|

) <

The University of Osaka
Institutional Knowledge Archive

Fonctions rationnelles de type (0,1) sur le plan

Umite projectif complexe

Author(s) |Kashiwara, Hiroko

, , Osaka Journal of Mathematics. 1987, 24(3), p.
Citation £01-577

Version Type|VoR

URL https://doi.org/10.18910/11141

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Kashiwara H.
Osaka J. Math.
24 (1987), 521- 577

FONCTIONS RATIONNELLES DE TYPE (0, I)
SUR LE PLAN PROJECTIF COMPLEXE

Hiroko KASHIWARA

(Received March 22, 1984)
(Revised October 27, 1986)

Introduction

Dans les articles précédents [9] [10], nous avons étudié le probléme de
déterminer les formes explicites des polynomes de type (0, 2) ou de type (0, 3)
sur I'espace C%. Nous considérons dans le présent article le probléme analogue
pour les fonctions rationnelles sur le plan projectif complexe P2

Soit R une fonction rationnelle non constante sur P2 Pour toute valeur
complexe « et aussi pour a@=oc0, nous désignons par S, la courbe constante
définie par R=a, et nous appelons courbe premiére de R & valeur ¢ chaque com-
posante irréductible de S,. Une courbe premiére de R & valeur a sera dite
d’ordre élevé si la fonction R—a (ou 1/R si @=0o0) a un zéro multiple. Une
courbe premiére de R sera dite de type (g, n) si la normalisation de la partie de
cette courbe obtenue par I’exclusion de tous les points d’indétermination de R
est une surface de Riemann ouverte du genre g ayant # points frontiéres. On
peut facilement démontrer que toutes les courbes premiéres de R, sauf un
nombre fini, sont d’un méme type (g, #); dans ce cas on dit que R est de type
(g, m). Une fonction R de type (0, n) est dite de type rationnel. Une fonction
rationnelle non constante sur P? sera dite primitive si toutes ses courbes con-
stantes sont irréductibles sauf un nombre fini.

Le but du présent article est de donner les formes explicites des fonctions
rationnelles de type (0, 1). Toute fonction rationnelle R sur P? s’exprime comme
la composée 7#oR, d’une fonction rationnelle primitive R, et d’une fonction
rationnelle z d’une variable complexe. Ainsi il. suffit de considérer le cas ol
les fonctions sont primitives. Désignons par & la famille des fonctions ration-
nelles primitives de type (0, 1). Une fonction R appartenant & & admet un et
un seul point d’indétermination, et toutes les courbes constantes de R sont
irréductibles, de type (0, 1) et elles n’ont pas de point singulier sauf le point
d’indétermination de R. Puisque le nombre des courbes premiéres d’ordre
¢levé de Rest 0, 1 ou 2, on peut classer F selon ce nombre en trois sous-familles
qu’on désignera par F,, Iy et Fy;. Alors F, consiste en toutes les fonctions
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rationnelles linéaires sur P? et la seule courbe premiére d’ordre élevé associée
4 une fonction R appartenant a8 & est une droite de P2

Or, comme on le verra, toute fonction rationnelle primitive de type rationnel
se réduit, par une transformation birationnelle convenable de P? sur P'xX P!, &
une des coordonnées de P'XP'. Plus précisément, en éclatant successivement
les points d’indétermination de R, on peut trouver une variété M et une applica-
tion p: M —P? telles que Rop n’admette plus de point d’indétermination. On
obtient alors une application »: M—P'X P! en contractant successivement des
courbes exceptionnelles de premiére espéce convenables de chaque fibre sin-
guli¢re de Rop: M—P'. Inversement, on peut construire toutes les fonctions
rationnelles primitives de type rationnel par le procédé réciproque & partir de
P'x P

En général, ce procédé est compliqué, mais on pourra le décrire en détail
dans le cas ou R est de type (0, 1). Pour cela, désignons par = I’ensemble
des composantes irréductibles de I'image inverse par p du point d’indétermina-
tion de R. Nous allons déterminer tous les graphes de =, ce qui nous conduira
a4 une solution de notre probléme. Les résultats principaux ont été annoncés
dans T’article [11].

Au moyen du graphe de 3, on peut effectuer une partition de &F; en sous-
ensembles {I°(IV; Ay, *++, Ay)}(v=0,1,2,-) 00 EE{+, —}, I*(0)=1(0) et Ay, ***, Ay
sont des entiers >0. De méme, on peut effectuer une partition de Fy; en sous-
ensembles {II(1)};—o,1,2,-) €t {LI°(l, N3 Ay, ==+, Ay} =012, n=1,2,~) OO0 EE {4, —}

et Ay *o+, Ay sont des entiers >0 si /=0 et =0 si /3=0. Les théorémes
10.1, 10.2, 11.1, 11.2, 11.3 et 11.4 donneront les formes explicites des fonctions
appartenant aux sous-familles de &} et Fpy.

Comme T. Kizuka [4] 'a d¢ja indiqué, le probléme se rattache & P’existence
d’automorphismes analytiques transcendants de I'ouverts P\D ot D est une
courbe algébrique de P?. Notons aussi que M. Miyanishi et T. Sugié [6] ont
démontré que, pour que P*\D soit de dimension logarithmique de Kadaira
— oo, il faut et il suffit que D soit une réunion de courbes premiéres d’une fonc-
tion rationnelle de type (0, 1).

L’auteur tient & remercier M. Kashiwara pour d’utiles suggestions et con-
versations, M. Waldschmidt et le référee pour avoir corrigé le frangais.

ParTIE I. GENERALITES

1. Définitions, notations

1° Soit R une fonction rationnelle non constante primitive sur P2 On
suppose que R est de type (g, #)V. Soit S une courbe premiére de R a valeur

1) Voir 'introduction.
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a; on note y=ordg(R) 'ordre du zéro de la fonction R—a (ou 1/R si a=o0)
sur S, et on dit que S est d’ordre v. Siv=2, on dit que S est d’ordre élevé.
Une courbe constante de R est dite générale si elle est irréductible, d’ordre un
et de type (g, 7); la valeur de R sur cette courbe est alors appelée valeur générale.
Sinon, elle est dite singuliére et la valeur est dite valeur singuliére.

2° Soit V une variété analytique complexe de dimension 2. Pour un point
p de V, on désigne par Q,(V) l'éclatement de 7 en p. Soit € une famille de
courbes irréductibles dans V. On désigne par |C| la réunion des courbes dans
C. On identifie souvent C et [C|. On dit que C est connexe si |C| est connexe.
On dit que C est linéaire si elle est connexe et qu’elle ne posséde aucun membre
coupant au moins trois autres membres. Dans la notation o—o—-:«—o, un

a a4 ay

cercle o représente une courbe rationnelle non singuliére, le nombre attaché 2
chaque o est (—1) X (le nombre de self-intersection) et chaque ligne signifie que
les courbes se coupent transversalement en un point. On dit que C se contracte
en un point (resp. se réduit @ o—o—---—o) s'il existe une application analytique

a, 4 ay
propre p de V sur une variété non singuliere W telle que pu(|C]|) consiste en un
point (resp. que le graphe de p(|C|) soit o—o—-:+—o0) et que p: V\|C|—=>W\
a9, @ ay

w(]C|) soit un isomorphisme. On dit aussi que C ou |C| est exceptionnelle si
toute composante connexe de |C| se contracte en un point, et on désigne I'appli-
cation g par conte ou cont|c|. Comme il est bien connu, une famille excep-
tionnelle C posséde les propriétés suivantes (E):

(E.1) Toute courbe C appartenant a C est une courbe rationnelle non sin-
guliére telle que (C*)=—1;

(E.2) Deux courbes différentes C et C' de C telles que CNC'=%( se coupent
transversalement en un seul point;

(E.3) Pour trois courbes différentes C, C' et C" de C,ona CNC'NC"=0;

(EA4) 1l n’y a aucune suite Cy, -+, C,, (m=3) d’éléments de C telle que C;=*
Cinet C;NCiyE=0(1=i=m) oir on a posé C,,;=C};

(E.5) Il existe au moins une courbe exceptionnelle® C dans C (i.e. (C*)=—1);

(E.6) Si C est une courbe exceptionnelle de C, elle coupe au plus deux courbes
de C\{C};

(E.7) contc est un produit de contractions successives de courbes exception-
nelles.

On dit qu’une famille exceptionnelle C est minimale si C ne contient qu’une
seule courbe exceptionnelle. Alors, pour une sous-famille exceptionnelle quelconque

2) Par une courbe exceptionnelle, on entend toujours une courbe exceptionnelle de premiére
espéce.
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C' de C, contp(|C|) est aussi minimale. Elle se contracte donc en un point par
une unique suite de contractions.

Soit C une famille exceptionnelle minimale et non linéaire et soit 4 I'unique
membre exceptionnel de C. On a alors les propriétés suivantes (B):

(B.1) St la famille C\{A} est divisée en deux familles connexes, une d’elles est
linéaire.

En effet, sinon, il existe une famille exceptionnelle C’ telle que conte/(|C|)
ne satisfasse pas 4 la propriété (E.6), ce qui est une contradiction.

(B.2) Un membre quelconque de C coupe au plus 3 autres.
En effet, ceci se démontre par le méme raisonnement que pour (B.1).

Soit B»(C) la famille des membres de C qui coupent exactement 3 autres.
Le nombre de BC) est appellé nombre des embranchements de C. Pour tout
Be %), la famille C\ {B} se décompose en trois familles connexes. On note
E(B) celle qui contient 4. Alors:

(B.3) Pour tout BEBC), la famille £(B) est exceptionnelle, et E¥(B)=
E(B)U {B} seréduit a o par contgpy. Pars uite, contgp)(|C|) est aussi minimale.
1

Compte tenu de la propriété (B.1),

(B.4) Pour tout B€ Bi(C), sauf un seul B, disons B,, une des familles connexes
de C\E*(B) est linéaire et I'autre est non linéaire. On désigne la famille linéaire par
-L(B) et autre par I(B) pour tout BE B» avec B+ B,.

Cela posé, soit N le nombre des embranchements de C et soient B, (k=
1, .-+, N) les membres de B»C). On peut ordonner les {B,} de telle sorte que

(B.5) E(By) CE(By-y) pour tout 1<k=N.
Alors
(B.6) &(By) est linéaire et toutes les autres E(By) (1<k<<N) sont non linéaires.
(B.7) EXBy)UL(By)CE(By-,) pour tout 1<k=N.
(B.8) contgp)(C) est linéaire.

3° Comme toujours, R est une fonction rationnelle primitive non constante
de type (g, 7). Soit e(R) I'ensemble des points d’indétermination de R. Alors
on a #e(R)=1, et on voit que toute courbe premiére de R passe par au moins un
point de e(R) puisque deux courbes algébriques quelconques sur P? se coupent
toujours, et elle n’a pas de point singulier sauf tous les points de ¢(R). En écla-
tant successivement chaque point de e(R), on peut construire une variété M et
une application p: M —P? telles que Rop n’admette plus de point d’indétermina-
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tion. Soit X la famille des composantes irréductibles de p~(e(R)). Le triplet
[M, =, p] s’appelle résolution des points d’indétermination de R. Soit {T';; 1<i<d}
la famille des membres de = pour lesquels la restriction de Rop est non constante.
La résolution [M, 3, p] est dite minimale si 'on a (C*)<—2 pour tout C &3\
{T';}1zics- Toute R posséde une et une seule résolution minimale. On suppose

dorénavant que [M, 3, p] est minimale. Décomposons %= U 3(P) avec
Pee(R)

S(P)={C&Z; p(C)=P}; les composantes 3(P) sont excceptionnelles et possé-
dent donc les propriétés (E.1)~(E.7). Pour P€e(R), désignons par d(P) (qu’on
appelle degré de P) le nombre des T; tels que I';&3(P). Posons (e(R))= >}

Pee(R)
d(P)P et d=P2(R)d(P); d est appelé degré de (e(R)). Cela posé, on a
(1.1) 1=#e(R)<d=n.

En effet, toute courbe constante générale C de R est irréductible. Donc
le transformé propre de C par p~! coupe tous les T';.

4° Soit V une variété analytique complexe compacte avec une application
analytique de V' sur P'. Flle est dite surface réglée rationnelle si une fibre générale
est une courbe rationnelle irréductible et non singuliére. Elle sera dite minimale
si elle n’a pas de fibre singuli¢re. Soit V' une surface réglée rationnelle. On
désigne une fibre singuliére sur un point a; P! par F(f). Comme il est bien
connu dans le cadre de la géométrie algébrique®, F(i) posséde alors les pro-
priétés suivantes (RF):

(RF.1) F()) est réductible.
(RF.2) 0= (C;F(i)) = n(CH+ %n,,(Cj-C,,) , o F()= é—_‘; mCy .

(RF.3)  {Ci}i1<isq possédent les propriétés (E.1), (E.2), (E.3), (E4), (E.5) et
(E.6). En particulier, si a=2,C, et C, sont toutes les deux exceptionnelles.

On obtient donc une surface réglée rationnelle minimale en contractant
successivement des composantes de chaque fibre singuliére. Autrement dit,

(RF.4) Pour F(i), il existe au moins une composante Cy, telle que n,=1, que
la famille {C} s4, (=C') soit exceptionnelle, et que F(i) se réduise & o par contcr.
0

De plus
(RF.5) Toute composante Cy, pour laquelle n, =1 admet la propriété (RF.4).
(RF.6) Pour une composante quelconque Cy, telle que my =1, 1l existe une

3) Voir, par exemple [5].
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autre composante C, telle que my,—=1, que {Ci}yss, 4, (=C”) soit exceptionnelle et
que F (i) se réduise @ o—o par contpr.
11

2. Fonctions rationnelles de type rationnel

1° Avant d’aborder notre probléme, on va traiter généralement les fonc-
tions rationnelles primitives de type rationnel. Soit R une telle fonction. Tout
d’abord, nous allons démontrer 1’énoncé qui a été donné dans I'introduction:

Toute fonction rationnelle primitive de type rationnel se réduit a une des co-
ordonnées de P'XP' par une transformation birationnelle convenable de P* sur
P'xP.

En effet, on prend une résolution [M, =, p] des points d’indétermination de
R. Alors Rop: M—P" est une surface réglée rationnelle. On peut donc obtenir
une surface réglée rationnelle minimale ¥V, en contractant successivement des
composantes de chaque fibre singuli¢re. Soient 7 le morphisme de M sur V, et
= la projection de V, sur P'. D’aprés Nagata [7], il existe une transformation
birationnelle 8 de V, sur Fy=P'x P! telle que z'cf=x, ot z’ est la projection
de Fy sur P'. En choisissant des coordonnées (2, w) de F, telles que z: (2, w)—
2, on obtient

Ro p= zofoy,
ce qui achéve la démonstration.

2° Dans la situation et avec les notations de 1°, soient iy, **, &t} les valeurs
singulieres de R. On désigne par S (resp. S;) la courbe constante avec une
valeur générale (resp. a;). Soit [M, 5, p] la résolution minimale de R. Con-
sidérons l'espace fibré R: M—>P'. Soient S et ; les transformés propres de S
et de S; par p~! respectivement. Alors:

Le transformé propre S de S est toujours une fibre générale de R. Le trans-
formé propre S; de S; est une fibre générale si et seulement si S; est irréductible et
d’ordre un.

Désignons par F(i) la fibre sur @;. Alors, entre le degré d de (e(R)) et les
nombres a;=b,(S;)—1, on a la méme relation que celle qu’on avait pour les
polyndmes primitifs de type (0, n)?. Ici by(S;) est le deuxiéme nombre de
Betti de S;.

Lemme 2.1. O a la relation

4) Un polyndme sur C? est dit polynbéme primitif de type (g, n) s’il Pest en tant que fonction
rationnelle sur P2,
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d=1+Xa.

En effet, comme la variété M est obtenue par éclatements successifs de P?,
on a b(M)=b,(P?)+ 3} {b(F(i))—b(S)} +d. Dautre part, du fait qu'on ob-
tient une surface réglé:rationnelle minimale ¥V, par contractions successives pour
chaque fibre singuliere de M, on a b(M)=b,(V,)+ 2’: {b,(F(i))—1}. D’aprés
Nagata [7], on a b,(V,)=2. Donc on a le lemme puis‘(iue b(P*=1.

