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Introduction

Let F(τ, x, t, ω) and G(τ, χ9 t, ω) be random vector fields on Rd with time
parameters r, t satisfying certain statistical properties. Let ψ>* be a solution

of the stochastic ordinary differential equation

^ - BF(B2t, x, t, ω)+ε2G(82t, x, t, ω) .
at

A lot of attention has been shown to the limiting behavior of the solution i/rj
as £-»0 and /-»oo with 82t remaining fixed, since the work of Khasminskii

[8]. See also [3], [7], [13], [14], [16]. In these woifcs, it is proved that φ]

= Ψv/ε2 converges weakly to a diffusion process φt with local characteristics
aij and V which are determined from random vector fields F(ry x, ty c$) and
G(τy x, t, ω) in a suitable way. (See (1.6)-(1.8) of Section 1). Note that φ*

satisfies

— φ] = Fe(ty φ*t),
at

where

The purpose of this paper is to show that the weak limit of φ^ satisfies

a suitable Itό's stochastic differential equation, which can be regarded as the

weak limit of the above stochastic ordinary equation. Indeed, we will see

!

t
Fζ(s, x)ds, the pair (φ*, X]) converges weakly

o
to (φt, Xt), where φ, is a diffusion process mentioned above and Xt is a Brownian

motion with values in the space of vector fields. Furthermore, these two pro-

cesses are linked by Itό's stochastic differential equation
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dφt = dXt(φt)+c(t,φt)dt.

Here c(t, φt)dt is the "correction term" caused partly by Itό's stochastic in-
tegral and partly by non-symmetry of F(τ, x, t). When the Stratonovich
differential odX t(φt) is well defined and a suitable symmetric hypothesis is
satisfied, the above equation is written simply as (Theorem 2)

dφt=odXt(φt).

Itό's stochastic integral by the Brownian vector field Xt was introduced by
Le Jan [11] and Le Jan-Watanabe [12] for the study of Brownian motion in
diίfeomorphisms group G=ΌΊSeo(Rd).

Our limit theorem is formulated as a convergence of measures on the space
C([0, Γ]; G)xC([0, Γ]; F), where V is the space of vector fields. In fact,
the pair (φ/, X]) can be regarded as a continuous process with values in Gx V
and it converges weakly to a continuous process with values in Gx V. More-
over, the limiting process has independent increments. Thus it can be con-
sidered as a Brownian motion in GxV. The relation between φt and Xt is
that Xt or dXt is the pathwise infinitesimal generator of φt.

In his paper [17], S. Watanabe pointed out that some limit theorems re-
lated to random ODE could be formulated naturally in the framework
of stochastic flows of diίfeomorphisms. Our result might be considered as
a partial answer to the problem.

1. Formulation and statement of the theorem

We begin by introducing some assumptions to random vector fields
F(τ, xy t) and G(τ, xy t) together with the mixing condition. Our hypothesis is
close to that of Papanicolaou-Kohler [13].

Let (Ω, £?, P) be a probability space and let £FM, O^s^t^ + oo be a family
of σ-fields in 3 and such that ίF^cS^ /2 if Q^s2^sl^tl^t2. We assume
that σ-fields £FM are mixing relative to P in the following sense:

(A.I) The mixing rate

(1.1) rt') = ~£ «Φ \P(A\B)-P(A)\

decreases to 0 as t f °° and satisfies

(1.2) Γp(sγ'2ds<oo .
vQ

Let F(τy x, t, ω) and G(ry x, ty ω) be random vector fields \ measurable
mappings from [0, T]xRdx[Oy °o)χΩ into Rd

y where T is a positive number.
We assume the following hypotheses (A.II) and (A.III).
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(A.II) ( i ) For fixed r, x, t, F(τ, xy t, ω) and G(r, x, ty ω) are 2^ /-measurable.

(ii) For almost all ω, F(τ, x, ty ω) and G(τ, x, t, ω) are continuous in three
variables. Furthermore, F(τ, x, t, ω) is twice continuously differentiable in
x and G(τ, xy t, ω) is continuously differentiable in x.

(iiϊ) There is a constant C independent of T, χ9 t and ω, ω' such that

(1.3)

(1.4) , , , , , , ,

(1.5) I -̂  Σ ̂ '(T, *, ί, ω) -jgF'P, *> *', ωO I ̂

(iv)

(A.ΠI) There are continuous functions -4"(τ, Λ;, j), 6 '̂(τ, x) and £y(τ, Λ?) such
that

(1.6)

(1.7) \b>(τ, x)- [&(s, x, ]ds\ ^ 06(1+ 1*1) ,

(1.8) \c'(r, x)-±.'±E[F (t, x, )

hold for any £>0.

We set

(1.9) β«(τ, *, y) = ^«(τ, y,

Then it holds a'Ί(τ, x, y) = a''(τ, y, x) .

REMARK. We will see in Section 4 that (A.I)~(A.III) imply that A1*,
b1, c' are uniformly Lipschitz continuous in the following sense. There is a
constant L such that

(1.10) I A"(T, x, x)-A"(τ, x, y)-A'i(T, y, x)+A<'(r, y,y)\^L\x-y\\

(1.11) \V(τ, x)-V(τ,y)\ + \

hold for any t, j and T, x, y.
Given £ >0, consider the stochastic ordinary differential equation

(1.12) ^ = 8F(ε2t, x, t, ω)+ε2G(62t, x,t,ω), t^Q.
at
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The solution starting from x at time s is denoted by ψ]tt(x) or simply ι|r*.
We are interested in the behavior of the solution as 6 ->0 and Z-»oo with 62t

remaining fixed. For this purpose, we consider the process where the time

scale is changed. Define φ!,f(#)=Ψvt2,f/β2(#) Then it satisfies

(1.13) j-φ\tt(x) = Ft(t,φ\.t(x)),
at

where

(1.14) F,(t, *) = ±F(t, x, ~)+G(t, X, A).

