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Introduction

Let F(r, x, t, ») and G(7, ¥, t, w) be random vector fields on R? with time
parameters T, ¢ satisfying certain statistical properties. Let ; be a solution
of the stochastic ordinary differential equation

Z_;‘ = EF(€%, %, t, 0)+EG(E%, %, 1, ).

A lot of attention has been shown to the limiting behavior of the solution r;
as €—0 and #—co with &% remaining fixed, since the work of Khasminskii
[8]. See also [3], [7], [13], [14], [16]. In these woiks, it is proved that ¢}
=+}2 converges weakly to a diffusion process ¢, with local characteristics
a”’ and b which are determined from random vector fields F(r, x, ¢, ) and
G(7, %, t, ) in a suitable way. (See (1.6)—(1.8) of Section 1). Note that ¢;
satisfies

% ¢!t = Fe(t) ¢et) ’
where
Pt x)= L F(@t, % L)1G, x,L).
¢ 3 ' g2 &

The purpose of this paper is to show that the weak limit of ¢} satisfies
a suitable It6’s stochastic differential equation, which can be regarded as the
weak hmit of the above stochastic ordinary equation. Indeed, we will see

in Theorem 1 that setting Xj(x)= S'F,(s, x)ds, the pair (¢}, X7) converges weakly
0

to (¢, X;), where ¢, is a diffusion process mentioned above and X is a Brownian
motion with values in the space of vector fields. Furthermore, these two pro-
cesses are linked by It6’s stochastic differential equation
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do, = dX,(¢p,)+c(t, P;)dt.

Here c(t, ¢,)dt is the “correction term” caused partly by Ito’s stochastic in-
tegral and partly by non-symmetry of F(r, x, ). When the Stratonovich
differential odX,(¢,) is well defined and a suitable symmetric hypothesis is
satisfied, the above equation is written simply as (Theorem 2)

dp, = odX(¢y) -

1t6’s stochastic integral by the Brownian vector field X, was introduced by
Le Jan [11] and Le Jan-Watanabe [12] for the study of Brownian motion in
diffeomorphisms group G=Diffeo (R?).

Our limit theorem is formulated as a convergence of measures on the space
C([0, T]; G)XC([0, T]; V), where V is the space of vector fields. In fact,
the pair (¢}, Xi) can be regarded as a continuous process with values in GX V
and it converges weakly to a continuous process with values in GXx V. More-
over, the limiting process has independent increments. Thus it can be con-
sidered as a Brownian motion in GX V. The relation between ¢, and X, is
that X, or dX, is the pathwise infinitesimal generator of ¢,.

In his paper [17], S. Watanabe pointed out that some limit theorems re-
lated to random ODE could be formulated naturally in the framework
of stochastic flows of diffeomorphisms. Our result might be considered as
a partial answer to the problem.

1. Formulation and statement of the theorem

We begin by introducing some assumptions to random vector fields
F(r, x, t) and G(7, x, t) together with the mixing condition. Our hypothesis is
close to that of Papanicolaou—Kohler [13].

Let (Q, &, P) be a probability space and let &, ,, 0<s<¢=< -+ co be a family
of o-fields in & and such that &, , CF,, ,, if 0=s,<s5,<t,<t,, We assume
that o-fields & ; are mixing relative to P in the following sense:

(AJ)  The mixing rate

11 t)=su su P(A|B)—P(4
( ) P( ) 3>€ AEQ’,H,E,BES"O,, | ( | ) ( )I
decreases to 0 as ¢ 1 oo and satisfies

(1.2) S”p(s)lﬂds<oo.
0
Let F(r, x, t, ») and G(7, x, t, ») be random vector fields; measurable

mappings from [0, T]X R?X [0, c0)x Q into R?, where T is a positive number.
We assume the following hypotheses (A.II) and (A.III).
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(AJI) (i) For fixed 7, %, ¢, F(t, %, ¢, ») and G(7, x, t, ») are &F, ,—measurable.
(ii) For almost all », F(7, %, ¢, ») and G(7, x, ¢, ») are continuous in three
variables. Furthermore, F(7, x, ¢, w) is twice continuously differentiable in
x and G(, x, t, ») is continuously differentiable in x.

(i) There is a constant C independent of 7, x, ¢ and w, o’ such that
(13)  |F(r, %t 0)| =C(1+x]), |G(7, %, 2, 0) | = C(1+|x]),
(14) |12 Fin, xt0)<C, |-2.Gi(r, 5,8 0)|<C,

0x’ ox’

0 i 0 (! "o
(1°5) l@;F(T’x’ t:w)a‘;F( y Xy L )lgc)
(v) E[F(r,x, )] = 0.

(AJII) There are continuous functions A4‘(r, x, y), b’(t, x) and ¢/(r, x) such
that

(16) 14,5, 9) 1" [ B 5 5P, 5, 5)ldsdo]
<Ce(l+1x1) (1+171),

D) 15— | EG, 5 -5 < O+ 1x1),

. 1 T+EAT 4 : s 6 .
(1.8)  |d(r, x)— ES, S SVE(F(s, %, 5) 2 Fi(o, 5, 5)ldsda |
< Ce(1+|x1)
hold for any £>0.
We set

(1.9)  a'(r, x,y) = A7, y, x)+ A7(7, x, y) .
Then it holds a’i(7, x, y) = a'(r, y, x) .
ReMARk. We will see in Section 4 that (A.I)~(A.III) imply that A%,

b, ¢! are uniformly Lipschitz continuous in the following sense. There is a
constant L such that

(1.10) | A¥(r, x, x)—AY(7, x, y)— A" (7, y, x)+A" (1, y, )| < L|x—y|?,
(L11) | i(r, £)—bi(r, )| + | 6(r, 8)—ci(r, 9)| < L|x—y]|

hold for any 7, j and 7, x, y.
Given €>0, consider the stochastic ordinary differential equation

(1.12) Z—‘;‘ = EF(&%, x, 1, 0)+EG(E%, x,t, w), t=0.
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The solution starting from x at time s is denoted by 5 ((x) or simply ;.
We are interested in the behavior of the solution as £€—0 and t—oco with &%
remaining fixed. For this purpose, we consider the process where the time
scale is changed. Define ¢5 :(x)=1v5,2 ,2(*¥). Then it satisfies

d € . e x
(1.13) 7 ¢s,1(x) = Fy(t, ¢5,4(%)),
where

1 t t
(114) F(t, x) = ?F(t, X E{)"‘G(ta X, E) .

In the following discussion, we shall regard that ¢ (), s, t€[0, T], x&R*
is a random field. Obviously it has the following property. For almost all w,
the map ¢ :: R?*—R? is a homeomorphism and satisfies multiplicative pro-
perty o5 «=oru0¢s, for any s, £, u of [0, T]. It is often called a stochastic flow
of homeomorphisms. Now define another random field

(L15)  X%.(x) = S'F,(T, x)dr.