3° Notons qu’on peutA obtenir directement une surface réglée minimale qui
est isomorphe 4 Fy=P"'X P' seulement par contractions successives de M si on
prend une résolution convenable [M, 5, p] de R. Considérons l’espace produit
Fy=P'xP'. Soit (2, w) un systéme de coordonnées de F; et soit 7 la projection
(2, w)—>=. On prend des courbes rationnelles convenables I'{, -++, '} sur F, telles
que z(T'})=P" pour tout 7 et des points quelconques O, -, Oy sur F,. Faisons
des éclatements successifs convenables en chaque point O;. Soit M la variété
obtenue par ces éclatements et soit % la projection canonique de M sur F,. On
désigne le transformé propre de I’} par T'; pour i=1, -, d. Soit k le nombre
des valeurs distinctes parmi des valeurs z(0;) i=1, --+, k’, et on désigne par ay,
-+, a; ces valeurs distinctes. Pour 'espace fibré zon: M—P', on désigne par
F(i) 1a famille des courbes irréductibles de z7'(«;). Pour chaque i (1=<{=<k), on
prend une sous-famille convenable Qi) de F(7) telle que Q(7) S F(i), et on pose
S={T;; 1<j<d} U 15L.-J§;,Q(i)' D’aprés Nagata [7], une surface projective ra-

tionnelle non singuliére est réguliérement isomorphe 4 P? si son deuxiéme
nombre de Betti est égal 2 1. Donc on obtient le

Théoreme 2.1. Supposons que = satisfasse aux conditions suivantes (R,):
(1) = est exceptionnelle;

2) Z:} (b(F (1)) —b(Q(2)—1) = d—1.

Alors la variété conts(M) est réguliérement isomorphe & P?. De plus, la fonc-
tion rationnelle R définie par

Roconts = zoy

est primitive de type rationnel.

REMARQUE 2.1. Si n est le nombre des feuilles de LiJ T} vue comme surface

de Riemann sur P', alors R est de type (0, n).

PArTIE II. LE GRAPHE DE 3, —CLASSIFICATION DES FONCTIONS RATION-
NELLES PRIMITIVES DE TYPE (0, 1)—
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3. Courbes premieres singuliéres. Soit R une fonction rationnelle ap-
partenant 4 &. Soit [M, =, p] sa résolution minimale du point d’indétermina-
tion; on désigne par R 1a fonction Ro p- On peut facilement voir que la fonc-
tion R posséde les propriétés suivantes (A):

1) Elle admet un et un seul point d’indétermination, qu’on désigne par p.

2) Toute courbe premiére passe toujours par le point p, elle est de type (0, 1)
et n’a pas de point singulier sauf le point p.

3) La famille 3. est minimale ; autrement dit, on obtient [M, =, p] par une
unique suite d’éclatements en p.

4) Soit T la courbe insérée par léclatement final. La restriction de R a
T est univalente, et la restriction de R & une courbe quelconque de Z\{T'} est con-
stante.

On peut d’abord constater le fait suivant:

Proposition 3.1. Pour toute valeur complexe o et aussi pour a=oo, la
courbe constante S, de R est irréductible. En outre, toute courbe premiére est
d’ordre un a Uexclusion d’au plus deux c.

En effet, si R n’admet pas de valeurs singuliéres, toute S, est, d’apres la
définition, irréductible et d’ordre un. Sinon, soient a, -+, a les valeurs sin-
guliéres de R ot k=1. D’aprés le lemme 2.1, on déduit

31 {B(Sa)—1} = 0

puisqu’on a d=1. D’ou 5,(S,;)=1 pour tout 7. Il s’ensuit que toute courbe
constante de R est irréductible. Par suite, toute courbe constante singuliére
S,; est d’ordre élevé puisqu’elle est de type (0, 1). On en déduit que les fibres
singuliéres de R: M—P* sont k‘l(ai) oui=1,2 k.

Or, si Z={T}, alors pour toute a P, la fibre -} (a) est irréductible et
donc générale. Ceci est le cas quand R n’admet pas de valeur singuli¢re. Donc,
supposons %= {I'}. D’aprés la propriété (E.6), I" coupe alors un ou deux mem-
bres de S\{I'}. Le nombre des familles connexes de =\ {T'} est aussi un ou
deux respectivement puisque la restriction de R a T est univalente. D’oi on
peut conclure qu'on a k=1 ou k=2 respectivement. La proposition est donc
démontrée.

D’apres cette proposition, la famille & des fonctions rationnelles primitives
de type (0, 1) se divise en trois classes Fy, F; et F; suivant que le nombre des
courbes premiéres d’order élevé est 0, 1 ou 2. D’aprés ce qu’on vient de voir,
S, consiste en toutes les fonctions linéaires rationnelles sur P2, Pour RE,
on peut supposer que la valeur singuliére est oo. On écrit son diviseur
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@3.1) (R)=S,—nS. ou n=ords (R)>1.

Pour REY7;, on peut supposer que deux valeurs singuliéres sont 0 et co. On
écrit son diviseur

(3.2) (R) = mSy—nS..

ou m=ords,(R)>1, ords_(R)>1 et les entiers m et n sont relativement premiers
puisque R est primitive.

De plus, en remplagant R par R est nécessaire, on peut supposer que
(3.3) La fonction RoQ;*' a un pole en la courbe Q,(p).

Cette condition est équivalente a
(3.4) m<n.

Ceci sera démontré dans les sections 7 et 11.

4. La structure de =. Soit R une fonction rationnelle appartenant 3 &.
Soit [M, =, p] sa résolution minimale du point d’indétermination. Conservons
les notations R, T, Sp et Sﬂ (B=0 ou o) introduites dans la section précédente.
Soit =* la réunion de 3, S, et S.. Comme on a vu dans la section précédente,
R appartient & une des classes Fo, Fyet Fy. Si REF, onaZ={T}; (I¥)=—1
et donc S=3*, Sinon, on a 3= {T'}. On va donc étudier la structure de
pour R appartenant 3 & ou ;.

1° Familles F(8) (8=0 ou ). On considére espace fibré R: M—>P.
Soit F() la famille des courbes irréductibles d’une fibre singuliére 1?“(,8). On
désigne par S la famille F(B)\{Sg}. Alors |F(B)| posséde les propriétés

(RF). Dans notre cas, en outre, on a
(RF*.1) (S3)=—1 et (C?)< —2 pour tout membre C de F(B) sauf ;.
Ceci est facile 4 voir, car on a F(8)={Sg} US; et Sp est irréductible.
On déduit de (RF.5) le lemme suivant:

Lemme 4.1. Soit C un membre de Sg sur lequel R prend la valuer B d’ordre
un. Alors C est une extrémité de Zg. (i.e. il ne coupe qu'un autre membre.)

En effet, supposons que C' ne soit pas une extrémité. Alors F(B)\{C} se
décompose au moins en deux familles connexes. Chacune doit contenir au
moins une courbe exceptionnelle pusique F(B)\{C} est exceptionnelle. C’est
en contradiction avec la propriété (RF*.1).

Lemme 4.2. Soit C§ le membre de F(B) qui coupe T'. Alors Pordre de
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R en CB est un.
Car la restriction de R a T' est univalente.

D’aprés la propriété (RF.6), il existe un autre membre de F(B) en lequel
R prend la valeur 8 d’ordre un. On en désigne un par C§. Posons D=
FB\{CL} (x=T,T) et 9 =F(B)\{C%, C%}. Les familles 95 (=T, T)
et 9° sont exceptionnelles et minimales. La famille F(B) se réduit a

o—o par contgg et 4 o par contgp (=T, T). Soit Cy le transformé propre de
1 0

C% par contgs. Alors on a contge(F(8))=CEUC# et contgs(D*)=CEN C%,
car DP est connexe d’apres la propriété (RF*.1). D’ou:

Lemme 4.3. Pour tout membre C de F(B) sauf C& et C%, on a

ordc (R)=2.
On en déduit:

(4.1) Les C% se déterminent uniquement. Elles sont les extrémités de 3, si 3 est
linéaire.

2° Familles 5 et 3* La famille 5 est exceptionnelle et minimale.
On suppose maintenant que 3 est non linéaire. En combinant les propriétés

(B.1), (B.5), (B.6) et 'hypothese (3.3), on a alors le
Lemme 4.4. Si RES, alors 3, est linéaire.

Soit N le nombre d’embranchements de =. D’aprés ce lemme, N est aussi
celui de S... Nous continuous d’utiliser les notations introduites dans le 2° de
la section 1; Bx(Z)={B;}, &; et EF pour i=1, ---, N, I; et L; pour i=2, -+, N.
On a alors B;E3,, pour tout 7. Toutes les &; et &F sont exceptionnelles. Pour
tout 2<7i< N, L; sont linéaires et I; sont non linéaires. Alors, en remarquant
que |Z| NT=+0, on a

(B*.1) Z0CEy.
De plus, on a
(B*.2) S.n|Ek=6.

En effet, supposons S.N|EF| 0. Tlest clair que S.NB,=@. Regardons
la famille 97. Elle est exceptionnelle et minimale, et on a S.Cc 9z. D’apres la
propriété (B.3), la famille (D7 NE,) U (S} =9 est exceptionnelle et le trans-
formé de B, par contg est aussi exceptionnel. Alors, dans contg (F(0)), le
transformé de B, coupe le transformé de Ct et deux autres membres de
contg(Dr). Ceci est en contradiction avec la propriété (E.6) de (RF.3).
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En vertu de (B*.2), S. coupe |Z\EF¥|. Soit 9, la famille connexe de
S\EF coupant S, et soit L, I'autre. Posons I;=9;U {gw}, G¥*=9,U{B;} et
G¥=9;U {S-, B;}. On peut voir aussi que

(B*.3) EAI,- est exceptionnelle et d’ailleurs G¥ se réduit a o par contg, pour tout
1I=i=<N. 1

(B*.4) contg, (F(o0)) est linéaire. Ses extrémités sont le transformé de C¥t et
celui de C3. Si REF 1, alors Co et CY sont les extrémités de 5.

3° Applications 7; (=0, 1,2). Nous allons étudier des surfaces réglées
minimale obtenues par contractions successives des fibres singuliéres de la
surface réglée R: M—P'.

a) Supposons ReF;. D’aprés ce qu'on vient de voir dans le 1°, la famille
* se réduit 4 @—o—o par contg~ et par suite 3 ®—o par contgy, ou le point

noir e représente le transformé propre de I'. On pose p=contgyz. Alors,
d’aprés Nagata [7], une surface projective rationnelle non singuli¢re est biré-
guliére 2 P' X P' si son deuxiéme nombre de Betti est égal a 2 et qu’elle contienne
deux courbe courbes rationnelles C; (7=1, 2) telles que (C;- C;)=0 et (C,-C,)=1.
On en déduit:

Lemme 4.5. Si REYF, alors ny(M) est biréguliére a P X P,
On peut choisir les coordonnées (2, w) de (P'X P, 7,) telles que le trans-
formé de I" soit donné par w=oc et qu’on ait

(4'.1) ROP f—1 20720 .

Le point 7,(97) est donc donné par (oo, o). La coordonnée w se détermine
uniquement 4 une constante additive et un facteur constant prés. Notons

ﬂo(M)=(P‘><P‘, 770)'

Lemme 4.6. Le domaine P*\S.. est isomorphe a espace produit C X C par
-1
70°P .

Soit R’ la fonction rationnelle sur P? définie par
4.2) R'op = woy,.

La fonction R’ sera dite fonction adjointe distinguée associée @ R. TUne telle
fonction se détermine uniquement pour R 2 une constante additive et un facteur
constant prés.

b) Supposons REF;;. Dans ce cas, le domaine P?\(S,US.) est iso-

morphe au domaine M\ |Z*| par p7*; la famille =* se réduit ¢ o—o—e—o—o
11111
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par contgoy g~ et par suite, & 0—-6—8 par contg, g3 Ou par contgyy gz, 0U

le point noir @ représente le transformé propre de I'. On désigne contgpy gz
(resp. cont gy y 9g) par 7, (resp. ;). Alors, d’aprés le méme argument que pour
le cas a), on ale

Lemme 4.7. Si RESy, ni(M) est biréguliére a P X P'.

On pose 7;(M)=(P'x P, 3;). Considérons (P'X P!, »,). Soient O, et O.
les points 7,(9D?) et (D7) respectivement. On prend les coordonnées (z, w) de
(P*X P, y,) telles que

(4.3) Rop = zoy,,

que le transformé de T" soit donné par w=co, et que le point O, (resp. O.) soit
donné par (0, 0) (resp. (o0, o0)). La coordonnée w se détermine uniquement 2
un facteur constant prés. On a une situation analogue pour »,. On peut choisir
les coordonnées (2, #) de (P' X P, 3,) telles que

(4.4) uon, = (w[z)on,,

que le transformé propre de T soit donné par u=oco, et que le point 7,(9D})

(resp. 1,(Dr)) soit donné par le point (0, oo) (resp. (o, 0)). On en conclut:
Lemme 4.8. Le domaine P*\(S,US.) est isomorphe a Pespace produit

C*XC par nop~ onn i=1, 2.

On définit deux fonctions rationnelles @ et 4 sur P? par

(4.5) pop = won,
(4.6) Vop = uor,.

Elles seront dites fonctions adjointes distinguées associées a R.

4° Degrés des courbes premiéres singuliéres. Envisageons le diviseur
(R)=mS;—nS. ou (m,n)=1. Si REZF; (resp. REF ), on a m=1 (resp. m,
n>1). On a alors le

Lemme 4.9. Les degrés de S, et S. sont n et m respectivement.

En effet, on prend des coordonnées inhomogénes (¥, y) de P*? de fagon
que la droite a I'infini L ne contienne pas p. En désignant par n’ et m’ les
degrés de S, et S. respectivement, on a m'n=n"m.

Supposons d’abord ReS;. Soit Q un polynéme irréductible en x et y qui
prend la valeur zéro seulement en S.. La restriction O* de 1/Q sur P?\S., est
une fonction holomorphe qui prend la valeur zéro d’ordre m’ seulement sur L.
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Comme P*\S.. est rationnellement isomorphe a C? d’aprés le lemme 4.6, on peut
trouver une fonction rationnelle £ telle que Q* soit donnée par £™. Il s’ensuit
que m'=1. D’ou n'=n.

Supposons ensuite REF;;. On prend (P'XPY, n,) et ses coordonnées
(2, w) données dans le b) de 3°. Soit ¥ un polynéme irréductible en z et
qui s’annule seulement sur le transformé propre de L. Soit ¥* la fonction
rationnelle sur P? définie par W*op=Woy ol p: M—>P? est la résolution minimale
du point d’indétermination de R. Alors W* prend la valeur zéro d’ordre un en
L et n’a de pole qu’en S.. Posons b=ord;_(¥*). De plus, ¥* s’annule sur S,
parce que m'>1. En posant a=ords (¥*), on a 14-n'a—m’'b=0 puisque
(¥*)=L+aS,—bS.. D’ou (n, m’)=1. Il en résulte immédiatement que
n'=n et m'=m.

D’aprés ce lemme, S.. pour RE S est toujours une droite de P2 On prend
donc des coordonnées inhomogenes (x,y) de P* de telle sorte que S. soit la
droite & I'infini  Alors R est un polynéme primitif de type (0, 1) par rapport a
xety. Un polynome sur C* est dit polynome primitif de type (0, 1) s’il est de
type (0, 1) quand on le considére comme fonction rationnelle sur P?.  Soit P la
famille des polynomes primitifs de type (0, 1) dans ’espace (x,7). On peut en
conclure la

Proposition 4.1. La famille F, (resp. F) est équivalente a celle des polynomes
dans P; tels que leur degré soit =2 (resp. =1).

Pour REJ;, on prend des coordonnées inhomogénes (x, y) de P%  Soient
P et O deux polynomes de x et y qui s’annulent a I'ordre un seulement en S, et
en S, respectivement. Alors on dira que P et Q sont les polynomes définis par

Rsi R=P"|Q".

5. Construction des fonctions appartenant 3 F1 ou &y;;. Dans la
section précédente, on a construit une application birationnelle de P? 3 P!
X P! 4 partir de R. Dans cette section, on construira des fonctions, dont on a
besoin, a partir de P'XP'. Soit V I’espace produit P'XP'. On prend des
coordonnées (2, ) de V. Soit z la premiére projection; on désigne par ' la
courbe w=o0 sur V et par O, le point (¢, ar) ou =0, oo.

1° On fait »(=3) éclatements successifs satisfaisant aux conditions (Q)
en O.:

(1) 1%me étape: On éclate le point O... Posons V®=Q,_ (V) et 4;=0,_(0-).
On désigne par ¢, l'intersection de 4, et du transformé propre de z™(c0).

(2) 2°meétape:  On éclate le point ¢,  Posons V@=Q, (V®) et 4,=0,,(q,)-
(3) Pour v=k=3, on prend un point quelconque ¢,_, sur 4,_, et on éclate le
point ¢;_;.