In the following discussion, we shall regard that φ]tt(x), s, *^[0, T], x^Rd

is a random field. Obviously it has the following property. For almost all ω,

the map φ]tt: Rd->Rd is a homeomorphism and satisfies multiplicative pro-

perty φ!,u=φ/,«°φ!,/ for any s, t, u of [0, T]. It is often called a stochastic flow
of homeomorphisms. Now define another random field

(1.15) *!X*) = (Vε(τ, *
J s

It can be regarded as a (random) vector field for each s, t, satisfying the additive

property XΪ,ι,==-ΪJ.f+-£?.«•
We shall introduce the law of the random field (φ*s>t, Xl,t) A two

parameter family of homeomorphisms φstty s, £^[0, T] of Rd is called a flow

of homeomorphisms if φs>t(x) is continuous in three variables and has the multi-
plicative property φ ί u oφ 5 ί = φ s M for any s, t, we[0, T] and φ$tS= identity

for any s. We denote by Wl the set of all flows of homeomorphisms. Now

let XStt(x) be a two parameter family of vector fields continuous in three vari-
ables (s, ty x), satisfying the additive property XStt+Xt>u=XStU. The set of

all these two parameter families of vector fields is denoted by W2. For φM,
ψ*s>t of Wl9 we define the metric by d(φ, ^)=sups ίe[0 Γ]p(φs§ί, ψstt), where p
is the compact uniform topology of C(Rd;Rd). Note the relation φ$tt=φT*s.

We see that (W19 d) is a complete separable metric space. The metric of W2

is defined in the same way. Then the product space W=Wλ®W2 is also
a complete separable metric space. Denote by 3}w the topological Borel field of

W. The pair of random fields (#.*(*)» X**.*(x)) induces a law on (W, <BW)
which we denote by P(8). The expectation by the measure P(8) is denoted by
E<*>.

We are ready to present the main result of this paper.

Theorem 1. Assume (A.I), (A.II) and (A.III). Let P(t) be the law of

(φl.t, Xl.t) on (W, Ήw). Then there exists a unique law P(0) on (W, 3)w) such
that (<BWy P

(8)) converges weakly to (&w, P
(0)) as £-*Q. Furthermore, P(0) admits

the following properties.
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( i ) (XStt> -P(0)) is a Brownian vector field, i.e., a Gaussian random field such that
Xtfttf+l9 ί=0, •••, n— 1 are independent for any 0^ί0<ίi< ••• <tn^T. The mean
and covaήance are given by

(1.16)

(1.17) EV((Xi.t(x)-X^) (X'M-XΪM) = J *"(τ> *,

(ii) (φM, P(0)) M α Brownian motion in G=Homeo (Rd), i.e., φ/ ί f ί f+1, i=0, •••,
w— 1 are independent for any 0^tλ< ••• <.tn^T. The infinitesimal mean and
covarίance (local characteristics) are given by

(1.18) lim-f E[φTtr+h(x)-x] = i(τ, x)+c(τ, x) ,

*,

(iii) φStt and XStt are linked by the following Ito's stochastic differential equation

(1.20) φs» = *+ [tdXτ(φSfT(x))+ (V, Φ.X*)Wτ , t>s .

Here, Itό integral by Brownian vector field XStt(x) is defined as follows.
See Le Jan [11] and Le Jan-Watanabe [12]. Let/,, t^s be a continuous £Fs>r

adapted jR^-valued process where s is fixed. Let δw, w=l, 2, ••• be a sequence

of partitions δM^{ί=ίo<^ι< "' <T} such that |δn | =max \tk+l—tk\ \ 0. Then
the limit

(1.21) M ^limΣJ^U,^.^/^)

exists in probability and is a continuous £?s>i-adapted local martingale. Fur-
ther, the joint quadratic variation of M{ and M3

t is given by

(1.22)

i.e., M\M{— \ ai}(τ,fτ,fτ)dτ is a continuous local martingale. We denote M/
Js

by j *dXί(fr).

It might be an interesting problem to relax the mixing condition (A.I)
to a weaker one such as Borodin [3] or Kesten-Papanicolaou [7]. Assumption
(A. II) is also rather stringent since the constant C is taken independently of
T, x, t, ω. We have not succeeded in relaxing these hypotheses. A difficulty
appears in proving the tightness of the measures {P(ε), £ >0}.

In order to see the Brownian vector field more explicitly, we shall consider
the case where the random vector fields F(τ, x9 t) and G(τ, #, t) are of separate
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type:

(1.23) ^ = I Σ F\t, Φfoφ+G(t, φϊ) .

Here Fk(τ, x), k=l, •••, ny and G(ry x) are deterministic vector fields satisfying
conditions of (A.II) and continuously differentiable in t. ηk(t), k=l, •••, n>
are stationary zero-mean processes, ίf^-measurable and bounded. We define
the noise intensity matrix (rkl) by

(1.24) ru = Rkί(s)ds , Rkί(s) = E[rjk(s+t)ηι(t)] .

Then it holds

(1.25) A»(τ, *, y) =

(1.26) b{(r, x) =

and similarly,

(1.27) c(τ, x) =

For the study of the limiting behavior of φ*,,, it is convenient to consider

the law of triple (£.<(*), X's,,(
x)> C8*'" - β?''))» where

(1.28) B}'* = -

Let W3=C([Q, T\; R") and denote its element by (B\, —, JB?). Let W=W^
W2xW3 and ̂ , the topological Borel field.