It can be regarded as a (random) vector field for each s, ¢, satisfying the additive
property Xt ,=X§ +X} .

We shall introduce the law of the random field (¢5: X5:). A two
parameter family of homeomorphisms ¢, ,, s, t[0, T] of R? is called a flow
of homeomorphisms if ¢, ,(x) is continuous in three variables and has the multi-
plicative property ¢, ,o¢,;=¢,, for any s, ¢, u[0, T] and ¢, ,~identity
for any s. We denote by W, the set of all flows of homeomorphisms. Now
let X, /(x) be a two parameter family of vector fields continuous in three vari-
ables (s, ¢, x), satisfying the additive property X, ,+X,,=X,,. The set of
all these two parameter families of vector fields is denoted by W,. For ¢,,,
v, of W,, we define the metric by d(¢, y)=sup; ;cr0,71 P(Ps.1» Vs,i), Where p
is the compact uniform topology of C(R?Y; R?). Note the relation ¢,,=¢7}.
We see that (W), d) is a complete separable metric space. The metric of W,
is defined in the same way. Then the product space W=W,QW, is also
a complete separable metric space. Denote by B; the topological Borel field of
W. The pair of random fields (¢5 :(x), X5 ((x)) induces a law on (W, By)
which we denote by P®. The expectation by the measure P is denoted by
E®.

We are ready to present the main result of this paper.

Theorem 1. Assume (A.I), (A.II) and (A.III). Let P® be the law of
(95t X5,t) on (W, By). Then there exists a unique law P on (W, By) such
that (By, P®) converges weakly to (By, P®) as €—0. Furthermore, P® admits
the following properties.
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(i) (X, P®)is a Brownian vector field, i.e., a Gaussian random field such that
Xiiti,p 1=0, ---, n—1 are independent for any 0=<t,<t,< --- <t,<T. The mean
and covariance are given by

(L16)  EOX, (@) =8 wir  (=X6),

(1.17)  EO((X:,(%)—X:,(%)) (X,:(0)—X1,4(y))) = 'Ea""(f, x, y)dr.

(ii) (s P®) is a Brownian motion in G=Homeo (R%), i.e., ¢, ,1=0, -,
n—1 are independent for any 0=t,< -+ <t,<T. The infinitesimal mean and
covariance (local characteristics) are given by

(118)  lim L Efg, ,ua(s)—s] = b(r, x)e(r, 3),

(119)  lim LB a0 =) ($hras)—3)] = a7, 3,9) .
(i) ¢, , and X, , are linked by the following 1t0’s stochastic differential equation

(1.20) qbs,,(x)=x—{—£dX,(¢s,T(x))+S:c(T, bor)dT,  t>s.

Here, It6 integral by Brownian vector field X, ,(x) is defined as follows.
See Le Jan [11] and Le Jan-Watanabe [12]. Let f,, £=s be a continuous ¥, ,-
adapted R‘-valued process where s is fixed. Let §,, n=1, 2, -+ be a sequence
of partitions 8,= {s=#,<t,<< -+ <T} such that |§,| =max |#,,,—2#| | 0. Then
the limit

(121)  Mi=hm 33Xl Fon)

exists in probability and is a continuous &, ,-adapted local martingale. Fur-
ther, the joint quadratic variation of M: and M is given by

(122) <O, B, = S'a"f(f, A
ie., MiMj —Sta‘f(-l', for f-)d7 is a continuous local martingale. We denote M

t
by { axi().

It might be an interesting problem to relax the mixing condition (A.I)
to a weaker one such as Borodin [3] or Kesten-Papanicolaou [7]. Assumption
(A.II) is also rather stringent since the constant C is taken independently of
T, %, t, o. We have not succeeded in relaxing these hypotheses. A difficulty
appears in proving the tightness of the measures {P®, £>0}.

In order to see the Brownian vector field more explicitly, we shall consider
the case where the random vector fields F(r, x, t) and G(7, x, t) are of separate
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(123) 9 L eG4

Here F’,,(-r, %), k=1, ---, n, and G(7, x) are deterministic vector fields satisfying
conditions of (A.IT) and continuously differentiable in 2. %,(f), k=1, -, n,
are stationary zero-mean processes, <, ,-measurable and bounded. We define
the noise intensity matrix (7,;) by

(124) 7= "Ru)ds,  Rufs) = Eln(s+hm(0)].

Then it holds

(125)  49(r, % 3) = Dim (L[ B ) Sdsdo} Fi(r, 5)Fir, 3)
= g ruli(r, ©)Fi(7, y),

(1.26)  bi(r, x) = Gi(r, %),

and similarly,
(127)  o(r, ) = DnSFicr, x)a_iTF,(T, %).

For the study of the limiting behavior of ¢ ;, it is convenient to consider
the law of triple (¢5 :(x), X5, ¢(x), (B¥* -+ Bp*)), where

e 1(¢ ,7
(128) B =?Som(§)dr.

Let W;=C([0, T]; R") and denote its element by (B}, -+, B%). Let W=W,x
W, x W, and By, the topological Borel field.

Theorem 2. Let (W, By, P®) be the law of the triple (¢, o0 (BYS
<o, B¥*)). Then there is a unique law P® on (W, By) such that (B, P®) con-
verges weakly to (B, P®). Furthermore, the law P©® admits the following pro-
perties.

(i) (Bi, +, BY) is an n-dimensional Brownian motion with zero-mean and con-
variance t(ry,~+7y), R, I=1, -+, n.
(ii) Brownian vector field (X, ,, P®) is represented by

(1.29) X,,,(x)=2S:F’,,(T, x)dB:+S:G(T, mdr, t>s.

k=1

(iii) Brownian motion ¢,, on G=Homeo (R?) satisfies the following Stratonovich
stochastic differential equation
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(130)  $oule) = 2+33 [ Folr, g 0)odBi+ G, 6, (9)dr
+0§,§g% ("kr—rlk)S:[F b F1] (7, $o(2))dT
where [F'y, F'|] is the Lie bracket defined by

(131) [F,Fl=F2 F-F 25,
7 ox; i ox;

It is interesting to compare the above result with the approximating theo-
rems of stochastic differential equation studied by Wong-Zakai [18] and Ikeda-
Nakao-Yamato [5]. In these works, stochastic ordinary differential equation
of the form

ditqbi =31F(t, $DB 0, ¢7), ¢t =

is considered, where B¥®, &>0 are piecewise smooth approximations of B}

and ’:"=t% B}t In [18], the polygonal approximation of B}:

Bht — B?,—I—% (Bhione—BY) (t—i)  if ie<t<(i+1)

is taken. It is shown that ¢} converges strongly (L?-convergence) to the
solution of (1.30) without the last correction term, i.e., it corresponds to the
case that (r,) is symmetric. In [5], more general approximations such as
Mecshane’s and regularizations by mollifiers are considered. There, the limit
¢, satisfies (1.30) with the correction term. See also Ikeda~Watanabe [6].
The correction term is related to the stochastic area enclosed by the curve (B},
B}*) and its chord:

1 11 [ . .
= Cu—ra) = lim EE[—Z—(SOB’;"dBL"——SOBi-'dBﬁ' 1.