534 H. KasHIwara

Posons V®O=Q,, (V¢™), Ay=0q,_(qs-1)y M=V et n=(Qy, o0
0,,°00..)7". Dé¢signons par C7 le transformé propre dans M de z~Y(oo), par
T celui de T, par la méme lettre celui de 4; (1=<i<»—1) et par S.. celui de
A,. On a alors (T%)=—1, ($2)=—1, (4)=<—2 pour tout (1=i=<p—1) et
(CF)<—2. Posons ==TU{C5} U{4;}cisv-- Evidemment, la famille X
vérifie la propriété (2) des conditions (R,)”. On suppose maintenant que 3, est
exceptionnelle. D’aprés le théoréme 2.1, conts (M) est alors biréguliere & P2
Compte tenu de la remarque 2.1, la fonction R définie par Rop=zoy, ou p=
conts appartient & &;. Soit S., le transformé propre de S.. par p; la fonction R
a un pole d’ordre ¢élevé en S... Le triplet [M, 3, p] est sa résolution minimale
du point d’indétermination. D’aprés le théoréme 2.1 et ce qu'on a vu dans la
section 4, on peut en conclure la

Proposition 5.1. La famille F; coincide avec celle des fonctions obtenues par
ce procédé.
2° Pour construire les fonctions appartenant 4 &y, on fait v, éclatements
successifs satisfaisant aux conditions (Q) au point O, et aussi v., fois au point O..
Soient M la variété obtenue et » I’application canonique de M sur V. Soit
T'C M le transformé propre de I'V={(z, w)=P'X P'; w=o0} et soit C§ (resp.
CZ) celui de z7Y(0) (resp. z7}(e0)). Soit S¢CM la courbe insérée par D'éclate-
ment final en Ox(*=0 ou oo). Soient {4;},<i<vy+v,.—2 les courbes 7Y(Oy) et
7"Y(0.) auxquelles on a enlevé Sy et S... On a alors (I)=-1, (§§)=($2)=—1,
(CP)<—2, (CT)=—2 et (4})<—2 pour 1=<i<vy+v.—2. Posons Z={T,
% CI} U {4;; 1=5i<vyt+v.—2}; = vérifie aussi la propriété (2) des conditions
(R,). On suppose que = est exceptionnelle et que la courbe qui dégénére en
un point par la derniére des contractions successives de = est un membre de
(mom) (o). D’aprés le théoréme 2.1, contz (M) est alors biréguliere a P? et
on peut définir la fonction rationnelle primitive R de type rationnel donnée par
Rop=zoyn ou p=conts. D’aprés la remarque 2.1, elle est de type 0,1).
Soit Sk le transformé propre de Sy par p ou *=0 ou oo. Il est évident que R
a un zéro (resp. un pole) d’ordre élevé en S, (resp. S). Le triplet [M, 3, p] est
sa résolution minimale du point d’indétermination et on a p=n, et V" est 'espace
produit (P*X P?, ;) pour R. On en conclut la

Proposition 5.2. La famille F1; coincide avec celle des fonctions obtenues par
ce procédé.

6. Le graphe de =*. Soit R une fonction appartenanta &F. Soit [M, Z,
p] sa résolution minimale du point d’indétermination. Conservons les notations
introduites dans les sections précédentes. Posons Z* =3 U {S,, S.}. Dans
cette section, nous allons donner tous les graphes de =*. Dan les notations

5) Voir le théoréme 2.1.
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suivantes, un cercle o représente une courbe de 3, un carré O représente S, ou S...
Le nombre attaché 4 chaque o ou O est (—1) X (le nombre de self-intersection).
De plus, on introduit quelques notations. Pour une famille C de courbes,
on désigne par g(C) le graphe de C. Pour un graphe G, on désigne le graphe

G—G—:+—G par G*. Pour un entier /=0, on désigne par G, le graphe

A-fois
0o—o—o pour [=0,
2 2 2
(-—o_—)_]_—_.];—o-—(——o——o——o——-o——-o-—)i_——_l(—o——)s pour l=2]—1 (j= 1)
7 5 3 2
et
(.—o——)io——o—o—-—(-—o—o—o——o—-—o——)j;-—l(———o—)s pour l:Z] (];_1) .
7 2 23 2 2 23 2

2 2 52 2 2 2 2
—o0—o—o— pour =0, —o0—o—o—o0—o0—o— pour =1,
1 by
. 2
—(—o—)J 1o—o—o—---—(—O—)S— pour I=2j—1 (j=2) et
7 5 J] 2 2
1
(o) e—o—o—r—(—s—)- pour I=2j (j21).
( 7 3 2
1

Par H ; (I=1), on désigne le graphe obtenu en enlevant cinq o ’s au bord droit
2

de G,. Les graphes *G, et *H, (resp. G{et H}) sont obtenus par augmentant le

nombre attaché 4 I'extrémité gauche (resp. droite) de G, et H, par un respective-

ment. Par *H7, on désigne le graphe obtenu en diminuant de un le nombre a

I’extrémité droite de *H,. Les graphes G,, H,, G{, *G,, H', *H, et "H% sont

obtenus par inversant les sens des graphes correspondants. Le graphe —o— re-
JAH1

r—1|

o—(-—_o-—-))\'—_l et le graphe ——(cID— représente
2 2 A

présente —(—o—)
2
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I+
r—1| r—1
—(—o—)=——o0—(—o—)—— lorsque A=1. Lorsque A=0,
2 2 2
2 c|> —) b o—
T ¢ c:: c—1
—o—0—o0— (a=2, b=0 ,c=3) repérsente —o— (qui ne dépend pas
a 0 a a

de 5). Cela posé¢, on a le

Théoreme 6.1. Soit R une fonction appartenant a F. Alors le graphe de
>* de R est un graphe dans la liste ci-dessous.
Réciproquement, tout graphe dans la liste ci-dessous est obtenu de cette maniére.

Dans le cas ot REZF,

O*: DO—o—n.
010

Dans le cas ot ReF;

10y*: 0—o—Gy.
01 |

ol
I+(N; A oty A’N)*:
|:|—o.—0——©—o—©—o—@——---—o—@—+éo pour N=1.
0 1 2 Ay 3Ax13 Ay, 3N é

1

I_(N; D PTRELIN 7"l’l)*:

O—0—0—@—0—@—0—0—:++s—0—0—1] 1 pour Nz=1.
0 1 2 Ay 3Ayaa3dye 3 N\

Ici, Ny, +++, Ay sont des entiers tels que \;=1.
Dans le cas ot REF;

I()*: Gy—o—Giyy pour 120.
1

1 1
II*(L, Ny Ay, oo, An)*: si N est un entier pair (N =2),

Gl GI él 5’
G,“‘if“HIﬂ-é;ﬂ1‘«4}1,_“—“'—+;I,+1——£Hf+1—©45,+1 H
l 7\'N 7\'2 7\‘1 é]
mi 1

A'1\/--1
1
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si N est un entier impair (N =1),

4 /s s /e
G1_°—“ H:+1 THiyy Hifyy——"H} — Hiy— G -

é AN-1 Az M
1 1

II=(I, N Ay, -+, My)*: st N est un entier impair (N =1),
G, G, @[;’
G—o—H,,,—6—H{\»—6—*H,y——H,,—6—*G,_,, ;
1 Ay An-1 A
04 1
si N est un entier pair (N 22),

J /; ik
G——°— HI+1_‘ H1+1 Hifyy—-— H1+1— —+G1-1 .
1

il Ay-1 A
01 ‘ 01
Ici, Ny, =+, Ay sont des entiers tels que Ny, -+, Ay=0 si I=1 et N}, -, Ay=1 sE
1=0.

Par exemple, les graphes I1(0) et II(1) sont donnés explicitement par les
graphes (6.7) et (6.8) respectivement. La notation II*(1, 2; 2, 0)* signifie le
graphe

422222 3222225

—0=0=0=0=0 —0=0=0=0=0=0

O—T—O—O—O—O—O—O—O—O— —=0=0=0—0— —O'TO’—O_T_O“O—O—O'—O-O .

52222217223228222822322222

DfMONSTRATION. Nous allons d’abord donner tous les graphes possibles de
>*. On a dé¢ja vérifié le théoréme pour le cas ot ReS,. Nous allons donc
voir le cas ot ReF; ou ReEF;, en remarquant que 3 est une famille excep-
tionnelle minimale, que F(B) se réduit a (; par une suite de contractions, et que

d’autre part F(8) sont obtenues par une modification de P'XP' comme on I'a
vu dans le 2° de la section 5.

1° Envisageons d’abord le cas o ReF;. Dans ce cas, 3 consiste en T
et S.. On a alors (T%)=(S%)=—1 et (C?)< —2 pour tout membre C de ...

a) Supposons d’abord que = est linéaire. Comme =, est exceptionnelle et
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minimale, le graphe de 3 est 0—(——0—)7” pour A=1. Comme F(co) se réduit
1 2

2 2 2 12 2 2
a o, g(F(o0)) doit étre o—o—o . D’ou g(Z*) est o——o——T—o .
0 l
b1 S |

b) Supposons ensuite que X est non linéaire. Soit N le nombre des em-
branchements de 3. Conservons les notations utilisées dans la section 4; {B;},

{€4, {61, AL, AT}, (D} et {9} (1SiSN). Dans ce cas,
(i) g(&F) est ;—(—;—-—)1_‘_7\” pour Ay=1 puisque E¥(=Ey U {By}) est

linéaire et se réduit a o par contg,, et " est une extrémité de =. D’ou g(Z) est
1

&(Lw)

o_(_o_.)_z—g(ﬂ ¥) pour Ay=1.

(ii) Par conty , F(o0) se réduit 2 (——o_)X_No—g(.E ~). Comme le graphe
2 1

est linéaire et qu’il se réduit 4 o, le graphe —g(Ly) est égal 4 —o .
0 14+ny

o—g(4y). Comme

1

(iii) Voyons ensuite le graphe de conte,(2):
N

Ay—1

il se contracte en un point, g(Iy) est (—o—) si o—g(9y) se contracte en
2 1

un point par contractions successives. Sinon, —g(y) contient

__(_o_)M:._ o——(—~—o——)7\' pour A=0.
2 3 2

s’écrit
o 142,
D__o__(__o_)x_lo—(—o—)—tl_[] pour A\, =2
01 2
ou bien
o 14N ol
D_o_(_o_)ﬁl_(—o_)_k‘l_ —c!:—o pour A, =1.
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Dans le premier cas, on exclut A,=1 parce que 3, est non linéaire.
(v) Ensuite, on suppose N =2. Comme g(=) dégénére en g(dy) par con-
tractions successives, g(J ) est

&(Ly-1)

(oo g(y)
ou bien &(Ly-1)
(—2—)7””—_1 ;—(—;—)Mii;—g(ﬂzv-l)

Cependant, on peut exclure le premier cas 4 cause de la propriété suivante.

Le cas suivant n’existe jamais:

&(Ly) &(Lim)

2y —o—(—o—)o0—g(T;.)
2 2 a

pour A =0, 2<i<N et a=3.
En effet, d’aprés la propriété (B*.3) pour (ff -1 Eff-‘_l), g(contg’}'._l(ﬁ))):
&(-Ly)

gE)—o——(—o—Po—g(Li), o0 B=3U{S}.
2 2 1

C’est en contradiction avec la propriété (B*.3) pour (EAZ,-, g .

D’ou g(=) s’écrit

o 7\'N + 1 F4 (’EN -1)
;_(_5_)}_1L;__(_;__)M§ _(_Z_)WN——HE_g( T yr-1)

pour Ay, Ay-;=1. Envisageons ce graphe. Soit Dy le membre de = corres-
pondant 4 o du graphe ci-dessus et soit Jy la sous-famille connexe de Z\{Dy}
3

qui est 2 droite de Dy,
(vi) On peut alors facilement voir que la propriété (B*.3) pour (Zy, I¥)

entraine (B*.3) pour (Gns I%) 0t Jy=1S} Uy et JE=FnU {Dy}.
(vii) Soit K la sous-famille de 3 correspondant

o—(_o_)x_No_(—o——)M’ _1; Ky est exceptionnelle et g(cont x, (2)) est
2
&(Ly-1)
o_o_(_o—)}—’L—;——g(ﬂ N-1)  pour Ay, =1.
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Posons ='=cont y, () et F'(co)=cont 5, (33’&). Il es immédiat que =’ se con-
tracte en un point et F'(o0) se réduit & o. La deuxiéme propriété résulte de
0

(vi). Donc 3’ satisfait la méme condition que 3, tandis que le nombre des
embranchements de 3’ est inférieur de un & celui de =. On peut ainsi se
ramener par récurrence a montrer le cas oi ReYF,.

2° Avant de considérer le cas &y, nous allons étudier le graphe des
familles exceptionnelles. Avec les mémes notations que dans le 2° de la section
1, soit C une famille de courbes sur une variété V. On dit que le graphe de C

se contracte en un point (resp. se réduit & o) si C se contracte en un point (resp. se
a

réduit a o). On suppose que C est une famille exceptionnelle minimale linéaire
a

telle que la courbe exceptionnelle de C coupe exactement deux membres de C.
Dans cette condition, on peut facilement voir les faits suivants:

(G.1) Tous les graphes possibles de C sont

(6.1) (—o—)Lo—o——(—o—)t  pour m=1 et 320.
2 1 xt2 2

(62) X: o——(—o—) o (—oyHreL...
w+3 2 y»a+3 2

. -—o—(—o—)x_1 o—o—(——o—)ho—(——-o—)&- . .—o—(—o—)y“

»n+3 2 1x4+2 2 x+3 2 x,+3 2
pour v=1 et xy, +, %y, Yy, *>+, Y =0.
(63) (—o—)Xur1X pour =1,
2
(6.4) X—o—(—o—)21  pour 3,,,=0.
3 2

Ici, lorsqu’on fait des contractions successives pour les graphes (6.1) et
(6.4), c’est la courbe i I'extrémité droite du graphe qui est contractée par la
contraction finale. Pour les graphes (6.2) et (6.3), c’est la courbe & I'extrémité
gauche.

(G.2) Le graphe ~X se réduit a o oit ~X représente le graphe obtenu en di-
0 -
minuant de un le nombre attaché a Pextrémité gauche de X.

Aprés ces préparatifs, nous allons voir le cas ot RESy;. Dans ce cas, on
a (T?%)=(S%)=(S%)=—1, (C*)=<—2 pour tout membre CEZ,UZ. et =, est
linéaire.
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a) Envisageons le cas ou 3 est linéaire. En remarquant que F(0) est ob-
tenue par éclatements successifs comme on I'a vu dans le 2° de la section 5, le

2 2 2
cas le plus simple de F(0) est o—o—o. D’aprés I'hypothése (3.3) et la re-
by
marque (G.1), g(Z) s’écrit sous la forme o——o—O—o—o——(—o—)bl.
22215 2
d’aprés ce que F(oo) est aussi obtenue par éclatements successifs satisfaisant aux

De plus,

2 2 2 2 2
conditions (Q), g(F(ec)) s’écrit sous la forme o—o—o—o—o—o . D’ou g(=¥)
5
by
22215 2 2 .
s’écrit II(0)*: o—o—o—o—o—o0—o0—o0—o0—o. A lexclusion du cas ci-
ll‘l é11

dessus, le graphe de =, s’écrit sous la forme

)},: O—(—-—O—)a—’—o——(—o——)(ﬁ. . .__Q_(_o_)al

b+3 2 Bt3 2 b+3 2

pour I=1, a,=1, et a,, -+, ay, by, -+, 5,=0. Le graphe de Z,U {I'} est donc
X,—o ou bien X;—o. On appelle ! longueur de =,. Donc g(=) s’écrit sous
1 1

la forme
(65) —o— o—(——o——)bLo—- (———o——-—)éz—- . -——-o—(—o—)b_lo——(—o ——)b”"l
1la+2 2 a+3 2 a+3 2 3 2
pour b,,=1
ou bien

(66) :7-(',—o——(—o—)b’—_!_—lc>—-(—o-—-—)b_".l<>——(—o—)b“2 o . o
1 2 a+3 2 a,,+3 2 a;,_,+3 a,+3

En désignant par I—/', le sous-graphe entre —(—0—)111— et —(——0—)1i de (6.5) et
2 2

son inverse l(}, pour simplifier, les graphes (6.5) et (6.6) s’écrivent

-

X—o0—o l;l—o——(— o—)b“'l
1 a+2 3 2
et
)} r—O—o—I7,—o respectivement.
1 2 a,+3

On peut alors déterminer {a;} et {b;} grace au fait que F(0) et F(oo) se réduisent
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a 6 . D’abord, notons que F(0)=3,U {S;} se réduit 2 o. Donc 2(F(0)) doit
0

étre le graphe suivant:

o (—o0—)H a0 3—(——-3— aj—l PP AP
b3 2 b3 | bit3 b3 2
lorsque I=2j—1(j=1),
o—(——o—)a—’---———o—(—o—)a_fi.ic——o_..._—o—(—o——)a1
b3 2 bint3 2 12843 843 2
1

lorsque 1=2j(j=1).
En plus, il faut que {a;} et {b;} satisfassent aux conditions (F(0)), (I=1):
Si 1=2j—1, alors a,=b,+1, a;=b;+2 et ay= b,_4, pour tout k sauf 1 et j.
St 1=2j, alors a,=b,;+1, a;1,=b;+2 et ay=>b,_;4, pour tout k(+1,j+41).
Cela posé, on voit que
&(Z) n’est pas en réalité le graphe (6.6).