Theorem 2. L ί̂ (PF, ̂ , P<8>) 6β ίAβ few o/ the triple (φ8

M, j?j f ί, (β} β,
—, BJ 8)). ΓA^w ίA^ ώ a unique law P<0) ow (W, $&} such that (β^y /*<*>) con-
verges weakly to (3$w<> P(0)) Furthermore, the law P(0) admits the following pro-
perties.

( i ) (B]y •••, B?) is an n-dimensional Brownian motion with zero-mean and con-
variance t(rkι+rίk), ky /=!, •••, n.

(ii) Brownian vector field (XStt> P(0)) ά represented by

(1.29) Xttt(x) = Σ(X(τ, *)d»*+ ί'(5(τ, ^)Jτ , t>s.
k=lJs Js

(iii) Brownian motion φ$tt on G=Homeo (Rd) satisfies the following Stratonovich
stochastic differential equation
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(1.30) φ5tt(x) = *+Σ ίX(τ, φSfT(x))odBk

r+ Γ<?(τ, φStr(x))dτ
* = 1Js Js

— (r

where [Fk, F,] is the Lie bracket defined by

(1.31) [̂ ,̂ ] = Σ^ ,̂-

It is interesting to compare the above result with the approximating theo-
rems of stochastic differential equation studied by Wong-Zakai [18] and Ikeda-
Nakao-Yamato [5]. In these works, stochastic ordinary differential equation
of the form

j- Φ*t = Σ Fk(t, φ!)Φ f +<3(f , φ]) , φ* = xat *=1

is considered, where Bk

t'*y £>0 are piecewise smooth approximations of E\

and 0]'*=— -B]>*. In [18], the polygonal approximation of B] :
at

Λίt) (/-ί) if

is taken. It is shown that φ] converges strongly (L2-convergence) to the
solution of (1.30) without the last correction term, i.e., it corresponds to the
case that (rkl) is symmetric. In [5], more general approximations such as
Mcshane's and regularizations by mollifiers are considered. There, the limit
φt satisfies (1.30) with the correction term. See also Ikeda-Watanabe [6].
The correction term is related to the stochastic area enclosed by the curve (Bk

t'*y

Blt>*) and its chord:

2 *-*° £ 2

Finally we consider the case where coefficients F(τ, x, t, ω) and G(τ, xy t9

ω) of equation (1.12) are smooth in x. We shall introduce the following.
(A.ΓV) -F(τ, x, t, ω) is (r+2)-times continuously differentiable in x and deri-
vatives are all bounded in x. G(τ, x, t9 ω) is (r+l)-times continuously differ-
entiable and their derivatives are all bounded. Furthermore, derivatives of

*(τ» x> *> ω)DkFj(τ'9 x, t', ω), | Λ | ^r+1 are all bounded.

Now a flow of homeomorphisms φStt> s, ίe[0, T\ is called a flow of Cr-
diffeomorphisms if for each s<t, the maps φM; Rd-*Rd are CΓ-diffeomor-
phisms and their derivatives in x up to r are continuous in (s, ty x). Two
parameter family of Cr- vector fields XStt(x) is defined similarly. We denote
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by W[ the totality of flows of Cr-diffeomorphisms and by WT

2 the totality
of two parameter families of Cr-vector fields with the additive property. For

φStt and ψ>s , of Wrιy we define the metric dr by

<*,(Φ, ΨO = Σ sup P(DkφStt, D
kψs>t) ,

\k\^r *,/e[0,Γ]

where p is the compact uniform topology on C(Rd; Rd\ k is the multi-index

of nonnegative integers k=(k^ -, kd\ \k\=k,+ - +kd, u

Noting φStt=φ7?s, we see that (W\, dr) is a complete separable metric space.
To the space Wr

2, we associate the same metric dr. The product space Wr

= Wrι®W2 is then a complete separable metric space. Denote by 3$wr the
topologycal Borel field of Wr.

Theorem 3. Assume (A.I), (A.II), (A.III) and (A.IV). Let P™ be the
law of(X*s>t, φε

M) on (Wr, &wr). Then P™ converges weakly to P^ on (W\
ίBwr) relative to dr-topology. Furthermore, P(0) coincides with P(0) of Theorem 1,
i.e., P<°> is supported by Wr and the restriction P(0) | Wr coincides with P^.

For the proof of these theorems, we will discuss two problems. The first
one is the tightness of the measures {P(ε), £>0}, {P(ε), £>0} and {P(*\ £>0}.
This will be inspected at the next section by means of Kolmogorov's criterion
of the tightness of continuous random fields. The next problem is to show
that any weak limit P(0) is a solution of a suitable martingale problem. We

will see at Section 3 that the (w+m)-point motion (φίQ,t(xι)> ••*» ίo.*^)' ^o Ό'1)*
•••, XtQ)t(ym)) is a diffusion process with local characteristics ai}\ b* and c* for
any tϋ. Theorems 1-3 will then be proved at Section 4.

2. Tightness of measures

In this section, we are concerned with the tightness of the family of laws
P(β), £>0 induced by the solutions (φ],t(x), X*s,t(x)). We shall first quote
Kolmogorov's tightness criterion for a sequence of continuous random fields.

Kolmogorov's theorem.1) Let Xn(\), λeΛ be a sequence of continuous
Rd -valued random fields with parameter Λ=[—N, N]k. Suppose that there are

positive constants α, β, 7 and K such that

hold for any λ, μ and n. Let P(w) be the law of Xn(λ) defined on C(Λ; Rd). Then
the sequence of measures P(w), n=l, 2, ••• is tight.