Finally we consider the case where coefficients F(r, x, ¢, o) and G(7, %, t,
) of equation (1.12) are smooth in x. We shall introduce the following.
(AIV)  F(r, %, t, ®) is (r+2)-times continuously differentiable in x and deri-
vatives are all bounded in x. G(7, %, ¢, ») is (r+1)-times continuously differ-
entiable and their derivatives are all bounded. Furthermore, derivatives of
2V Fi(r, %, t, 0)D*Fi(7', x, t', w), | k| =r+1 are all bounded.

Now a flow of homeomorphisms ¢, ,, s, [0, T] is called a flow of C’-
diffeomorphisms if for each s<#, the maps ¢, ,; R*—R¢ are C’-diffeomor-
phisms and their derivatives in x up to » are continuous in (s, ¢, x). Two
parameter family of C’-vector fields X, (x) is defined similarly. We denote
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by W1 the totality of flows of C"-diffeomorphisms and by W7} the totality
of two parameter families of C’-vector fields with the additive property. For
¢.,: and . , of W1, we define the metric d, by
— 13 &
dr(¢r ‘I") ‘—‘”_E’ s'tzl[t?“ p(D ¢s,t! D ‘1’:,!) ’
where p is the compact uniform topology on C(R?; R%), k is the multi-index
k. k
of nonnegative integers k=(k,, -+, k;), |k| =k,+ -+ +ky, D”=<§) L (81) ‘
X1 Xa

Noting ¢, ,=¢rs, we see that (W7, d,) is a complete separable metric space.
To the space W3}, we associate the same metric d,. The product space W’
=Wi{QW}; is then a complete separable metric space. Denote by By the
topologycal Borel field of W”.

Theorem 3. Assume (A.I), (A.II), (A.III) and (A.IV). Let P® be the
law of (X5, ¢5.¢) on (W', Byr). Then PO converges weakly to PO on w’,
Byr) relative to d,-topology. Furthermore, PO coincides with P© of Theorem 1,
i.e., PO is supported by W' and the restriction P® | W' coincides with P©.

For the proof of these theorems, we will discuss two problems. The first
one is the tightness of the measures {P®, >0}, {P®, >0} and {P®, £>0}.
This will be inspected at the next section by means of Kolmogorov’s criterion
of the tightness of continuous random fields. The next problem is to show
that any weak limit P is a solution of a suitable martingale problem. We
will see at Section 3 that the (z-+m)-point motion (¢, :(%1), ***5 #,:(*s)> Xy, ((31)s
v+, X,,{(¥w)) is a diffusion process with local characteristics a*/, ' and ¢ for
any #,. Theorems 1-3 will then be proved at Section 4.

2. Tightness of measures

In this section, we are concerned with the tightness of the family of laws
P®,; £>0 induced by the solutions (¢5 :(x), X5 :(x)). We shall first quote
Kolmogorov’s tightness criterion for a sequence of continuous random fields.

Kolmogorov’s theorem.” Let X,(\), AEA be a sequence of continuous
Rl-valued random fields with parameter A=[—N, N]. Suppose that there are
positive constants o, 8, Y and K such that

E[| X,(0)I°]=K,
E[IX,,(X)—X“('U,) |5] < K’)’_‘u‘lkvi

hold for any N, p and n. Let P™ be the law of X,(\) defined on C(A; R*). Then
the sequence of measures P™, n=1, 2, .- is tight.

1 The theorem is well known in case that X, is a sequence of stochastic processes. See
Theorem 12.3 in Billingsley [2]. 'The extension to the random field is not difficult.
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In the following two propositions, we will check the above criterion to

the random fields X3 ,(x) and ¢; (), separately.

Proposition 2.1. Let p be an arbitrary positive integer. Then there is a
positive constant K, not depending on & such that

(2.1) E[| X5 (%) 1?1 = K, | t—s|?(1+ |x])?,
(2.2) E[| X5 i(x)— X5 o(x") %]
= K A(1+ |2 )#(1s—s" |2+ |2—2"| )+ |x—x" |}
hold for any s, s', t, t'€[0, T] and x, x' ER°.
Proof. The above estimate is clearly satisfied for X ;(x)= StG(-r, x,lz)df.
’ s &

Therefore it is enough to consider the case G=0. For the convenience, we
set Fs =S 2 2 Fi=F5,¢ for 0<s<t=<+oco. The i-th component of Xj(x)
is denoted by Xj, since s, x and 7 are fixed. F(t, x) is abbreviated as Fi().
We will first prove (2.1) in case s<<¢. The case #<s can be proved similarly.
It holds

(23) B3] = 2p2p—VE[| dr{ doFilr)Fi(o) (Ref*~7
= 2p(2p— VB[ do | arBIFi(r) | FIFi() (Xey]

Since E[Fi(7)]=0 and F{(t) is &; -measurable, it holds by the mixing pro-
perty (A.I),

| BLFi(r) | F5]1 <2 sup | Fi(r) | p(*57)

< Zc+1sDp(59),

where C is a constant in Assumption (A.II). (See Papanicolaou—Kohler [13],
Lemma 1) Therefore

t . R —
([LarBF i) | TR i) | = 2004 1514 o 5D
<20%1+ |31 p(s)ds
Then (2.3) is estimated as

E[(X3)?] < 2p(2p—1)Cy(1+ | %] )ZS:E[(E)Z"‘Z]da

where C‘1=ZC’Swp(s)ds. Then by iteration, we get
0
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B[] = @) CH(1-+ |1y doy- (',
é(z—;:,)—!ci’(lJr lx])?|t—s]? .

This proves (2.1).
We will next prove

@4)  E[X@-X0)17]1S Cla—yl?|t—s?
in case t>s. The case t<Cs can be proved similarly. It holds
25)  EIXW-X0)Y]

= 2p(2p—1)E| do | arBIFi(r, ) Fi(r, )| F:]

X (Fi(o, %)~ Fi(o, ) (X))~ e0))* ]

Since

Fi(r, 9~ Fi(r, y) = 3| 8,Fi(r, y+o(s—y))o) (/=)
we have by the mixing property mentioned above,

\{ arBLFi(r, )~ Fitr, )| F2NFilo, 9—Fio, )]

< 20 ple)d) (32 1/
= 20%4([ p(s)ds) lx—y .
Therefore (2.5) implies
E[| (9~ Xi(0) 1] < Clw—y I*| B[ (@)~ R20) #)do

By iteration we get (2.4).
For the proof of (2.2), observe that X}, has the additive property X7,
=X; +X} . Then we have

E[] X5, (%) — X3, (") |%]
= 3#{E[| X5, o(2) |14+ E[| X5, o(x) — X/, o(x") |PP]+E[| X3, eA(x") | ]}

Apply (2.1) and (2.4) to the right hand side of the above. Then we get the
desired inequality (2.2).

