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Introduction

Dans les articles prέcέdents [9] [10], nous avons όtudiό le problέme de
determiner les formes explicites des polynόmes de type (0, 2) ou de type (0, 3)
sur Γespace C2. Nous considέrons dans le prάsent article le problέme analogue
pour les fonctions rationnelles sur le plan projectif complexe P2.

Soit R une fonction rationnelle non constante sur P 2 . Pour toute valeur
complexe a et aussi pour a=°°, nous dόsignons par SΛ la courbe constante
dέfinie par R=a, et nous appelons courbe premiere de R a valeur a chaque com-
posante irrόductible de SΛ. Une courbe premiere de R a valeur a sera dite
d'ordre έlevέ si la fonction R—a (ou 1/R si a=°°) a un zόro multiple. Une
courbe premiέre de R sera dite de type (g, ή) si la normalisation de la partie de
cette courbe obtenue par Γexclusion de tous les points d'indόtermination de R
est une surface de Riemann ouverte du genre g ayant n points frontidres. On
peut facilement dόmontrer que toutes les courbes premieres de R, sauf un
nombre fini, sont d'un meme type (g, n); dans ce cas on dit que R est de type
(g> n). Une fonction R de type (0, n) est dite de type rationnel. Une fonction
rationnelle non constante sur P2 sera dite primitive si toutes ses courbes con-
stantes sont irrόductibles sauf un nombre fini.

Le but du prάsent article est de donner les formes explicites des fonctions
rationnelles de type (0,1). Toute fonction rationnelle R sur P2 s'exprime comme
la composέe π°Ro d'une fonction rationnelle primitive RQ et d'une fonction
rationnelle π d'une variable complexe. Ainsi iL suffit de considόrer le cas oύ
ies fonctions sont primitives. Dόsignons par £F la famille des fonctions ration-
nelles primitives de type (0, 1). Une fonction R appartenant a 3 admet un et
un seul point d'indόtermination, et toutes les courbes constantes de R sont
irrόductibles, de type (0, 1) et elles n'ont pas de point singulier sauf le point
d'indόtermination de R. Puisque le nombre des courbes premieres d'ordre
6lev6 de R est 0, 1 ou 2, on peut classer 3 selon ce nombre en trois sous-families
qu'on dόsignera par SO, £?Ί et SΉ Alors £?<> consiste en toutes les fonctions
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rationnelles linάaires sur P 2 , et la seule courbe premiέre d'ordre έlevό associέe
k une fonction R appartenant a SΊ est une droite de P2.

Or, comme on le verra, toute fonction rationnelle primitive de type rationnel
se rόduit, par une transformation birationnelle convenable de P2 sur P1χP1, k
une des coordonnόes de P1χP1. Plus prόcisέment, en όclatant successivement
les points d'indόtermination de R, on peut trouver une variόtό M et une applica-
tion p: M->P2 telles que R°ρ n'admette plus de point d'indόtermination. On
obtient alors une application η\ M->P1χP1 en contractant successivement des
courbes exceptionnelles de premiere espέce convenables de chaque fibre sin-
guliέre de R°p: M-+P1. Inversement, on peut construire toutes les fonctions
rationnelles primitives de type rationnel par le procάdό rόciproque k partir de
P1XP\

En gόnόral, ce procάdό est compliquό, mais on pourra le dόcrire en detail
dans le cas oύ R est de type (0, 1). Pour cela, dόsignons par X Γensemble
des composantes irrόductibles de Γimage inverse par p du point d'indόtermina-
tion de R. Nous allons dόterminer tous les graphes de Σ, ce qui nous conduira
a une solution de notre problέme. Les rόsultats principaux ont άtά annoncόs
dansΓarticle [11].

Au moyen du graphe de Σ, on peut eίfectuer une partition de SΊ en sous-
ensembles {/8(Λ^;λx, -,X^)}(iV5=o,i.2,...) oύ £ G { + , - } , 78(0)=J(0) et \ly -}XN

sont des entiers >0. De meme, on peut eίϊectuer une partition de 3*π en sous-
ensembles {//(/)} (/-0.1.2....) et {Π\U N\ λi, - , λJV)}(/==0,i,2,...,jv=i,2. ) oύ £ £ {+, —}
et λi, •• ,λJγ sont des entiers > 0 si /=0 et ^ 0 si /Φ0. Les thόorέmes

10.1, 10.2, 11.1, 11.2, 11.3 et 11.4 donneront les formes explicites des fonctions
appartenant aux sous-families de 9?ι et £Fn.

Comme T. Kizuka [4] Γa dόja indiquό, le probl^me se rattache k Γexistence
d'automorphismes analytiques transcendants de Γouverts P2\D oύ D est une
courbe algόbrique de P2. Notons aussi que M. Miyanishi et T. Sugiά [6] ont
dέmontrό que, pour que P2\D soit de dimension logarithmique de Kadaira
— oo, il faut et il suffit que D soit une reunion de courbes premieres d'une fonc-
tion rationnelle de type (0, 1).

L'auteur tient k remercier M. Kashiwara pour d'utiles suggestions et con-
versations, M. Waldschmidt et le rόfόree pour avoir corrigό le franςais.

PARTIE I. GέNέRALiTέs

1. Definitions, notations

1° Soit R une fonction rationnelle non constante primitive sur P2. On
suppose que R est de type (g, w)1}. Soit S une courbe premiere de R a valeur

1) Voir Γintroduction.
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a; on note v=ords(R) Γordre du zόro de la fonction R—a (ou ί/R si α=oo)
sur S, et on dit que S est d'ordre v. Si z/^2, on dit que S est d'ordre έlevέ.
Une courbe constante de R est dite generate si elle est irrόductible, d'ordre un
et de type (g, n) la valeur de i? sur cette courbe est alors appelόe valeur gέnέrale.
Sinon, elle est dite singuliere et la valeur est dite valeur singuliere.

2° Soit V une variόtό analytique complexe de dimension 2. Pour un point
p de V9 on dάsigne par QP(V) Γeclatement de V en p. Soit C une famille de
courbes irrέductibles dans V. On dόsigne par \C\ la reunion des courbes dans
C. On identiίie souvent C et | £ | . On dit que C est connexe ύ \C\ est connexe.
On dit que C est linέaire si elle est connexe et qu'elle ne possέde aucun membre
coupant au moins trois autres membres. Dans la notation o—o—...—o, un

ax a2 an

cercle © reprόsente une courbe rationnelle non singulidre, le nombre attachό a
chaque © est (—l)x(le nombre de self-intersection) et chaque ligne signifie que
les courbes se coupent transversalement en un point. On dit que C se contracte
en un point (resp. se rέduit a o—o—...—o) s'il existe une application analytique

ax #2 an

propre μ de V sur une variάte non singuliέre W telle que μ(\C\) consiste enun
point (resp. que le graphe de μ(\C\) soit ©—o —o ) et que μ: V\\C\-*W\

aλ a2 an

μ(\C\) soit un isomorphisme. On dit aussi que C ou \C\ est exceptionnelle si
toute composante connexe de \C\ se contracte en un point, et on dόsigne Γappli-
cation μ par cont^ ou cont|^|. Comme il est bien connu, une famille excep-
tionnelle C possέde les propriέtόs suivantes (E):

(E.I) Toute courbe C appartenant ά C est une courbe rationnelle non sin-
guliere telle que (C2) ̂  — 1

(E.2) Deux courbes diffέrentes C et C de C telles que CΠ C=f=0 se coupent
transversalement en un seulpoint;

(E.3) Pour trots courbes diffέrentes C3 C" et C" de C, on a C Π C Π C " = 0

(E.4) // n'y a aucune suite Cly •••, Cm (w^3) d'έlέments de C telle que C, Φ
Ci+1 et C, n C / + 1 φ 0 ( l ^ ^ » ι ) ou on aposέ Cm+ι=Cx\

(E.5) // existe au moins une courbe exceptionnelle^ C dans C (i.e. (C 2)= — 1);
(E.6) Si C est une courbe exceptionnelle de C, elle coupe au plus deux courbes

deC\iC};
(E.7) cont^ est un produit de contractions successives de courbes exception-

nelles.

On dit qu'une famille exceptionnelle C est minimale si C ne contient qu'une
seule courbe exceptionnelle. Alors, pour une sous-famille exceptionnelle quelconque

2) Par une courbe exceptionnelle, on entend toujours une courbe exceptionnelle de premiere
espece.
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C de C, contc(\C\) est aussi minitnale. Elle se contracte done en un point par
une unique suite de contractions.

Soit C une famille exceptionnelle minimale et non linόaire et soit A Γunique
membre exceptionnel de C. On a alors les propriόtόs suivantes (B):

(B.I) Si la famille C\{A} est divisέe en deux families connexes, une d'elles est
linέaire.

En effet, sinon, il existe une famille exceptionnelle C telle que cont£/(|C|)
ne satisfasse pas a la propriόtό (E.6), ce qui est une contradiction.

(B.2) Un membre quelconque de C coupe au plies 3 autres.

En effet, ceci se dέmontre par le meme raisonnement que pour (B.I).

Soit 1B*(C) la famille des membres de C qui coupent exactement 3 autres.
Le nombre de 1B*(C) est appellό nombre des embranchements de C. Pour tout
B^SB*(C)y la famille C\{B} se decompose en trois families connexes. On note
6(B) celle qui contient A. Alors:

(B.3) Pour tout BtΞB^C), la famille 8{B) est exceptionnelle, et £ * ( £ ) =
6{B)U {B} sereduit a opar cont£(#). Pars uite, cont^(5)(\C\) est aussi minimale.

Compte tenu de la propriόtό (B.I),

(B.4) Pour tout B^3ϊ*{C), sauf un seul B, disons Bu une des families connexes
de C\6*(B) est linέaire et Vautre est non linέaire. On dέsigne la famille linέaire par
X(B) et Vautre par 2(B) pour tout ΰ G ^ avec

Cela posό, soit N le nombre des embranchements de C et soient Bk (k=
1, •••, N) les membres de 3}ι{C). On peut ordonner les {Bk} de telle sorte que

(B.5) fi(ίj)C(?(ίH)pour tout
Alors

(B.6) <5(BN) est linέaire et toutes les autres <S(Bk) (1 ̂ k<N) sont non linέaires.
(B.7) β:¥(Bk)\jX(Bk)c:δ(Bk_1)pour tout
(B.8) contgφ^C) est linέaire.

3° Comme toujours, R est une fonction rationnelle primitive non constante
de type {g, n). Soit e(R) Γensemble des points d'indόtermination de R. Alors
on a #£(i?)^ 1, et on voit que toute courbe premiere de R passe par au moins un
point de e(R) puisque deux courbes algέbriques quelconques sur P2 se coupent
toujours, et elle n'a pas de point singulier sauf tous les points de e(R). En όcla-
tant successivement chaque point de e(R)y on peut construire une variόtό M et
une application p: M-*P2 telles que Rop n'admette plus de point d'indέtermina-
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tion. Soit Σ la famille des composantes irrόductibles de ρ~\e(R)). Le triplet
[M, Σ, p] s'appelle rέsolutίon des points d'indέtermination de R. Soit {Γ, 1 ̂ i^S-d}
la famille des membres de Σ pour lesquels la restriction de Rop est non constante.
La rόsolution [M, Σ, p] est dite minimale si Γon a (C 2 )^—2 pour tout C G Σ \
{ΓΊli^ί^ Toute R possέde une et une seule rόsolution minimale. On suppose
dorόnavant que [M, Σ, p] est minimale. Dόcomposons Σ = U Σ(P) avec

Σ ( P ) = { C e Σ ; ρ(C)=P} les composantes Σ(P) sont excceptionnelles et posse-

dent done les propriόtόs (E.1)~(E.7). Pour P^e(R), dόsignons par d(P) (qu'on

appelle degre de P) le nombre des Γ, tels que Γ,eΣ(P). Posons (e(R))= Σ

d(P)P et </= Σ ^(P); d est appelό rf^ ώ (e(R)). Cela posό, on a

(1.1) l ^ # < i ? ) ^ i ^ n .

En eίfet, toute courbe constante gέnάrale C de R est irrέductible. Done

le transform^ propre de C par p~ι coupe tous les Γ, .

4° Soit F" une variόtό analytique complexe compacte avec une application
analytique de V sur Pι. Elle est dite surface rέglέe rationnelle si une fibre gόnόrale
est une courbe rationnelle irreductible et non singuliere. Elle sera dite minimale
si elle n'a pas de fibre singuliere. Soit V une surface rόglόe rationnelle. On
dόsigne une fibre singuliέre sur un point a^P1 par F(ϊ). Comme il est bien
connu dans le cadre de la geomόtrie alg6brique3), F(i) possdde alors les pro-
priόtέs suivantes (RF):

(RF.l) F(i) est rέductible.

(RF.2) O = (Cy ίT(i)) = »XC J ) + Σ n * ( C y . C A ) , oil F(i) = ±nkCk.
kήpj k = l

(RF.3) {Ck}ιsk^apossedentlespropriέtes (E.I), (E.2), (E.3), (E.4), (E.5) et

(E.6). Enparticulier, si a=2,C1 et C2 sont toutes les deux exceptίonnelles.

On obtient done une surface rόglόe rationnelle minimale en contractant
successivement des composantes de chaque fibre singuliere. Autrement dit,

(RF.4) Pour F{i), il existe au moins une composante Cko telle que nk{~\y que
la famille {Ck}k*k0{—C') s°it exceptionneϊle, et que F(t) se rέduίse a o par cont^/.

De plus
(RF.5) Toute composante Ckopour laquelle nkς = \ admet la propriέtέ (RF.4).
(RF.6) Pour une composante quelconque Ckχ telle que nkχ=\y il existe une

3) Voir, par exemple [5].
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outre composante Ch telle que nk2=l, que {Ck}k^kltk2(=C//) soit exceptionnelle et

que F{t) se rέduise ά o-—o par cont^".

2. Fonctions rationnelles de type rationnel

1° Avant d'aborder notre problέme, on va traiter gόnόralement les fonc-
tions rationnelles primitives de type rationnel. Soit R une telle fonction. Tout
d'abord, nous allons dάmontrer Γέnoncό qui a 6tά donnό dans Γintroduction:

Toute fonction ratίonnelle primitive de type rationnel se rέduit a une des co-

ordonnέes de P1 X P1 par une transformation birationnelle convenable de P2 sur

PιχP\

En eίFet, on prend une rάsolution [M> 2, p] des points d'indέtermination de
R. Alors Rop: M-+P1 est une surface rέglόe rationnelle. On peut done obtenir
une surface rέglέe rationnelle minimale Vo en contractant successivement des
composantes de chaque fibre singuliέre. Soient η le morphisme de M sur Vo et
π la projection de Vo sur P1. D'apres Nagata [7], il existe une transformation
birationnelle θ de Vo sur F0=PιχPι telle que π'°θ=π, oύ π est la projection
de JF0 sur P1. En choisissant des coordonnέes (z, w) de Fo telles que π: (z, w)~>
z, on obtient

Rop = zoθoη ,

ce qui acheve la dόmonstration.

2° Dans la situation et avec les notations de 1°, soient aly •••, ak les valeurs
singulidres de i?. On dόsigne par S (resp. *Sf ) la courbe constante avec une
valeur gάnόrale (resp. oil). Soit [M, 2, p] la rόsolution minimale de R. Con-
sidόrons Γespace ίibrό K: M-+P1. Soient S et S, les transformάs propres de S
et de Sf par p"*1 respectivement. Alors:

Le transformέ propre S de S est toujours une fibre gέnέrale de R. Le trans-

forme propre S{ de S{ est une fibre gέnέrale si et seulement si S{ est irreductible et

d'ordre un.