V The theorem is well known in case that Xn is a sequence of stochastic processes. See
Theorem 12.3 in Billingsley [2]. The extension to the random field is not difficult.
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In the following two propositions, we will check the above criterion to

the random fields Xltt(x) and φ*rtt(x), separately.

Proposition 2.1. Let p be an arbitrary positive integer. Then there is a
positive constant Kp not depending on 8 such that

(2.1)

(2.2) E[\Xlft(X)-X*s,tt,(X')\*P]

hold for any s, s', t, f'e[0, T] and x9 x't

J t τ
G(τ, X, — )dτ.

s £
Therefore it is enough to consider the case G = 0. For the convenience, we
set Sl^S^/A 9'?=2ΓSfί for Q^s^t^ + oo. The i-th component of X](x)
is denoted by JPj, since s, x and i are fixed. F[(t> x) is abbreviated as F[(t).
We will first prove (2.1) in case s<t. The case t<s can be proved similarly.
It holds

(2.3) E[(Xtγ*] = 2p(2P-l)E[( rfτΓjσ^(τ)^
Js Js

Since E[F^(τ)]=0 and F^(τ) is £F*>τ-measurable, it holds by the mixing pro-
perty (A.I),

I E[F't(r) \2ΐ\\£2 sup | F,'

where C is a constant in Assumption (A.II). (See Papanicolaou-Kohler [13],
Lemma 1) Therefore

'(τ) 1 3Wί(σ) I ̂  2C2(1 +|*| γU 'p£=)dτ

Then (2.3) is estimated as

$
00

ρ(s)ds. Then by iteration, we get
o
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pi

This proves (2.1).
We will next prove

(2.4)

in case t>s. The case t<s can be proved similarly. It holds

(2.5) £[|*ϊ(*)-.XϊOO|V]

l i l ( τ , x)-Fί(r,

Since

we have by the mixing property mentioned above,

I \'drE[F't(r, x)-F't(τ,
Jσ

Therefore (2.5) implies

By iteration we get (2.4).
For the proof of (2.2), observe that X\tt has the additive property X]tU

=X]tt-\-X]tU. Then we have

^
Apply (2.1) and (2.4) to the right hand side of the above. Then we get the
desired inequality (2.2).

We will next estimate the solution φ]tt.

Proposition 2.2. Let p be an arbitrary positive integer. Then there is a
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Therefore, the first term of (2.11) is dominated by

(2.12) 4pC\\~p(ήds)E[\\l+ IφίDlφl^ArjSa
Jθ Js

Similarly, the second term of (2.11) is dominated by

(2.13) 2p(2p-l)2C\\~p(u)du)E[\'(l+ IΦίD
Jo J s

Sum up (2.10), (2.12) and (2.13) and note the relation |l+φ*|
l+|*l Then we get

E[ i ψ ;

where C3, C4 and C5 are constants not depending on s, t, x and 8. By Gron-
walΓs inequality, we have

By iteration, we get

Lemma 2.4. There is a positive constant Cp not depending on 8 stick that

(2.14) E[\φ\.t(x)-φ\tt(y)-(x-y)\**\^ a.s.

holds for any s, t e [0, T] and x, y e Rd.

Proof. We prove the lemma in case s<t only. Set Ψ*=φ9β,t(x)—φltt(y)
(x—y) and denote the ί-th component by ψ *. Then it holds

(τ, φ'τ(X))-F',(r, φ:

Since | Ffa, x)—Fi(τ, y) \ ̂  C | ̂ —3; | , the first term of the right hand side is
dominated by

(2.15) 2pCE[\* I φ'τ(x)-φl(y) \ \ f t \ z"~ldr \ 3% .
J s
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positive constant Kp not depending on 6 stick that

(2.6) E[\φ]ιt(x)\2*]^Kp(l+\x\γ>,

(2.7) B[\φ .t(x)-φM*m£KpW^

hold for any s, ΐ, s', f 'e[0, T] and x, x'<=Rd.

Before the proof, we prepare two related estimates.

Lemma 2.3. There is a constant Cp not depending on β such that

(2.8) E[\φ\tt(x)-x\2P\3\]^Cp(\+\x\γp\t-s\P a.s.

holds for any s, *<Ξ[0, T]

Proof. We will prove the lemma in case s<t only. The other £case can
be shown similarly. In the following discussion we write φ*=φ!,f(#), ψ lΐ==

Φ*s,t(x)—x since s and x are fixed. Further, ψ * denotes the ί'-th component
of ψ ϊ. It holds

(2.9) E[(φf* I ff J = 2pE[(tF'(τ, φl)(W*-ldτ \ S]]
J s

where F',(τ, x)=E[Fi(τ, x)] and F",(τ, x)=F',(τ, x)-F;(τt x). Since F',(r, x)

=E[G(r, x, ̂ )], it is dominated by C(l+ |*|) by (A.II). Therefore the first
C

term is dominated by

(2.10) 2pCE[\'(l+ 1 φί I ) I # I *>~ldr \ 3',} .
J s

The second term is written as

(2.11) 2pE[\'dτ\*dσ(Σ M?(τ, ΦWK*. Φiί
J 5 J s y

+ 2P(2p-l)\tdΛ'dτE[E[F<(r, φ
Js Jσ

Since E[djFί(r, x)]=Q and 8y^ is ΞF^-measurable, we have by the mixing
property,
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The second term equals

x

We will consider /1Φ By assumptions (A.I) and (A.II), the absolute value of

the conditional expectation E[{ ••• } jίFJ.] is dominated by

where ZΓf'(τ, σ, Λ, ω')=Σ 9/^ί(τ» ,̂ ω)FJ

e(σ, x). Therefore |/J is dominated
by the same quantity as (2.15). We can estimate |/2| similarly. We have in fact

I/21 ̂  C8£[Γ I φ'(*)-φi(y) IW)1'-V
V 5

Summing up these estimations and noting the relation \φ*σ(x)—φσ(3θl = lΛ~"j
+ l ^ σ l > we obtain

where C9, C10 and Cu are constants not depending on s, t, x and 8. By Gron-
walΓs lemma,

+ C13 1 *-y 1 2

This implies by iteration the estimate of the lemma.