We will next estimate the solution ¢ ;.

Proposition 2.2. Let p be an arbitrary positive integer. Then there is a
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Therefore, the first term of (2.11) is dominated by

@12)  4pC([ pOBEL (14 165D T 17 4o | 7]
Similarly, the second term of (2.11) is dominated by

(213)  2p(2p—1)2CK{ p)dn)EL[ (1+ 143 FFeF**do | 7]

Sum up (2.10), (2.12) and (2.13) and note the relation |14-¢; | =[]+
14 |x|. Then we get

E[|1%| %) < G E1v4 1| F2)do
+C(1+ 1) B 1| 2o

+C(1-+ | V[ BLlw 1221 Fdo

where C;, C, and C; are constants not depending on s, £, x and & By Gron-
wall’s inequality, we have

B[4 1?1 F3) < Cl(t-+ 15D BLI¥E 17| Fdo
+ (12 ] Bl 1 o}
By iteration, we get
E[|y31? | F] = Co(1+ | %[ )? [t—s]? .
Lemma 2.4. There is a positive constant C, not depending on & such that
(2.14)  E[|¢5,e(¥)—¢5,:(0)—(x—D)|?| L] = C, | a—p|?|t—s|* a.s.
holds for any s, t<[0, T] and x, ye R°.

Proof. We prove the lemma in case s<<? only. Set yri=d; (¥)— 5, :(y)—
(*—y) and denote the i-th component by ;. Then it holds

B[ | 5] = 2pE(| (Fi(r, $3(0)—Fi(r, $10)) Gy~ 'dr | ]

+2E[[ (Fi(r, 1)~ Fi(r, $:0)) @ dr|F1].

Since |Fi(t, x)—Fi(, y)| < C|x—y|, the first term of the right hand side is
dominated by

@15)  2pCE[] 14— i) 19 1#7dr | 7.
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positive constant K, not depending on € such that
(26)  E[l¢: (%) 7] = K,(1+ =),
27) B[ 6% () — (") 2] S KA1+ |6 P2 |62 |4 |s—' |9)+ | 2—2 |9}
hold for any s, t, s, t' [0, T and %, x' €R°.
Before the proof, we prepare two related estimates.
Lemma 2.3. There is a constant C, not depending on & such that
(2.8) E[|¢5,i(x)—x || F3] = C)(14 x| )2 | t—s|?  a.s.
holds for any s, t<[0, T] and xR,

Proof. We will prove the lemma in case s<<t only. The othericase can
be shown similarly. In the following discussion we write ¢i=d5 (%), Yi=
¢ :(x)—x since s and x are fixed. Further, s} denotes the 7-th component
of ¥i. It holds

(29)  EIF1F5] = 2| Fitr, $) (I a7 ']
+2pE[{ Fi(r, 1) Fy» 7| FY]
where Fi(r, x)=E[Fi(r, x)] and Fi(r, x)=Fi(r, x)—Fi(r, x). Since Fi(r, x)
=E[G(r, x, é)], it is dominated by C(1+4 |x|) by (A.II). Therefore the first
term is dominated by
(2.10) ZpCE[s:(H— |51 |5 127 dr | 7] .
The second term is written as
@11)  2E( ar{ do(SI0,Fi(r, $1)Fi(e, SN F]
+2p(2p—1)EL| dr{ doFi(r, $0)Fi(o, $2) TV )
=2 do | drBISY B Fir, 0) | FSIF (o, 40071

+202p—1) do | arBEIFi(r, $0)| F21Fi(o, 0 GI71F]

Since E[0,Fi(t, x)]=0 and 9,F! is F} ,-measurable, we have by the mixing
property,

|B0Fi(r, 491 211 < 2 Cp(C59).
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The second term equals

20 do [ arELE10,Fi(r, $1(s)Filor 41()
—330,F(r, $LNFilos SLONH FN (T 1]
+20B[{ do || drEIFi(r, $3(0)—Filr, $10)1F2]

X (Fi(o, $2(%))—Fi(o, $2() (FL)* 2 F]
=IL+1,.

We: will consider I,. By assumptions (A.I) and (A.IT), the absolute value of
the conditional expectation E[{ --- } | Z¢] is dominated by

ZP(T;‘T) S‘Bp IH:(T, b‘, ¢:_(x), Cl),)_H:(T, 7, ¢:(y), w/)ll)

gzc%p(%)lﬁ(x)—%(y)l ,

where H{(7, o, x, &)= 0,F(7, x, o')Fi(s, x). Therefore |I,| is dominated
by the same quantity as (2.15). We can estimate |I,| similarly. We have in fact

| LI < CEL[ 1 65(0)—420) ) 4o | F7]

Summing up these estimations and noting the relation |$g(x)—da(y)| = |x—y|
+ |4r: |, we obtain

B[} 2] < CoEL{ ¥4 |%do | 2]

t
+Cuolx—y| B[ |95 1%"do | F]

t
+Cula—y L[ | ¥4 1% | 7]

where Cy, Cy and C}, are constants not depending on s, ¢, x and €&. By Gron-
wall’s lemma,

B[4 1% L)< Culx—y | B[ | [#"do | F1]

14
+ Cils—y B[ |44 "o | F7] .
This implies by iteration the estimate of the lemma.

Proof of Proposition 2.2. The estimate (2.6) is immediate from (2.8).
We will prove (2.7) in case s<s'<t=<¢' only: Other cases can be proved simi-
larly. Since '

D See Lemma 1 in [13]
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$u0)—Y0w) = x—a+{ P, g3 00— [ P, e ar
SR ) SO ED) T

we shall estimate each of the right side. Similarly as in Lemma 2.3,

Bl | Fir, 2. a)ar |91 S 1+ 1wyl —s1?,
and
B Futr, ¢ ohar1#] = EIBLI | Fur, 61,.007121F7), 43, 0]
= Cy|t'—tPE[(1+ | ¢3,(x) )]
= Chle'—t|2(14 | x| ).
Similarly as in Lemma 2.4, we have
EL| [ Fir, o8t ()~ Flr, b))
= BUHELI [ Fulr, ¢ —Fulr, ¢ )7 || Fohmss, rH]
< C,lt—s' |PE[| ¢}, o(x)—x ]
By Lemma 2.3,
E[| ¢%,oo(x") —x]*] < 2 {| x—x" |2+ E[| §5,o/(x") — " | ]}
= 2{|x—a" |+ Cy(1+ &' [ )| s—s"| %} .
Summing up all these estimates, we get (2.7).