Dόsignons par F(i) la fibre sur α, . Alors, entre le degrό d de (e(R)) et les
nombres ai=b2(Si)—l, on a la meme relation que celle qu'on avait pour les
polynδmes primitifs de type (0, w)4). Ici b2(Si) est le deuxieme nombre de
Betti de S{.

Lemme 2.1. On a la relation

4) Un polynόme sur C2 est dit polynΰme prίmitif de type (g, n) s'il l'est en tant que fonction
rationnelle sur P 2 .
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En effet, comme la variόtό M est obtenue par όclatements successifs de P2,

on a b2(M)=b2(P<2)+ Σ {b2(F(i))-b2(Si)}+d. D'autre part, du fait qu'on ob-

tient une surface rόglόe rationnelle minimale Vo par contractions successives pour

chaque fibre singuliόre de M, on a b2{M)=b2(V0)+ Σ {b2(F(i))-l}. D'aprέs
» = 1

Nagata [7], on a b2(V0)=2. Done on a le lemme puisque b2(P2)=l.

3° Notons qu'on peut obtenir directement une surface rόglόe minimale qui
est isomorphe a F0=P1xP1 seulement par contractions successives de M si on
prend une rόsolution convenable [M, Σ, p] de R. Considόrons Γespace produit
F0=P1χP1. Soit (z, w) un systeme de coordonnόes de Fo et soit π la projection
(z, zv)-±z. On prend des courbes rationnelles convenables Γί, •••, T'd sur JF0 telles
que π(Γί)=Pι pour tout i et des points quelconques Ou •••, Ok' sur Fo. Faisons
des όclatements successifs convenables en chaque point O, . Soit M la variόtό
obtenue par ces όclatements et soit η la projection canonique de M sur Fo. On
dόsigne le transformό propre de Γί par Γ, pour / = 1 , •••, d. Soit k le nombre
des valeurs distinctes parmi des valeurs 7r(O, ) ί = l , ~,k'y et on dόsigne par ofχ,
•••, αΛ ces valeurs distinctes. Pour Γespace fibrό π°η: M-+P1, on dόsigne par
F(i) la famille des courbes irrόductibles de π~\at). Pour chaque i(l^i^k)y on
prend une sous-famille convenable Ω(i) de jP(ί) telle que Ω[ί)cF(/), et on pose
Σ = { Γ i ; l^j^d} U U Ω(ί). D'apres Nagata [7], une surface projective ra-
tionnelle non singuliere est rόguliόrement isomorphe a P2 si son deuxiόme
nombre de Betti est όgal a 1. Done on obtient le

Thόorβme 2.1. Supposons que Σ satisfasse aux conditions suivantes (Ra):
(1) Σ est exceptionnelle;

(2) Σ (b2(F(i))-b2(Cl(i))-l) = d-ί.

Alors la varietέ conts(M) est regulierement isomorphe a P2. De plus, la fonc-
tion rationnelle R dέfinie par

2?ocont2 = zoη

est primitive de type rationnel.

d

REMARQUE 2.1. Si n est le nombre des feuilles de U Γ{ vue comme surface

de Riemann sur P1, alors R est de type (0, n).

PARTIE II. LE GRAPHE DE Σ—CLASSIFICATION DES FUNCTIONS RATION-

NELLES PRIMITIVES DE TYPE (0, 1)—
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3, Courbes premiέres singuliβres. Soit R une fonction rationnelle ap-
partenant a £F. Soit [M, Σ, p] sa resolution minimale du point d'indόtermina-
tion; on dέsigne par R la fonction R°ρ. On peut facilement voir que la fonc-
tion JR possέde les propriόtόs suivantes (A):

1) Elle admet un et un seul point d'indέtermίnation, qu'on dέsigne par p.

2) Touΐe courbe premiere passe toujours par le point p, elle est de type (0, 1)
et nya pas de point singulier sauf le point p.

3) La famille Σ est minimale; autrement dit, on obtient \M, Σ, p] par une
unique suite d'έclatements en p.

4) Soit Γ la courbe insέrέe par Γέclatement final. La restriction de R a
Γ est univalente, et la restriction de R a une courbe quelconque de Σ\{Γ} est con-
stante.

On peut d'abord constater le fait suivant:

Proposition 3.1. Pour toute valeur complexe a et aussi pour a=ooy la
courbe constante SΛ de R est irrέductible. En outre, toute courbe premiere est
d'ordre un a Γexclusion d'au plus deux a.

En effet, si R n'admet pas de valeurs singulieres, toute SΛ est, d'aprέs la
definition, irrάductible et d'ordre un. Sinon, soient #i, •••, cCk ks valeurs sin-
gulieres de R oύ k*£l. D'apres le lemme 2.1, on dόduit

Σ ih(saι)-n = o

puisqu'on a d=l. D'oύ b2(SΛi)=l pour tout i. II s'ensuit que toute courbe
constante de R est irrόductible. Par suite, toute courbe constante singuliέre
SΛ. est d'ordre 6lev6 puisqu'elle est de type (0, 1). On en dόduit que les fibres
singuliέres de $ : M-+P1 sont J^" 1 ^) oύ ί = l , 2, •••, k.

Or, si Σ={Γ}, alors pour toute α e P 1 , la fibre R"\ά) est irrόductible et
done gόnόrale. Ceci est le cas quand R n'admet pas de valeur singuliέre. Done,
supposons ΣΦ {Γ}. D'apres la propriόtό (E.6), Γ coupe alors un ou deux mem-
bres de Σ\{Γ}. Le nombre des families connexes de Σ\{Γ} est aussi un ou
deux respectivement puisque la restriction de R a Γ est univalente. D'oύ on
peut conclure qu'on a k=l ou k=2 respectivement. La proposition est done
dόmontrάe.

D'aprέs cette proposition, la famille S des functions rationnelles primitives
de type (0, 1) se divise en trois classes £?Ό> 3Ί et SΉ suivant que le nombre des
courbes premiόres d'order όlevό est 0, 1 ou 2. D'aprέs ce qu'on vient de voir,
EF0 consiste en toutes les functions linόaires rationnelles sur P 2 . Pour
on peut supposer que la valeur singuliέre est oo. On άcrit son diviseur
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(3.1) (R) = So -nSo. oύ n = ordSoo(i?)>l .

Pour 7?e£Fn, on peut supposer que deux valeurs singuliέres sont 0 et °o. On
όcrit son diviseur

(3.2) (R) = mSo-nS.0

oύ m = ord5o(jR)>l, ordSoo(J?)>l et les entiers m etn sont relativement premiers
puίsque R est primitive.

De plus, en remplaςant R par I?""1 est nόcessaire, on peut supposer que

(3.3) La fonction R°Qp1 a unpόle en la courbe Qp(p).

Cette condition est όquivalente a

(3.4) m<n.

Ceci sera dέmontrό dans les sections 7 et 11.

4. La structure de Σ. Soit R une fonction rationnelle appartenant a £F.
Soit [My Σ, p] sa resolution minimale du point d'indόtermination. Conservons
les notations K, Γ, Sβ et Sβ (β=0 ou oo) introduites dans la section prόcόdente.
Soit 2* la rόunion de Σ, So et Soo. Comme on a vu dans la section prόcέdente,
R appartient a une des classes £F0, ̂ i et £FΠ. Si R^3?Oy on a Σ = {Γ} (Γ2)= — 1
et done Σ = Σ * . Sinon, on a 24= {Γ}. On va done όtudier la structure de Σ
pour i? appartenant a £Fi ou 3fu.

1° Families .F(/3) (β=0 ou oo). On considέre l'espace fibrό ή: M->Pι.
Soit F(β) la famille des courbes irrόductibles d'une fibre singuliέre R~\β). On
dόsigne par 2^ la famille F(β)\{Sβ}. Alors ^(/S)! possέde les propriάtόs
(RF). Dans notre cas, en outre, on a

(RF*.l) (S2

β)= — 1 et ( C 2 ) ^ —2 pour tout membre C de F(β) sauf £β.

Ceci est facile a voir, car on a F(β)= {Sβ} U Σ β et Ŝ  est irrόductible.

On dάduit de (RF.5) le lemme suivant:

Lemme 4.1. Sent C un membre de Σβ sur lequel Rprend la valuer β d'ordre
un. Alors C est une extrέmitέ de Σβ. (i.e. il ne coupe qu'un autre membre.)

En effet, supposons que C ne soit pas une extrόmitό. Alors F(β)\{C} se
dόcompose au moins en deux families connexes. Chacune doit contenir au
moins une courbe exceptionnelle pusique F(β)\{C} est exceptionnelle. C'est
en contradiction avec la propriέtό (RF*.l).

Lemme 4.2. Soit C£ le membre de F(β) qui coupe Γ. Alors Γordre de
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ή en C$ est un.

Car la restriction d e π έ Γ est univalente.

D'aprέs la propriόtό (RF.6), il existe un autre membre de F(β) en lequel
& prend la valeur β d'ordre un. On en dόsigne un par C£. Posons £)%=
F{β)\{C%} (*= Γ, T) et £f = F(β)\{C& Cβ

τ}. Les families 3)% ( * = Γ , T)
et 3f sont exceptionnelles et minimales. La famille F(β) se rάduit a
o—o par contg>/3 et a © par cont^β (*=Γ, T). Soit C* le transform^ propre de

C% par cont^β. Alors on a cont^β(F(β))=CΐUί7? et c o n t ^ (^β)

car 3)13 est connexe d'aprέs la propriάtό (RF*.l). D'oύ:

Lemme 4.3 Pour tout membre C de F(β) sauf Cβ et Cr, on a

On en dόduit:

(4.1) Les C% se dέterminent uniquement. Elles sont les extrέmitέs de Σ si Σ est

linέaire.

2° Families Σ et Σ*. La famille 2 est exceptionnelle et minimale.
On suppose maintenant que Σ est non linόaire. En combinant les propriόtέs
(B.I), (B.5), (B.6) et l'hypothέse (3.3), on a alors le

Lemme 4.4. Si J R G S Ή , alors Σo est linέaire.

Soit N le nombre d'embranchements de Σ. D'apres ce lemme, N est aussi
celui de Σoo. Nous continuous d'utiliser les notations introduites dans le 2° de
la section 1; 13*(Σ)= {S,}, 6t et 6f pour ί = l , •••, iV, 3, et X, pour *'=2, •••, iV.
On a alors β teΣeo pour tout ί. Toutes les (?f et Gf sont exceptionnelles. Pour
tout 2^/^ΛΓ, -£*,- sont linάaires et £?,- sont non linάaires. Alors, en remarquant
que | Σ 0 | ΠΓΦ0, on a

De plus, on a

(B*.2) ^

En effet, supposons Soo Π | S* \ φ 0. II est clair que SooΓiB1=0. Regardons
la famille J3)r Elle est exceptionnelle et minimale, et on a SooCiDr. D'aprέs la
propriάtό (B.3), la famille (WrCiG^O {S°°}=<D est exceptionnelle et le trans-
formό de Bλ par contg) est aussi exceptionnel. Alors, dans cont^ (JF(OO))? le
transform^ de Bx coupe le transform^ de C? et deux autres membres de

. Ceci est en contradiction avec la propriέtό (E.6) de (RF.3).
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En vertu de (B*.2), S*, coupe |Σ\<?*| Soit 3X la famille connexe de

Σ\£? coupant S^ et soit Xx l'autre. Posons £?,=£?,• U {§„}, 3f=3i\J {B,} et

3?=3i U {Soo, Bi). On peut voir aussi que
A A

(B*.3) 3i est exceptionnelle et d'ailleurs 3* se rέduit a o par cont^.pour tout
1

(B*.4) contg-^ (JF(OO)) est lίnέaίre. Ses extrέmitέs sont le transformέ de C? et

celui de C?. Si i2e£Fπ, alors C£ et C°τ sont les extrέmitέs de 20.

3° Applications ^, (i=0, 1, 2). Nous allons όtudier des surfaces rάglάes

minimale obtenues par contractions successives des fibres singulidres de la

surface rόglόe &: M-*P\

a) Supposons R^3Ί. D'apres ce qu'on vient de voir dans le 1°, la famille

2* se rάduit a —°—o par cont̂ )«» et par suite a —o par cont^)~, oύ le point
1 1 1 00

noir reprόsente le transform^ propre de Γ. On pose 970=cont^£. Alors,

d'apres Nagata [7], une surface projective rationnelle non singuliere est birό-

guliάre kPιχPι si son deuxiέme nombre de Betti est όgal a 2 et qu'elle contienne

deux courbe courbes rationnelles C, ( i = l , 2) telles que (Cl CJ ) = 0 et (C1 C 2 )=l .

On en dάduit:

Lemme 4.5. Si S G ^ , alors ηo(M) est birέguliere a P1 χP\

On peut choisir les coordonnόes (#, w) de (P1χP1, η0) telles que le trans-

formό de Γ soit donnό par a)=oo et qu'on ait

(4.1) R°p = z°η0.

Le point τjo{Wτ) est done donnό par (cχ>, cχ>). La coordonnόe w se determine

uniquement a une constante additive et un facteur constant pres. Notons

Lemme 4.6. Le domaine P2\*SΌo est isomorphe a Γespace produit CxCpar

Soit R' la fonction rationnelle sur P2 dάfinie par

(4.2) RΌp =

La fonction R' sera dite fonction adjointe dίstinguέe associέe a R. Une telle

fonction se dόtermine uniquement pour R a une constante additive et un facteur

constant pres.

b) Supposons i?e£F n . Dans ce cas, le domaine P2\(S0 U £«>) est iso-

morphe au domaine M\ 12* | par p" 1 la famille Σ* se rόduit a o—o— —o—o
1 1 1 1 1
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par cont^u.Φ0 0 et par suite, a ©— —o par cont^oii^* ou par cont^o y^~, ou
0 0 0 Γ * Γ

le point noir reprόsente le transform^ propre de Γ. On dάsigne c o n t ^ y ^

(resp. c o n t ^ y g~) par ηx (resp. η2). Alors, d'aprέs le meme argument que pour

le cas a), on a le

Lemme 4.7. Si jReSΉ, ηJ(M) est birέguliere a PιχP\

On pose Vi(M)=(Pι X P\ ηt). Considόrons (P 1 X P\ rj^). Soient O0 et CL
les points 97i(^r) et ηι(3)τ) respectivement. On prend les coordonnέes (z, w) de
(PxxP\Vl) tellesque

(4.3) Rop = zoVι,

que le transform^ de Γ soit donnό par zϋ=ooy et que le point O0 (resp. Ooo) soit
donnό par (0, 0) (resp. (oo, oo)). La coordonnάe w se dόtermine uniquement A
un facteur constant pres. On a une situation analogue pour η2 ^ n p^ut choisir
les coordonnάes (z, u) de (P1xP1

y η2) telles que

(4.4) uoV2 = {wjz)oηι,

que le transformό propre de Γ soit donnά par w=oo, et que le point η2{3)τ)
(resp. η2(3)r)) soit donne par le point (0, oo) (resp. (oo, 0)). On en conclut:

Lemme 4.8. Le domaίne P2\(S0 U *SΌo) est isomorphe a Γespace produit
C*xCpar Viop'1 ou i=l, 2.

On dόfinit deux fonctions rationnelles φ et ψ sur P2 par

(4.5) φop = woVl

(4.6) ψop = UoV2.

Elles seront dites fonctions adjointes distinguέes associέes a R.

4° Degrόs des courbes premiέres singulieres. Envisageons le diviseur
(R)=mS0—nSco oύ (m,n)=l. Si R^3τ (resp. jReSΉ), on a m=ί (resp. m,
n>l). On a alors le

Lemme 4.9. Les degrέs de So et *SΌo sont n et m respectivement.