En effet, d’aprés ce qu’on vient de voir, on doit avoir b,+2=a,+2 puisque
F(o0) se réduit 4 o. C’est en contradiction avec les conditions (¥(0)),.

Pour la suite, bornons-nous au graphe (6.5). D’aprés le méme raisonne-
ment que pour g, g(F(c0)) est égal 2

o——(—o——)lﬁ_---—o —0— bj_—l%—o [ yu—"y— -—o—-—)b""l
al—l—Z 2 a,——l—3 2 I:I] a,-+1—|—3 3 2
1
si 1=2j—1,
o—(—o—)b_lo---—o 02—(-—0-——— bj"" —1 o ---——o—(——o—)b"*‘l
a+2 2 aj+l+3|£ 2 a2 t3 3 2
1

si 1=2j.
Pour que F(oo) se réduise a o par contractions successives, il faut que {a;} et
0

{b;} satisfassent aux conditions (F(oo));:

St 1=2j—1, alors 0=0,, ajy;+2=0>;, ay=>,_44, pour tout Rk (1=k=1,
k*j4-1).
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St 1=2j, alors 0=b,, a;,,+2=b;,, ay=>b,_4, pour tout k(1=k=1, k¥ j+1).

D’apres (F(0)), et (F(o<)),, pour I=2j—1, on a a,=35, a,=+--=a;=4, a;,,=
ce=a;=0, by="++=b;_,=0, b;=2, bj},=--=b=4, b,.,=5, et pour 1=2j, on a
a=5, ay=+-=a;=4, a;,,=2, aj,,—==a,=0, b="++-=b;=0, b;,,;=--=b=4,
bi41=5.

On obtient ainsi tous les graphes possibles de =* dans le cas linéaire:

2221522222

(67) 0—0—0—0—0—0—0—0—0—10 si =0,
b b
52 2 2 2 217 2 322 2 2 2
(68) 0—0—0—0—0—0—0— 0—0—0——0—0——0—0—0 — O si =1,
b by
2 3 2 2 2 2 3
—1 3 —2 5
(——o— -l——o—o——(—o—)———o——(—o—o—o-—o——o—-)i__(—o—)-—o—-—
7 | 2 1
o1
2 2 3 2 2 2 2
— 5
—(—o—)].__o——o—o—(—o——o—o—o— ——)-Z__(—— —)
7 | 2
U1
i 1=2j—1(23),
2 2 3 2 2 2 2 3 .
(—-—o—).]_o—o—o—(—-o—-o——o——o-—o—)-Z_:—_l(—o—)-S_o-—
7 | 2 1
U1
2 3 2 2 2 23
3 i—1 5
-—(—o—)]__o——o-——(—o-—)—o———(-—o—o——o—o—o—)._—(——-o——)
7 5 | 2
=)

si =2 (=2).

b) Envisageons le cas ot 3 est non linéaire. Cette situation est presque
la méme que celle du cas o REF; et 3 est non linéaire. Soit N le nombre
des embranchements de = et conservons les notations {&;}, {-L;} et {I;}.

D’aprés ce qu’'on vient de voir ci-dessus, le graphe de Z,U {T'} est Gy—o,
X ;—o° ou )? ;—o pour [=1 et {a;} et {h;} satisfont aux conditions (F(0)),.
1 1

(1) Le cas ou /=0. D’aprés le méme raisonnement que pour les i), ii) et
iii) de 1° pour 7, les graphes de &F, =, Ly et Iy doivent étre comme suit:
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g(\y)
i) g(=)est égal & 0—0—0—0—0_(_0_)7\'11_1 —g(dy) pour a1,
2 2 215 2 2
i) —g(Ly)estégala —o o—o—o,
4y 2 2 2

i) —g(9y) est égal a —(—o——)M’ 1 ou contient
2

—(—o— )7”” 12_(_0_) pour A =0 selon que = dégénére en Ly ou y.
2 2
iv) Supposons N=1. De la méme manié¢re que dans le iv) de 1° pour
F1, g(4,) est (——o—)xl_1 ou bien (—o—)hll—o—(—o——)h. D’aprés la pro-
2 2 6 2

priété (B*.3) pour (EAL, éi"), g(=%) est égal &

M+12 2 2
?1 i:—o—o——o
o—o—o—o—o—(—o—Pu=l (——P=o (21
2 2 2 1 2 2 2 1
ou bien
M1 2 2 2
Dl Dl
| [
A —1 A —1
o—-o—o—o—o—(— —) 1 —(—— -——)—1_0-—-0—-0—0-——0——0 ()\, gl)
22215 2 2 2 6 2222 2

v) Supposons ensuite N=2. D’apres le fait que g(=) dégénére en g(Iy)
et grice 4 la remarque dans la propriété v) de 1° pour &y, le graphe de Iy est

&(Ly-1)
(_o_)}_h:l._o—(—-—o—))'” -1 ;_.g(gN -) pour Ay, =1.

Soit Dy la composante o et soit Hy la famille connexe de Iy\{Dy} qui est a

6
droite de Dy. On pose I N= é‘l ~U {s.,o} et Jf=H yU{Dy}. Evidemment
on a la propriété (B.3) pour ﬂN et J¥. Comme dans le cas G, soit Ky la
famille de = correspondant a

(_o_)io_o_(_o_)mo—(—o— My _1; Ky eat est alors exception-
2 15 2 2 2



FoncTtions RaTiONNELLES DE TYPE (0, 1) 545

nelle, En outre, g(contx, ()) est égal a
&(Ly-1)
°—°—°-—°——°-—(—°-—)—_—2°—g(ﬂ,v-1) pour Ay_,=1. Désignons par

3, F'(c0) et s, respectivement cont (=), contJfN(jlj'G) et le transformé de

S.. Alors 3/ se contracte en un point et F'(c0) se réduit 4 o. Donc, par ré-
0

currence, on peut démontrer le théoréme dans le cas Fy; avec /=0.

(2) Lecasoul=1.
i) D’apreés ce qu'on a vu dans le cas ou X est linéaire, g(3) est un des
graphes suivants:

&(Ly)

6.9 a -5)(1_°“°——"Y1_‘°— —o—ytu—1 o—g(Iy r=1),
6.9) (2 " 3(2) 2g() (Awz1)
&(Ly)

(b) X—o—o——Y,—o—g(dy) Ow=0),

p—

R

._|_
[\
w

« « _1
© Xis—e—¥i—e (—S—W c—8d) D),
a,
&(Ly)

&(Iy) (Ay=0).

(d) XI—O-—-O——YI—O
12 a3

ii) Regardons le graphe de contg} (F(o0)):

(610) (@) o—Vims—(—s =P To—g(Ly),

a2 3 2

-

(b) o——Y,—o—g(Lx),
a,+ 1

() o—¥,—o——(—o—) =L oo p),
2 at3 2 1

(d) o—¥,—o—g(Ly).
2 1
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Ils se réduisent 4 o. Comme les graphes (6.5) et (6.6) se contractent en un
0

point, les graphes

- -

(6.11) X;—o—o Y, —o
1 a,+2 2
et
(6.12) X—o—o—Y;—o
1 2 a,+2

se réduisent 2 o.  On désinge par 8, (resp. 3,) le sous-graphe (—o—)%o (resp.
0 2 1

o) de (6.11) (resp. (6.12)). Alors le graphe obtenu en contractant 8, (resp. 8,)

1

dans le graphe (6.11) (resp. (6.12)) s’écrit sous la forme X {‘—0~——I7,—° (resp.
1 2

X ,’—o—ﬁ——o ). Ici, X 17 (resp. X 7) est le graphe obtenu a partir de )E,
1 a,+2

(resp. X ;) en remplagant —o (—o—)* par —o  (resp. o— par o—).
b,+3 2 b+2 b+3 b2
Il s’ensuit que g(-Ly) s’écrit

(6.13) () X—o—o, (b) Xi—o,
Ay+1 1 1

(c) )}, o—o, (d) )Z{‘———o,

Ant1 1 1

iii) Comme dans le cas précédent, on a (1) ou (2) suivant que 3, dégénére
en Ly ou 9.

(6.14) (a) (1) o—g(Ty) est égala o—(—o—)v =L o ¥,
2 2 2 3

(2) o—g(gy) contient o—(—o— )Ll oy o (o YN
2 2 2 3 g3 2

(B) () s—g(dy) est egal a ;—17,,

(2) o—g(9y) contient o—¥;—o—(—o—)",
3 a+3 2

Ay—1 =
(¢) (1) o—g(9y) est égala o—(—o—)=X o—Y,,
2 N 2 2 a3 1

@) o—g(dy) contient o—(—o— Y=L o ¥ o (ot
2 2 2 at+3 3 2
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) (1) o—g(Ty) estégala o—TV,,
a+3 +3

(2) o——g(9y) contient o
a+3 a3 3 2
pour A=0.

iv) Supposons d’abord N=1. Alors, pour tous les graphes (2) dans
(6.14), on a aussi I'égalité. Soit Ky la sous-famille de = qui correspond a la

partie g(& ,,,)—(——-0—))”1 de g(=); Ky est exceptionnelle. Le graphe de
2

cont y, (Z) est d’'une des formes suivantes:

6.15) (a) (1) X;—o—o—V¥,, (2) X,—o—o—Y,—o—(—o—)"
12 1 2  a+3 2

) () Xr—e—¥i, @) Kr—o—Fi—e—(—e)

a+3 2
©) (1) Xj—o—o—Y,, (2) Xj—o—o—¥,—o—(—o—)",
1 a1+2 1 a1+2 3 2
Q) (1) Xir—o—¥,, () Xb—o—¥—o—(—o—)"
( ) ( i 1 /4 1 : J 3 4

Envisageons les graphes (a) et (c) de (6.15). Posons =’ =cont,(Z). Soit S,
le transformé propre de S.., et soit 37 la famille connexe de \{°} qui est a

droite de o dansg(3/). On a alors (gi,z):—l. Dailleurs, 32U {S.} se réduit
1

a o. Donc ce cas se réduit au cas ou X est linéaire. Pour le graphe (2), il est
0

immédiat que le cas a) ne peut pas se réaliser et le graphe (c) est donné par

G,——o—G,+1 En remarquant ce que le graphe (1) dégénére en son coté
1

gauche et que la longueur de 3, est /, on peut facilement voir que le graphe (c)
ne peut pas intervenir et le graphe (a) est donné par G;—o—G,_,.
1

Ensuite, envisageons les graphes (b) et (d) de (6.15). Soient Q(8,) et O(3,)
les applications réciproques des contractions 8; et 8, qu’on vient de voir dans ii)
respectivement. Les graphes (b) et (d) de (6.15) sont égaux aux graphes (a) et
(c) de (6.15) grice a Q(3;) et Q(3;) respectivement. On peut alors poser
= Q(Sz)ocont #,(Z) dans le cas (b) et aussi 3'=0Q(8,)ocont (=) dans le cas (d).
Soit S, le transformé propre de S.. par cette modification et soit 5% la sous-
famille connexe de \{f} qui est a droite de 10 dans g(3'). Evidemment, on
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doit avoir ($.2)=—1 et LU S’ doit se réduire 2 o. Donc les cas (b) et d (d)
0

se réduisent aux cas (a) et (c) respectivement.
v) Supposons ensuite N=2. Dans ce cas, il est évident que = dégénére
en 9y. Donc, pour les cas (a) et (c), le graphe de cont x,(Z) s’écrit sous la

forme
&(Ly-y)
(6.16) (2) X;—o—o—¥,—o—(—o—) M= g g
1 2 a+3 2 2
pour Ay =1
ou bien
- - /g(-CN-l)
X, —o—o—Y, °_ pour Ay-1=0,
12 @+3 ~8(Dn-1)
R R /g("EN—l)
(c) Xl_o_o_yl_o—_(—-o—)ll\f_-l__lo pour Ay, =1
la+2 3 2 2\
1 8(y-1)
ou bien
R . /g(-[N—l)
Xl—o——o—Y,—o\ pour Ay_,=0.

On pose = =cont x,(Z). Soient S., le transformé propre de S.. et 3/, la sous-
famille connexe de X\ {o} qui est & droite de o dans g(='). Ona (SAf,f)z_l
1 1

et SLU{S.} sé réduita o, Clest le cas pour N—1. Donc on peut raisonner
0

par récurrence. 'Tous les graphes possibles des Z* sont ainsi obtenus.
La réciproque resulte de la proposition 5.1 ou 5.2. Ceci termine la dé¢-
monstration du théoréme 6.1.

Le théoréme ci-dessus donne en méme temps les graphes des =. On dé-
signe par O, I((0), I*(N; Ay, ==+, Ay), TI(I) et II*(l, Ny ny, +++, Ay) les graphes des
3 qui correspondent a O*, I(0)*, ---, respectivement. On emploie les mémes
notations 1(0), I*(IN; Ay, +++, Ay), **+ pour représenter les ensembles des fonctions
R qui correspondent.

Enfin, nous allons donner une variante du théoréme 6.1. Soit M une
surface obtenue en éclatant successivement un point p de P2 Soit p I'applica-
tion de M sur P. Posons 3 p~*(p); soient S, et S, deux courbes rationnelles
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sur P? qui ne se coupent qu’en un point p et telles que S\ {p} et S.\{p} soient
analytiquement isomorphes 4 C.  On désigne par n et m les degrés de S, et S
respectivement. Soient S, et S.. les transformés propres de S, et S.. par p™!
spectivement. Posons Z*=3U {So, Sm} Cela posé, on a le

Lemme 6.1. Supposons en plus que le graphe de Z* est un des types dans
le théoréme 6.1. Alors on peut toujours trouver unme fonction rationnelle R sur
P? appartenant a F telle que (R)=mS,—nS. et que [M, =, p] soit la résolution
du point d’indétermination de R.

En effet, il est évident que =* se réduit 8 o—o—o. La variété obtenue est
0 00
alors biréguliére a P! X P!, d’aprés le théoréme de Nagata qu’on a vu dans le 1°

de la section 4. Donc, d’aprés la proposition 5.1 ou 5.2, on peut construire
la fonction R dont on a besoin.

7. Ordres et degrés des courbes premiéres singulieres de R. Soit
R une fonction appartenant 8 F; ou G et soit [M, =, p] sa résolution minimale
du point d’indétermination. La formule (RF.2) pour une fibre singuli¢re F(R)
et le théoréme 6.1 nous permettent de calculer I'ordre des courbes premiéres
singuliéres.

1° Cas ot ReY1. Dans ce cas, le diviseur de R est donné par la rela-
tion (3.1). D’apres le lemme 4.6, on peut prendre des coordonnées inhomo-
génes (x,y) de P? telles que S. soit la droite a 'infini de P2 Alors R est un
polynome de x et y de degré n. On ala

Proposition 7.1  Le degré n de R est égal & 2,2 1T (\+1) ou TT (M+1)
selon que R appartient a I(0), I*(N; Ay, ==+, Ay) 0w I7(N; Ay, =o0y Ay)-

En effet, pour RE€1(0), c’est évident. Soient CF le membre de 3 coupant
T, D; celui de = correspondant a o ) et B;€$(Z) le membre de —o— dans
i+ N
3 coupant trois autres membres o =1, ---;, N. En remarquant que F(oo) est
obtenue par une modification de P! ><P1 comme on I’a vu dans le 1° de la section
5, on peut facilement voir qu’on a orch(I?)zordD N(ﬁ):l et ordB,.(IQ)=ordDi_
(I/é) pour 2=<{=<N. Cela pos¢, on peut calculer z» d’apres la formule (RF.2).

2° Casoi ReTy. Dans ce cas, le diviseur de R est donné par la rela-
tion (3.2). Soit {m;} ez une suite définie par

(7.1) My, = 3my,—m; avec m_,=1etm =1,

et posons:
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(7.2) = M4y,
my—m,_ our ¢ pair

(73) st = | s PR
my_, pour ¢ impair ,

. . m;_ our Z pair
sr(z)=s,+(z—1)={ w2 PoRERER
m;—m,_, pour { impair .
Proposition 7.2. Si R appartient a II(l), m et n sont égaux a m, et n; res-
pectivement. St R appartient a I1°(I, N3\, +++, Ay), m est aussi égal a m; et n est
égal a

N
(7.4) n = n?(N; 7\,1, R xN) = m]_-_tl gl(h,- m,z—l-m, s;‘(i)—l) .

