(1+ IE[Z)(—m—slslwlul)/z} |]
and M=2[n/2+1], N=2[r/(2(1—3))4-1]. The constant Cg can be estimated by
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(7.8) max (sup Cag(1£])) .-

lw|<M |[¢[>R
1Bl<wv

Similarly, we note that the symbol of the second term on the right side of (7.5) is

a(x, E)px(E)(141£1%) 7"

which vanishes when |£|>R. Again we can apply a theorem due to Calderon
and Vaillancourt which shows that

(7.9) 1A(X, D)®(D)(1—A) || 2<Cilloll-n, vEH.,

with C§ depending on R.
Now, let uS(R") and put v=(1—A)"?u. 'Then,

(7.10) o]l = [luell2
and
o e (], o e

<(A+-RY)™lullz2+C || Pgul |22
where we use (7.4). Hence, by (7.5)—(7.11),

(7.12) 1Al 2 = [|A(X, D)(l—A)""/zquL2
<C(m§ sup Cap(1EINIPoull 24 C ¥ |ull 2
1Bl<Ny

with C%¥ depending on R and C independent of R. Since Cop(|E|)—0as |E|—
oo, (7.12) means that A4, is P-bounded with relative bound 0. Note that P, is
essentially self-adjoint. Thus, by Theorem 4.4, p. 288 of [7], we conclude
that Py A4, is also essentially self-adjoint. Q.E.D.

Appendix

In [6], Hormander systematized the method of stationary phase. In this
appendix, we shall reproduce his results in a somewhat different form.

Lemma I. Let K CR" be a compact set, Q2 a neighborhood of K and let @

be a subset of C**(Q, R) with the following properties:
(@) There is a constant C, such that for every f E® and every multi-index o
with 1< |a| <k+1 the estimate

[(0/0x)%f(x)| <C,, x=Q

is valid.
(b) There is a positive constant C, such that for every f E®
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|f'(x) | =C;, xeK.
Then we have for o €R and all f =D

Seiwf(x)u(x)dx|<c(1+|wl)‘k]u|k, uECﬁ(K).

If one looks carefully into the proof of Lemma A.1 of [6] one finds easily
that the conclusion of Lemma I remains valid. So we omit the proof.

Lemma II. Let f€C~(Q) be a real-valued function in a neighborhood Q) of
0in R". Assume that f'(0)=0 and that f"(0)is non-singular. Moreover, assume
that f'(x) %0 for every x€Q\{0}. Then there exist differential operators L ;
of order 2j such that for every integer k>0 and every s>2k-+n/2, we have when
ueC7(K), K compact CQ,

A1) | [ uerode—S1det f1(0)/2n | e IOL  uO)r™s
L<Co " *u|,, o>1.
Here o=sgn f”(0), i.e.,
o = 2sgn\,;

in which \;, j=1, -+ ,n, are the repeated eigenvalues of the symmetric matrix f”(0).

Since we assume that f'(x)+0 for every x=Q\{0}, this lemma follows
immediately from Lemma A.1 and Lemma A.4 of [6]. In fact, choosing aE
C5(Q) so that supp « is contained in a small neighborhood of the origin and
using Lemma A.4 of [6], we find that there exist differential operators L, ; of
order 2j such that

(A2)

[ u(e)aoer e -S| det £/(0)/2 | e OL, a0~
L<Co™"**ual,.

If 7,>0 is sufficiently small and a(x)=1 when |x|<r7, then f has no critical
point in supp #(1—a). Applying Lemma A.1 of [6] to the integral

S w(@)(1—a(x))e™ Od
we have
(A.3) Hu(x)(l—a(x))ef”fwx
SC(1+ o) * /A (1—a)u | pitaaes -

Combining (A.2) and (A.3), we obtain the conclusion of Lemma II.
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We remark that Lemma II is applicable uniformly to all functions in a

small neighborhood of f in C*(Q2). Indeed, Hormander [6] showed that (A.2)
is applicable uniformly to all functions in a small neighborhood of f in C*(Q).
Remembering that f'(x)#0 for every x&Q\{0}, we find that for any com-
pact set KCQ\{0} and any integer k>0 the hypotheses of Lemma I are
satisfied, provided that we take & to be a small neighborhood of f in C~(Q).
Thus (A.3) is also applicable uniformly to all functions in a small neighborhood
of fin C~(Q).
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