En eίfet, on prend des coordonnόes inhomogenes (xy y) de P2 de faςon
que la droite & Γinfini L ne contienne pas p. En dόsignant par n' et rri les
degres de *SΌ et *SΌo respectivement, on a tn'n=n'nt.

Supposons d'abord i ? e 9 Ί . Soit Q un polynδme irrόductible en x et y qui
prend la valeur zόro seulement en £«>. La restriction £)* de 1/g sur P\SW est
une fonction holomorphe qui prend la valeur zόro d'ordre m' seulement sur L.
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Comme P2\6Όo est rationnellement isomorphe a C2 d'aprόs le lemme 4.6, on peut
trouver une fonction rationnelle ξ telle que Q* soit donnόe par ξm'. II s'ensuit
que »f /=l. D'oύ n'=n.

Supposons ensuite R^3Ίι. On prend (P1xP1

y ηx) et ses coordonnόes
(#, w) donnόes dans le b) de 3°. Soit Ψ un polynόme irrόductible en z et w
qui s'annule seulement sur le transform^ propre de L. Soit Ψ* la fonction
rationnelle sur P 2 dόfϊnie par Ψ*op=ψoη o ύ p: M-+P2 esc la resolution minimale
du point d'indόtermination de R. Alors Ψ* prend la valeur zόro d'ordre un en
L et n'a de pole qu'en So*. Posons £=ord5 o o(Ψ*). De plus, Ψ* s'annule sur AS0

parce que m'>l. En posant α = ordSo(Ψ*), on a \-{-ria—m'b=0 puisque
(Ψ*) = L + β 5 0 — bSoo. D'oύ (n',mf) = l. II en rόsulte immέdiatement que
ri=n et m'=m.

D'aprέs ce lemme, *SΌo pour i ϊ e S Ί est toujours une droite de P 2 . On prend
done des coordonnόes inhomogέnes (x, y) de P 2 de telle sorte que *SΌo soit la
droite a Finfini Alors R est un polynόme primitif de type (0, 1) par rapport a
x tty. Un polynόme sur C2 est dit polynόme primitif de type (0, 1) s'il est de
type (0, 1) quand on le considere comme fonction rationnelle sur P 2 . Soit 9?ι la
famille des polynόmes primitifs de type (0, 1) dans Γespace (x,y) On peut en
conclure la

Proposition 4.1. La famille 3tx (resp. £F0) est έquivalente a celle des polynόmes

dans S1 tels que leur degrέ soit ^ 2 {resp. = 1 ) .

Pour .ReSΉ, on prend des coordonnόes inhomogόnes (x,y) de P 2 . Soient
P et Q deux polynόmes de x et y qui s'annulent a Γordre un seulement en So et
en So* respectivement. Alors on dira que P et Q sont les polynόmes dέήnis par
R si R=PmIQn.

5. Construction des fonctions appartenant a SΊ ou 3U. Dans la
section prόcέdente, on a construit une application birationnelle de P 2 a P 1

XP 1 a partir de R. Dans cette section, on construira des fonctions, dont on a
besoin, a partir de PιχPι. Soit V Γespace produit PιxPι. On prend des
coordonnόes (z, zΰ) de V. Soit π la premiέre projection; on dόsigne par Γ(0) la
courbe w=oo sur V et par OΛ le point (or, a) ou α = 0 , oo.

1° On fait ^(^3) όclatements successifs satisfaisant aux conditions (Q)
en Oooi

(1) l έ m e όtape: On delate le point CL. Posons V(X)=Q0JV) et A1=Q0oo(Oβo).
On dόsigne par qx Γintersection de A1 et du transformό propre de ^^(oo).
(2) 2 έ m e όtape: On όclate le point qv Posons Vw=Qqi(V™) et A^Q^qJ.
(3) Pour v^k^3, on prend un point quelconque qk_λ sur Ak-X et on όclate le
point qk_x.
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Posons F«=ρo. 1(F»- 1>), Λ = &,_/?*-,), M=V™ et % =(ρ ί v . χ o.. .o
Qq^Qooo)"1- Dόsignons par CT le transformό propre dans M de π~\°°)y par

Γ celui de Γ(0), par la meme lettre celui de A{ (ί^i^v—ί) et par Soo celui de

Av. On a alors ( Γ 2 ) = - l , (Si)= — 1 , ( ^ ) ^ - 2 pour tout (ί^t^v-ί) et

( C ? 2 ) ^ - 2 . Posons Σ = ΓU{Cr}U{A }i<^v-i. Evidemment, la famille Σ

vόrifie la propriόtό (2) des conditions (-Rβ)
5). On suppose maintenant que Σ est

exceptionnelle. D'apres le thόorέme 2.1, conts(Λf) est alors birόguliere a P2.

Compte tenu de la remarque 2.1, la fonction R dόfϊnie par Rop=zoηQ oϋ p =

conts appartient a 3Ί. Soit *SΌo le transformό propre de SL par p\ la fonction R

a un pole d'ordre όlevό en £«>. Le triplet [M, Σ, p] est sa resolution minimale

du point d'indόtermination. D'apres le thόorέme 2.1 et ce qu'on a vu dans la

section 4, on peut en conclure la

Proposition 5.1. La famille 31 coincide avec celle des fonctions obtenues par

ce procέdέ.

2° Pour construire les fonctions appartenant a £FΠ, on fait v0 όclatements

successifs satisfaisant aux conditions (Q) au point O0 et aussi zΌo fois au point Ooo.

Soient M la variόtό obtenue et η Γapplication canonique de M sur V. Soit

Γ c M l e transformό propre de Γφ)={(z, zv)^P1χP1; w=oo} et soit Co (resp.

Cί) celui de π~\0) (resp. ^""^cx))). Soit S*aM la courbe insόrόe par Γόclate-

ment final en O*(*=0 ou oo). Soient {̂ 4t }î ^v0+voo-2 l e s courbes η~Xθ0) et

^"^Oco) auxquelles on a enlevό So et &,. On a alors (Γ2)= — 1 , ($?)=(&)= — 1,

( C Γ ) ^ - 2 , ( C Γ ) ^ - 2 et ( ^ 1 ) ^ - 2 pour l ^ ί ^ ^ + ^ - 2 . Posons Σ={Γ,

Co", CZ} U {̂ 4, ; l^ί^^o+^oo—2} Σ vόrifie aussi la propriόtό (2) des conditions

(Ra). On suppose que Σ est exceptionnelle et que la courbe qui dόgόnέre en

un point par la derniere des contractions successives de Σ est un membre de

(π°η)~X°°). D'aprέs le thόorέme 2.1, conts(M) est alors birόguliere a P2 et

on peut dόfinir la fonction rationnelle primitive R de type rationnel donnόe par

Rop=zoη oύ p = conts. D'aprέs la remarque 2.1, elle est de type (0,1).

Soit S* le transformό propre de S% par p o ύ * = 0 o u oo. II est όvident que R

a un zόro (resp. un pole) d'ordre όlevό en *SΌ (resp. *SΌo). Le triplet [M, Σ, p] est

sa rόsolution minimale du point d'indόtermination et on a 7]=rji et V est Γespace

produit (P 1 X P 1 , ηλ) pour R. On en conclut la

Proposition 5.2. La famille £F n coincide avec celle des fonctions obtenues par

ce procέdέ.

6. Le graphe de Σ*. Soit R une fonction appartenant a £F. Soit [M, Σ,

p] sa rόsolution minimale du point d'indόtermination. Conservons les notations

introduites dans les sections prόcόdentes. Posons Σ* = Σ U {SOy S^}. Dans

cette section, nous allons donner tous les graphes de Σ*. Dan les notations

5) Voir le thέorέme 2.1.
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suivantes, un cercle © reprάsente une courbe de Σ, un carrό • reprόsente So ou Soo.

Le nombre attachό a chaque o ou π est (—l)x(le nombre de self-intersection).

De plus, on introduit quelques notations. Pour une famille C de courbes,

on dέsigne par g(C) le graphe de C. Pour un graphe G, on dόsigne le graphe
->

G—G —G par G λ . Pour un entier /^0, on dόsigne par Gt le graphe

λ-fois

o—o—o pour / = 0 ,
2 2 2
(_o_)ίnl_o_(_o_o_o_o_o_)izil(_o_)5 pour l=2j-l O'^l)

7 5 2 2 2 2 3 2
et

(—o—)J-o—o—o—(—o—o—o—o—o—)i (—o—) pour l=2j ( j ^ l ) .
7 2 2 3 2 2 2 2 3 2

On interprete G^x par le graphe vide. La notation — G , — represente

2 2 2 5 2 2 2 2 2
—o—o—o— pour 1=0, —o—o—o—o—o—o— pour 7=1,

_ ( _ o _ ) H o _ o - o (—o—)— pour /==2;-l (;^2) et
7 5 1 2 2

_ ( _ o — ) i o — o — o (— o—)— pour /= 2; (j ̂  1) .

Par Hi (/^l), on dόsigne le graphe obtenu en enlevant cinq o 's au bord droit
2

de G/. Les graphes + G ; et +Ht (resp. G^et Hf) sont obtenus par augmentant le

nombre attachό a Γextrόmitό gauche (resp. droite) de G, et Ht par un respective-

ment. Par *HΓ, on dόsigne le graphe obtenu en diminuant de un le nombre a

Γextrόmitό droite de +Hh Les graphes Gh Hh Gf, +Gh Ht, +Ht et 'Hj sont

obtenus par inversant les sens des graphes correspondants. Le graphe —©— re-

. .λ—ll . ,\—l . , I
presente —(—°—) °—(—°—) et le graphe —©— represente

2 2 2 λ
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λ—ll λ—l
—(—o—) o—(—o—) lorsque λ|j£l. Lorsque λ = 0 ,

2 2 2

—o—o—o— (α^2, b}>0 ,cj^3) repόrsente — o — (qui ne dόpend pas
a 0 a a

de b). Cela posό, on a le

Thόordme 6.1. Soit R une fonction appartenant a £F. Alors le graphe de

2 * de R est un graphe dans la liste ci-dessous.

Reciproquement, tout graphe dans la liste ci-dessous est obtenu de cette maniere.

Dans le cas ou

O*:
0 1 0

Dans le cas oil

7(0)*: D—o—Go.

o l I
D l

7+(ΛΓ;λ1, -,\N)*:

a—o—o—@—o—©—o—©—
0 1 2 λ » 3 λjv-! 3 λtf_2

pour

let, Xly •••, λ # sont des entiers tels que λ ^ 1.

Dans le cas oil

//(/)*: G,—o—Gl+1 pour / ^ O .

a 1 " I

//+(/, JV; λj, •••, XN)*: ίi iV erf un entier pair (N^2),

β> Pi

I
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si N est un entier impair (N"2> 1),

/

i +Hι+1-d-Hΐ+1-d-+Gι+:

A j X %N λ j v - 1 λ 2 λ l ύι

//"(/, N; λ1} •••, XN)*' si N est un entier impair (iV^l),

/° / fa i

ίί i\Γ est un entier pair (N ΐg 2),

/G, /G, /G,

Gt—o—-HUv-J-+Hι+ι-*-HUi +Hι+1—J—+G,.ι .

let, \ l t '-',\N sont des entiers tels que Xu " ,XN^0 si / ^ l et \l9 " ^ X ^ ^ l si

Par exemple, les graphes IΊ(0) et 11(1) sont donnes explicitement par les
graphes (6.7) et (6.8) respectivement. La notation Π+(l, 2; 2, 0)* signiίie le
graphe

.1

4 2 2 2 2 2 3 2 2 2 2 2 5
ς> — O1— O — O — O — O p — O — O — O — O— O — O

1

o — 6 — o — o — o — o — o — o — o — o — 6 — o — o — o — o — ό — o — o — o — ό — o — o — o — o — o — o

5 2 2 2 2 2 1 7 2 2 3 2 2 8 2 2 2 8 2 2 3 2 2 2 2 2

DέMONSTRATiON. Nous allons d'abord donner tous les graphes possibles de
Σ*. On a dόja vέrifiό le thόoreme pour le cas ou i?G£F0. Nous allons done
voir le cas ou RG=3Ί OU REz3fUy en remarquant que Σ est une famille excep-
tionnelle minimale, que F(β) se rόduit a o par une suite de contractions, et que

0
d'autre part F(β) sont obtenues par une modification de P1χP1 comme on Γa
vu dans le 2° de la section 5.

1° Envisageons d'abord le cas ou JReSΊ. Dans ce cas, Σ consiste en Γ
et Σoo. On a alors (Γ 2 )=(Si)= —1 et (C 2 )^—2 pour tout membre C de Σoo.

a) Supposons d'abord que Σ est linόaire. Comme Σ est exceptionnelle et
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minimale, le graphe de X est o—(—o—) pour λ ^ l . Comme F(oo) se rόduit
1 2

2 2 2 1 2 2 2
a oy g(F(oo)) doit etre o—o—o . D'oύ ?(Σ*) est o—o—o—o .

0 I I I

b) Supposons ensuite que Σ est non linόaire. Soit N le nombre des em-

branchements de 2. Conservons les notations utilisόes dans la section 4; {2?,-},

{<?,}, ieT}> {-£}, {2,}, m et {at} (lgi£N). Dans ce cas,

(i) g{β%) est o _ ( _ o _ ) 1 + λ " pour λ ^ l puisque <?#(=£„ U {BN}) est
1 2

linέaire et se rέduit a © par cont^, et Γ est une extrέmitέ de Σ. D'oύ g(Σ) est

1

(ii) Par cont^, F{oo) s e rόduit a (—o—)^Lo—g{XN). Comme le graphe

est linόaire et qu'il se rόduit a ©, le graphe —g{XN) est όgal a —
0

(iii) Voyons ensuite le graphe de cont^(Σ): ° °—g(3N). Comme
l + λ 1

\ 1

il se contracte en un point, g(3N) est (—o—) N si o—g(3N) se contracte en
2 1

un point par contractions successives. Sinon, —g{β.N) contient

— ( _ o — )2^rzlo—(— o—) λ pourλ^O.
2 3 2

(iv) Supposons d'abord iV=l, Alors g(3x) est (—o—) λ~ ou bien
2

( _ o - ) i z L o - ( — o — ) \ D'apres la propriόtό (B*.3) pour (3» 3f),
2 3 2

s'όcrit

pour λ i ^
0 1 2 2 2 1

ou bien

ol+λx

•—o—(—o—)-ί^_o—(—o—)_1^ —o—o—o pour λ : ^ 1
0 1 2 2 2 3 2 2
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Dans le premier cas, on exclut λ j=l parce que Σ est non linόaire.
(v) Ensuite, on suppose N^z2. Comme^(Σ) dάgόnέre eng(3N) par con-

tractions successives, g(3N) est

ou bien g

2 3 2 2

Cependant, on peut exclure le premier cas a cause de la propriόtό suivante.

Le cas suivant n'existe jamais:

I
L I a

pour X ^0, 2^/^iVet α^3.

En effet, d'apres la propriάtό (B*.3) pour (3Vi, 2?-i)>

° (-o-)-°
2 2 1

Λ A

C'est en contradiction avec la propriόtέ (B*.3) pour (2 f , 2*).

DJoύ g(Σ) s'όcrit
o λ ^ + 1 g(-CN-i)

( ) ( j ^ )
1 2 2 2 3 2 2

pour \Ny λ^-i^l. Envisageons ce graphe. Soit DN le membre de Σ corres-
pondant a © du graphe ci-dessus et soit £N la sous-famille connexe de Σ\{DN}

3
qui est a droite de DN.