We next discuss the tightness of the family of laws PO >0 on (W',
By,) assuming the additional assumption (A.IV).

Proposition 2.5. Assume (A.I)-(A.IV). Let p be an arbitrary positive
integer. Then there is a positive constant K, not depending on & such that

(2.16) IE,E[ID"XZ',:(")V’] =K, |t—s|(1+4|x])*,
(217) 23 E[I1DMX: () —D' X ()],

S KA1+ [=])2(1s—s"1 2+ [t—t"| )+ |x—x"|*}
(2.18) ':,_,'S"E[l Dr¢s o(x) | ] < K (14 | x] )2,
(2.19) lE,E[ll)"qbi,:(x)“l)" b, (%) 7]

S KA+ 1x])?(12—=2" |2+ [s—s"|9)+ | x—a" |}
hold for any x, ' SR’ and s, s', t, ' [0, T).
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We only give the proof of (2.19), which is most complicated among the
four inequalities. The case r=1 is only considered, since the case r=2 can
be shown similarly.

Lemma 2.6. Let 6j=6iac'j' There is a positive constant C, not depending
on & such that

(2.20)  E[|0,(¢s,(x)—x) | |FS] = C,|t—s|?,

(221)  E[19;¢%,((x)—0;¢3,:(y)—0,4+0,y|# | F:] = C, | x—y || t—s|?

hold for any s, t<[0, T] and x, yE R°.

Proof. We prove (2.21) in case s<<t only. Set yri=0;¢%, (*)—0;0%,:(y)
—0,x+40;y and denote the 7-th component by ;. Then it holds

¥ =3 [ 0Fi0, 160,63 —0FiCr, $10))0,85 0 ar
Therefore (§})? equals
2 St? {0uF3(r, $2(x))—0,F o (r, ¢7(¥))}0,;¢7*(x) (F)** "'dr
+2 S ‘zﬁ 0F¢(r, $7())(8,074(x)—8;07*(¥)) (J7)** ~'dr
+2p 3 UL, SN —0Fi(r, SN0, RF)Pdr
+2{ S0Fi(r, $10) @,54 ) 0,4 (0)) Gy

= L+L+I+1,,

where F,=E[F,] and F',=F,—F.,.

In the following argument, constants C; are chosen to be independent of &.
Since 9,F,=9,G is Lipschitz continuous by assamption (A.II), |E[L|Z?]| is
dominated by

CLEL| 15(5)— 1) 10,45(x) | 1%17dr | F2]
<CE[[ {lx—y 1 +145(0)— $:0)—w-+y [ HI+19,65(0)—0,x[} [ 1%~ 'dr | F]
<Cils—y B[ |} #1ar| F7]

ol w—y 1HEL{ 0,(¢3(x)—) 1dr | ]

S COREORETE e
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t
GBI |40 410)+ 410,540~ [ | ]
3(2P“" 1) ! e |2p 3

+ clE[Ss|\p,| dr| F7] .

Apply Lemma 2.4 and (2.20). Then we see that | E[I,|F?]| is dominated by
t
222)  Gla—ylEl[ |yt1#"ar| ]
+Cola—y | t—s|#+CEL |} 1#dr| ]

ifs,2€[0, T] and x, y=R?. By a similar calculation, we can show that |E[I,
| F5]] is also dominated by (2.22). On the other hand, E[I;| &F] is rewritten by

20B[{ do | dTE[S] ©8F (r, $R)Fi(=, $5(5)
—004F (1, $LONFL(o, 3N} I F 20,95 L) | F2)
+29E[{ do| a7 I E0.Fi(r, 41 —0Fi(r, $30)) | F2]
X L 0,Fi(o, ()0, (x) GBI+ (20— 10,54 () (Y
X (51 0uFi(a, $L=)0,5™(¥)—0uF (s, $20))095" W)} 1F1]
g‘;en, we can show as in the proof of Lemma 2.4 that |E[I;| ]| is dominated
CoBL{ do | $13)— ) 10,65() | 195127 | 2]
+ GBI do| 65 (6)— 9(5) 1710,65() | ¥ 17 1]
+CoBI[ do| $5(x)—50) | 18,65(3) | 10,65(3)—0,850) | 198 =21 %]
Like the case of | E[I;|F?]|, we can prove that the above is dominated by

t
Colx—y B[ |} 12 dr| ]
t
+Cola—y EL[ | v 1%-%ar | ]
+Cylx—y|*|t—s|?*
t
+CuBI{ |y ar | 7).

Also, |E[I,|<;]| is dominated by the above. Summing up all these estima-
tions for |E[L;|F}]|, i=1, .-+, 4, we arrive at

E[| i #] < Cp|lx—y |2 |t—s|#H
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t
+Cslw—y B[ 19512 | 1]
+Culw—y | E[{ |y #-1dr| 7]

+CafL{ |y 2r| F2].
By Gronwall’s lemma,
E[%1%] S Chala—yl?|t—s|"
+Clala—yEL{ |y31%r | 2]

t
+Clala—y | E[[ 1yt #-ar| 7).
By iteration, this implies the estimate of (2.21).

Now, Proposition 2.5 can be proved using Lemma 2.6 just as in the proof
of Proposition 2.2.

We now summarize the tightness of the family of laws of solutions (¢5, s,
Xz 1)

Theorem 2.7. Assume (A.I), (A.Il) and (A.III). Then the family of
laws {P®, €>0} of (¢5.1, Xs.:) defined on (W, By,) is tight. Assume further
(A.IV). Then the family of laws {P®, £>0} defined on (W™, By.,) is tight.

Proof.. We will show that for any >0 there is a compact subset M of
W such that P®(M)>1— holds for any €>0. Let N be a positive integer.
Given a positive number 8, we define the modulus of continuity of ¢, (),
s, t€[0, T], x&€[—N, NJ¢ by
wg(s) = supl:—-s’l+ls—s'l+|i-—t’ISS|¢s.t(x)_¢s’.t’(x')I .

Then, Kolmogorov’s theorem tells us that for any >0 and >0 there is a
positive number 8=3§(x, ¢, N) independent of & such that

PO {p; wy(8)>L} >% »  POLX; wi(8)>8} >~Z~

hold. for any £€>0 in view of (2.7) and (2.2). See Billingsley [2], Theorem
12.3 and its proof. Further, there is a positive number a=a(y) independent
of & such that

PO{p; |doo(0)|>a} <% » POLX; | X00(0)| >a} <%
hold for any £>0 in view of (2.6) and (2.1). Set

A(n, &, N) = {(¢, X)EW; | p0o(0)| < a, w§(8)<¢ and
| X00(0)| < a, |wX(8)| <t} .
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Then we have P®(A(y, &, N))=1—y for any £€>0. Define now 4,y
=A(=1 —11‘—, N) and M=closure of N N A, . Then it holds PO(M)=1—y

2n+0 F210>8
for any £>0. Further, the set M is compact, In fact, let (¢", X") be any
sequence in M. Then by Ascoli-Arzela’s theorem, there is a subsequence
(9", X™) converging uniformly in [0, T7?X[—N, N}¢ for any N. This means
that d(¢", ¢")+d(X", X"j) converges to 0 as 7, m;—>co. Therefore the set
M is compact. The tightness of {P®, £>0} is established.