DEMONSTRATION.  Nous effectuerons le calcul de n pour le cas IT%(], N: \,,
+++, Ay) dans la section 11; nous démontrons maintenant les autres énoncés.

Supposons d’abord que R appartienne 4 II(/). Conservons les notations
C5(B=0 ou oo et *=T ou T") introduites dans le 1° de la section 4. D’aprés la
remarque 4.1, C% et C7 sont les extrémités de =; de plus, C% et C% sont celles
de =g, et d’aprés le lemme 4.1 et la définition de C%, on a ordcg(k)zl. Ce
fait, la formule (RF.2) et le théoréme 6.1 montrent que m et n ne dépendent
que de /; on les désigne par m(l) et n(l). En regardant le graphe de =, il est
évident qu’on a n(l)=m(l+41); par suite, il suffit de calculer seulement m(l).
Regardons le graphe G,. Soit K, le membre de =, coupant §o; Pordre de R en

!

K, est m(]) puisque, si on écrit la fibre | F(0)| =m(l) So+Zu; C;, on a m(l) (S?,)—}—
Spi(Ci+S)=0 et (S§)=—1. 1l est facile de calculer et on obtient m(0)=2, m(1)
=5, m(2)=13 et m(3)=34. Soit R, la fonction appartenant a II(/). Dés-
ignons par 2(I), Z(/) et Ki(l) respectivement les quantités 3, =, et K, cor-
respondant & R(). Supposons [=2j. Pour k=/, 41, I4+2 et /43, la fonction
Riyop aun zéro du méme ordre en le j*™ (resp. (j+1)*™°) sommet o du coté
gauche du G, qu’on désigne par a (resp. b). Pour k=I42 et I4+3, Ryopa
aussi un zéro du méme ordre en le (j42)*™ sommet o du coté gauche du Gy,
qu’on désigne par ¢. Le membre Ky(k) est le (j+2)"*™ sommet o du coté gauche
du Gy pour k=/, I4-1 et le (j+3)*™ pour k=I+2,/+3. Donc, en regardant
les graphes G, G141, Gy, €t G4y, on a les relations suivantes: 2b=a-+m(l), 5b=
a+m(l4-1), 7b=a+-c, 2c= b+m(l+2) et 5c=b+m(I+3). On obtient ainsi (/)
=m,.

Supposons ensuite REII*(l, N; Ay, +++, Ay) (N=1). Pour calculer 'ordre
de R en S, la situation est tout-a-fait analogue a celle dans le cas 7I(/). Donc
on a aussi ords, (R)=m;.
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Si on admet la formule (7.4), il est alors immédiat que le théoréme 6.1
et la proposition 7.2 montrent que deux conditions (3.3) et (3.4) sont équiva-
lentes comme on I'a dit dans la section 3.

8. Fonction minimale associée &4 R=<;. Soit R une fonction de ;.
Soient (x, ¥) des coordonnées inhomogeénes de P? telles que R soit un polynéme
en x et y appartenant a $;, d’aprés la proposition 4.1. Dans cette section,
on va étudier une fonction R’, définie par la condition (4.2), associée a R.
D’apres le lemme 4.6, on a les corollaires suivants:

Corollaire 8.1. La paire (R, R') est un automorphisme algébrique de C*
(x, 3)-

Corollaire 8.2. La fonction R’ est aussi un polyndme primitif de type (0, 1).

Corollaire 8.3. La fonction R’ est aussi une fonction de Fy ou bien F,
admettant le point d’indétermination au méme point p que celui de R et ayant aussi
un pole en S...

Corollaire 8.4. Une résolution [M, 3, p] du point d’indétermination de R
est aussi celle de R'.

Posons (R)=S,—n S. et (R")=S{—n'S.. La fonction R appartient & une
des I(0), I*(N; Ay, o=+, Ay) €t I7(N; Ay, =+, Ay) (N=1). Alors on dit aussi que
(R, R') appartient a 1(0), I*(N; Ay, +++, Ay) €t I7(N; Ay, +++, Ay) respectivement.
Notons que la restriction de R’ a C3, qui est la courbe correspondant 4 @ dans

le graphe o—o—o—e pour N=0eta o dans le graphe pour N==0, est univ-
1 2 2 2 14+y
alent d’apres la définition de R’, on a alors le

Lemme 8.1. S¢ R appartient a 1(0) ou I*(N; Ay, -+, Ny), alors R’ appartient
AG, ou I'(N—1; Ny, +++, Ay-,) respectivement et on a n=(1-+ny)n'. Le triplet
[conty(M), contx x(Z), pocontQé v est la résolution minimale du point d’indétermin-
ation de R'.

Ici I*(0) représente 1(0) et 17(0) représente F,. La notation Ky(N=1) a
été introduite dans la section 6 et K, est la sous-famille de 3. correspondant a

0o—o0—0,

1 2 2

Considérons maintenant la fonction % définie par (R')"™~/R. 1l est im-
médiat que (A)=(1+xy) S¢—S,, et S§ et S, se coupent transversalement en un
seul point p* dans P?\{p}. On peut facilement voir que 7% est une fonction
rationnelle primitive de type (0, 2) admettant deux points d’indétermination p et
p*. Dailleurs, & prend une valeur constante @, ni nulle, ni infinie sur S.. On
peut donc normaliser ay=—1 en remplacant R’ par aR’ pour a&C*. Cette
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paire (R, R’) s’appelle paire normalisée et on la désigne par [R, R'].
Enfin, on voit qu’ une telle fonction R’ est caractérisée de la maniére suivante:

Lemme 8.2. Soit ¥ une fonction rationnelle telle que la paire (R, W) soit un
automorphisme algébrique de C*. Alors ¥V est égale @ R’ si v=ord;s (¥)<n et
@ R'+cR si v=n pour une fonction R’ associée @ R et c=C*.

En effet, si R’ est une fonction minimale associée a4 R, il existe un nombre
complexe & non nul et un polynéme B tels que +r s’écrive aR’'+ B(R).

9. Fonctions adjointes distinguées associées a R& S ;;.—Fonctions
rationnelles de type (0, 2)—. Soit R une fonction appartenant 3 ;. Pour
déterminer sa forme explicite, il est nécessaire de trouver les fonctions adjointes
distinguées @, yr, f et g associées 2 R. On a déja introduit les fonctions @ et 4»
dans la section 4 et on définit les fonctions f et g par "R’ et " |R" respective-
ment od (R)=m Sy—n S., (p)=T+s S;—t S« et les entiers n’ et ¢’ sont les
diviseurs de # et ¢ respectivement tels que n/t=n'[t’ et (n’, t')=1. On verra
que @, v, f et g sont des fonctions rationnelles primitives de type (0, 2). En
général, soit @ une fonction rationnelle primitive de type (0, 2). Dans ce cas,
la formule (1.1) se réduit 2 1=<#e(P)<d=<2. Posons #e(P)=k. Il s’ensuit que
trois cas seulement peuvent se présenter (PI): (1) k=2 et d=2; (2) k=1 etd=2;
(3) k=1 et d=1. La fonction 4, qu’on vient de voir dans la section précédente,
est de type (1). Nous verrons que @, ¥, f et g sont de type (2). Soit [M, =, p]
la résolution minimale du point d’indétermination de R.

1° La fonction . Elle est définie par la condition (4.5). Par »,0p7%, P?\
(SoU S.) est isomorphe a4 I'espace produit A={(z, w)|2EC* et weC} et S,
(resp. S.) correspond au point (0, 0) (resp. (oo, o). Soit T I'image réciproque
propre de la courbe w=0 par ,0p™%. On décompose les fibres singuliéres de R
de la fagon suivante:

|F(O)| = S3m; C+mS, et |F(o0)| = 3m; C7+nS.

ou C{=C8 et C§=CH(B=0, o) et puis C{ et C% sont les diviseurs introduits
dans la section 4; c’est-a-dire que C§ est 'extrémité de Zg qui coupe I et que
C? (resp. C7) est l'autre extrémité de =, (resp. de = pour ReII(l) et de 3.\
{9y} pour ReII*(l, N; \,, ++, A\y)); par suite, on a m;=n;=1 pour i=1, 2.
D’autre part, M est obtenue en éclatant P* X P' comme on I’a vu dans le 2° de
la section 5. On a donc les propriétés suivantes:

(9.1). a) Les restrictions de P (=@op) a Ct. et a C7 sont toutes deux univalentes.
La fonction $ a un pole d’ordre un sur T et sur C3, un zéro sur S, et un zéro d’ordre
un sur C% et sur T, o T est le transformé propre de T.
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b) Pour B=0 ou oo, C% et T se coupent transversalement en un seul point
qu’on désigne par gg.

On en déduit: )

c) On a TnS,=9, TnS.=¢ et Tn |=|=190, g=}. La courbe T est de
type (0, 2) comme courbe premiére de .

d) Par contg=ocontgr, Z* U { YA‘} se réduit @ Al , otz les points
e
11111

noirs ® représentent les transformés de CH(B=0, o) et le triangle A représente celui
de T.

On en conclut le

Lemme 9.1.

(0) @ est une fonction rationnelle primitive de type (0, 2).

(1) Le point d’indétermination de @ est égal @ celui de R et il est de type
(2) de (PI).

(if) Le nombre des valeurs singuliéres est deux.

(iil) Les courbes constantes singuliéres sont données par

(9.1) (@) = T+5S,—1S..,

ot T est de type (0, 2) comme courbe premiére de @, TN So={p}, TN Su=1{p} et
1=<s, t.

(iv) La paire (R, @) donne une transformation biréguliére de P*\(SoU S«) sur
C*xC.

(v) Pour R, la fonction @ se détermine uniquement & un facteur constant prés.

De plus, d’apres les propriétés a), b), c) et d), on a le

Lemme 9.2. Le triplet [M, 3, p) est aussi une résolution du point d’indéter-
mination de @. Le graphe de 3 U {T} est égal a

K 1_\
? G si Rell(),
4 &

4 I+1

A
1

1 1

«

/All G,
G ° Hiy \6
1

]

A
m N [I—_]l
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/AI‘—'—G,
. Gl ° —H[++1 \© """"" Si REII!(I, N; k’l’ R XN),

ot le triangle A représente T.

On en déduit:

Proposition 9.1. On peut prendre la sous-famille exceptionnelle K' de =
telle qu’on ait Cr &K' et que K'U {C2} se réduise a o. Alors [cont.x’(M), cont
1

-1 . .. . . .
(2), pocontx’] est la résolution minimale du point d’indétermination de .

On dit que (R, @) appartient & II(l), & II*(l, N; Ay, +++,Ay) ou & II(l, N;
Ay ety Ay) si R appartient a II(l), a II*(l, N3 Ay, -+, Ay) oud II=([, N\, -+,
) respectivement. Quant aux ordres s et ¢ introduits par la relation (9.1), ils
vérifient la

Proposition 9.2. Etant données les suites {m}, {ni(N; Ny, =5 Ay} et
{si(N)} définies par les relations (7.2), (7.3) et (7.4) respectivement, on pose

9.2) S;=m—m;_, et t;=S;.

93) VS My o0y ) = D 7 SEN)-H V)
XA (N—1; Ny, =+, Ay-1) 0t 77(0) = my, .

Alors (s, )=(s;, t;) si (R, @)II(l) et (s, )=(si(N), ti(IN; Ay, ==, Ay)) &
(R’ <p)EII!(l, N; LETR 7\4N)-

En effet, supposons d’abord N=0. Envisageons le graphe du zéro (flA‘U
ISA\{CL}H | US,) et celui du pole (T'U |S.\{C5}| US.) de @. Il est clair que s
et ¢ satisfont aux mémes formules récurrentes que m et n. En désignant donc
par s(I) et #(J) les quantités s et ¢ pour (R, @)= II(]) respectivement; on a s(/-+2)
=3s(l+1)—s(J) et t(I)=s(I4+1); d’apres la formule (RF.2), on a s(0)=1 et s(1)=
4; on a donc s(/)=s; et #(/)=s;4,. Supposons ensuite N=1. Si le graphe <(i_e
{TIUS, est ?——é,, on a évidemment s=s;. Supposons qu’il est ?——G,.

Comme la restriction de # a C? est univalente, le calcul de s pour (R, p)II*
(5, N; A+, My) avec N impair et [=3 et (R, )11 (I, N; ny, =+, Ay) avec N
pair et /=3 est le méme que celui de m pour ReI(l—2). En vertu de la for-
mule (RF.2), la valeur de s pour /=0, 1 et 2 est 1, 1 et 2 respectivement; donc
s=m,_,. On fera le calcul de ¢ dans la section 11.

2° La fonction 4. C’est une fonction définie par la condition (4.6), c’est-
a-dire, par Yrop=(w/2)on,; donc Yr=¢/R. On a donc:
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Lemme 9.3. La fonction ) est rationnelle primitive de type (0, 2). Elle
vérifie aussi les propriétés (i), (i7), (iv) de @. Ses courbes constantes singuliéres sont
données par

(W) = T+ (n—1)Su—(m—9)So
ot n—t>0 et m—s>0.

On a la propriété
(9.2) Les restrictions de  a C et a C3 sont univalentes.

D’autre part on utilise la remarque suivante pour les fonctions @ et .

Lemme 9.4. Soit © une fonction rationnelle telle que (R, @) satisfasse a
la propriété (iv) du lemme 9.1.  Alors ® s’écrit ‘

® = (aR'p+A(R))/R

oit a=C*, B(=) est polynome de z et a, b sont des entiers =0. Sia>0, alors
B(0)=£0. La fonction D est une fonction rationnelle primitive de type (0,2).

D’aprés ce lemme, on peut caractériser @ et » de la maniére suivante:

Proposition 9.3. Pour R& Gy, il existe toujous ume fonction rationnells
D telle que (R, @) soit une transformation biréguliére de P*\(S,U S.) sur C* X C.
Si @ a un zéro (resp. un pole) d’ordre inférieur ou égal a m (resp. m—s) en S, et
un pole (resp. un zéro) d’ordre au plus n (resp. n—t) en S, alors @ est notre fonc-
tion @ (resp. ) @ un facteur constant pres.

Considérons la fonction @*/R" pour toute paire d’entiers A et p telle que
A0, (A, p)=1 et (N, p)=+(m, 5),(n’, t'). 1l est clair que cette fonction est
rationnelle primitive de type (0, 2) et de type (2) de (PI). De plus

(P R") = AT+ (As—mp)So—(At—np)S«
ou A0, As—mpu =30 et Mt—np=0; ses valeurs singuliéres sont 0 et oo,

3° La fonction f=@"/R’. On la considére comme fonction rationnelle
définie par fop=(w"/2")on.. On note que la fonction w”/z’ sur P! X P! a les
propriétés suivantes: a) elle est primitive; car, d’aprés les propositions 7.2 et 9.2
et les relations (7.1), (7.3), (9.2), il est immédiat que (m, s)=1; b) elle admet deux
points d’indétermination (0,0) et (oo, o0); c) elle est de type (0, 2); d) ses valeurs
singuliéres sont O et oo, et ses courbes premiéres singuliéres somt données par les

6) Toute courbe constante générale d’elle est de type (0, 2); c’est-a-dire la partie de cette courbe
obtenue par ’exclusion de son deux points d’indétermination (0, 0) et (oo, oo) est une surface
de Riemann ouverte de genre 0 ayant 2 points frontiéres.
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équations 2=0, oo et w=0, co. De plus, en tenant compte de la propriété iv)
du lemme 9.1, nous allons étudier les propriétés de f, dont quelques unes sont
faciles a vérifier:

(1) f est une fonction rationnelle primitive.
Comme (R)=mS,—nS.. et que (p)=T"+sS,—tS., on a
(i) (94) (f) = mT—(mt—ns)S.

avec mt—ns>>0 puisque m>1.

En remarquant qu’on a SoN T={p} et SN S.={p}, on a:

(iii) f prend une valeur constante o, ni nulle, ni infinie sur S,.

On peut maintenant normaliser a;=—1 en remplacant ¢ par age pour
asC*. Cette paire (R, @) s’appelle paire normalisée et on la désigne par [R, @].
Pour R, cette fonction @ est déterminée a une racine de I'unité prés. Dés
maintenant, on prend f pour une paire normalisée [R, ¢]. Soit U le transformé
propre de la courbe constante 4 valeur —1 de la fonction »”/2° par poyi'. On
en conclut ainsi que

(iv) f est de type (0, 2).

(v) Elle admet un et un seul point d’indétermination qui est le point p. Son
type est (2) de (PI).

(vi) Ses valeurs singuliéres sont 0, —1 et oo.

(vil) Ses courbes constantes singuliéres sont données par la relation (9.4) et

par
(9.5) (f+1) = U+Sy—(mt—ns)S.. .