A A

(vi) On peut alors facilement voir que la propriέtό (B*.3) pour (3^, £?*)

entraίne (B .3) pour φN, £$) ou £„={&„} \J<0N et 3%=$χU ΦxS

(vii) Soit ύίN la sous-famille de Σ correspondant a
o—(— o — ) ^ _ o _ ( _ o — ) X N ~ JCjy est exceptionnelle et^contjc^Σ)) est
1 2 2 2

o - o - ( — o - ) ^ - ' - 1 o - g ^ . , ) pour
1 2 2 2
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Λ

Posons Σ'=contj^ iV.(Σ)etjF/(oo)=contj(; iVΓ(^). II es immόdiat qυe Σ ' se con-
tracte en un point et i<"(oo) se rέduit a °. La deuxiέme propriέtέ rέsulte de

0
(vi). Done 2 ' satisfait la meme condition que 2, tandis que le nombre des
embranchements de 2 ' est infόrieur de un a celui de 2. On peut ainsi se
ramener par recurrence a montrer le cas oύ J R G S Ί .

2° Avant de considέrer le cas £FΠ, nous allons όtudier le graphe des
families exceptionnelles. Avec les memes notations que dans le 2° de la section
1, soit £une famille de courbes sur une variόtό V. On dit que le graphe de C
se contracte en un point (resp. se rέduit ά o) si C se contracte en un point (resp. se

a
rέduit a o). On suppose que C est une famille exceptionnelle minimale linέaire

a
telle que la courbe exceptionnelle de C coupe exactement deux membres de C.
Dans cette condition, on peut facilement voir les faits suivants:

(G.I) Tous les graphes possibles de C sont

(6.1) (—o—)^-o—o (—o—)Λ pour x^l et
2 1 *Ί+2 2

(6.2) X: o (—o—)^.o (—o—)**=*.
j v + 3 2 jv-i+3 2

o _ ( _ o—)*L o—o— (— o— )2io—(— o— )Ά o—(—o—)

+3 2 1 \2 2 +3 2 +3 22 1 xλ+2 2 #2+3 2 xv+3 2

JJUUΓ J/<LL 1. c t Λj, , Λ^, Vjj ***, 1/γ g^. \J.

(6.3) (—o—)^±iχ ί o w r

(6.4) χ _ o _ ( _ o — )2v±i ί o w r y v

3 2

Ici, lorsqu'on fait des contractions successives pour les graphes (6.1) et
(6.4), c'est la courbe a Γextrάmitό droite du graphe qui est contractόe par la
contraction finale. Pour les graphes (6.2) et (6.3), c'est la courbe a Γextrόmitέ
gauche.

(G.2) Le graphe "X se rέduit a o oύ "X represente le graphe obtenu en di-
0

minuant de un le nombre attachέ a Γextrέmίtέ gauche de X.

Aprέs ces prόparatifs, nous allons voir le cas oύ i?^£F π . Dans ce cas, on
a (Γ 2 )=(S?)=(Si )=- l , ( C 2 ) ^ - 2 pour tout membre C<=20U2oo et 2 0 est
linάaire.
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a) Envisageons le cas oύ Σ est linάaire. En remarquant que JF(O) est ob-
tenue par όclatements successifs comme on Γa vu dans le 2° de la section 5, le

2 2 2
cas le plus simple de F(0) est o—o—o. D'aprέs Γhypothese (3.3) et la re-

D l

marque (G.I), g(Σ) s'έcrit sous la forme ©—©—o—o—o—(—o—) 1, De plus,
2 2 2 1 5 2

d'aprds ce que F(oo) est aussi obtenue par όclatements successifs satisfaisant aux
2 2 2 2 2

conditions (O), g(F( <χ>)) s'όcrit sous la forme ©—o—o—o—o—o . D'oϋ #(Σ*)
5 I

D l
2 2 2 1 5 2 2 2 2 2 v

s'όcrit 11(0)*: °—o—o—o—o—o—o—o—o—o. A Γexclusion du cas ci-

dessus, le graphe de Σo s'έcrit sous la forme

X,: o— (— o—fL-o (_o—fl=l o—(_o—)βl
b,+3 2 b,-!+3 2 ftH-3 2

pour / ^ l , « i^ l , et c^, •• ,ah blt •• ,ά,Ξ>0. Le graphe de ΣOU {Γ} est done

Xj—o oubienX/—o. On appelle / longueur de Σo. Done g(Σ) s'όcrit sous

la forme

(6.5) Xf— o-o— (_o_)*l-o_(— o—)h. o _ ( _ o — )̂ Lo—(— o— )δ'+l

1 aλ+2 2 O2+3 2 α z +3 2 3 2
pour 6/+i^l

ou bien

(6.6) X,—o—(—o—fr 7-2γ { ) ( )
2 Λ7+3 2 Λ/-1+3 2 Λ/-2+3 α x +3

En dόsignant par F 7 le sous-graphe entre —(—©—)_!_ et —(—©—/_/_ de (6.5) et
2 2

son inverse Y; pour simpliίier, les graphes (6.5) et (6.6) s'άcrivent

x^o—o—y7—o—(— o—)
1 2 3 2

et

-XT/—©—©—Yι—© respectivement.
1 2 a,+3

On peut alors determiner {#,} et {£,} grace au fait que F(0) et -F(°°) se rόduisent
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k o. D'abord, notons que JF(0)=Σ0U (SQ} se rάduit a o. Done g(F(0)) doit
0 0

etre le graphe suivant:

a 2 2 a _ χ
o—(—o—j—JL . —o o—(—o—\—L o— ••—o—(—o—\ 1

~ 2 bj+3 I *, - i + 3 bx+3 2

lorsque l=2j— 1 (j;> 1),

tf. -n — 1 _ _ / . \#io _ ( _ o — p. o (—o—)ίa±!H±-o—o o— (— o—)"l
bt+3 2 bj+1+3 2 12 bj+3 ^ + 3 2

lorsque /= 2/ (j ̂  1).

En plus, il faut que {a{} et {έ, } satisfassent aux conditions (î (0))/ (/^l):

*S£ l=2j—l, alors a1=bι-\-ί, aj=bj-\-2 et ak= b^k+1 pour tout k sauf 1 etj.

Si l=2j, alors a1=bί-\-ίy aj+1=bj-\-2 et ak=bi.k+1 pour tout Λ(Φl,y+l).

Cela posέ, on voit que

g(Σ) n'est pas en rέalite le graphe (6.6).

En effet, d'apres ce qu'on vient de voir, on doit avoir bι~\-2=a1-\-2 puisque
,F(oo) se rόduit k o . Cest en contradiction avec les conditions (^(0))/.

0

Pour la suite, bornons-nous au graphe (6.5). D'aprέs le meme raisonne-
ment que pour Σo, g(F(°°)) est όgal a

2T J 4 ώ

/ Λ \(>ι Λ / \O:—1 / v
O ' I •.••-—. O • •» •• I — — • i i Q • • HI " *I — — - • O - — I J Q . — Q " • • Qι I - Qι...— I

7+1

2 aj+3 2 I aj+ι+3 3 2

si /=2/-l,

A 2 A

o_(_o_p o o—(—o—p±p ( )
2 aJ+1+3 \ 2 aj+2+3 '3

si l=2j.

Pour que F(oo) se rόduise ά © par contractions successives, il faut que {#,} et
0

{bi} satisfassent aux conditions (F(cχ)))7:

Si / = 2/— 1, alors 0 = bu aJ+1-{-2 = bjy ak = bι-k+2 pour tout k(

kΦj+l).
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Si l=2j\ alors 0=bly aJ+1+2=bj+l9 ak=b^k+2 pour tout k(l^k^l, k^j+ί).

D'aprέs (F(0)), et (F(oo))h pour l=2j— 1, on a Λ1 ==5, a2='-=aj=A, aj+1=
=Λ/=0, &!=••.=&,._!=(), i y = 2 , ^^='"=^=4, bι+1=5y et pour l=2j, on a

On obtient ainsi tous les graphes possibles de Σ* dans le cas linάaire:

2 2 2 1 5 2 2 2 2 2
(6.7) °—°—o—o—o—o—o—o—o—o si 1=0 ,

5 2 2 2 2 2 1 7 2 2 3 2 2 2 2 2
(6.8) °—°—o—o o—o—o—o—o—o o—o—o—o—o — o si /==1 ,

α l D l

• Λ 2 2 , 3 2 2 2 2 3 _ 9 ς

(—o—)ί~ o—o—(—o—)—o—( o—o—o—o—o—)i £( o—)—o
7 5 | 2 1

°1
. 2 2 3 2 2 2 2 3 . _ j ς

—(—o—)Z__o—o—o—(—o—o o—o—o—VZ ( — o — )
7 I 2

D l

si / = 2 / - l ( ^ 3 ) ,

. 2 2 3 2 2 2 2 3 . _ j 5

( o—\ί—o—o o—(—o o—o—o—o \ί ( o—)—o
7 I 2 1

D l

2 2 3 3 2 2 2 2 3 . _ j 5

( O \ί—O O ( O ) O ( O O O O O \i ( O )

7 5 | 2
D l

si / = 2 / ( ^ 2 ) .

b) Envisageons le cas oύ Σ est non linέaire. Cette situation est presque

la meme que celle du cas oύ RξΞS'i et Σ est non linόaire. Soit N le nombre

des embranchements de Σ et conservons les notations {<?,-}, {-£•} et {2 t }.

D'apres ce qu'on vient de voir ci-dessus, le graphe de Σ0U{Γ} est Go—©,

Xj—o ouZ/—© pour / ^ l et {#,} et {?>,•} satisfont aux conditions (F(0))7.

(1) Le cas oύ /=0. D'aprέs le meme raisonnement que pour les i), ii) et
iii) de 1° pour 3Ί, les graphes de <?*, Σ, -CN et 3N doivent etre comme suit:
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g

i) g(Σ) est έgal a o—o—o—o—o— ( — o _ ) ^ Z z L o — g{βN) pour λ ^ l ,
2 2 2 1 5 2 2

ii) —g(-CN) est όgal & — o o—o—o ,
1+XN 2 2 2

iii) —g(3N) est έgal & — (—o—) N~ ou contient
2

—(—o—)_^.—o—(—o—) pour λ^O selon que Σ dόgόnέre en J2N ou £?#.
2 6 2

iv) Supposons N=l. De la meme maniέre que dans le iv) de 1° pour

SΊ»£(2i) e s t (—°—) X l ~ ! ou bien (—o— )h^λo—(—o—)λ. D'aprds la pro-
2 2 6 2

priόtό (B*.3) pour (3l9 3t), g&*) est όgal a

\+l 2 2 2

π l o — o—o—o

O _ o _ o —o —o—(—o—) V z l o (—o— )hlllo ( X ^ 1)

2 2 2 1 5 2 2 2 1
ou bien

λi + 1 2 2 2
o o — o — o

o — o — o — o — o—(—o—\—- o—( o—\— o — o — o — o — o — o

2 2 2 1 5 2 2 2 6 2 2 2 2 2

v) Supposons ensuite N^2. D'apres le fait que g(Σ) dάgέnέre en g(3N)

et grace k la remarque dans la propriέtό v) de 1° pour 3Ί, le graphe de 3N est

g

(-0-P*=±-o-(-o-)x»-i-1 o-g^a^ pour λ ^ . ^ 1 .
2 6 2 2

Soit DN la composante o et soit MN la famille connexe de 3N\{DN} qui est a

droite de DN. On pose ΛN = JίN\J {̂ «,} et Af = ΛN\J {DN}. έvidemment

on a la propriέtέ (B.3) pour JίN et M*. Comme dans le cas 3Ί, soit JCN la

famille de Σ correspondant λ

( - o - ) l o - o — ( — o — ) ^ C z L o — ( _ o — ) λ * — 1 ; JCW eatestalors exception-
2 1 5 2 2 2
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nelle, En outre, £(contj^(2)) est όgal k

λ -1 /
o—o—o—o—o—(—o—)^v_i °—g(3N^1) pour \N-X^l. Dάsignons par
2 2 2 1 5 2 2
Σ', ί1/(oo)et SL respectivement contjc^(Σ), contjc^^ft) et le transform^ de
Soo. Alors Σ' se contracte en un point et JF'(OO) se rάduit & o , Done, par r6-

0
currence, on peut dόmontrer le thόordme dans le cas £FΠ avec 1=0.

(2) L e c a s o ύ / ^ 1 .

i) D'aprέs ce qu'on a vu dans le cas oύ Σ est linάaire, g(Σ) est un des

graphes suivants:

(6.9) (a) 1 , - o - c y.-o-t-o-^zL,
1 αj+2 3 2 2

(C) l -O-O-^-O (_o_)kzLo_
1 2 Λ X + 3 2 2

(d) i,-o-o-F ;_o g(βN)

1 2

ii) Regardons le graphe de contc^(.F(oo)):

(6.10) (a) o γι-o-(-o-)hL=±o-g{χN)>

+2 3 2 1

(C) o-Y,-o (-o

2 αx+3 2

(b) i,-o-o y -o-gζβj (\N=0),

3
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Us se rόduisent & ©. Comme les graphes (6.5) et (6.6) se contractent en un
0

point, les graphes

(6.11) Xt—o—o Ϋg— o
1 ax+2 2

et

(6.12) Xx—o—o—yf—o
1 2 a,+2

se rάduisent & °. On dόsinge par δλ (resp. δ2) le sous-graphe (—°—)—o (resp.
0 2 1

o) de (6.11) (resp. (6.12)). Alors le graphe obtenu en contractant δ2 (resp. δ2)

-> ->
dans le graphe (6.11) (resp. (6.12)) s'ecrit sous la forme X'Γ—°—Y,—° (resp.

1 2
« - « - - > < - -»
Xj—o—Yι—o ). Id, X'~ (resp. Xj) est le graphe obtenu a partir de X,

1 +2(resp. X,) en remplaς ant —o (—o—)Λ l par —o (resp. °— par o— ).

^+3 2 h+2 b,+3 b,+2
II s'ensuit que g{XN) s'ecrit

(6.13) (a) X, o o, (b) XT-o,
λ * + l 1 1

(c) X, o o, (d) Xi—o.
λ w + l 1 1

Hi) Comme dans le cas precέdent, on a (1) ou (2) suivant que Σ degέnere
en XN ou 3N.

(6.14) (a) (1) °-g(3N) est egal a o-^-o-pLzLo-Y,,
2 2 2 3

(2) °—g{SN) contient o—(—o—)^=i-o—F ;—o—(—o—) λ ,
2 2 2 3 αj+3 2

(b) (1) °-g(2N) est egal a o-Y,,
3 3

(2) °-g(3N) contient o _ F / - o - ( - o _ ) λ ,
3 3 αj+3 2

(c) (1) o-^3w) est egal a o-(-o-)kzL 0 -F,,
2 2 2 αj+3

(2) o-g(βN) contient ^ L λ

2
gβN) ( ^ r {

2 2 2 «x+3 3 2
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(d) (1) o—g(3N) est βgalft o — F , ,
+ 3 +3

(2) ° £(2*) contient o F/-o-(-o-)λ,

+3 +3 3 2fl!+3 3 2
pour λ ̂  0.

iv) Supposons d'abord iV=l. Alors, pour tous les graphes (2) dans

(6.14), on a aussi Γόgalitό. Soit JCN la sous-famille de Σ qui correspond & la

partie g{SN)—(—°—) ι de g(Σ)] JCN est exceptionnelle. Le graphe de
2

contcχiΓ(Σ) est d'une des formes suivantes:

(6.15) (a) (1) X , - o - o - y , , (2) ^ - o - o - ^ - o - ί - o - ^ ,
1 2 1 2 a,+3 2

(b) (1) XT—Y,, (2) ίΓ-o-y;-o_(_o-)λ,

1 1 αx+3 2

—o-F,, (2) i ; - o - o - y ; _ o - ( -
1 αi+2 1 αx+2 3 2

(c) (1) 1,-o-o-y,, (2) i ;_o-o-yΓ_o-(-o_)λ,

(d) (l) X'r-o-Y,, (2) i ; - - o - y , - o - ( - o _ ) λ .
1 1 3 2

Envisageons les graphes (a) et (c) de (6.15). Posons Ίf = contj^Σ). Soit Ŝ ,

le transforme propre de SM, et soit ΣL la famille connexe de Σ'\{°} qui est a

droite de ° dans^(Σ') On a alors (S'J)=-ί. D'ailleurs, Έ,L U {SL} se rέduit
1

a o. Done ce cas se rέduit au cas oύ Σ est linόaire. Pour le graphe (2), il est
0

immediat que le cas a) ne peut pas se rόaliser et le graphe (c) est donne par

Gι—©—Gι+ι. En remarquant ce que le graphe (1) dόgόnέre en son cόtό
1

gauche et que la longueur de Σo est /, on peut facilement voir que le graphe (c)

ne peut pas intervenir et le graphe (a) est donnό par Gt—o—G^x.