We next consider the second assertion. Let & be a multi-index such that
|k| =r. Then, given >0 and £>0 there is a positive number §,=8,(», £, N)
such that

PO {gp; wlg(8)>C} < T BOLX; whag(8)>0} < 2

in view of (2.19) and (2.17). Also, there is a positive number a,=a,(5) such
that

PO |D'go(0)|>a}> T, POLX; DX (0)|>a} <7

Set a=max a,, §=min §; and
k k

A, &, N) = {(¢, X)EW"; wirg(8) <&, | D¥poo(0)| =¢ and
wikx(8) =&, | D*X,o(0)| <& for any & with |k| <7} .

Then we have P(A(n, &, N))=1—2(r+1)%;. Set now Aﬂ-N:A(En’lﬁ’ —111—, N)

and M=closure Of.zvgl nNA,,, x- Then it holds POM)=1—4(r+1)%p. We
>

can prove similarly as the above that A/ is a compact subset of W’. There-

fore {P®, >0} is tight. The proof is complete.

3. Characterization of limiting measures by martingale problem

Let P® be the law of the random field (¢5 ¢, X5, () defined on (W, By).
We have seen in the previous section that the family of laws {P®, £>0} on
(W, By) is tight. Hence there is a sequence &, converging to 0 such that {P¢»,
k=1, 2, ---} converges weakly to a law P® on (W, ). In this section, we
shall prove that P® is a solution of a suitable martingale problem. At the
next section, the result will be applied to proving the uniqueness of the limiting
law PO,

Let n and m be arbitrarily fixed nonnegative integers. We shall define
an elliptic differential operator on R"X R™ with time parameter s and state
parameters )3, -+, yn ER? as follow:
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(3'1) L(S’,lyl, ,y,,,f(xl’ s Xy Y1yt y,,.)
= Lsysvas, ) 2L 5106, )+, 2y 2
2 T LR W WA > PV pxt
K *f
+12.ii2-la (85 x: yj )8xk6 7
1
+2 T % ) af AR ACRD A

where x;=(x}, -+, %), y,=}, -+, ¥?) are points in R’

Theorem 3.1. For any C=-function f(x,, -+, X4, Y1, ***, Vm) With compact
support, the following is a martingale relative to (B, ,,," P®) for any fixed t,:

(3.2) f(¢to (1), -+, ¢:o,:(x2), X,o,,(y?), ) Xto.t(ygl))
_S L(n,y":,)- ,y,,,f(¢t0 'r(xl)) “tty ¢to.r(x2)) Xto,f(y‘l))s R Xfo,'r(y?n))d'r .

Before we proceed to the proof of the theorem, we will mention some con-
sequences of the theorem. For simplicity, we write ¢, ., X, etc. as ¢, X,
etc.

The operator L{}.. 0 is degenerate, obviously. However, if coefficients
a(t, x, ), b(t, x) and ¢(7, x) are smooth with bounded derivatives, the mar-
tingale problem of the above proposition has a unique solution. (See Stroock-
Varadhan [15]). This means that the law of (n-+m)-point motion (¢,(x?), --,
di(x2), X,(33), +++, X\(y%)) where #, and 9, ---, x5, 33, -+-, ¥5, are fixed, is unique.
Then the law of the random field (¢,(x), X,(x)) is unique. As a consequence,
we see that the law P® of (¢}, X7) converges weakly to P® as €—0. We will
prove the uniqueness of the limiting law under assumptions (A.I)~(A.III) at the
next section.

Suppose further that the function f of the theorem depends only on x;,
«ee, x,. Then

n,m ———————-62
(3.3) L ,yl,) o f= 2 L. f+ 2 2 ati(r, x;, x;) axt f{xf ’
where

) Lif =5 B w0 0L S 0, m)+en w0 O

Hence the n-point motion (¢,(x3), -+, ¢«(x3)) is a diffusion process, and each
component ¢,(x?) is also a diffusion process with the generator L. The

2
operator —;— > at(r, x;, x,)é—tin, indicates the interaction between ¢,(x}) and
ki Xi 0X

1 The least o-field of W for which (@,,,, X.,,), ty=u, v<t are measurable.
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o«(»;). Note that #-point motion is determined by the two point motion. See
Baxendale [1].
Suppose next that f is a function of Y1 ***y Yme Then

LERspf = B Lo 5 DR ar, 5% 39551

kayl
where
65 Losf= 5 B b AL me m L,

which is a second order operator with constant coefficients, depending on the
parameters y{, -+, ¥m. Then the corresponding m point motion (X,(39), --,
X,(yw)) is a Brownian motion, or continuous Gaussian process with independent

increments.
The remaining part of the operator L yn 0 is the cross term:

kl f
gga (T xt’y]) kayl’

which control the interaction between ¢, and X,. The interaction is described
by the stochastic differential equation of Theorem 1. Thus ¢, is a functional
of X, t,=s=t. ‘

We shall prove Theorem 3.1 in case n=m=1 only. The following argu-
ment is close to Kesten—Papanicolaou [7]. It is enough to prove

(36)  EOLAH(), X ~f($) X))} 2]
= EO[{] LERf(.(), X.07)dr} ]

where @ is a bounded continuous B, ,-adapted function of the form
® = B, (5), s Bl Xy 00), s Xs00)

where £,<s;<s.
We shall evaluate the quantity for (¢}, X7) corresponding to (3.6). It holds

BT XD—fi#h XD
_ (! af e O Filr 5\dT tﬂ_ ) Fi(r -
=3[ 2 @ xorien ar 3 [ 2L 4, xR, i

The first member of the right hand side is the sum of the following for i=1,
e, d.

{Sta%f— (¢7, XD)Fi(m, ¢:)dT+S:§_£(¢:, XF{(r, p})dr}
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+S:d'f$ G'{E 8Jg i (d’«n X!)Fj(o" (I)O')F"(T ¢°‘)}

+{arf o2 8,5 ; (95, Xo)Fi(a, yOFilr, ¢}

+ S arf do (2L (43, X)Hir, o, 01}
B+ 15+ I54-15,
where Hi(r, o, $)=31{0,Fi(r, Y} Fi(o, x).  Set @*=d(p,(x), -, ¢4,(®),
X2 (), - X5 (0)- We want to prove |
(¢8)  lim Enig] = BOU[ 2L (g, X)pi(r, $)ar} ],

69 lim B0 = O[Ol (., X)a%(r, g, $ ) @],

(310) lim B30 = SYEOL [ 6}5 (b XAV (7, 30, $)dT} O],

(3.11)  lim E[[{d7] = E«»[{j'a_f, (62 X)H(7, pr)d7} D] .
€0 s 0x?
Once these four formulas are proved, then we have

(312)  lm 3 E[{Y O (¢t X)Fi(r, $)d} @]

= BOU L.f(6, Xt @1+ EOUE[ SO0 (6, X)4(r, 30 )i} 01,

where L, is the operator of (3.4). By the similar argument, the second term
of (3.7) can be calculated as ’

¢13)  tim SB[ gyf (&%, XDF(r, yod} ]

= BOU( L., fig., X)d7} @]

+R B 5L (b0 X4, 91, i} ]

Then (3.12) and (3.13) imply (3.2) and the assertion of the theorem follows in

case n=m=1.