La courbe U est de type (0, 1) comme courbe premiére de f. Les courbes U et S,
se coupent transversalement en un point p* dans P?\{p}; enfin U N So={p, p*}.

La démonstration de la propriété (vii) sera donnée plus loin d’apres le
corollaire 9.1 du lemme 9.6. En admettant cela, on obtient en résumé le lemme
suivant:

Lemme 9.5. La fonction rationnelle f est celle de type (0, 2) admettant les
propriétés (i) a (vii).

Nous allons donner maintenant une résolution du point d’indétermination
de f.

Proposition 9.4. Le triplet [M, =, p] est aussi une résolution du point
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d’indétermination de f a Pexclusion de g(Z):

Démonstration. D’aprés la propriété (v) pour f, f ra pas de point d’in-
détermination dans M\ |3|. De plus, en remarquant la propriété (iv) pour f et
la propriété b) pour la fonction w”/2’, il suffit de montrer qu'’il existe une courbe
de 3, et une courbe de 3., sur lesquelles f est non constante, c’est-a-dire, uni-
valente. D’abord, on considére 3.

. Lemme 9.6. Soit K, le membre de =, qui coupe §0. Alors la restriction
de f a K, est univalente.

En effet, R (resp. #) a un zéro d’ordre m (resp. s) sur K, puisque R
(resp. P) s’annule 4 Pordre m (resp. s) sur S, par ailleurs on a S,NS.=40,
SAJ] T—g, SN |Z\{K} | =0 et (§§)————1. Pau suite, K, n’est ni pole, ni zéro
de f Nous allons donc démontrer que la restriction de f a K, est non constante.
Supposons qu’elle soit constante. Le point K, Sy nest pas un point d’indéter-
mination de f puisqu’aucun pole, ou zéro de f n’y passe. Donc f prend la
valeur —1 sur K,. Soit 3§ la famille connexe de =\ {K,} contenant C% qui
est 2 U'extrémité de 3 et aussi de X,. D’aprés les relations ordcg(k)=1 et
orde(P)=1, f sannule sur C%. Par suite, f doit soit admettre un point d’indé-
termination sur |Z¢| soit prendre toutes les valeurs de P'sur |3;|. Donc
fY(e0) doit couper |Z4|, ce qui est une contradiction. Donc la restriction
de fa K,n’est pas constante. Alors elle doit étre univalente, car on a (e(f))=2p
et f est de type (0,2). Le lemme est ainsi démontré.

Corollaire 9.1. On a ord,(f)=1 et || N U=4.

En remarquant les propriétés (i) et (iv) de la fonction f, on en déduit la
propriété (vii) d’elle qui a été donnée ci-dessus.

En plus, pour démontrer la proposition, il faut trouver I'autre composante
de 3 sur laquelle f est univalente.
(a) Supposons d’abord que [R, @] appartienne a II(l). Voyons le graphe

de 2*: él—O—‘G—)H.l.
1
btk
[Ijl
él: (——o—-):_1o—o—(——o——o—-—o——o—o——)]-—————l(—O—)". pour l=2]-—1 (]21),
] 7 5 2 3 2

01
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1
—t

AN BN
w N o
N O —[ON o —
N o MJJ
v 5]
=T
w o N o
ol m{a
AL o7
Ncl) [FS Y]
Ncl) l\)|
oL
W o ,I_.
[ —~
N o |
ey
- |
I
[ 2o}
—~ (=]
I &
N o -~
| I
i RN
[y
v
ey
oud

(___o_)J__

o

o

(—o—)—

pour =241 (=1),

0= —0—0—0—4—0—0 pourl=1.
52 2 2|22

Allors on a le

Lemme 9.7. Soit K. le membre de =.. correspondant a de §,+1.
2

Alors la restriction de f a K., est univalente.

En effet, considérons C} et C7. D’apreés la propriété (a) pour @, la restric-
tion de P a C (resp. C¥) est univalente et R a un zéro (resp. un pole) d’ordre
un sur CP (resp. C7). Soit 37, la famille formée de la courbe K.. et des courbes
de la composante connexe de |2.\{K.}| contenant CZ. On a || ﬂ§o=¢,
| =L NS.=0 et [Z\{CZ} N T=@. Soit S4’ la famille formée de la courbe
K, et des courbes de la composante connexe de |Z,\{Ky} | contenant 2 C%. 1l
est évident que le calcul des ordres de f en les courbes de =4 et S, est le méme.
Donc R (resp. #) a un pole d’ordre m (resp. s) en K... La démonstration suit le
méme raisonnement que pour K.

(b) On suppose ensuite que [R, @] appartienne a II*(l, N; Ay, +++,Ay) 4
I'exclusion des cas I1*(1, N Ay, +++, Ay-y, 0) si N est impair et II7(1, N; Ay, *++,
Ay-1, 0) si N est pair. D’aprés le méme raisonnement que pour le cas (a), con-
sidérons le graphe de 3*:

G,
Gll—o—HH_l__J.. vee
0 A

ou

G,

G—o— F];f“_é_ ......
1

R

ot $.N 19yl £0, Sun|Exl=0 et $.N|Ly]=0. Quand Ay=1, il est im-
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médiat qu'il existe une sous-famille .L; de Ly dont le graphe est égal 2 celui

de =, c’est-a-dire, G, ou bien G;,. On peut trouver un membre K. de L%
dans la méme position que K, de 3,. La courbe C% est 'extrémité de | L]
qui ne coupe pas |-Ly\-L¥| et on a | LI\{CT}| nT=op, |-L4] n.§0=(2) et
| L4 NS.=@. D’aprés le méme raisonnement que pour le cas a), R (resp. P)
aun pole d’ordre m (resp. s) sur K..; la restriction de f=¢"’/k‘ a K. est non
constante; par suite, elle est univalente. Quand Ay=0, on peut aussi trouver
un membre K.. de Ly, tel que ordg (R)=m et ordy (P)=s, et qui soit dans la
méme position que celle de K;,. On en conclut le

Lemme 9.8. On peut trouver un membre K. de S tel que R (resp. P)
prenne pole d’ordre m (resp. s). La restriction de f @ K. est univalente.

(c) Enfin, on considére le graphe d’exception, c’est-a-dire,

Dl 04
| l

0—0—0=—0——0-——0—0——0——0——0—=0——0——9ss00e

222 225122282

ou o représente C7. D’aprés les propositions 7.2 et 9.2, f est donnée par

@°/R. D’aprés la formule (RF.2), R (resp. #) a un pole d’ordre 4 (resp. 1)
sur By ol o represénte By. D’ol _f a un zéro d’ordre un sur C7 et un pole
8

d’ordre un sur By. Donc f a un point d’indétermination au point C5N By.
La proposition est donc démontrée.

Il nous reste maintenant 2 donner une résolution du point d’indétermina-
tion de f dans le cas d’exception.

Avec les notations du cas (c) ci-dessus, on éclate le point ByN C%, qu’on
désigne par g. Alors le graphe de O (|=| U TA‘) est le suivant:

/l
l
A——Gl-—o——o——o—o——o—o—---

1 122 29 2

’

ou le triangle A représente Qq(YA'). On a déja dit que f a un zéro d’ordre un
sur C7 et un pole d’ordre un sur By. De méme, on peut facilement calculer
que Pordre du zéro de f sur T est 5 et celui du pole de f sur deux courbes de
S\{Ly, By} coupant By est 2 et 7 respectivement. On a donc le

Lemme 9.9. Soit K. le membre de Q,(Z.) correspondant & o. Alors la
restriction de la fonction foconty, a K. est univalente. 1
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On a donc obtenu une résolution du point d’indétermination de f pour
tout type. On va maintenant montrer que la résolution minimale [M, =, p/]
est obtenue en contractant une composante de 3 ou de Q (). Considérons
le graphe de =. Soit o la composante de = correspondant a

-

o—o0 our — O——>sse ,
2 1 pott Fo
(——o—o—o—o—o—)i:l(—o——)i o—(—;—)j_ 1

2 2 2 3 2 2 1
pour G—o—:.+ ou I=2j—1 (j=1),
1

[}

|

o

\

[e]
L

I
~~

|

[e]
L

ES
[}
1

I

o
L

I
1
|
7

pour Gr—o— oi I=2j (j=1),
1

o—(———o—)] 10——0-—0— -—o_—o—o——o-—o—)] o
5 7 1 2 2 2 2 2 3 2 2

pour Gy—o—- ot 1=2j—1 (j=1),
1

o

L
l
o

4
\N
o]
I
[}

l
o
A
[}
[}
o]
°
o
~

[}
I
[}
l
(<]

N
N
N
N
[\
N
w
N
N
3]
[\S)

pour Gr—o—- od 1=2j (j=1).
1

Cela posé, I’ensemble o est exceptionnel. En utilisant les lemmes 9.5, 9.6,
9.7, 9.8, 9.9 et la proposition 9.4, il est immédiat que la résolution minimale
[My, =, ps] de f est [cont,(M), cont,(Z), pocont;'] dans le cas général et
[conteeQ, (M), cont,oQ, (=), po(cont,o O;')] dans le cas exceptionnel. Ici, on
utilise la méme lettre ¢ pour I'image propre de o par Q,. Soient S, S, U et
T les transformés propres de Se> S, U et f’par cont, ou cont,oQ, respective-
ment. On a donc la

Proposition 9.5. Le graphe de =, U {S,, S., U, T} est le suivant:

si [R, lell()) (=2j, j=0),
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si [R, plell() (1=2—1, j=1),
D
1 .
ID/A—GI
1 J \
&—o—hk—0—g(4}) si [R, @l€II*(l, N3 Ny, ++y Ay)
1 Ax

telle que (€, N)=(+-, pair) ou (—, impair) et | =0,

1
<« I I A
(;:_1 o—g(44 si [R, P1€II(1, N My = Moy 0)

X
1 «)
(D"‘l g’
< 1o
h—e—gi i [R, 111, N; Ny +00, M)

An
telle que (&, N)=(4-, impair) ou (—, pair), (I; Ay)#(1, 0) et I =1.
j—1

Ici, par g, on désigne (—o—)J-o si 1=2j (j 20) et (—o—)} =0 si I=2j—1
7 7 2 7 5

(j=>1). On désigne par h, (—o—)H(—o—o—o—o—o)I=L &i 1=2j—1 (j=1)
2 23 222

et (—o—)t(—o—o—o—o—o—)I"loo §i1—2j(j21). Park,on désignele
2 2 32 2 2 2 3

graphe obtenu en enlevant 'extrémité droite (—o—)5 et g,—o du graphe de =, qui
2 1

est linéaire. g(fl %) représente le graphe obtenu en enlevant g(€y), g(-Ly) et ©

N
dans g(ZU {gw}) ot €y, Ly et Iy sont les notations introduites dans la section
4. Le triangle noir a (resp. le triangle blanc 2) représente U (resp. T). Le

al al

graphe >é,— (resp. >&,——) représente celui obtenu en remplagant le carré
O de —5,— (resp. ——-é,—) par a.

U1 H1
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Enfin, considérons la relation (9.4). Le degré de S. étant m d’aprés le
lemme 4.9, on a le

Lemme 9.10. Le degré de T est mt—ns.

Posons r=mt—ns. D’aprés les propositions 7.2 et 9.2, r est égal & mt,—n;s,
Si (R, @) € II(1) et & M3 Ay ooy A)— 1N Ny o0, MK 81 (R, )€
II*(l, N; Ay, +++, My); on désigne ces valeurs par 7, et 7i(IN; Ay, +*+, Ay) respective-
ment. Le nombre r qui est I'ordre de f en S.. et le degré de 7T, fait 'objet de la
proposition suivante.

Proposition 9.6.

(9.6) rn=3
TIN5 Ay, o0y Ay) = (A +-5i(N))ni(N—1; Ngy =+, Ay-)
En effet, en vertu des relations (7.1), (7.2) et (9.2), on a
MySp e — My = My yS;— TSy

D’autre part, on a mgs,—m,5,=3. D’ou r,=3.

4° La fonction g=¢"/R". On la considére comme fonction rationnelle:

gop = ("[2")on, .

En reprenant le méme raisonnement que pour f, on voit que g est aussi une
fonction rationnelle primitive de type (0, 2). Elle vérifie les mémes propriétés
que celles de f, c’est-a-dire, (i), (ii) avec (g)=n'T—(mt'—n's)S«, (iii) pour S,
(iv), (v), (vi), (vii) avec (g4 B)=Vp+vSu—(mt'—n's)S, oi B est la valeur con-
stante de g sur S., Vj est le transformé propre de w"/3*=g dans C*(z, w)
et v=1. En particulier, on remarque la propriété suivante:

(1) Pour [R, @) appartenant & II(l) ou II-(0, 1; \,), on a

n=n, t'=t, v=1.

La courbe Vg est de type (0, 1) comme courbe premiére de g. Les courbes Vﬁ et S.
s¢ coupent transversalement en un seul point dans M\ |Z| et on a 173 N Sy=0.
(2) Sinon, on a

n>n', t>t, »>1, Ven(SUS) =0.
La courbe Vg est de type (0, 2) comme courbe premiére de g.
ParTiE III. DETERMINATION DES FONCTIONS RATIONNELLES DE TYPE (0, 1)

Conservons les notations introduites dans la partie précédente.
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10. Fonctions rationnelles appartenant 4 F,UZ,. On a déja vu que
&, consiste en toutes les fonctions rationnelles linéaires. Dans cette section, on
va déterminer les formes explicites des fonctions de &;. Soit R une fonction
appartenant 4 ;. D’aprés ce qu'on a vu dans la section 8, on peut prendre
une paire normalisée [R, R’]. Elle donne un automorphisme algébrique de
PA\S., (=C?) et appartient 4 une des familles 7(0) et I*(N; Ay, =+, Ay) ot (R)=
So—nS. et E=+.

Théoreme 10.1. Supposons que [R, R'] appartienne a I~(1; A)(M=1) on
I=(1; 1)=1(0). Alors on peut prendre des coordonnées inhomogénes (x, y) de P*
telles que

Al

R =y+§a,— x¢

(10.1)
R =ux

avec a;C (=2, -+, \)) et @y ., =—1.
Réciproquement, toute paire définie de la maniére ci-dessus avec des mombres
complexes arbitraires a; appartient @ 1~(1; ).

En effet, dans ce cas, on a (R)=S;,—(14X,)S.. D’aprés le lemme 8.1,
R’ est linéaire; (R')=S{—S.. La droite complexe S§ et la courbe algébrique
S, de degré ;41 se coupent transversalement en un seul point dans P*\S..
On peut donc prendre des coordonnées inhomogenes (¥, y) de P? telles que S
soit la droite 4 I'infini de P? que ce point soit (0, 0), que R’=x et que la droite
y=0 soit tangente a S; en (0, 0). D’aprés le corollaire 8.1 et la définition de
[R, R'], on obtient donc la relation (10.1), en remplagant y par ay (aEC¥),
si nécessaire.

La réciproque est évidente.

Théoreme 10.2. Supposons que [R, R'] appartienne a I°(N; Ny, -+, Ay)
(FI~(1;N) oe N=1 et E=+. Alors on peut prendre une paire normalisée
[R', R"] appartenant a I*(N—1, N, +++, Ay_,) telle que

A+l

(10.2) R=aw+gmmT,

avec a€C*, a;EC (i=1, -+, \y) et ay,, =—1.

Réciproquement, toute paire (R, R') définie de la maniére ci-dessus avec des
nombres complexes arbitraires a; et un ncmbre complexe a0 appartient & 1°(N;
Agy s 7\'N)'

Ici, la notation I(N; Ay, «++, Ay) pour N=0 signifie 1(0).

En effet, on prend R” telle que [R’, R”] appartienne & I*(N—1; Xy, ==+, Ay _y).
Utilisons les corollaires 8.1 et 8.3. La restriction de R sur P*\S., est un poly-
nome de R’ et R”. La relation (10.2) résulte du fait que la restriction de R a
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toute courbe premiére de R’ sauf S’ est univalente.
La réciproque est évidente.

Compte tenu de la proposition 4.1 et le lemme 8.2, les théorémes 10.1 et
10.2 donnent une autre démonstration pour le théoréme établi par H.W.E.
Jung [3], qui dit que tout automorphisme de I’espace C? est un produit de trans-
formations linéaires et de transformations de type: x'=wx, y'=y+cx’ (c€C, |
est un entier positif).

D’autres démonstrations ont été données par A. Guthwirth [2], M. Nagata
[8], I. Wakabayashi [14] (voir M. Furushima [1] pour la démonstration) et M.
Suzuki [12].