Ensuite, envisageons les graphes (b) et (d) de (6.15). Soient Q{^ et £)(δ2)

les applications rέciproques des contractions δj et δ2 qu'on vient de voir dans ii)

respectivement. Les graphes (b) et (d) de (6.15) sont όgaux aux graphes (a) et

(c) de (6.15) grace & j?(δ2) et Q(δ2) respectivement. On peut alors poser

2/=ρ(δ2)ocontjC l(Σ) dans le cas (b) et aussi ^!=Q{^°^oΏχ<χ1{X) dans le cas (d).

Soit SL le transform^ propre de Soo par cette modification et soit ΣL la sous-

famille connexe de XΛί0} q ui est & droite de o dans g(Σ'). Evidemment, on
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doit avoir ( ^ 2 ) = —1 et ΣLU& doit se rόduire a o. Done les cas (b) et d (d)
0

se rόduisent aux cas (a) et (c) respectivement.
v) Supposons ensuite iV^2. Dans ce cas, il est άvident que Σ dάgάndre

en 3N. Done, pour les cas (a) et (c), le graphe de contj^(Σ) s'όcrit sous la
forme

(6.16) (a) ^ - o - o - ^ - o - t - o - ) ^ - ! - 1 . ,
1 2 αx+3 2 2

pour

ou bien

/
X,—o—o—Yt o pour

1 2 «ι+3\(Sjr-ύ

/
(c) X,—o—o—yj—o—(—o—)^L_LC pour

l + 2 3 2 ^

ou bien

/

X,—o—o—Yt—o pour λ Λ r _ 1 = 0 .1 3 V
On pose Σ /=cont t^ iΓ(Σ). Soient Si le transform^ propre de S^ et Σ i la sous-

famille connexe de ΣΛί 0 } qui est a droite de o dans ^(Σ7)* O n a ( Si2) = -—1

et Σ« U {SL} s6 rάduit ^ o. C'est le cas pour N— 1. Done on peut raisonner
0

par recurrence. Tous les graphes possibles des Σ* sont ainsi obtenus.
La rόciproque resulte de la proposition 5.1 ou 5.2. Ceci termine la de-

monstration du thόoreme 6.1.

Le thέorέme ci-dessus donne en meme temps les graphes des Σ. On dό-
signe par O, /((O), Γ(N; \ly •••, λ^), //(/) et IΓ(l, N; Xly •••, XN) les graphes des
Σ qui correspondent & O*, 7(0)*, •••, respectivement. On emploie les memes
notations 7(0), 7ε(iV; X2, •••, XN), ••• pour reprάsenter les ensembles des fonctions
R qui correspondent.

Enfin, nous allons donner une variante du thόorέme 6.1. Soit M une
surface obtenue en όclatant successivement un point p de P2. Soit p Γapplica-
tion de M sur P2. Posons Σ p~ι{p)\ soient So et /SΌo deux courbes rationnelles
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sur P2 qui ne se coupent qu'en un point/) et telles que SQ\(p} et Soo\{p} soient
analytiquement isomorphes a C. On dάsigne par n et m les degrάs de *S0 et 6Όo
respectivement. Soient So et So* les transformόs propres de So et SΌo par p" 1 re-
spectivement. Posons Σ * = Σ U {S0) lίL}. Cela posό, on a le

Lemme 6.1. Supposons en plus que le graphe de Σ* est un des types dans
le ihέoreme 6.1. Alors on pent toujours trouver une fonction ratίonnelle R sur
P2 appartenant a 3? telle que (R)=mS0—nSoo et que [M, Σ, p] soit la rέsolution
du point d'indέterminatίon de R.

En effet, il est evident que Σ* se rόduit a o—o—o. La variόtό obtenue est
0 0 0

alors birέguliέre a P1xP1, d'aprέs le thόorέme de Nagata qu'on a vu dans le 1°
de la section 4. Done, d'aprds la proposition 5.1 ou 5.2, on peut construire
la fonction JR dont on a besoin.

7. Ordres et degres des courbes premiέres singuliέres de R. Soit
R une fonction appartenant a 3Ί ou £FΠ et soit [M, Σ, p] sa rόsolution minimale
du point d'indόtermination. La formule (RF.2) pour une fibre singuliέre F(β)
et le thόoreme 6.1 nous permettent de calculer Γordre des courbes premieres
singulieres.

1° Cas oύ i ί e S Ί . Dans ce cas, le diviseur de R est donnό par la rela-
tion (3.1). D'aprέs le lemme 4.6, on peut prendre des coordonnόes inhomo-
gέnes (x, y) de P2 telles que So* soit la droite a Γinfini de P2. Alors R est un
polynόme de x et y de degrό n. On a la

HΓ JV

Proposition 7.1. Le degrέ n de R est έgal a 2, 2 Π (λ, + l ) ou Π (^,+1)
i=l 1=1

selon que R appartίent a /(0), I+(N; \ly •••, λ^) ou I~(N; \lf •••, XN).

En effet, pour i?G/(0), e'est Evident. Soient C? le membre de Σ coupant
Γ, D{ celui de Σ correspondant a o et jBj e-S^Σ) le membre de —©— dans

λ+l λ
Σ coupant trois autres membres oύ ί = l , •••, N. En remarquant que F(oo) est
obtenue par une modification de P1χP1 comme on Γa vu dans le 1° de la section
5, on peut facilement voir qu'on a ordc^(K)=ordDir(κ)=ί et ord5|.(J?)=ordZ).
(Jfc) pour 2^i^N. Cela posέ, on peut calculer n d'apres la formule (RF.2).

2° Cas oύ R^ζFu. Dans ce cas, le diviseur de R est donnό par la rela-

tion (3.2). Soit {/«/}(/ez) u n e suite dάfinie par

(7.1) mι+2 = 3ntι+1—niι avec τra_2 = 1 et m_x = 1 ,

et posons:
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(7.2) nt = mι+1,

(7.3)
pour i impair ,
W/-2 pour i pair

i—mι-2 pour i impair
sι(ι) = sΐ(ι-l)=<

[ i ι 2 p p

Proposition 7.2. Si R appartίent a 11(1), m et n sont έgaux a nιt et nt res-
pectivement. Si R appartient a 27ε(/, N;\lf •••, \ N ) , m est aussi έgal a nιt et n est
έgal a

(7.4) n = n](N; \ly ••., λ*) = mι±ι Π (λ, mι

2+mι s){ί)-\).

DEMONSTRATION. NOUS effectuerons le calcul de n pour le cas //*(/, N; Xu

•••, \N) dans la section 11; nous dόmontrons maintenant les autres άnoncέs.
Supposons d'abord que R appartienne a //(/). Conservons les notations

Cξ.(β=0 ou oo et * = Γ o u Γ) introduites dans le Γ de la section 4. D'apres la
remarque 4.1, C° et C? sont les extremites de Σ; de plus, C% et C£ sont celles
de 2^, et d'apres le lemme 4.1 et la definition de C | , on a ordcg(le)=l. Ce
fait, la formule (RF.2) et le theoreme 6.1 montrent que m et n ne dependent
que de /; on les dόsigne par m(ΐ) et n(l). En regardant le graphe de Σ, il est
άvident qu'on a n(l)=m(l-\-l); par suite, il sufϊit de calculer seulement m(l).

Regardons le graphe G> Soit Ko le membre de Σo coupant So; Γordre de R en

D l
Ko est m(ΐ) puisque, si on ecrit la fibre |.F(0) | —m(l) S Q + Σ ^ / Ciy on a m(l) (So)+
Σμi(Ci-So)=O et (Sl)= — 1. II est facile de calculer et on obtient m(0)=2, m(ί)
= 5, m(2)=13 et m(3)=34. Soit Rω la fonction appartenant a //(/). D6s-
ignons par Σ(/), Σo(/) et K0(l) respectivement les quantitόs Σ, Σo et Ko cor-
respondant a RQ). Supposons l=2j. Pour k=l, /+1> ^+2 et /+3, la fonction
R(k)°ρ a un zero du meme ordre en le j i f e m e (resp. O'+l) i έ m e) sommet © du cόtό

->

gauche du Gk, qu'on dάsigne par a (resp. b). Pour k—l-^-l et /+3, R(k)°p &

aussi un zero du meme ordre en le (/+2) i έ m e sommet o du cόte gauche du Gk,

qu'on dάsigne par c. Le membre K0(k) est le (y+2) i έ m e sommet © du cόte gauche

du Gk pour k=U /+1 et le O'+3) i έ m e pour k=l+2,1+3. Done, en regardant

les graphes G/? G/+1, G/+2 et G/+3, on a les relations suivantes: 2b=a-{-m(l), Sb=

a+m(l+l), 7b=a+c, 2c= b+m(l+2) et 5c=b+m(l+3). On obtient ainsi m(l)

=mh

Supposons ensuite R^Π*(l, N; \lf

 # ,λ^) ( iV^ l ) . Pour calculer Γordre
de R en SOy la situation est tout-a-fait analogue a celle dans le cas //(/). Done
on a aussi ordS() (R)=mι.
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Si on admet la formule (7.4), il est alors immόdiat que le thόoreme 6.1
et la proposition 7.2 montrent que deux conditions (3.3) et (3.4) sont όquiva-
lentes comme on Γa dit dans la section 3.

8. Fonction minimale associee a /2e£Fi. Soit R une fonction de 3Ί.
Soient (x, y) des coordonnάes inhomogenes de P2 telles que R soit un polynόme
e n # e t ^ appartenant & ί?i, d'apres la proposition 4.1. Dans cette section,
on va όtudier une fonction i?', dόfinie par la condition (4.2), associόe a R.
D'apres le lemme 4.6, on a les corollaires suivants:

Corollaire 8.1. La poire (R3 R
f) est un automorphisme algέbrίque de C2

(x, y).

Corollaire 8.2. La fonction R' est aussi un polynόme primitif de type (0, 1).

Corollaire 8.3. La fonction R' est aussi une fonction de 3τ ou bίen ΞF0

admettant le point d'indetermination au metne point p que celui de R et ay ant aussi
unpole en *SΌo.

Corollaire 8.4. Une resolution [M, 2, p] du point d'indetermination de R
est aussi celle de R''.

Posons (R)=S0—n S*, et (R')=S'0—n'Soo. La fonction R appartient a une
des 7(0), I+(N; λi, •••, \N) et I~(N; Xu •••, λ^) (iV^l). Alors on dit aussi que
(R, R') appartient a 7(0), I+(N; λ l f •••, λ^) et I~(N; \l9 •••, λ^) respectivement.
Notons que la restriction de Rr a C?, qui est la courbe correspondant a dans
le graphe o—o—o— pour N=0 et a o dans le graphe pour iVΦO, est univ-

1 2 2 2 1+λ^
alent d'aprέs la dόfinition de i?', on a alors le

Lemme 8.1. Si R appartient a 7(0) ou Γ(N; \ u •••, λ#), alors R' appartient
a £F0 ou I*(N—1; \ly •••, \N-i) respectivement et on a w ^ l + λ ^ ) nr. Le triplet
[contJCjr(M), contJc^Σ), p°contjc^] est la rέsolution minimale du point d'indetermin-
ation de R'.

IciI+(0) reprέsente 7(0) et 7"(0) reprέsente £F0 La notation JCN(N^ί) a
έtέ introduite dans la section 6 et <JC0 est la sous-famίlle de 2 correspondant a
o—o — o.

1 2 2

Considόrons maintenant la fonction h dόfinie par (R')1+λ#IR. II est im-
mάdiat que (/^^(l+λ^) SΌ — S0, et SO et *SΌ se coupent transversalement en un
seul point p* dans P2\{p}. On peut facilement voir que h est une fonction
rationnelle primitive de type (0, 2) admettant deux points d'indόtermination p et
_p*. D'ailleurs, h prend une valeur constante a0 ni nulle, ni infinie sur Soo. On
peut done normaliser ao= — 1 en remplaςant R' par aRr pour αGC*. Cette
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paire (i?, R') s'appelle paire normalίsέe et on la dέsigne par [R9 R'].

Enfin, on voit qu' une telle fonction Rr est caractόrisόe de la maniere suivante:

Lemme 8.2. Soit Ψ une fonction rationnelle telle que la paire {R, Ψ) soit un
automorphisme algέbrίque de C2. Alors Ψ est έgale a R' si v=ordSoo(Ψ)<n et
a R'-\-cR si v=npour une fonction R' associέe a Ret c e C * .

En effet, si R' est une fonction minimale associέe a R, il existe un nombre
complexe a non nul et un polynόme β tels que ψ s'έcrive aR'+β(R).

9. Fonctions adjointes distinguees associees a /2GΪΠ,—Fonctions
rationnelles de type (0, 2)—. Soit R une fonction appartenant a £FΠ. Pour
determiner sa forme explicite, il est nέcessaire de trouver les fonctions adjointes
distinguόes <p> ψ, f et g associάes a R. On a dάja introduit les fonctions φ et ψ
dans la section 4 et on dόfinit les fonctions / et g par φmjRs et <pn'lR*' respective-
ment oύ (R)=m S0—n £«,, (<p)=T+s S0—t S* et les entiers n' et t' sont les
diviseurs de n et t respectivement tels que n\t~n'\t' et (n\ t')—\. On verra
que φy ψ, f et g sont des fonctions rationnelles primitives de type (0, 2). En
gόnέral, soit Φ une fonction rationnelle primitive de type (0, 2). Dans ce cas,
la formule (1.1) se rάduit a 1 ̂ # e ( Φ ) ^ d ^ 2 . Posons #e(Φ)=k. II s'ensuit que
trois cas seulement peuvent se prόsenter (PI): (1) k=2 et d=2; (2) k=l et d=2;
(3) k=ί et d=\. La fonction h, qu'on vient de voir dans la section prέcάdente,
est de type (1). Nous verrons que <p, ψ,f et g sont de type (2). Soit [M*, Σ, p]
la rάsolution minimale du point d'indόtermination de R.