In the following, we prove (3.8) and (3.9). Proofs of (3.10) and (3.11)
can be done similarly and are omitted.

Proof of (3.8). Let 8= {s=s5,<<s;<< -} be a partition such that s,,,—s,
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=&. Let 8(t) be the function such that §(t)=s, if 5,<t<<s;;,;. Then we have
by assumption (A.III)

([ Fir, di0) 2L (@i Xico)ar
(66, 1) 2L ($ieon Xicohir| s Ce[ 1+ 1931
We have also
B[ 4r, ¢i0) 2L $heon Xio)—Fotr, 9 2L (9%, Xibar |
< const E[[ {| gt 411+ | Xjo— X2 7}ar]

The above is O(€?) because of Proposition 2.1 and Lemma 2.3. On the other
hand, we have

S bi(5(7), Xi)dr

= Sb'(-r, 4121 f (¢ X,)dr

in the weak convergence. Next, the property
t ~
BL{{ 2L (g1, X)Fr, i)} @] = 0, (6> 0)
is easily verified. See Kesten-Papanicolaou [7], p. 115 Hence we have (3.8).
Proof of (3.9). Set Kii(s, 7, x)=Fi(c, x)Fi(t, x). Then I} is written as

t‘r o o'f K (e, T
(3'14) st S;d a a i (¢¢n Xcr)K ( ’ 7¢¢r)

+51[ar{ ar ZL (41, X)R (o, 7, 67

where Ki=E[K}‘] and K{"=K{"—IZ{". By assumption (A.III), we have
|S:S Ri¥(o, 7, $)dodr—(spn—s)A%(sp, %, x)| = O(€).
We have further
(2] Retto, 7, widaar) s €1 1513 "7 an( ([ o(r—o)de)
— 0(&).
(See Papanicolaou—-Varadhan [13], p. 504). Therefore we have
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(315) S dTS KJ (a': T ¢8(a-)) ,éf, (¢8(¢)’ Xa(w))da'

g 7 ($3en, Xaw)do+o,(1) -

Also, the L¥?-metric between the above and

sd'rS do-K"(a', T, ¢a‘) vf (¢ar X3)

S A7 (3(0), ditar Do)

sa J
is estimated as O(€?) as before. Since the last member of (3.15) converges to
(470 90 80 2L (90 X,

we see that

hm E[(S d‘rgfda- 6‘ af . (per X2)Ki¥ (o, 7, $2))@]

= B[ S2L (40 X)47(o, $ur $4e)2]

We can prove similarly as Kesten-Papanicolaou [7], p. 116-117 that the
second term of (3.14) converges weakly to 0 as £&—0. There, we apply the
following lemma instead of Lemma 2 in [7].

Lemma 3.2 (c.f. H. Watanabe [17]). Let X(s, &) be F; -measurable and
let U(t, x, €) (resp. V(u, %, €)) Fi,s (resp. F .)-measurable such that E[V(u, x, €)]
=0 and

| X(s, &)=, (UG % &S, |V(wxé)lsc.
Set W(t, u, x, &)=E[U(2, x, E)V(u, x, £)]. Then for s<t=u, we have
|E[X(s, &){U(2, ¢5, )V (u, ¢5, €)— W2, u, $5, E)}]]

1

t—s\V? u—t 2
§8CICZCSP(—-82_) P(—GT
It is convenient to extend Theorem 3.1 to a broader class of functions.
For this purpose, we require a proposition.

Proposition 3.3. A‘i(r, x, y), b/(7, x), ¢/(t, x) are uniformly Lipschitz con-
tinuous and of linear growth in the following sense. There is a positive constant
L such that

| 4%(r, %, y)| < L+ |2]) A1+ [x1),
|b(r, %) |+ |¢(7, #)| < L(1+ | x])

hold for any =, x, y.
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Proof. The umform Lipschitz contmulty of b(7, x) is obvious from the

same property of G(7, x, ) and (1.7). We shall consider Aii(z, x,y). Set

ij li e i j
4(r,5,9) = L[ B, % 2)Fio, 3, S)dsdo

Then
|43 (7, %, x)— AP (7, x, y)—A (7, y, )+ A (7, y, )]
=§ S gE[(F'(s, % 5)=Fi5 3, 5)
X (Fi(c, x, g)—Ff(cr‘, ) dsdo |

= L[ D Eer e v rot—, £ (=5

& Jr

X (6,Ff(o-, yHu(x—y), %) (' —y")]dudvdsdo |

< Czdz(s:p(s)ds)]x—ylz.

Now let € tend to 0. . Then we see that A%/ is uniformly Lipschitz continuous.
The proof for ¢i(r, x) is similar. The linear growth property is clear from
the uniformly Lipschitz continuity and the boundedness of 4%(r, 0, 0) etc.

Corollary to Theorem 3.1. Let f(x,, -+, X,y 1, ***s Ym) be a C™-function
such that f together with their derivatives up to the second order are polynomial
growth:

DI G a4 - H1m (A [l 4 o Flyal), [RIS2
etc. hold for some Cy, p,. Then (3.2) is a (B, ., P®) martingale.
Proof. - It holds from Proposition 2.1 and 2.2,
EO[| X,, ()71 < K (14 | 312 EO[| ey o(%) 2] < K14 | %] .
Therefore /g1, (8- $10u(32)s Xig 9D+ Xig2)) and ' Lo b o)

--+)dT are square integrable. Then we see easily that (3.2) is a square integrable
martingale, approximating f by a sequence of functions with compact supports.
4. Proof of Theorems

This section is devoted to the proofs of Theorems 1-3.
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Proof of Theorem 1. We fix any weak limit P® of {P®, £>0}. Apply
Corollary to Theorem 3.1 to the functions f(y)=9' and f(y,, y,)=yiy}, where
y=@", -+, »%) and y,=(y}, +-+, %) (=1, 2). Then we see that for any s, both of

1) YLO)=XL0)— (b e,
(42) XX~ ¥r, 50X (o= [ B(r, )X )i
—{a(r, 3y, yaar

are continuous (<, ;, P®)-martingales. By It&’s formula, it holds

XL XL y) = | Xip)axi)+] X2 ()aXi)
+<X.: {(91)s X.{,t(yz)> ’

where the last term js the joint quadratic variation of the process X3 .(y;) and
X1 i(y;). Therefore, we see that (4.2) is written as

[ %1 00V i)+ { X1V i)+ ), XL 3>

t .
—Lau(-,-’ Y1 y2)dt .