11. Fonctions rationnelles appartenant a

1° Relation entre les graphes II(l) et II(I—1). Soit 7, le sous-graphe du
II(l):

0—0—0—0—0—0 si =0,
22 215 2
o—(—-o—o-—o—o—o——)i':-—l(—o—)io—(—o——)]—o si l=2]-—1 ,
2 2 2 2 3 2 2 1 7 2
o—-o—o-—(——o—o—o—o—o—)i:l(—o—-)io——(——o——)—'io si = Zj.
2 2 3 2 2 2 3 2 2 1 7 5

Il est immédiat que 7; est exceptionnel. Pour le graphe II(/), on désigne par
oy la composante o introduit dans le 3° de la section 9. Par JI(I), on désigne
le graphe de S U {S., U}. Compte tenu de la proposition 9.5, on a alors le

Lemme 11.1. On a les relations:

II(—1)) = II(I—1),,
(IT(I—1))* (1=1) et cont,, (I1(0)* = I(0)*.

cont,, (II(7)) = cont

ol-1

cont, (II(1)") = cont

ol-1

On désigne par la méme letter 7, la sous-famille de = correspondant a 7,.
Par p;;-,, on désigne conts' ocont, pour /=1 et cont, pour /=0. Posons
M =p;(M) et Z'=p,; (). Alors, -, est une transformation birationnelle
de M sur M' et biréguliére de M\ |7,U pii-1(01-y)| sur M'\|o;U gy 1-1(7)| ot
o, désigne le point cont, (7).

Corollaire 11.1. On a les relations:
Mo.—l(II(O)‘) = I(O)*
- (L)Y = II(I—1)* pour 1=1.
2° Relation entre les graphes II°(l, N: Ay, ==+, Ay) et II°(l, N—1; Ay, oo+,
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Ay-1) (=4 et N=1). On interpréte la notation II°(l, N; Ay, -+, Ay) pour
N=0 comme II(l) si &=+, comme II(/—1) si é&=— et =1 et comme I(0) si
€=—et I=0. On définit """ par conty si Ay>0, par Q(8;)ocont si
Ay=0 et &—1)"=—1 et par Q(8,)ocont - si Ay=0 et & —1)"=-+1; les nota-
tions Ky, O(5,) et O(8;) ont été introduites dans le b) de 2° de la section 6.
Posons M'=pu} "1 (M) et Z'=p) """ (Z). Alors, u)"¥~! est une transformation
birationnelle de M sur M’ et biréguliére de M\ | Ky U p™Y(8;)| sur M'\|8; U u(Ky)|
o i=1, 2 et p signifie p"" .

On désigne par II°(l, N; Ay +++, Ay)" le graphe de S U {U, S:,}. Alors,
d’aprés ce qu'on a vu dans le b) de 2° de la section 6 et dans la proposition
9.5, 0onale

Lemme 11.2. On a la relation:

pl NI N3 Ay ooy Ag)') = TI8(L N—15 2y, o0, Ay ) *
pour E=+ et N =1.

3° Détermination des paires normalisées [[R, @]] appartenant a II(I).
Dans ce cas, par les propositions 7.2 et 9.2, on a m=m,;, n=my,, s=s;, t=s,,,
mt—ns=3 ou M ,=3m,—m;, my=2 et m=>5, s;=m—m;_,. On a (R)=
80— M1 S, (P)=T+5,S0—51418w, (f)=mT—3S. et (f+1)=S,+ U—38...
Par suite, on a deg Sy=mt;,,, deg S=m,;, deg T=3 et degU=m,_,. Soit [R, @]
une paire normalisée appartenant & II(/). Toute paire normalisée appartenant
a II(l) est donnée par [c™R, c*@p] pour un c€C*. En outre, d’aprés la pro-
priété (iii) de la fonction g, on peut prendre la paire normalisée [R, @] telle que
g="|R! prenne la valeur constante —1 en S.. Elle s’appelle paire normalisée
par Sy et S. et on la désigne par [[R, @]]. Toute paire normalisée par S, et S.
s’écrit de la forme [[oR, o’®@]] oi w’=1 puisqu’on a mt—ns=3. D’aprés le
lemme 6.1 et le corollaire 11.1, on a le

Lemme 11.3. Soit [[R, @]] une paire normalisée appartenant a II(I).
Alors:

(1) Sil=1, on peut toujours trouver une paire normalisée [[R’, ¢']] appar-
tenant a 1I(1—1) telle que [p;,,_,(M), p1,1-1(=), popti-1] soit la résolution minimale
du point d’indétermination de R’ et que l'on ait

(11.1) 0=8u, Si=U e T'=T.

La paire [[R', ¢']] est déterminée uniquement & une racine cubique de 1 prés. Le
transformé propre de C% par p, ., est C¥ o B=0, .

(i) Si 1=0, on peut toujours trouver une paire normalisée [R', ¢'] appar-
tenant a 1(0) telle que [po,—y(M), po,—1(2), popo—1] soit la résolution minimale du
point d’indétermination de R’ et que 'on ait
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(11.2) St=S8., SL=U e T'NT=1{p}.

La paire [R', '] est déterminée uniquement & un facteur constant prés. Le trans-
formé propre de C 7 par p,_, est C . Ici, S§, SL, T' et C¥ sont Sy, Sw, T et
C% pour [[R’, ¢']] ou [R’, @] respectivement.

Lemme 11.4.  Pour deux paires normalisées [[R, @]] et [[R’, @']] satisfaisant
aux conditions du lemme 11.3, on a

@"|R't = @'™|R"s  pour 1=1.

En effet, les fonctions @™ /R’ et @'™/R" sont f pour [[R, #]] et g pour
[[R’, #']] respectivement; on les deSigne par f et g’ respectivement. On a
(g)=mT'—38§ car (R")=m_,Si—mS<, (p")=T"+s5,,S0—5,S2 et s_ym—
sim-,;=—3. D’autre part, on a (f)=mT—3S.. D’aprés la condition (11.1),
onajf=ag’ oi a€C* Compte tenu de la définition de paire normalisée par
Sy et S, la restriction de f et celle de g” 2 U(=SL) sont identiquement égales a
—1. Donc le lemme est démontré.

D’aprés le lemme 11.4, on ale

Lemme 11.5. Soit [[R, @]| une paire normalisée appartenant a II(I) o
1=1. Alors il existe une paire normalisée unique [[R’, '] appartenant a II(I—1)
telle que

R = (¢’"’1+R”1)’"1/R”l"’1'1
@ = @'(@™1+R")1R'.

D’apres cette relation, [[wR’, o’@']] correspond é [[oR, o’®]] oit w®=1.

En effet, pour [[R, #]] on peut prendre [[R’, ¢']] satisfaisant aux conditions
du lemme 11.4. Considérons la résolution minimale [M’, 3, p] et 'espace
produit (P P, 5{) pour R’. Soient (2, w) les coordonnées telles que

Riop’ = zop{ et @'op’ = woy].

On désigne par R*, @* et f* respectivement les fonctions R, ¢ et f regardées en
tant que fonctions sur (P'X P!, 47). D’aprésle lemme 11.4, on a f*=w":/2".
Par Papplication 5{op’~?, le domaine P?\(S. U U) est isomorphe 2 C*x C et S.
(resp. U) correspond au point (0, 0) (resp. (oo, o)) d’aprés la condition (11.1).
En remarquant qu’on a (m;, s;)=1, le transformé propre de S, est donc donné
par w"+2%=0. D’aprés le lemme 11.3 et les propriétés (9.1), R aun pole
d’ordre un sur C§’ et @ est non constante sur C5 ; c’est-a-dire que R* a un pole
d’ordre un sur =00 et @* est non constante sur z=oo. Cela pos¢, on a

R* = am,(wm,+zs,)m,/zs,ml—1
@* = atio(w™ 2% zE0*
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oi a=C* Remarquons ici que les fonctions @™+1/Ré+1 et @'™~1/R"I-1
prennent la valeur constante —1 en S., puisqu’on a S.=S§. D’ou on a a®=1.
Si a=1, il suffit de prendre [[wR’, &’p']] au lieu de [[R’, #']] o0 o=a ™.

Voyons ensuite le cas ot [[R, @]] appartient 2 II(0). On ale

Lemme 11.6. Soit [[R, @]| une paire normalisée appartenant a II(0).
Alors on peut prendre des coordonnées inhomogénes (x, y) de P? telles que

(11.3)7 R = Ry(x, y) = {(y—**)"—2xy*(y— ")+ 5}/ (y—%)°
P = @o(x, ¥) = (xy—2*—y){(y—2°)*—2xy*(y—#*)+3°} [(y —**)* .

Il n’y a que les automorphimes (%, y) — (wx, ©®y)(w®*=1) de P? par lesquels le diviseur
de [[Ro, @o]] soit invariant. On a Ry(wx, 0’y)=wRy(x, y) et @,(wx, o’y)=
‘02?’0(9": y )'

En effet, on prend une paire normalisée [R’, '] appartenant a 1(0) satis-
faisant aux conditions du lemme 11.3. On considére la résolution minimale
[M’, =, p'] et espace produit (P!X P, %) pour R’. Soient (2, w) les coordo-
nnées telles que R'op’=xon} et @'op’=woni. On désigne par R*, o* et f*
respectivement les fonctions R, @ et f regardées en tant que fonctions sur
(P*XP*, ). Par Plapplication ngep’™!, P?\U (= C?) est isomorphe a tout
Pespace (2, w) et U correspond au point (co, o). Notons que (f)=27—38S.,
que TN T"={p} et que S.=S5. De plus, O et 4 représentant les transformés
propres des S., et 17 respectivement, u, _,(|=| U SN) U T’ se réduit a

0o——o0
|

00——a20,

le transformé propre T de T coupe transversalement ces courbes seulement en
les points (0, o) et (=,0) et on a (7%)=2. Donc la courbe T est donnée par
2w-+a=0 et on a donc

= (rw+a)*23.
Ici, (*R’, c@") pour cEC* est aussi notre paire normalisée [¢*R’, c@"]. Donc
on peut prendre de nouveau [R’, '] telle que f=(zw—1)?/2%. Par suite, le
transformé propre de S, est donné par (zw—1)*+2*=0 puisqu’on a (f+1)=
U+8,—38. ot U correspond au point (oo, o0) par n4op’~t. D’ou
R* = o {(zw—1)*+2%}7/2°,
o* = a(zw—1){(zw—1)*+2% [2*

oi a=C*. Celaposé, on a a®=1 puisque la restriction de @°/R* 4 S, (=S%¢)

7) La courbe donnée par Ry(x,y)=0 apparait dans H. Yoshiwara [13].
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est constante égale 3 —1. En remplacant [R’, '] par [wR', 0’@’] oi «’=1,
on peut supposer aa=1. D’aprés le théoréme 10.1, on peut prendre des
coordonnées homogénes (uy, %, u;) de P? telles que R’ = (ug,—ul)/uj et que
@'=1uu,, en remarquant que @*/R’ prend la valeur constante —1 en #,=0.
Le point d’indétermination p de nos fonctions est alors donné par (1, 0, 0).
Ainsi, en posant x=u,[u, et y=u,[uy, le résultat est établi.

Corollaire 11.2. On définit les fonctions R_, et ¢, par

(11.4) R,=(y—=2)y", pa=2ly.
Alors (R_;, @_,) est la paire normalisée [R_,, @_,] appartenant ¢ 1(0). On
écrit
(11.5) Ry = {(®-1—(R-)7V+R_}*|R_,
@0 = (P1—(R-) ) (P-1—(R-))*+R_} R, .

on a donc le

Théoreme 11.1. Soient R, et ¢, (I=1) les fonctions rationnelles définies
par
(11.6) Ry = (@)™ 4(Ry-) )™ [(Ryp) ™!
@1 = Pra(Pr-) ™1 (Rya)*1) 1 [(Ry-1) &
avec Ry et @, données par les définitions (11.3) ou les relations (11.5). Alors
(Ry, @) est une paire normalisée [[R,, @,|] appartenant a I1(1).

Toute paire normalisée [[R, @]| appartenant a II(l) est la paire [[R,, ¢i]]
pour certaines coordonnées inhomogénes (x, y) qui se déterminent uniquement par

[[R, #]l.
1l v’y a que les automorphisms (x, y) = (wx, *y) (0*=1) de P* par lesquels le
diviseur de [[R,, ¢,]] soit invariant.

On désigne par f; la fonction (@,)™[(R))*.

Corollaire 11.3. On a les relations: R (wx, o*y)=wR(x, y), @, (wx, 0*y)=
w2¢l(x’ y) et fl(wx’ w’y)=f;(x, y) avec o®°=1. ‘

On désigne par S§, SL, T'et U’ les quantités Sy, Sw, T et U associées 4
[[R;, @/]] respectivement. Pour R_;, on désigne par Sg' et SZ' les quantités
S, et S, respectivement. On a alors la

REMARQUE 11.1.

(11.7) T =T'  powr 121,
Sc'=8L e SI'=U'" powr [=0.
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4° Polynomes définis par la paire [[R;, @;]]. Soit (x, y) un systéme de
coordonnées inhomogeénes de P2 En combinant le théoréme 11.1, le corollaire
11.2, la remarque 11.1 et les relations (9.4) et (9.5) avec les relations m=m, et
mt—ns=3, on a le

Corollaire 11.4. On pose

(11.8) P,=y—a*, O,=y,
Py = (y—°)"—2xy*(y—#")+5°,
Qozy_xz’ q’o:xy—xs—ya,
O=P.,, P= ((q)o)m‘+(Qt)3)/Ql—1 .

Alors Py et Q, sont des polyndmes en x et y de degrés m,., et m, qui définissent
les diviseurs S et SL de R, respectivement. On a f,=(Do)"[(Q)) fit+1=

PO /(01 Ry=(P)"1[(Q1)"1+1 et @, =Do(Py)*1[(Qy)"1+1.
On dira que (P;, Q,, @,) sont les polynomes définis par [[R;, @i]].

5° Détermination des paires normalisées [R, @] appartenant a II°(], N;
A 5, Ay) o N=1 et &=4-. Dans ce cas, par les propositions 7.2 et 9.2, on a
m=m, et s=si(N). Soit [R, @] une paire normalisée de II*(l, N; Ay, ==, Ay).
Alors toute paire normalisée de I7°(1, N; A,, «++, Ay) est donnée par [¢™R, csi¥p]
pour c€C*. Conservons la notation II*(l, N; A, --+, Ay) pour N=0 introduit
dans le 2°. D’aprés les lemmes 6.1 et 11.2, on a le

Lemme 11.7. Pour une paire normalisée [R, | appartenant a II*(l, N;
AL 0, Ay), on peut toujours trouver une paire normalisée unique [R', @'] appar-
tenant a 11°(I, N—1; Ay, +++, Ay_,) @ un facteur constant prés telle que si (N, €)=

(1’ —))

(11.9) St=8., SL=U
et sinon,
(11.10) St=U, S.L=32S

et telle que le graphe de Z'* soit II%(l, N—1; Ny, +++, Ay-1)* et le transformé propre
de C3 par p'"N=! soit C5 si (N, &)=(1, —) et C¥ sinon.
Ici 8§, SL,C¥, Cs et ='* sont Sy, Sw, C3, C5 et Z* pour R’ respectivement.
Sous les notations B, L, et I, introduites dans la section 4, on désigne
par J, (resp. Jo) le membre a l'extrémité de =. appartenant a [, (resp. ).

Puisque = est obtenue par éclatements successifs comme on I’a vu dans le 2°
de la section 5, on a le

REMARQUE 11.2. Jy=C3%. ul(J)=C¥%, ut*(J)=C¥ si (N, &)=(1, —)
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et u' " (Ju)=C¥, I (Ju)=CF sinon.
Ol‘dgk(.k) — Ol‘dj,,_l(-k) pour k=1, --- N, ord]N(ﬁ)=1 et la restriction de P a In
est univalente.

(a) Lecasou II=(], 1; A)).

Lemme 11.8. Soit [R, @] une paire normalisée appartenant & II1-(1, 1; ;).
Alors, si I =1 (resp. 1=0), il existe une paire normalisée [[R’', ¢']] appartenant a
II(I—1), (resp. [R', @' appartenant a I(0)) et des nombres complexes a;EC
(#=0, ++-, \;) avec a, +0 tels que

f= E’”l/R"’l
A
o E=p'+331a;R™™. Si =0, on a en plus ay=0.

Réciproquement, toute fonction définie de la maniére ci-dessus avec des nombres
complexex arbitraires a; est de type (0, 2).