1° La fonction <p. Elle est dόfinie par la condition (4.5). Par η^p"1, P2\
(S0\jSoo) est isomorphe a Γespace produit A=\(z, W)\Z^LC* et zΰ^C} et So

(resp. Soo) correspond au point (0, 0) (resp. (oo, oo)). Soit T Γimage rάciproque
propre de la courbe zϋ=0 par Ύjι°p~ι. On decompose les fibres singulidres de K
de la faςon suivante:

ΣJ«,C?+ifi4 et

oύ C%=C£ et C$=Cfr(β=0, oo) et puis C?. et C% sont les diviseurs introduits
dans la section 4; c'est-a-dire que Cf est Γextrόmitό de Σβ qui coupe Γ et que
CT (resp. CT) est Γautre extrόmitέ de Σo (resp. de Σoo pour R^Π(l) et de Σ«\
{3N} pour i?G/78(/, iV; \ly •••, XN))', par suite, on a ml =w, = l pour ί = l , 2.
D'autre part, ikί est obtenue en όclatant P1xP1 comme on Γa vu dans le 2° de
la section 5. On a done les propriάtόs suivantes:

(9.1). a) Les restrictions de φ (=<p°p) a Cr et a CT sont toutes deux univalentes.
La fonction φ a un pole d'ordre un sur Γ et sur C?, un zέro sur So et un zέro dyordre
un sur Cτ et sur T, oύ T est le transforme propre de T.
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b) Pour β=0 ou ooy C% et T se coupent transversalement en un seul point
qu'on dέsίgne par qβ.

On en dόduit:
c) On a fnSo=0, ff]Soo=0 et ff] \2,\ = iq0, ?«}. La courbe T est de

type (0, 2) comme courbe premiere de φ.

d) Par cont0~ocont.0°, Σ * U {t} se rέduit a ^Δl >°u lespoints

*—o—o — o ~
1 1 1 1 1

noirs representent les transformes de C^(β=0, oo) et le triangle Δ represente celui
de f.

On en conclut le

Lemme 9.1.
(0) φ est une fonction rationnelle primitive de type (0, 2).
(1) Le point d'indetermination de φ est έgal a celui de R et il est de type

(2)de(PI).
(ii) Le nombre des valeurs singulieres est deux.
(iii) Les courbes constantes singulieres sont donnέes par

(9.1) (φ) = T+sS0-tS. ,

ou T est de type (0, 2) comme courbe premiere de φ, Tf] So= ip}, TΓ\ *SΌo= {p} et
ί^sft.

(iv) La poire (R, φ) donne une transformation birέguliere de P2\(S0 U *?«) sur
C*XC.

(v) Pour R, la fonction φ se dέtermine unίquement a un facteur constant pres.

De plus, d'aprέs les propriόtόs a), b), c) et d), on a le

L e m m e 9.2. Le triplet [My 2 , p] est aussi une rέsolution du point d'indέter-
mination de φ. Le graphe de 2 * U { T} est έgal a

si

ou
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1

oil le triangle Δ reprέsente T.

On en dέduit:

Proposition 9.1. On peut prendre la sous-famίlle exceptionnelle Jίf de Σ
telle qu'on ait C°Γ&JC' et que <K' U {C°Γ} se rέduise a o. Alors [contJ<?(M), cont JC

(Σ), pocontjc] est la resolution mίnimale du point d'ίndέterminatίon de φ.

On dit que {Ry φ) appartient a //(/), a Π+(ly N; Xly ••, λ^) ou a //-(/, N;
λi> •••, XN) si i? appartient a //(/), a //+(/, N; Xly •••, λ^) ou a //"(/, N; Xly •••,
λ^) respectivement. Quant aux ordres s et t introduits par la relation (9.1), ils
vόrifient la

Proposition 9.2. Etant donnέes les suites {m}, {n)(N; Xu •••, λ^)} et
{s](N)} dέfinies par les relations (7.2), (7.3) et (7.4) respectivement, on pose

(9.2) Sj = nti—wiι-2 et tι = sι+i

(9.3) fl(ΛΓ; Xly ..., XN) = {XN mt s](N)+(s](N))2+XN}

Xn](N—l; Xu •••, XN^) oil nf{0) = ml±l.

Alors (sy t)=(sly tι) si (Ry φ)tΞlI{I) et (sy t)=(s](N), t)(N; Xly - , λ*)) si
(Ryφ)<ΞlΓ(lyN;Xly.~yXN).

En effet, supposons d'abord Λ/*=0. Envisageons le graphe du zάro (TU
I Σ0\{Cr> I U So) et celui du pole (Γ U | Σc\{C?} I U Soo) de φ. II est clair que *
et t satisfont aux memes formules rάcurrentes que m et n. En dόsignant done
par s(l) et t(l) les quantitόs s et t pour (Ry φ)^II(l) respectivement; on a s(l+2)
= 3s(l+l)-s(l) et t(l)=s(l+ί); d'aprέs la formule (RF.2), on a j(0)=l et s(l)=
4; on a done s(l)=sι et ί(/)—ί/+1. Supposons ensuite iV^l. Si le graphe de

{T}UΣ0 est Δ—Gh on a όvidemment s = sh Supposons qu'il est Δ—G7.

Comme la restriction de Φ a Cr est univalente, le calcul de s pour (i?, <p)ξΞlI+

(/, iV; λx, •••, λ^) avec Nimpair et /^3 et (Ry <p)^II~(ly N'y Xly •••, λ#) avec iV
pair et / ^ 3 est le meme que celui de m pour R^II(l—2). En vertu de la for-
mule (RF.2), la valeur de s pour l=0y 1 et 2 est 1, 1 et 2 respectivement; done
s=mι_2> On fera le calcul de t dans la section 11.

2° La fonction i/r. C'est une fonction dάfinie par la condition (4.6), e'est-
a-dire, par t\lrop={wjz)oηι\ done ψ=φ/R. On a done:
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Lemme 9.3. La fonction ψ est ratίonnelle primitive de type (0, 2). Elle
vέrifie aussi les proprietέs (i), (ii), (iv) de φ. Ses courbes constantes singulieres sont
donnέes par

(ψ) = T+(n-t)Sm-(tn-s)S0

ou n—t>0 et m—s>0.

On a la propriέtά

(9.2) Les restrictions de ψ a CT et a C? sont univalentes.

D'autre part on utilise la remarque suivante pour les fonctions φ et ψ.

Lemme 9.4. Soit Φ une fonction rationnelle telle que (R, Φ) satisfasse ά
la propriέtέ (iv) du lemme 9.1. Alors Φ s'έcrit

Φ - (aRaφ+β(R))IRb

ou αGC*, β(z) est polynΰme de z et a, b sont des entiers ^ 0 . Si a>0, alors
/3(0)φ0. La fonction Φ est une fonction ratίonnelle primitive de type (0,2).

D'aprέs ce lemme, on peut caractόriser φ et ψ de la maniέre suivante:

Proposition 9.3. Pour R^EFU, il exίste toujous une fonction rationnelk
Φ telle que (R, Φ) soit une transformation bίrέguliέre de P2\(S0 U £«>) sur C* X C.
Si Φ aun zέro (resp. un pole) d'ordre infέrieur ou έgal a m (resp. m—s) en So et
unpόle (resp. un zέro) d'ordre au plus n (resp. n—t) en SΌo, alors Φ est notre fonc-
tion φ (resp. ψ) a unfacteur constant pris.

Considόrons la fonction <pλ/Rμ pour toute paire d'entiers λ et μ telle que
λ=f=O, (λ, μ)— 1 et (λ, μ)φ(m, s)y(n\ t'). II est clair que cette fonction est
rationnelle primitive de type (0, 2) et de type (2) de (PI). De plus

μ) == XT+(\s-mμ)SQ-(Xt-nμ)Soo

oύ λΦO, Xs—mμΦO et Xt—nμ^O; ses valeurs singuliέres sont 0 et oo.

3° La fonction /— φmjRs. On la considέre comme fonction rationnelle
dόίinie par f°ρ=:(wnjzs)^ηι. On note que la fonction wmIzs sur P1χP1 a. les
propriόtόs suivantes: a) elle est primitive; car, d'aprέs les propositions 7.2 et 9.2
et les relations (7.1), (7.3), (9.2), il est immόdiat que (m, s)=l b) elle αdmet deux
points d'indeterminαtion (0,0) et (oo, oo); c) elle est de type (0, 2)6); d) ses valeurs
singulieres sont 0 et °°, et ses courbes premieres singulieres sont donnέes par les

6) Toute courbe constante gέnέrale d'elle est de type (0, 2) c'est-a-dire la partie de cette courbe
obtenue par Γexclusion de son deux points d'ind&ermination (0, 0) et (oo, oo) est une surface
de Riemann ouverte de genre 0 ay ant 2 points frontieres.
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aquations z=0, °o et zv=O, °o. De plus, en tenant compte de la propriόtό iv)

du lemme 9.1, nous allons έtudier les propriόtόs de /, dont quelques unes sont

faciles a vάrifier:

(i) / est une fonction rationnelle primitive.

Comme (R)=mS0—nSoo et que (<p)=T+sS0—tSoo, on a

(ii) (9.4) (/) = mT-(mt-ns)Soo

avec mt—ns>0puisque m>\.

En remarquant qu'on a *SΌ Π T= {p} et So (Ί *SΌo= {p}, on a:

(iii) fprend une valeur constante a0 nί nulle, ni infinie sur So.

On peut maintenant normaliser aQ= — 1 en remplaςant φ par aφ pour
α ^ C * . Cette paire (R, φ) s'aρpelle^«>£ normalisέe et on la dόsigne par [i2, φ\.
Pour R9 cette function φ est dόterminόe a une racine de Γunitό pres. D6s
maintenant, on prend/pour une paire normalisόe [R> ψ\ Soit U le transformό
propre de la courbe constante a valeur —1 de la fonction wmjzs par p°ηTι- On
en conclut ainsi que

(iv) / est de type (0, 2).
(v) Elle admet un et un seul point d'indέtermination qui est le point p. Son

type est (2) de (PI).

(vi) Ses valeurs singulίeres sont 0, — 1 et oo.
(vii) Ses courbes constantes singulieres sont donnέes par la relation (9.4) et

par

(9.5) (/+1) = U+S0-(mt-ns)Soo.

La courbe U est de type (0, 1) comme courbe premiere de /. Les courbes U et SQ

se coupent transversalement en un point p* dans P2\{p} enfin U Π So= {p} p*}.

La dόmonstration de la propriάtά (vii) sera donnέe plus loin d'aprέs le

corollaire 9.1 du lemme 9.6. En admettant cela, on obtient en rόsumό le lemme

suivant:

Lemme 9.5. La fonction rationnelle f est celle de type (0, 2) admettant les
propήέtέs (i) a (vii).

Nous allons donner maintenant une rόsolution du point d'indέtermination

de/.

Proposition 9.4. Le triplet [M, X, p] est aussi une resolution du point
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d'indetermination de f a Γexclusion de g(Σ):

1 0

Demonstration. D'aprέs la propriέtά (v) pour /, / n'a pas de point d'in-
dάtermination dans M\ | Σ | . De plus, en remarquant la propriόtό (iv) pour / et
la propriόtό b) pour la fonction wmjz\ il suffit de montrer qu'il existe une courbe
de Σo et une courbe de Σoo sur lesquelles / est non constante, c'est-a-dire, uni-
valente. D'abord, on considέre Σo.

L e m m e 9.6. Soit Ko le membre de Σ o qui coupe So. Alors la restriction

def a Ko est univalente.

En effet, K (resp. φ) a un zάro d'ordre m (resp. s) sur Ko puisque K
(resp. φ) s'annule a Γordre m (resp. s) sur So, par ailleurs on a SonSoo = 0,
S0Π f=0, 4 n |2\{i^0} I = 0 et (Sg)= — I . Pau suite, Ko n'est ni pole, ni zόro
de /. Nous allons done dάmontrer que la restriction dej & KQ est non constante.
Supposons qu'elle soit constante. Le point Ko D So n'est pas un point d'indόter-
mination de / puisqu'aucun pole, ou zόro de / n'y passe. Done / prend la
valeur —1 sur Ko. Soit Σo la famille connexe de Σo\{^o} contenant CT qui
est a Γextrόmitό de Σ et aussi de Σo. D'aprέs les relations ord^R) = 1 et
o rdcj l(Φ)=l, / s'annule sur C%. Par suite, / doit soit admettre un point d'indό-
termination sur | Σo | soit prendre toutes les valeurs de P 1 sur | Σo I. Done
y-^oo) doit couper |Σo| , ce qui est une contradiction. Done la restriction
defkK0 n'est pas constante. Alors elle doit etre univalente, car on a (e(f))=2p
et/est de type (0,2). Le lemme est ainsi dέmontrέ.

Corollaire 9.1. On a o rd | 0 (/)=l et | Σ o | Π U=0.

En remarquant les propriόtόs (i) et (iv) de la fonction /, on en dόduit la
propriόtό (vii) d'elle qui a όtέ donnόe ci-dessus.

En plus, pour dάmontrer la proposition, il faut trouver Γautre composante
de Σ sur laquelle f est univalente.

(a) Supposons d'abord que [JR, <p\ appartienne a //(/). Voyons le graphe

d e Σ * : Gt— o—G/+1.

Gt: ( — o — ) • £ — L — o — ( _ o _ o _ o — o _ o _ ) i z i ( _ o _ ) 4 pour / = 2 ι - l (7^1),
I 7 5 2 2 2 2 3 2 2
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(-O-

7

2 2 3

I 1

ί—o y—o—o—o—o—(—o—o — o—o—o—y (—o—\

_o—o—o—o-

5 2 2 2

2 2 2 3 2

—r-o—y—o—o—o—o—o—o—o—(—o — o — o — o — o — y ( — o — \o—o—ί — o — o—o—o—o-

3 2 2 2 2 3 2

I 1

o — o — o o-

5 2 2 2

2

pour / = 2/+1 (j ̂  1),

pour / = 1.

Allors on a le

Lemme 9.7. Soit
Alors la restriction de j a

oo le membre de Σ«

est univalente.

correspondant a —©— de
2

En effet, considόrons Cr et C?. D'aprέs la propriάtέ (a) pour φ, la restric-
tion de φ & Cr (resp. C?) est univalente et K a un zάro (resp. un pole) d'ordre
un sur Cr (resp. C?). Soit 21 la famille formόe de la courbe K** et des courbes
de la composante connexe de |Σoo\{i£oo} | contenant Cψ. On a \XL\ ΠS o =0,
I SI I ΠSoo=0 et | 2 1 \ { C T } I Π t=Q. Soit 2 ί r la famille formόe de la courbe
Ko et des courbes de la composante connexe de |Σ0\{iζ)} I contenant a Cr. II
est έvident que le calcul des ordres de/ en les courbes de Σor et Σ i est le meme.
Done R (resp. φ) a un pole d'ordre m (resp. s) en Koo. La demonstration suit le
meme raisonnement que pour Ko.

(b) On suppose ensuίte que [R, <p] appartienne a //8(/, N; λ1? •• ,λJV) λ
Γexclusion des cas / / + ( 1 , N; Xly •••, \N-U 0) siiVest impair et //" ( I , N; \l9 •••,
\JV_J, 0) si Λ^est pair. D*aprόs le meme raisonnement que pour le cas (a), con-
sidάrons le graphe de Σ*:

Gr-o-Hι+ί

I 1 λ'JV

ou

Gt-o~.-Hi._

oύ έm(\ \3H\Φ0, Lf] \eM\=0 et ^ Π \XN\=0. Quand λ^^l , il est im-
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mόdiat qu'il existe une sous-famille X'N de XN dont le graphe est όgal & celui

de Σo, c'est-a-dire, Gt ou bien G> On peut trouver un membre K*> de X'N
dans la meme position que Ko de Σo. La courbe C? est Γextrόmitό de \X'N\
qui ne coupe pas \XN\XN\ et on a \XN\{CT} I Π T=0, \X^\ f]So=0 et
\XN\ Π«SOO=0. D'aprόs le meme raisonnement que pour le cas a), K (resp. φ)
aun pole d'ordre m(resρ. s) sur K*>\ la restriction de f=φmjKs a jf̂ eo est non
constante; par suite, elle est univalente. Quand λ#=0, on peut aussi trouver
un membre K<» de XNy tel que ordKoo(R)=m et ordKeo(φ)=s, et qui soit dans la
meme position que celle de KQ. On en conclut le

L e m m e 9.8. On peut trouver un membre JKΌO de Σ*. tel que R (resp. φ)

prenne pole d'ordre m (resp. s). La restriction de f ά K* est univalente.