The first and the second term of the above are martingales. Thus the re-
maining part is 0 since it is a martingale of bounded variation. This proves
that

(43) <YL Vi) = X, X0 = { a(r, 3y 3

Since the right hand side of the above does not depend on «, we can conclude
that (Y3 :(y,), Y7 :(y,) is a Brownian motion. (See Kunita~Watanabe [10]).
By the same argument, linear sums of Y: ,(y,), i=1, -+, d, k=1, -, n are also
Brownian motions. We have thus proved that X ,(y) is a Gaussian random field

with independent increments. The mean of X, ,(y) is S‘b('r, y)dr because (4.1)

is a martingale with zero-mean. The covariance of Y ,(y;) and Y7 (y,) is
t

S a'(t, ¥, ¥,)d7 because of (4.3).

We next consider ¢, ,(x). By the mixing property (A.I), it is obvious
that ¢,, has independent increments. Now apply Corollary to Theorem 3.1
to f(x)=x«' and f(x)=xixj. Then we see that both of

(45) ML= ¢l @) —v— 6+6) (7, o7,

(46)  Ghim)dl )= (B+¢) (7, o)l (mdr
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—[ @) ) bu i ()ar
—{@(r, ot duw)ar

are martingales. Then by the argument similar to the preceding paragraph,
we find that the joint quadratic variation is given by

(47) ML), MG = [ @07, o), i

Now the property (1.18) follows immediately from the fact that M} ,(x) of
(4.5) is a martingale with zero-mean. Also, (4.7) implies

48)  lim lE‘°’[(¢;',,+,,(x)—x"—S:H(b"—l—c") (7, bor(2))d7)

>0+ f
X (@0 —y'— [ O +6) (7, 6..0))am)]
= a'(r, x, ).

Using the estimate EO[|¢, (x)—x|*?] < C,(14 |x|)*?|t—s|?, which follows
from Lemma 2.3, it is immediate to see that the above coincides with

(49)  lim —EO[$!,00a(x)—) ($ees®) )]

Hence property (1.19) is proved.
For the proof of (iii) in Theorem 1, apply Corollary to Theorem 3.1 to
f(x, y)=x'y?. Then we see that

84X 0)—[ G +e) (7, . (NXL )T
—(r, gt war—{ a(r, ¢4, y))dr
is a martingale. 'Then we get as above that
(410) M), Y500 = [@i(r, ¢..42), 9)d7.

Define now M, f(x)———S‘d Yi(¢,..(x)). Itis a martingale. From the relation (1.22),

we have

~_ . ~ . ‘ 22
(#11) I (), B (> = (@, o), ()
On the other hand, we have from (4.10),

(4.12) <M (x), M o(x)> = S:a""(f, bs,(%), Ps,o(%))dT
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See [10]. Consequently, by (4.7), (4.11) and (4.12)

M () — DI o(%)> = <MEE (), M (oe)>—2<ME (), BIE o(%)>
LI (x), M ((2)> = 0.

This proves that M: ,(x)=0M: ;(x) for any s<¢ and x. Then the formula
(1.20) follows immediately.

Finally we will prove the uniqueness of the limiting law P®. Consider
SDE (1.20). Let ¢, be any solution of the following equation

Bs@) = 5+ [ 4X.G. )+ olr, &, ()ar

Then, since a¥/, b and ¢! are Lipschitz continuous, we can prove that it has
a unique pathwise solution ie. ¢, ,(x)=¢, (x) a.s. for any x by the standard
argument of Ité’s SDE (La Jan [11]). Now let P{® be another limiting law.
Then (¢, X, P{¥) also satisfies (i)—(iii) of the theorem. Therefore the
laws of (X, ,, P{”) and (X, ,, P®) coincide each other, since both are Gaussian
random fields with the same means and covariances. Then the pathwise
uniqueness of solutions implies the uniqueness of the law, i.e., (¢4, X 1 P®)
=(¢ps, 1 X, P¥) (c.f. Yamada—Watanabe [19]). The proof of the theorem is
now complete.

Proof of Theorem 2. For each p=>2, there is a positive constant K, such
that E[|B*—B%*|#]<K,|t—t'|? holds for any £>0 and k=1, ---, . 'Then
we see that the family of laws P®, >0 is tight as in the proof of Theorem
2.7. Let PO® be a limiting measute. Then (¢, X, P®) has the same
property as Theorem 1.. On the other hand, (B}, -+, Bf, P®) is a Brownian
motion with zero-mean and covariance (r,)¢ by the central limit theorem.
(See Ibragimov-Linnik [4]).

We shall prove that X, ,(x) is represented by (1.29). Similarly as the
proof of Theorem 1, we can prove that both of

V.. (0)=X, ()~ [ C(r, 2)ar,

X, (%) (Bi—B})— S C(r, x) (Bi—BY)dr—337,| Fi(r, w)dr
are martingales where 7,,=7,,+7r,. Then we see as the proof of Theorem 1,
(413)  <Y.w), Bi—BY = 37, Fir, o).
Define now

(+14)  Y,(9=3 g'F,,(T, x)dB" .
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From (4.13), we get

. . b ~
“15) <YL, P> =2 ( Fier, 9Fier, ganr,.
We have also from (4.14)

(416)  <TLi(), VL) = T7u| Fitr, )Fi(r, w)dr .
On the other hand, we have from (4.3) and (1.25)
(*17) <Y (x), V(x> = S:a"f(f, %, %)dr

> n,g:ﬁ’;’;(r, x)Fi(r, )dr .

Then (4.15), (4.16) and (4.17) imply <Y*—¥*>=0, proving Y,,=Y,, and
(1.29).
Now Ité SDE (1.20) is written as

$u(®) = 2+ B[ Folr, 6, (NaB+ [ Clr, ¢, ()dr
+{etr, dunta)ar,

where ¢(7, x) is given by (1.27). On the other hand, Stratonovich integral and
It6 integral are related by

t

[ Fur, u@)odBt = [ Fotr, un(x))aBS
5 27 Tl $uDFICr, i)
It holds

_ 1 0 i 1 _ = 7
¢(7, x) > gfu o Fy(r, )Fi(r, x) = 2 s .(fu ) [Fw F] .

Therefore we get the expression (1.30). The proof is complete.

Proof of Theorem 3. The family of measures {P®, £>0} on W" is tight
by Theorem 2.7. Let P© by any weak limit. Obviously it coincides with
the limiting measure of Theorem 1. Therefore the assertion of the theorem
follows.
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