En effet, si /=1, on prend une paire [R’, '] satisfaisant aux conditions du
lemme 11.7. Alors [¢™'R/, ¢~'¢’) (c€C¥) est notre paire. En particulier,
prenons une paire normalisée [[R’, @']]. Considérons la résolution minimale
[M',3, p'] et espace produit (P*x P?, 5) pour R’. Soient (z, %) les coordon-
nées telles que R'op’'=zon] et @'op'=won]. Alors M\|(E\{/:})U {U, S.}|
est isomorphe 4 l'espace produit {(z, w): &P\ {0}, we=C} par piou;’ et le
transformé propre de J; est donné par = oco. Les courbes S. (=S¢) et
U (=S.) correspondent aux points (0, 0) et (oo, o0) respectivement. En
désignant par f* la fonction f regardée en tant que fonction sur (P'X P}, 51), la
restriction de f* 2 P1X C a un zéro seulement en z=oo et 7, qui est le trans-
formé propre de T, et un pole seulement en z=0. IL’ordre en x=oo (resp. T)
est s; (resp. Zn,) Cela posé, on peut facilement voir que la courbe 7 est donnée

1
par 2w+ X 4y, ;2*=0 ou ¢;€C (1=0, 1, -+, A, —1) et @, EC*. Par suite, en
i=0
remarquant que @’"i//R’s prend la valeur constante —1 en U, la fonction f*
s’écrit
A
(M43 ah_'_zi)m,/lem,ﬂ, .
i=0
Si I=0, on prend une paire [R’, @] donnée par le lemme 11.7 satisfaisant de
plus a la condition py®(TNJ)E7. Grice A cette condition, en reprenant le
- A-T )
méme raisonnement que le cas ou /=1, T est donnée par 2w+ 3] ay,-;2'=0
i=0

ou ¢;€C (i=1, -, \,;—1) et g, €C*. Donc f* s’écrit

A-1

(Pt 3 a2Vl
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Le lemme est ainsi démontré.
D’apres les théorémes 10.1 et 11.1, on a donc le

Corollaire 11.5. Pour [R, @] appartenant & II~(I, 1;\,), la fonction f
admet la forme

(11.11) frrop(@) = E™[(R;,)"
A

pour des certaines coordonnées inhomogénes (x, y) P? de ot E=¢H+21 a;,(R;-)7,
i=0

a;C (1=0, ---, \,) avec a,F0 et a=(ay, -+, @) si (I=0, a;=0). De plus on a

Friop(a; ox, @) = f110(a*; %, y)

o

(11.12) af = a7V, a*=(af, -, a%) e °=1.

Théoréeme 11.2.  Soit [R, @] une paire normalisée appartenant a II~(1,1; \y).
Alors il existe des coordonnées inhomgeénes (x, y) de P* et des nombres complexes
a;€C (i=0, +-+, ;) avec aAl=|=0 (52 1=0, ay=0) tels que
(11.13) = ¢™E™|(R,_,)" "1

= cEL(Ry_,)*

A
oil 52‘7’1—1"1"2_5, a;(R;_)7, §=§’"1+(R,_1)’1 et ceC*,
Réciproquement, toute paire (R, ) définie de la maniére ci-dessus avec des
nombres complexes arbitraires a; et un nombre complexe ¢+0 est une paire norma-
lisée appartenant a I1-(1, 1; \,):

En effet, pour [R, @], d’aprés le corollaire 11.5, il existe des coordonnées
inhomgenes (x, y) de P?et des nombres complexes ¢;C (=0, -+, \;) avec
ay,#+0 (si I=0, ay=0) tels que f soit donnée par la relation (11.11). Considérons
la résolution minimale [M’, 3, p'] et 'espace produit (P!x P?, 7;{) pour R,_,.
Soient (2, w) les coordonnées telles que R;_,op’'==zoy{ et @, ;op’=woy{. On
désigne par R*, p*et f* respectivement les fonctions R, @ et f regardées en tant

que fonctions sur (P'X P, 5{).  Alors f*41 s’écrit {(w—l—E a2~ ymt-2} 2.

D’autre part, pour (f+41)==S84+U—7Sx, S. (=S§) et U(=S.) correspond-
ent aux points (0, 0) et (oo, o) par yiop'™! respectivement. Il est immédiat
que le transformé propre de S, est donné par

A
(w+2l az" M+t =0.
i=o
on a donc .
R¥* = ¢™ {(w—|—2_,% PR B ) LT
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ou cEC*, puisque R* a un pole d’ordre un en z=co qui est le transformé
propre de p;*°(J)) par {. On a aussi

A A
g* = et 3] o @+ 3 ax )bl

puisque @* est non constante sur g=oo. La relation (11.13) est ainsi obtenue.
La réciproque est évidente.

REMARQUE 11.3. On désigne par [Ri.np(@), PT1.0p(@)] la paire [R, @]
donnée par (11.13) avec c=1. On a alors

R710p(a; 0%, 0®) = oR71,0p(a*; %, y)

Priap(@; 0X, 0%) = O'Pi1,0p(@*; x, ¥)
oL a, a* et w satisfont aux relations (11.12).
(b) Le cas oit IT*(l, N Ay, -+, Ay)=1I7(1, 1; 2y).

Lemme 11.9. Soit [R, @] une paire normalisée appartenant a II°(l, N;
A ooty Ay).  Alors il existe une paire normalisée [R', @] appartenant a 11°(l, N—1;
Aty Ay-1) et des nombres complexes a;EC (i=0, -+, N y) avec a,,=+0 tels que

(11.14) f= EmRr@
A
ot E= ¢’/R'—l—'§1: aR' .

Réciproquement, toute fonction f définie de la maniére ci-dessus avec des nombres
complexes arbitraires a; est de type (0, 2).
Pour toute paire normalisée [c™R’, c¢i¥ Vp'] (cEC¥*), on a

f((a); ™R, i Vg") = f((al); R', ')
oit aj=a, M+,

En effet, on prend une paire [R’, '] du lemme 11.7. Considérons la
résolution minimale [M’, 3’ p'] et l'espace produit (P'x P!, »3) pour R’.
Soient (2, %) les coordonnées telles que R'op’=zoy}; et (@'/R")op’=uoni. On
désigne par f* la fonction f regardée en tant que fonction sur (P'X P!, n3).
Alors M\ |(Z\{Jx})U {U, S.}| est isomorphe a I’espace produit {(z, u); 2€C,
uEC} par pioul"¥'; le transformé propre de Jy par elle est donné par 2=0;
St (=U) et SL (=8Sx) correspondent aux points (0, o) et (oo, 0) respective-
ment; donc la restriction de f* 2 € X C est un polynéme qui a un zéro seulement
en T qui est le transformé propre de T et en z=0. En outre, les ordres de
zéro en T et en =0 sont m, et s{(IN) respectivement. D’aprés le méme
raisonnement que pour le cas précédent, T' est donnée par
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Ay
u—l—g azt=0

ol ¢;€C (=0, *+, Ay_;) et a,,€C*. Donc, en remarquant que @’"/R'I¥-D
prend la valeur constante —1 en U, on obtient la relation (11.14).

Théoréme 11.3. Supposons 1 =0, N=1 et (N, €)=%(1, —). Soit [R, @]
une paire normalisée appartenant & I1° (I, Ny Ny, +++, My). Alors il existe une paire
normalisée unique [R’, '] appartenant a I1° (I, N—1; Ay, -+, Ay_,) et des nombres
complexes a;EC (i=0, +++, Ay_,), ar, EC* tels que

(11.15) R = LR/ sitm—1
@ = Egsi(mR'(s?(N))z

Aw
oil E=<PI/R,+§ aiR/i et g=£m,+(R')-s$(N).
Réciproquement, toute paire (R, @) définie de la maniére ci-dessus avec des
nombres complexes arbitraires a; est une paire normalisée appartenant & II°(l, N;
A'11 RS 7\’1\1)'

En effet, on prend une paire [R’, '] du lemme 11.9. Alors [¢™R’,
¢i¥Vgp'] (cEC) est notre paire. Considérons le méme espace (P'X P, 7})
pour R’ et les mémes coordonnées (2, #) que pour le lemme 11.9. On désigne
par R* et @* respectivement les fonctions R et @ regardées en tant que
fonctions sur (P'X P!, n3). Alors R* est une fonction rationnelle qui admet un
zéro d’ordre m, seulement en le transformé propre S, de S, et un pole d’ordre
un seulement en =0 sur {(z, ¥)€C?. Comme M\|(Z\{J N}) U {0, Sw} | est
isomorphe a tout 'espace (2, u), [y est isomorphe 2 z=0 et U (resp. S“,) corre-
spond au point (0, o) (resp. (oo, 0)) par prou)¥~'. D’aprés le méme raison-
nement que pour le cas (a), on écrit

A
R* = c’”l[(u—l—é a; 2 )Mz i L1z
'_".zv Ay
p* = c1(u+ 33 a,2)[(u+ 23 @) "2t 110

En remplagant [R’, '] par [c"™R’, c™i¥ Dp'], on peut supposer a=1 dés le
début.
La réciproque est évidente.

REMARQUE 11.4.  Sous la situation du théoréme 11.3, en prenant Pautre paire
[R”, @"] donnée par [¢°R’, wp'], on a

(11.16) R = o®'™iR/$i)m~1
@ = wg,glsg(m R (s5((N))?
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A
012 E'=¢”/R”+éa:~kRﬁi, L’I:EIMI_'_(RII)—s?(N)’
(11.17) af = q;0'! (0<i<h\y) et o =1.

6° Démonstration des propositions 7.2 et 9.2. On calcule ici n, ¢ et r
qui ont été donnés sans démonstrations dans les propositions 7.2 et 9.2. Soit
[R, #] une paire normalisée appartenant a II*(I, N3\, «++, Ay) (E=+ et N=1).
Soit J, le membre 4 I'extrémité de = qui appartient 2 .£,. Alors on a

(11.18)  ord;__(R) = Ay(m)+-msi(N)—1
ord; . (P) = Aymsi(N)+Ay+(si(N))*  pour N=2.

En effet, rappelons le théoréme 11.3 et la remarque 11.2. Pour I’espace
produit (P'X P, 1) de R’ et ses coordonnées (2, w) telles que R'op'=zoy] et
@'op’'=woy], 'image propre de J,_, par I'application njoul¥~' est donné par
z=oc0, On peut donc calculer les ordres (11.18) d’aprés les relations (11.15).

Soit J, le membre, qui appartient & J,, a ’extrémité de .. SiN=1,ona
(11.19) ord; (R) = Ay(my)*4-mysi(1)—1
ord; () = Aymysi(1)+n+(si(1)).

En effet, la situation dans le cas IT* (J, 1; \)) est la méme que celle du cas
précédent. Dans le cas II7(l, 1; \;), sous la situation du théoréme 11.2, en
prenant lautre (P'X P, n3) pour R,_; et ses coordonnées (2, #) avec u=u/z,
'image propre de J, par 'application 5ou}*® est donné par 2=0. Donc (11.19)
est aussi une conséquence des relations (11.13).

En outre, on a
(11.20) ord ,k_l(lé) = ord ,‘(k) {Ni(m))*+mysi(k)—1}

ord;, (9P) = ord; () {\i(m,)*+m,si(k)—1}
pour N=>2 et 1=k< N—1.

En effet, d’aprés la remarque 11.2, Pordre de R (resp. #) en B, est égal a
celui de R (resp. P) en J,_,. La famille £, est linéaire. D’ailleurs, on a
|-l N|(E*U {TH\-L¥|=0 pour ISk<N—1. D’autre part, d’apres (11.18),
on a ordy, (R)=Ay(m)*+m;si(N)—1. Ici, on remarque qu’on a ord,N(ﬁ)zl
et | Lyl N|Z¥\LF|=0. Donc, d’aprés la formule (RF.2), on peut facilement
obtenir (11.20).

D’apres les relations (11.20), il est immédiat que
(11.21) ord IO(R) = k]j; (Me(m))2+-mysi(R)—1)
ords(#) = (sl (N)+ A+ T TL ' +-msi(B)—1)
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Maintenant, pour calculer 7 et ¢, considérons le graphe de 9,. Soit C¥ le
membre de I, qui coupe S.. On a alors | Ty ﬂ(§U T)=0 et |Z\{C*} N
S.=@. D’aprés le méme raisonnement que pour le lemme 9.6, I'ordre de
(resp. P) en g«. est égal 4 celui de R (resp. #) en C%. On a les relations (11.21).
D’ou, en appliquant la méthode de calcul de m et s, on peut calculer # et ¢, par
suite r. On a donc terminé la démonstration des propositions 7.2 et 9.2.

7° Conclusion dans le cas ou II%(l, N Ay, +++, Ay) (6= et N=1). Soit
(x, y) des coordonnées inhomogénes de P2 Soient N un entier =1 et A=
(A **s An)ENY ou N¥ oi N est 'ensemble des entiers =0 et N, =N\{0}.
Soit &(N; N)={a=(a;,); a;:EC, a;,;#0}. Ici, les indices (j, Z) parcourent
les intervalles 1=<j <N et 0=<i=<\;. Soit Gy(NV; N)={a=(a,,)EG(N; M); a,,
=0}. On prend a=(a;,;)EGV; \) (resp. By(N; A)) et a'=(a},;))EGN—1;N')
(resp. @(N—1; X)) avec A=y, ***, Ay—1, Ax) €t A'=(Ay, ,** Ay-1). On note
d' <asia};=a;,; pour tout ISjSN—1et 0<i =N\,

1) Les formes canoniques de [R, @].

Nous allons définir par récurrence en N, les fonctions rationnelles
Ri v (a) et @) ya(a) sur P? avec paramétre a=®(V; M) (si (, £)=(0, —), alors
as®y(N; N)):

Si (&, N)=(+, 1), on définit [R7 ;1 (@), #71..(a)] par [R, @] donnée par les
relations (11.15) avec [R', ']=[[R;, @]], Ve N! (si [=0, alors NEN}) et
acs®(1; A).

Si (&, N)=(—, 1), on a défini [R71 \(@), #7,1..(@)] par [R, @] donnée par les
relations (11.13) avec ¢=1, AeN'et ac®(1; M) (si I=0, alors NEN et
acs§(1; ).

En général, pour N =2, on définit [R] v (@), @i va(@)] par [R, ] donnée
par les relations (11.15) avec [R', @'1=[R] y-1.x(@"), Pi.n-10(a@’), A=Ay, ***, Ay)
ENV (si I=0, alors AENTY), M =(\y, ***, Ay-y), aEGNV; X)) et a’ EeG(N—1;N)
tels que a’<a (si (1, §)=(0, —), alors ac@y(N; A) eta’ €S (N—1;7’). Alors,
d’apres les théorémes 11.2 et 11.3, on peut conclure le

Théoréeme 11.4. Toute [Rin.(a), @inA(@)] est une paire normalisée
appartenant a I1°(l, N; N, +++, Ay).

Réciproquement, si [R, @] est une paire normalisée appartenant & I1°(l, N;
Ay vty Ay), alors il existe un automorphisme algébrique ¢ de P* et un point a<
BN; M) (si (1, &)=(0, —), alors ac®(N; N)) tels que

R = c™R} y(@)oc
P = cﬁ(”)qﬁ, va(@)or
ot cEC*,
En plus, si a* et o* satisfont aux relations ci-dessus, toc*™" doit étre I'automor-
phisme de P*



576 H. KAsHIWARA

(#,9) = (0%, %)  ("=1).

2) Les polynomes définis par [R] y.(@), @iva(@)]. On a déja vu les
polynomes (P;, Q,, ®,) définis par [[R;, @,]]. En général, on appelle (P, O, @)
polynémes définis par [R, @] si P, Q, et @ sont les polynomes de x et y qui
définissent les diviseurs Sy, S.. et T de [R, @] et si on a R=P"|Q", p=®P°|Q".
Pour [Ri va(a), @i,xa(@)], on pose: Si (§, N)=(—, 1), alors

OF14(6) = DuPru™1-5¥1-1 31, (Qrca) ¥ Py ) 7O
P71(@) = {(Pra) 19570 (@F 1 (@)} Qe
Oria(@) = Pry(=0)) .

Si (6, N)==(—, 1), alors

A

Y N . - i’

7,1\!,}\((1) — CI)'Q'(I'H‘N)” -t l 2 ; aN.'_P/(;+l)m, ’Q'(".N i)n R
i=

Pixa@) = {Q"+(Pina(@)™} P,
Qiva(@)= 0" = 0,.

Ici, si (€, N)=(+, 1), alors P’, ®', n’, s’, t’ et r signifient P;, @y, m,,,, s,
si+1 et 77(1; \;) respectivement et si N =2, alors ils signifient Pjy_1x(a’),
D no1x (@), ni(N—1; Ay oo, Ayy), ST(N—1), £1(N—1; Ay, =, Ay) et 7i(N;
Ay, oot Ay) respectivement. Alors, d’aprés les théorémes 11.2, 11.3, 11.4 et les
relations (11.9), (11.10), on a le

Corollaire 11.6. (P} y.(a), Q) @i n(a@)) sont les polynomes définis par
[Ri ~a(@), @iva(@)].
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