(c) Enfin, on considέre le graphe d'exception, c'est-a-dire,

o4

o—o—o—o o—o—o—o—o—o—o—o—

2 2 2 2 2 5 1 2 2 2 8 2

oύ o reprέsente C?. D'aprέs les propositions 7.2 et 9.2, / est donnόe par
4

<P5/R. D'aprέs la formule (RF.2), J^ (resp. φ) a un pole d'ordre 4 (resp. 1)
sur BN oύ © represόnte BN. D'oύ / a un zάro d'ordre un sur C? et un pole

8
d'ordre un sur BN. Done / a un point d'indόtermination au point CτΓ\BN.
La proposition est done dάmontrέe.

II nous reste maintenant a donner une rόsolution du point d'indόtermina-
tion de / dans le cas d'exception.

Avec les notations du cas (c) ci-dessus, on όclate le point BNΓ\Cτ, qu'on
dάsigne par q. Alors le graphe de Qq( | Σ | U f) est le suivant:

Δ — G ι — o — o — o — o — o—o

oύ le triangle Δ reprέsente Qq(T). On a dάja dit que / a un zόro d'ordre un
sur C? et un pole d'ordre un sur BN. De meme, on peut facilement calculer
que Γordre du zόro de / sur T est 5 et celui du pole de / sur deux courbes de

£tf, BN} coupant BN est 2 et 7 respectivement. On a done le

Lemme 9.9. Soit Ko* le membre de (^(Σoo) correspondant a o. Alors la
restriction de la fonctionfo contKoo a Koo est univalente. *
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On a done obtenu une resolution du point d'indόtermination de / pour

tout type. On va maintenant montrer que la rάsolution minimale [Mfi Σ/, ρf]

est obtenue en contractant une composante de Σ ou de Qq(Σ). Considόrons

le graphe de Σ. Soit σ la composante de Σ correspondant &

o—o pour Go—o—•••
2 1 1

( ) ( ) ( )
2 2 2 3 2 2 1 7

pour Gj—o oύ l = 2j—ί O'^l),

o . — o — ( — o — o — o — o — o — ) ί ( — o — ) — o — ( — o — y

3 2 2 2 2 3 2 2 1 7

pour Gι—o oύ 7=2/ ( j ^ l ) ,

o—(—o—\! o—o—o—(—o—o — o—o—o—\1 o

5 7 1 2 2 2 2 2 3 2 2

pour G,—o oύ /=2/—1 ( j ^ 1 ) .

O ( O )^— ° ° ° ( ° ° ° ° ° \i—O O O

2 7 1 2 2 2 2 2 3 2 2 2 2

pour Gf—o oύ l=2j ( j ^ l ) .

Cela posά, Γensemble σ est exceptionnel. En utilisant les lemmes 9.5, 9.6,

9.7, 9.8, 9.9 et la proposition 9.4, il est immόdiat que la resolution minimale

[Mf, Σ/, ρf] de / est [contσ(M), contσ(Σ), pocont^1] dans le cas gόnόral et

[contσoO ί(M), cont^Q^X)^ p°(cont<rog-1)] dans le cas exceptionnel. Ici, on

utilise la meme lettre σ pour Γimage propre de σ par Qq. Soient So, Soo, U et

T les transformάs propres de So, S^, U et T par contσ ou com .̂©)^ respective-

ment. On a done la

Proposition 9.5. Le graphe de Σ/U {So, Soof U, T} est le suivant:

~ ( O \J—O- O O O O O O ( O O O O O \ J O

f 7 2 1 3 2 2 2 2 3 2 2 2 2 . 2
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*• 1 I I I ϊ 1 ±
^ o — o-—o—o o o — o ( o o o — o o y- ί o \—^

7 5 1 2 2 2 3 2 2 2 2 3 2 2

Δ 1

-g,—°—k,—d—g{Ξί'N) si [R, 9>]eJ/f(/, N; X,, - , \N)
1 λ f f

telle que (£, N)={-\-, pair) ou (—, impair) et / ^ 0 ,

1 7

telle que (£, N)=(+, impair) ou (—, pair),

1

°-g(3'N) si [R, φ]eIΓ(l, N; \, , λ^_x, 0)

• I1 - /

1 λj,

ou ( - , />β*V), (/; λ ^ Φ ί l , 0) et 7 ^ 1 .

Id, par £, on dέsigne (—o—)Xo s i l=2j(J^0) et ( — o — ) t _ o s i l=2j—ί

( ^ l ) . On dέsigne par A7 (—o—)—(-o-o-o-o-o-) t_ s i /=2;—1 ( j ^ l )
2 2 3 2 2 2

e t ( o—)_(—o—o—o—o—o—)1—-o—o si l=2j (j ^ 1). Par kh on dόsigne le
2 2 3 2 2 2 23

eraphe obtenu en enlevant Γextrόmitό droite (—<>—) et gt— o du graphe de Έ,f qui
* F 2 1

est linόaire. g(3'N) reprόsente le graphe obtenu en enlevant g{SN), g{^N) e t °

dans^(ΣU {Soo}) oύ SN, XN et 3 ^ sont les notations introduces dans la section
4. Le triangle noir A (resp. le triangle blanc Δ) reprόsente Ό (resp. T). Le

AI ^ AI ^
graphe /Gt— (resp. yGt—) reprόsente celui obtenu en remplaςant le carrό

-> *-
D de —G,— (resp. —G t—) par A.

°1 Dl
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Enfin, considόrons la relation (9.4). Le degrό de *SΌo όtant m d'aprέs le
lemme 4.9, on a le

Lemme 9.10. Le degrέ de T est mt—ns.

Posons r=mt—ns. D'aprέs les propositions 7.2 et 9.2, r est όgal a mιtι—nιsι

si (R,<p)(ElI(l) et a m^N; λ1? - , \N)-nϊ(N; Xu - , X^(iV) si (i2,^)e
//*(/, iV; λi, •••, λjy); on dόsigne ces valeurs par r, et r](N\ \ly •••, λ^) respective-
ment. Le nombre r qui est Γordre de/en iSΌo et le degrά de T, fait Γobjet de la
proposition suivante.

Proposition 9.6.

(9.6) r, = 3

En eίFet, en vertu des relations (7.1), (7.2) et (9.2), on a

D'autre part, on a moβι—m1s0=3. D'oύ r ; = 3 .

4° La fonction g=φn'lRt'. On la considέre comme fonction rationnelle:

gap = (wn/lzrf/)oηi.

En reprenant le meme raisonnement que pour /, on voit que g est aussi une
fonction rationnelle primitive de type (0, 2). Elle vόrifie les memes propriόtόs
que celles de/, c'est-a-dire, (i), (ii) avec (g)=n'T—(mt'—n's)Sooj (iii) pour £«>,
(iv), (v), (vi), (vii) avec (g+β)—Vβ+vSoo—(mt'—n's)S0 oύ β est la valeur con-
stante de g sur *SΌo, Vβ est le transform^ propre de wn'jzs'=β dans C2(z, w)
et i/^l. En particulier, on remarque la propriάtό suivante:

(1) Pour [R, φ] appurtenant a //(/) ou //"(0, 1 λj), on a

n' = n, t' = t, v = 1 .

La courbe Vβ est de type (0, 1) comme courbe premiere de g. Les courbes Vβ et S^
sϋ coupent transversalement en un seulpoint dans M\ \ Σ | et on a Vβ Π SO=0.

(2) Sinon, on a

n>n\ t>t\

La courbe Vβ est de type (0, 2) comme courbe premiere de g.

P A R T I E I I I . DέTERMINATION DES FONCTIONS RATIONNELLES DE TYPE ( 0 , 1)

Conservons les notations introduites dans la partie prόcόdente.
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10. Fonctions rationnelles appartenant a £F0 U 9^. On a dόja vu que

3Ό consiste en toutes les fonctions rationnelles linόaires. Dans cette section, on

va dόterminer les formes explicites des fonctions de £?Ί. Soit R une fonction

appartenant a SΊ D'aprέs ce qu'on a vu dans la section 8, on peut prendre

une paire normalisόe [R, R'~\. Elle donne un automorphisme algόbrique de

P2\Soo ( = C 2 ) et appartient a une des families 7(0) et I\N; λj, •••, \N) oύ (i?)=

S0-nSooet£=±.
Theorέme 10.1. Supposons que [R, R'] appartίenne a / " ( I ; X ^ ^ l ) oύ

/ " ( I ; l)=/(0). Alors on peut prendre des coordonnέes inhomogenes (x,y) de P2

telles que

{R
(10.1)

[R'

avec a^C (i=2, •••, Xλ) et aλl+1= — l.

Rέciproquement, toute paire dέfinie de la maniere ci-dessus avec des nombres

complexes arbitraires a{ appartient a / " ( I ; Xλ).

En effet, dans ce cas, on a (R)=S0—(1+λ^SΌo. D'aprέs le lemme 8.1,

R' est linάaire; (R')=S'O—*SΌo. La droite complexe S'o et la courbe algόbrique

So de degrό λχ+1 se coupent transversalement en un seul point dans P2\Soo.

On peut done prendre des coordonnόes inhomogέnes (x, y) de P2 telles que ASΌO

soit la droite a Γinfini de P 2 , que ce point soit (0, 0), que i?'—x et que la droite

y=0 soit tangente a So en (0, 0). D'aprέs le corollaire 8.1 et la definition de

[jR, jR'], on obtient done la relation (10.1), en remplaςant y par ay (αGC*),

si nόcessaire.

La rόciproque est όvidente.

Theordme 10.2. Supposons que [R, R'] appartienne a Γ(N; \ u •••, XN)

(4=/"(l; λx)) oύ N^ί et £ = ± . Alors on peut prendre une paire normalisέe

[R'f R"] appartenant a Γ(N—19 \ly —, \N^) telle que

(10.2) R = aR"+

avec α G C * , a^C (i=l, •••, λ^) et ^ x ^ + ^ — l

Rέciproquement, toute paire (R, R') dέfinie de la maniere ci-dessus avec des

nombres complexes arbitraires at et un ncmbre complexe αΦO appartient a P(N\

Id, la notation I(N; \ly •••, \N) pour N=0 signifie 1(0).

En effet, on prend R" telle que [R'y R"] appartienne a Γ(N— 1 \l9 •••, \N^).

Utilisons les corollaires 8.1 et 8.3. La restriction de R sur P2\SΌo est un poly-

nόme de JR' et R". La relation (10.2) rόsulte du fait que la restriction de R &
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toute courbe premiέre de R' sauf SL est univalente.
La rόciproque est όvidente.

Compte tenu de la proposition 4.1 et le lemme 8.2, les thόoremes 10.1 et
10.2 donnent une autre dόmonstration pour le thόortaie όtabli par H.W.E.
Jung [3], qui dit que tout automorphisme de Γespace C2 est un produit de trans-
formations linέaires et de transformations de type: x'=x> yf=y-\-cxι (cGC, /
est un entier positif).

D'autres demonstrations ont όtό donnάes par A. Guthwirth [2], M. Nagata
[8], I. Wakabayashi [14] (voir M. Furushima [1] pour la demonstration) et M.
Suzuki [12].

11. Fonctions rationnelles appartenant a £FΠ

1° Relation entre les graphes //(/) et 11(1—1). Soit τ7 le sous-graphe du

o—o—o—o—o—o si /=0,
2 2 2 1 5 2

o—(—o—o—o—o—o—) l (—o—)—o—(—o—)JLo si l=2j—l ,
2 2 2 2 3 2 2 1 7 2

o—o—o—(—o—o—o—o — o—)J- (—o—\—o—(—o—)J—o si l=2j .
2 2 3 2 2 2 3 2 2 1 7 5

II est immόdiat que τt est exceptionnel. Pour le graphe //(/), on dέsigne par
σι la composante σ introduit dans le 3° de la section 9. Par 11(1)*, on dόsigne
le graphe de ΣU {Ŝ ,, U}. Compte tenu de la proposition 9.5, on a alors le

Lemme 11.1. On a les relations:

contT;(//(0) = cont^J/CZ-l)) = / / ( / - I ) , ,

contτ;(//(/)*) = cont^Πil-l))* (Z^l) et contTo(/7(0)' = 1(0)* .

On dόsigne par la meme letter τ7 la sous-famille de 2 correspondant a T/.
Par μ/,/-i> on dόsigne contσ/.^cont^ pour / ^ l et contTo pour/=0. Posons
M'=μitι-ι(M) et 2/=:/^/,/_i(Σ). Alors, μϊtι-ι est une transformation birationnelle
de M sur Mf et bίrέguliere de M\ \ τt U μϊj-i {pΊ-iί I s u r M'\ \ σ^x U μιtι-i(τi) \ oύ
σ_j dέsigne le point contT o(τ0).

Corollaire 11.1. On a les relations:

^(11(0)*) = 1(0)*

μ,ι,l.1(II(t)') = II(l-\)* pour 7 ^ 1 .

2° Relation entre les graphes //'(/, N:\u—, \N) et //'(/, N-l; Xu ',
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λtf-J ( β = ± et iV^l) . On interprete la notation IΓ(l, N;Xly -~,\N) pour
N=0 comme //(/) si £=+> comme //(/—I) si £ = — et Z ^ l et comme 7(0) si
δ = — et / = 0 . On dάfinit μΐ'"'1 par cont j^ si XN>0, par <2(δ2)ocontj^ si
λ ^ O et S(-1)N= — 1 et par ^ ( S J o c o n t ^ si λ ^ O et £(—1)*= + 1; les nota-
tions JCNy Qfii) et Q(S2)

 o n t έtέ introduites dans le b) de 2° de la section 6.
Posons M'=μΊ-N-\M) et Σ ' - μ f ' ^ ( Σ ) . Alors, μ?'N~ι est une transformation
birationnelle de M sur M' et birέguliere deM\\JCN\J /^(δ,) \ sur M'\ \ δ, U μ(JCN) \
oil i=l> 2 et μ signifie μ?'1*'1.

On dόsigne par //*(/, N; λ2, —,\N)* le graphe de ΣU {#, S 4 . Alors,
d'aprέs ce qu'on a vu dans le b) de 2° de la section 6 et dans la proposition
9.5, on a le

Lemme 11.2. On a la relation:

μ^N'\II\U N; λi, .-, XNY) = 11% ΛΓ-1; λx, ••., λ,,.,)*

pour6=± etN^l.

3° Dάtermination des paires normalisees [[JR, φ]] appartenant & H{1)
Dans ce cas, par les propositions 7.2 et 9.2, on a m=mh n=mι+l9 s=sh t=sι+1,
nιt—ns=3 oύ ^ / + 2=3τ« / + 1—m h n%=2 et m1 = 5i Sι = mι—mι^2. On a (i?)=
mfio-tntoSo., (φ)=T+sιS0-sι+1Soo, (f)=mιT-3Soo et (/+l)=5 0 +C/-35oo.
Par suite, on a deg*SΌ=m/+1, deg*SΌo=/̂ /, degΓ=3 et degί7=m/_1. Soit [R, <p]
une paire normalises appartenant a //(/). Toute paire normalises appartenant
a //(/) est donnέe par [cmiR, cs«p\ pour un c ^ C * . En outre, d'apres la pro-
priόte (iii) de la fonction g, on peut prendre la paire normalisee [i?, <p] telle que
g=zφnjRt prenne la valeur constante —1 en *SΌo. Elle s'appelle paire normalίsέe
par So et S* et on la dόsigne par [[R, φ]]. Toute paire normalisόe par So et SΌo
s'άcrit de la forme [[ωR, ω2φ]] oύ ω 3 = l puisqu'on a mt—ns==3. D'aprέs le
lemme 6.1 et le corollaire 11.1, on a le

Lemme 11.3. Soit [[R, <p]] une paire normalisέe appartenant a //(/).
Alors:

(i) Si Z^l , on peut toujours trouver une paire normalisέe \\R', φ']] appar-
tenant a 11(1—1) telle que [/z,/>/_1(M)̂  ^/>/_1(Σ), p°μjj-i\ soit la rέsolutίon minimale
du point d'ίndέtermination de Rr et que Von ait

(11.1) Sί = 5oo, SJi=U et T'=T.