Proof of Proposition 2.2. The estimate {2.6) is immediate from (2.8).

We will prove (2.7) in case s^ίs'^t^t' only: Other cases can be proved simi-

larly. Since

« See Lemma 1 in [13]
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'

we shall estimate each of the right side. Similarly as in Lemma 2.3,

and

Similarly as in Lemma 2.4, we have

E[\ fV,(τ, ψϊ/.τoφ:.f/(*'))-
x

^Cp\t-s'\>E[\φ<s,s,(x')-x\2>]

By Lemma 2.3,

Summing up all these estimates, we get (2.7).

We next discuss the tightness of the family of laws P(t), £>0 on (W,
IBw,) assuming the additional assumption (A.ΓV).

Proposition 2.5. Assume (A.I)-(A.IV). Let p be an arbitrary positive
integer. Then there is a positive constant Kp not depending on 6 such that

(2.16) Σ^ΠMJ^m^lf-ί

(2.17) Σ, £[ I D^W-ZWX*') 1 2ί] ,

^ κt {(i+ 1 * i n i t-t'\ '+ 1 ί-ί'i ')+ 1 *-*
(2.18)

(2.19)

hold for any x,x'eR^ and s, s', t, ί'e[0, T\.
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We only give the proof of (2.19), which is most complicated among the
four inequalities. The case r=l is only considered, since the case r^.2 can
be shown similarly.

Λ

Lemma 2.6. Let dj= - , There is a positive constant Cp not depending
υXj

on 6 such that

(2.20) E[ 1 9/φ*M (*)-*) 1 2> I £FS°] £Cp\t-*\*9

(2.21) £[|9;φU*)-9yΦU3θ-^

hold for any s, *<Ξ [0, T] and x,

Proof. We prove (2.21) in case s<t only. Set ψ'=8, φ!.f(#)— djφl,t(y)
—QjX-\-djy and denote the i-th component by ψ*. Then it holds

Therefore (ψ ',)2* equals

where ί1,=£[FJ and Ft=Ft—Ft.
In the following argument, constants C, are chosen to be independent of 6.

Since QjFt=Q}G is Lipschitz continuous by assamption (A.II), |J?[/1|9
rJ]| is

dominated by
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Δp

Apply Lemma 2.4 and (2.20). Then we see that | £[/j | £FJ] | is dominated by

(2.22) C2\X

+C3 1 x-y 1 2" I t-s I

ifί, ίe[0, 71] and x,yGRd. By a similar calculation, we can show that \E[I2

j] I is also dominated by (2.22). On the other hand, E[13 \ 37] is rewritten by

WJ

β'(σ, φ )̂)} IS

s Jσ It

V. Φ ί̂Φrw-β^1.'̂  Φi(y))9^"(y))} 13^ .
Then, we can show as in the proof of Lemma 2.4 that | JB^I'ffi] | is dominated

by

W I φί(*)-φ;(y) 1 1 QjφX*) 1 1 K \»-l\ 3\\

+C1E[\'dσ\φX*)-φ σ(y)\ \dtfl(x)
Js

Like the case of | E[IV \ ΞF®] | , we can prove that the above is dominated by

Also, |E[/4|£f5]| is dominated by the above. Summing up all these estima-
tions for I E\Iι 1 31} I , ι=l, •••, 4, we arrive at
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By Gronwall's lemma,

By iteration, this implies the estimate of (2.21).

Now, Proposition 2.5 can be proved using Lemma 2.6 just as in the proof
of Proposition 2.2.

We now summarize the tightness of the family of laws of solutions (φl ty

Theorem 2.7. Assume (A.I), (All) and (A.III). Then the family of
laws {P(β), £>0} of (φ]tt, X],t} defined on (W, &w) is tight. Assume further
(A.IV). Then the family of laws {P^\ £>0} defined on (Wm, &Wm) is tight.

Proof. We will show that for any ^>0 there is a compact subset M of
W such that P(β)(M)>l— -η holds for any £>0. Let N be a positive integer.
Given a positive number δ, we define the modulus of continuity of φStt(x),

Then, Kolmogorov's theorem tells us that for any η >0 and £>0 there is a
positive number 8=8(97, f, N) independent of 6 such that

hold for any £>0 in view of (2.7) and (2.2). See Billingsley [2], Theorem
12.3 and its proof. Further, there is a positive number a=a(η) independent
of 6 such that

hold for any £ >0 in view of (2.6) and (2.1). Set

, ζ, N) = {(φ, X)e=W',\ φ0,0(0) I ̂  a, <(δ) ̂  ξ and
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Then we have P(*\A(η, ζ, N])^l—η for any £>0. Define now An>N

=A(-2-9 — , N) and M=closure of Π Π An N. Then it holds P™(M)^l—η
2 n -tf^1 *>#

for any £>0. Further, the set M is compact, In fact, let (φn, X") be any
sequence in M. Then by Ascoli-Arzela's theorem, there is a subsequence
(</Λ, X*ϊ) converging uniformly in [0, T]2x[— N, N]d for any N. This means
that d(φ"i, φ"j)+d(X"iy X"j) converges to 0 as ni9nj -+<*>. Therefore the set
M is compact. The tightness of {P(8), £>0} is established.

We next consider the second assertion. Let k be a multi-index such that
\k\ ^r. Then, given η>0 and ?>0 there is a positive number Sk= δk(η, ξy N)
such that

-,4

in view of (2.19) and (2.17). Also, there is a positive number ak=ak(-η) such
that

-9

Set a=max at, δ=min δ* and

|^? and

wS*z(δ) ̂  f, I #%,o(0) I ̂  C for any k with | Λ | ̂  r} .

Then we have P(A(ηy ζ, N))^l-2(r+l)dη. Set now An N=A(-2-, —, ΛΓ)
2n"t"1 w

and M=closure of Π Π -4βfjv. Then it holds P^(M)^\—4(r+l)rf^. We

can prove similarly as the above that M is a compact subset of Wr. There-

fore {JP(β), £>0} is tight. The proof is complete.

3. Characterization of limiting measures by martingale problem

Let P<8) be the law of the random field (φ8

M, X]tt) defined on (W, $w).
We have seen in the previous section that the family of laws {P(8), £>0} on
(W, <BW) is tight. Hence there is a sequence 8k converging to 0 such that {P(8*},
Λ=l, 2, •••} converges weakly to a law P(0) on (W, Έίw}. In this section, we
shall prove that P(0) is a solution of a suitable martingale problem. At the
next section, the result will be applied to proving the uniqueness of the limiting
law P<°>.

Let n and m be arbitrarily fixed nonnegative integers. We shall define
an elliptic differential operator on RndχRmd with time parameter s and state
parametersjyί, •••, y*m^Rd as follow:
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(3.1)

where #,—(#}, •••, #?), yt=(y}9 •••, yΊ) are points in Rd.

Theorem 3.1. For any C°°-function f(xly •••, xn9 yly •--, ym) with compact

support, the following is a martingale relative to CSf0,/»1) P(0))/0r any fixed t0:

(3.2)

Before we proceed to the proof of the theorem, we will mention some con-

sequences of the theorem. For simplicity, we write φtθtt9 Xto,t etc. as </>„ Xt

etc.

The operator L^Sl..̂  is degenerate, obviously. However, if coefficients

a(τ, x, y), &(τ, Λ?) and c(τ, x) are smooth with bounded derivatives, the mar-

tingale problem of the above proposition has a unique solution. (See Stroock-

Varadhan [15]). This means that the law of (w+m)-point motion (φt(xι)9 •••,

φ,(*2), Xt(y\), -, -Y,(yi» where ^0 and x\, -, Λ», y\, -, y m are fixed, is unique.

Then the law of the random field (φt(x), Xt(x)} is unique. As a consequence,

we see that the law P(ε) of (φ8,, X]) converges weakly to P(0) as 6 ->0. We will

prove the uniqueness of the limiting law under assumptions (A.I)-(A.IΠ) at the
next section.

Suppose further that the function / of the theorem depends only on xl9

— , xn. Then

(3.3) LΪΛ..,Af = Σ L f+ 2 Σ »"(T, *„ -,

where

(3.4) L'/=

Hence the n-point motion (φ/(^?), •••, φί(^»)) is a diffusion process, and each

component φ/(#?) is also a diffusion process with the generator L*. The

1 fff
operator — Σ #H(T> #i> ^y) — r̂ — ? indicates the interaction between φ/(Λ??) and

Δ M

V The least σ-field of PF for which (ΦUt99 -^«,P), /o^w> ^^ί are measurable.
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φt(xj) Note that w-point motion is determined by the two point motion. See
Baxendale [1].

Suppose next that / is a function of yl9 •• ,ym. Then

, Λ

where

(3.5) i^/ = } g *«(τ, Λ Λj^

which is a second order operator with constant coefficients, depending on the

parameters y*, •••, y*m. Then the corresponding m point motion (Xt(y*)y •••,

-^ίtv»)) *s a Brownian motion, or continuous Gaussian process with independent
increments.

The remaining part of the operator L(

Γ̂ ...̂ o is the cross term:

which control the interaction between φt and Xt. The interaction is described
by the stochastic differential equation of Theorem 1. Thus φt is a functional

of X,, tQ^s^t.

We shall prove Theorem 3.1 in case n=m=l only. The following argu-

ment is close to Kesten-Papanicolaou [7], It is enough to prove

(3.6)

where Φ is a bounded continuous ^/0_s-adapted function of the form

where ί0^ί,^ί.

We shall evaluate the quantity for (φ/, X]) corresponding to (3.6). It holds

(3.7) f(φ], X\)-f(φ\, XI)

= Σ

The first member of the right hand side is the sum of the following for ι=l,

(φl, X'τ)F't(r, φ')dτ+ (9»ί, ̂ .'(T, <p!)rfτ}
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/ f r / f e {Σ g (φl, JfyFfayrfPfr,

where #j(τ, *-, *) = Σ {8/.'(τ, *)}̂ (σ, *)• Set φ' =

^(ji), - ί̂,(y»)). We want to prove

(3.8) lim

(3.9) lim EiπΦl = Σ Em[{ \[ —^ (Φr, Xτ)A"(τ, φτ> φτ)dτ} Φ] ,

(3.10) lim

(3.11) lim E[/IΦ'] = £<°> [{ (φτ) χτy(τ, φτ)dτ} Φ] .

Once these four formulas are proved, then we have

(3.12) lim Σ E[{ (φl, X'τ)F',(τ, φ'τ)dτ}Φ>]

where Lτ is the operator of (3.4). By the similar argument, the second term
of (3.7) can be calculated as

(3.13) lim Σ B[tf^(Φl, XWl(r, y0)

(Φ^

Then (3.12) and (3.13) imply (3.2) and the assertion of the theorem follows in
case n=m=l.

In the following, we prove (3.8) and (3.9). Proofs of (3*10) 'and (3.11)
can be done similarly and are omitted.

Proof of (3.8). Let S={s=s0<^s1<. •••} be a partition such that sk+ι— sk
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=£. Let S(t) be the function such that S(t)=sk if sk^t<sk+1. Then we have
by assumption (A.III)

-JV(δ(τ), φS<τ>)!£ (φ|w, X\M-)dr\ ^ Cε\\l+\φlM\)dr .

We have also

t(r, φϊ(τ))|£(φ|w, *JM)-.F,(τ, φί)|£(φ:, *ί)μτ|2

^ const

The above is O(εp) because of Proposition 2.1 and Lemma 2.3. On the other
hand, we have

jV(S(τ), φlM)ΆL(φlM) χi

in the weak convergence. Next, the property

is easily verified. See Kesten-Papanicolaou [7], p. 115 Hence we have (3.8).

Proof of (3.9). Set K^(σ, T, x)=F'(σ, Λ)^(T, x). Then Γ2 is written as

(3.14) Σ /τ/σ 97 (Φ« XW('. τ, φ')

where ̂ '=£[ί:.yί] and R" =Kίl —&11 . By assumption (A.III), we have

I Γ'+T £»(*, T, .JArrfT-^-ί
Jj* J«i

We have further

= 0(£2).

(See Papanicolaou-Varadhan [13], p. 504). Therefore we have
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(3.15)

= >(δ(τ), φJω, φ|ω)

Also, the L2/>-metric between the above and

is estimated as O(£*) as before. Since the last member of (3.15) converges to

we see that

lim

We can prove similarly as Kesten-Papanicolaou [7], p. 116-117 that the
second term of (3.14) converges weakly to 0 as £->0. There, we apply the
following lemma instead of Lemma 2 in [7].

Lemma 3.2 (c.f. H. Watanabe [17]). Let X(s, £) be 31 ̂ measurable and
let U(t, x, 6) (resp. V(u, x, 6)) 3]ιt (rap. 31 ̂ -measurable such that E[V(u, x, 6)]
=0and

Set W(ty uy xy ε)=E[U(t, x, ε)V(u, x, €)]. Then for s^t^u.we have

, ε) {U(t, φl ε)V(u, ψ;, ε)- W(t, u, <fr ε)}] \
_ c V2 11 t l&

.

It is convenient to extend Theorem 3.1 to a broader class of functions.
For this purpose, we require a proposition.

Proposition 3.3. Ali(τy xy y), bs(τ, x), cj(τ, x) are uniformly Lipschitz con-
tinuous and of linear growth in the following sense. There is a positive constant
L such that

\A«(τ,x,y)\<;L(l+\X\)(l+\y\),

I *''(•<•,*) I + k''(τ.*) I

hold for any r, xy y.
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Proof. The uniform Lipschitz continuity of i'(τ, x) is obvious from the

same property of G(τ, x, — ) and (1.7). We shall consider AtΊ(τ, xy y). Set
c

, x, y) = [ί"(ί) *' Fi(<r' y'

Then

x, x)-',T, x, y~

x (8

Jo

Now let £ tend to 0. Then we see that AiJ is uniformly Lipschitz continuous.
The proof for e'(τ, x) is similar. The linear growth property is clear from
the uniformly Lipschitz continuity and the boundedness of AiJ(τ, 0, 0) etc.

Corollary to Theorem 3.1. Let f(xly •••, xnj yl9 •••, ym) be a C°° -function
such that f together with their derivatives up to the second order are polynomial
growth:

+ +l3>J)»> 1*1

etc. hold for some Ck, ρk. Then (3.2) is a (Bh,t> Pw) martingale.

Proof. It holds from Proposition 2.1 and 2.2,

Therefore f(φto,t(xϊ), —, φ,0rί(*!ί), X0.*CVΪ)»'"»^o.^i)) and \ Lr,^,...,^/(φ/0,τιj ̂ 0
•• )Jτ are square integrable. Then we see easily that (3.2) is a square integrable
martingale, approximating / by a sequence of functions with compact supports.

4. Proof of Theorems

This section is devoted to the proofs of Theorems 1-3.
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Proof of Theorem 1. We fix any weak limit P(0) of {P(e), £>0}. Apply
Corollary to Theorem 3.1 to the functions f(y)=yί and f(yl9 y^=y{yί, where
y=(y1, •••, y*) and yi=(y}> ••-, jf) (/ =1, 2). Then we see that for any ί, both of

(4.1) Yί.t(y)=X'M-b'(τ, y)dr ,
Js

(4.2) XίfaWM- f V(τ, y^X{,J(yύdτ- ( V(τ, *)
Js Js

$ t
<*ij(τ, yi, y2)dr

s

are continuous (S^,/, P(0))-martingales. By Itδ's formula, it holds

where the last term is the joint quadratic variation of the process
XJ

Stt(y2). Therefore, we see that (4.2) is written as

i t

s

The first and the second term of the above are martingales. Thus the re-
maining part is 0 since it is a martingale of bounded variation. This proves
that

(4.3)

Since the right hand side of the above does not depend on ω, we can conclude

that (Yί.tfyi), Y .tfa)) is a Brownian motion. (See Kunita-Watanabe [10]).
By the same argument, linear sums of Fίf,(yA), i=l, •-, d, k=l, •••, n are also
Brownian motions. We have thus proved that Xs,t(y) is a Gaussian random field

with independent increments. The mean of XStt(y) is I b(τ, y)dτ because (4.1)
J s

is a martingale with zero-mean. The covariance of Ylft(yι) and Y»tt(y^ is

!

t
aij(r> y\* y^dτ because of (4.3).

5
We next consider φs>t(x). By the mixing property (A.I), it is obvious

that φs>t has independent increments. Now apply Corollary to Theorem 3.1

to /(#)=#' andf(x)=xixi. Then we see that both of

(4.5) Mitt(x) = φίtt(x)-x<- (\bi+ci) (r, φStτ(x))dr ,
Js

(4.6)
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— \ a'V(τ, φs,r(xι)> Φs,r(x

J s

are martingales. Then by the argument similar to the preceding paragraph,

we find that the joint quadratic variation is given by

(4.7) <Mί>t(Xl), Mίtt(x2)y = (τ, φs>r(Xl), φs,r(x2))dτ .
Js

Now the property (1.18) follows immediately from the fact that Mitt(x) of
(4.5) is a martingale with zero-mean. Also, (4.7) implies

(4.8) lim -^£(0)Γ(φi,^(*)-*'- Γ V+Ό (τ> Φ..r(*)
Λ->0+ fa Js

U*(y)-y- J

Using the estimate E^[\φβtt(x)—x\2p]^Cp(l+\x\)2p\t—s\^ which follows
from Lemma 2.3, it is immediate to see that the above coincides with

(4.9) Um -l£<0>[(φi.s+A(*)-*' ) (φί.,+.(y)-y)] .

Hence property (1.19) is proved.

For the proof of (iii) in Theorem 1, apply Corollary to Theorem 3.1 to
f(x9 y)=x*y'. Then we see that

is a martingale. Then we get as above that

(4.10) <M'.,(*), y;t/(y)> = (α'^T, φs>τ(*
Js

Define now M"i(#)=\ dy^(φSjT(Λ;)). It is a martingale. From the relation (1.22),
Js

we have

(4.11) <#*.,(*), *#.,(*)> = (>(τ, φ,», φ,.τ(*))rfτ .
•'s

On the other hand, we have from (4.10),

(4.12) <Mί.((*), ̂ .,(*)> = t'«>v(τ, φ.χ*), φf>τ<*)Xτ .
Jί
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See [10]. Consequently, by (4.7), (4.11) and (4.12)

This proves that Mi

Stt(x)=Mi

Sιt(x) for any s<t and x. Then the formula

(1.20) follows immediately.

Finally we will prove the uniqueness of the limiting law P(0). Consider

SDE (1.20). Let <j>Stt be any solution of the following equation

&.*(*) =

Then, since a*', b* and c* are Lipschitz continuous, we can prove that it has

a unique pathwise solution i.e. φs,t(x)=<f>s,t(x) a.s. for any x by the standard
argument of Itό's SDE (La Jan [11]). Now let P£0) be another limiting law.

Then (φStt, XStt, Pί0)) also satisfies (i)-(iii) of the theorem. Therefore the

laws of (Xs>t, Pί0)) and (Xs,t> P(0)) coincide each other, since both are Gaussian
random fields with the same means and covarianqes. Then the pathwise

uniqueness of solutions implies the uniqueness of the law, i.e., (φSttyXS)t,P
(0))

=(φ,f/, Xs>t, ^ί0)) (c.f. Yamada-Watanabe [19]). The proof of the theorem is
now complete.

Proof of Theorem 2. For each p^2, there is a positive constant Kp such

that E[\Bk

t>*-Bk

t?\2*}^Kp\t-t'\p holds for any £>θ'and k=l, -, n. Then

we see that the family of laws P(δ), £>0 is tight as in the proof of Theorem
2.7. Let P(0) be a limiting measure. Then (φS)t, XStt, P(0)) has the same

property as Theorem 1. On the other hand, (B], •••, JS?, P(0)) is a Brownian
motion with zero-mean and covariance (rkl)t by the central limit theorem.

(See Ibragimov-Linnik [4]).

We shall prove that Xs,t(x) is represented by (1.29). Similarly as the

proof of Theorem 1, we can prove that both of

T, x)dr
t J s

are martingales where f*/=r£/+r/£ Then we see as the proof of Theorem 1,

(4.13) <ΓS»

Define now

(4.14) ΫStt(X)
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From (4.13), we get

(4.15) <n,(*)> PU*)> = Σ (Γί*ί(τ, x)Fί(τ, x)dτ)7kl .
A,/ Js

We have also from (4.14)

(4.16) <fU«), ΫUΦ = Σ rSfttr, x)F{(r, X)dr .
ktl Js

On the other hand, we have from (4.3) and (1.25)

(4.17) <Yi.<(*)> Yt.t(*)> = P'K x> *WT

= *%?,,,( Fi(τ,x)Fi(τ,x)dτ.
*»/ Js

Then (4.15), (4.16) and (4.17) imply <y'— 1*>==0, proving Y.,= Ϋ,, and
(1.29).

Now Itό SDE (1.20) is written as

..»(*) = *+Σ (X(τ, φs,τ(Λ:))rfβϊ+ ί'(5(τ, φ..X*)
k=ιJs Js

5 t
C(r> ΦS,r(XWT >

s

where c(τ, x) is given by (1.27). On the other hand, Stratonovich integral and
Itό integral are related by

+|Σn,
2 /»»'

It holds

Therefore we get the expression (1.30). The proof is complete.

Proof of Theorem 3. The family of measures {P(9\ £>0} on Wr is tight
by Theorem 2.7. Let P^ by any weak limit. Obviously it coincides with
the limiting measure of Theorem 1. Therefore the assertion of the theorem
follows.
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