La paire [[i?', 9/]] est dέterminέe uniquement a une racine cubique de 1 pres. Le
transformέ propre de C% par μιtl-x est C% oύ β=0, 00.

(ii) Si 1=0, on peut toujours trouver une paire normalisέe [R\ φ'] appar-
tenant a 1(0) telle que [μo,-i(M), A&O,-I(Σ), poμ^\.i] soit la rέsolutίon minimale du
point d'indέtermination de Rr et que Von ait
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(11.2) SΌ = S., SL=U et T'f)T={p}.

La paίre \R!, φf\ est dέterminέe unίquement a un facteur constant pres. Le trans-
formέ propre de CT par μo,-i est Cf. let, S'o, SL, T et Cψ sont SQ> Sooy T et
C% pour [[Rf, φ']] ou [R', φ'\ respectivement.

Lemme 11.4. Pour deuxpaires normalisees [[R, <p]] et [[R', <p']] satisfaisant
aux conditions du lemme 11.3, on a

φmιlRι=,φrmιlRfSι pmr / ^

En effet, les fonctions φmήRsι et φιmι\R'*ι sont / pour [[R, φ]] et g pour
[[Rf, φ'~W respectivement; on les designe par / et g' respectivement. On a
(g^rmT—ZS'o car (Λ/)=ifiMSί-»ιlSί,, (φ^T+s^S'o-s^ et s^m^
sιmι^1=—3. D'autre part, on a (/ĵ W/Γ—3*SΌo. D'aprέs la condition (11.1),
on &f=CLgf oύ α G C * . Compte tenu de la definition de paire normalisόe par
*S0 et *SΌo, la restriction de/et celle de^ ' a U(=SL) sont identiquement όgales &
— 1. Done le lemme est dόmontrό.

D'aprέs le lemme 11.4, on a le

Lemme 11.5. Soit [[R} φj\ une paίre normalisέe appartenant a II(J) oύ
/ ̂  1. Alors il exίste une paire normalisέe unique [[Rr, φ']] appartenant a //(/—I)
telle que

R = (φ'mι+R'sι)mιlR'sιmri

φ = φ\φfmi+RfSi)sιlRf^2 .

D'apres cette relation, \[ωR', ω2^']] correspond a \[ωR, ω2φ]] oύ ω 3 = l .

En effet, pour [[22, φ]] on peut prendre [[Rf, φ']] satisfaisant aux conditions
du lemme 11.4. Considόrons la resolution minimale \M\ 2', p] et Γespace
produit (P1χP1, -η[) pour R'. Soient (z, zϋ) les coordonnάes telles que

RΌp' = zo>η[ et φ'°ρ' = tϋ°η[ .

On dέsigne par i?*, 9?* e t/* respectivement les fonctions JR, φ e t / regardόes en
tant que fonctions sur (P1χP1

> η{). D'aprέs le lemme 11.4, on a f*=wmιjzsι.
Par Γapplication ^ί°p/""1, le domaine P2\(*SΌoU U) est isomorphe a C * χ C et *SΌo
(resp. U) correspond au point (0, 0) (resp. (°o, 00)) d'aprέs la condition (11.1).
En remarquant qu'on a (mh ί/)=l, le transformά propre de So est done donnό
par e<Λ+#5'=0. D'aprέs le lemme 11.3 et les propriόtάs (9.1), K a un pole
d'ordre un sur C?' et Φ est non constante sur Cτ'\ e'est-a-dire que JR* a un pole
d'ordre un sur ^=00 et φ* est non constante sur #=00. Cela posό, on a

R* =

φ* =
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oύ α e C * . Remarquons ici que les fonctions φmt+ijR*ι+i et φ^^lR"1"1

prennent la valeur constante — 1 en SΌo puisqu'on a SCO=SQ. DΌύ on a a3=\.
Si α φ l , il suffit de prendre [[ωi?', ω2φ']] au lieu de [[R\ φ']] oύ ω=αΓm ' .

Voyons ensuite le cas oύ [[R, <p]\ appartient k Π(0). On a le

Lemme 11.6. Soit [[R, φ]] une paire normalisέe appartenant a 11(0).
Alors on peut prendre des coordonnέes inhomogenes (x, y) de P2 telles que

(11.3)7> R = R^x, y) = {(y-χ*γ-2xy2(y-x*)+f}2l(y-x*y

φ = φo(x, y) = (xy-o?-

// n'y a que les automorphintes (x> y)-+(ωx> ω2y)(ω3=l) de P2par lesquels le diviseur

de [[RQ, <p0]] soit invariant. On a RQ(COX, ω2y) = ωR0(xί y) et <pQ(ωx, ω2y) =

ω2φ0(x, y).

En effet, on prend une paire normalisέe [R\ φ'\ appartenant ^ 7(0) satis-
faisant aux conditions du lemme 11.3. On considέre la rόsolution minimale
[M\ Σ', p'] et Γespace produit (P1χP1

y η'o) pour Rf. Soient (z, zϋ) les coordo-
nnόes telles que RΌp'=zoη'Q et φr°p'=100^. On dόsigne par i?*, φ* et / *
respectivement les fonctions R, φ et / regardόes en tant que fonctions sur
(PιχP1, ηΌ). Par Γapplication ^op'" 1 , P2\U( = C2) est isomorphe & tout
Γespace (z, zv) et U correspond au point (°o, 00). Notons que (f)—2T—3Soo,
que T (Ί T'={p} et que Soo=S'0. De plus, π et Δ reprόsentant les transformόs
propres des o«x, et T' respectivement, μo.-i( IXI U S^) U T' se rόduit &

I I
0D Δ O ,

le transformό propre T de T coupe transversalement ces courbes seulement en
les points (0, 00) et (00,0) et on a (T2)=2. Done la courbe T est donnόe par
zzo+a=O et on a done

Ici, (<?R\ cφ') pour c e C * est aussi notre paire normalisόe \(?R\ cφ'\ Done
on peut prendre de nouveau [R'y φ'\ telle que f=(zw—l)2jz3. Par suite, le
transformό propre de So est donnό par (zzϋ—l)2+z3=0 puisqu'on a
U-{-So— 3SCO oύ U correspond au point (oo, CXJ) par ηΌep''1. DΌύ

oύ α e C * . Cela pose, on a a3=\ puisque la restriction de φ5/RA & So {—SO)

7) La courbe donnόe par R0(x,y)=Q apparaίt dans H. Yoshiwara [13],
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est constante όgale k — 1. En remplaςant [R'y φ'\ par [coR', ω2φ'] oύ ω 3 = l ,
on peut supposer α = l . D'aprέs le thέorέme 10.1, on peut prendre des
coordonnόes homogέnes (UQ, UU U2) de P2 telles que i?' = (tiQtfy—u\)ju\ et que
φ'=u1lt£29 en remarquant que φ'2\R' prend la valeur constante —1 en ^ = 0 .
Le point d'indόtermination p de nos functions est alors donnό par (1, 0, 0).
Ainsi, en posant x=u1/u0 et y=^u2\u^y le rέsultat est όtabli.

Corollaire 11.2. On dέfinit les fonctions J2_x et φ_λ par

(11.4) R-i = {y-*)lϊ, φ-x = *\y.

Alors (i?_!, <p-ι) est la poire normalisέe [R-i, φ-\i appartenant a 1(0). On
έcrit

(11.5) R, = i(φ.1-(R.

φo = (φ.ί-(iL.

on a done le

Thέordme 11.1. Soient J27 et φt (/^l) les fonctions rationnelles dέfinies
par

(11.6) R, = ((9»,.1)

i?o ^ <Po donnέes par les dέfinitions (11.3) OM feί relations (11.5). Alors
(Rh <pι) est une paire normalisέe [[Rh φfi\ appartenant a //(/).

Toute paire normalisέe [[R, φ]] appartenant a //(/) est la paire [[Rι, φi\]
pour certaines coordonnέes inhomogenes (x, y) qui se dέterminent uniquement par

II n'y a que les automorphisms (x, y)->(ωx, ω2y) (ω 3 =l) de P2 par lesquels le
diviseur de [[Rh φfi\ soίt invariant.

On dάsigne ρar/7 la fonction (<Pι)mil(Rι)Sι.

Corollaire 11.3. On a les relations: Rj(ωxy ω2y)=ωRι(x,y), φ^ωx, ω2y)=
ω2φι(x, y) etf^ωxy ω?y)=fι(xy y) avec ω3=l.

On dέsigne par So, SL, Tι et Uι les quantitέs So, Soo, T et U associάes &
[[Rι> ΦiW respectivement. Pour R_ly on dάsigne par Sb"1 et Sz1 les quantitέs
*S0 et *Soo respectivement. On a alors la

REMARQUE 11.1.

(11.7) τ t - i = T i p o u r ι^i9

St1 = SL et SI

oΓ
1=Uι pour Z^O.
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4° Polynόmes dόfinis par la paire [\Rh φi\\. Soit (#, y) un systέme de

coordonnόes inhomogenes de P2. En combinant le thάorέme 11.1, le corollaire

11.2, la remarque 11.1 et les relations (9.4) et (9.5) avec les relations m=mι et

mΐ—ns=3y on a le

Corollaire 11.4. On pose

(11.8) P-r = y-*, Q-! = y,

Po = {y-,?f-2xfiy-*)+y*,
Qo = y—X? , φ Q = χy—s»—y> ,

Alors Pi et Qι sont des polynόmes en x et y de degrέs mι+1 et mt qui dέfinissent

les divίseurs Si et Si de Rt respectivement. On a ft = (Φ0)
W//(δ/)3>//+ ̂  =

On dira que (P7, 0/, 9?0) sont les polynόmes dέfinis par [[Rh φi\],

5° Dέtermination des paires normalisόes [i?, 9?] appartenant a // ε(/, ΛΓ;

λx, •••, \N) oύ Λ^^l et 6=±. Dans ce cas, par les propositions 7.2 et 9.2, on a

m=mj et ί=$/(iV). Soit [i?, >̂] une paire normalisόe de // ε (/, JV; λi, •• ,λ J V).

Alors toute paire normalisόe de //*(/, iV"; λ1} •••, XN) est donnόe par [cw'i2, c*]Wq>\

pour ί G C * . Conservons la notation //*(/, JV; X1? •••, XN) pour iV=0 introduit

dans le 2°. D'aprέs les lemmes 6.1 et 11.2, on a le

L e m m e 11.7. Pour une paire normalisέe [R, φ\ appartenant a IΓ(l, N;

λ»i> "'J'^N)} o n Peut toujours trouver une paire normalisέe unique [Rf, φ'\ appar-

tenant a IV(I, N—\\ Xly •••, λ^-x) ά un facteur constant pres telle que si (N, €)=

(1, - ) ,

(11.9) ^ί-^oo, SL=U

et sinon,

(11.10) S$=C7, SL = Soo

et telle que le graphe de Σ r * soit IP {I, N—l; \ly •••, λ^-x)* et le transformέ propre

de Crpar μf'^1 soit Cf si (N, S)=(l, -) et C°τ' sinon.

let Si, SL, C°τ, CT et S'* sont So, S*, C°τ, C? et Σ* pour R' respectivement.

Sous les notations Bky J2k et 3k introduites dans la section 4, on dέsigne

par Jk (resp. /0) le membre a Γextrόmitά de Σ«> appartenant a Xk (resp. 3ι).

Puisque Σ est obtenue par άclatements successifs comme on Γa vu dans le 2°

de la section 5, on a le

REMARQUE 11.2. JN=C?. μ] \Jύ=Cΐ\ μ} 0(J0)=C°τ' si (ΛΓ, fi)=(l, - )
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et μ?-N-\JN)=CΪ, /*f " - 1 ( Λ _ 1 ) = C ? ' sinon.

oxάBk{R) = ordjkl(Jκ) pour k=l, •••, N> ordJj!f.(R)=l et la restriction de φ ά JN

est unίvalente.

(a) Le cas oύ //"(/, 1 λj).

L e m m e 11.8. Soit \R, φ\ une paire normalisέe appurtenant a / / " ( / , 1; Xi).

Alors, si / ^ l (resp. 1=0), ίl existe une paire normalisέe [[Rf, <p']] appartenant a

II'(/— 1), (resp. [R'y <p'] appartenant a 1(0)) et des nombres complexes a

(i=0, ••-, λi) avec flλlΦ0 tels que

oύ f ? = 9 > ' + Σ ^,-i?' '. #S/ / = 0 , on α en plus ao=O.
ί = 0

Rέciproquementy toute fonction dέfinίe de la maniere ci-dessus avec des nombres

complexex arbitrages a{ est de type (0, 2).

En effet, si Z^rl, on prend une paire [R\ <p'] satisfaisant aux conditions du
lemme 11.7. Alors [c"*-1!?, cSι~ιφf) (cGC*) est notre paire. En particulier,
prenons une paire normalisέe \[R\ φ']\. Considέrons la rόsolution minimale
[M', Σ', p'] et Γespace produit (P1xP1, ηί) pour R'. Soient (#, zϋ) les coordon-
nόes telles que Rfop'=zoγ)[ e t φΌp'=zoov{. Alors M\|(Σ\{/!})U 0, S 4 |
est isomorphe a Γespace produit {(#, w): ^ G P ^ O } , zϋ^C} par^ίo^,}'0 et le
transform^ propre de Jx est donnά par z=oo, Les courbes £«> (=S'O) et
U (=SL) correspondent aux points (0,0) et (<*>, oo) respectivement. En
dέsignant par/* la fonction/regardόe en tant que fonction sur (P1χP1, ηί), la
restriction d e / ^ a P ^ C a u n zάro seulement en #=oo et T, qui est le trans-
formέ propre de Γ, et un pole seulement en z=0. L'ordre en z=°° (resp. T)
est Sj (resp. nij). Cela posό, on peut facilement voir que la courbe T est donnόe

λ

par ^ i w + Σ ^ - , - ^ = 0 oύ α, GC (/=0, 1, •••, X2—1) et α λ e C * . Par suite, en
i = 0

remarquant que φmι\R'*ι prend la valeur constante - 1 en ί/, la fonction/*
s'όcrit

Si 1=0, on prend une paire [R', φ'\ donnάe par le lemme 11.7 satisfaisant de
plus & la condition ^ ( t n / J e f . Grace & cette condition, en reprenant le

- λ l" x

meme raisonnement que le cas ou /Ξ>1, T est donnόe par zλiw-\- Σ^λi-i^'—O
i = 0

oύ (j(GC ( t = l , •••, λj—1) et « λ i e C * . Done/* s'έcrit
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Le lemme est ainsi dάmontrέ.

D'aprέs les thόorέmes 10.1 et 11.1, on a done le

Corollaire 11.5. Pour [R, <p] appartenant a II~(l, 1; λj), la fonction f
admet la forme

(11.11) fT,i,(λl)(a) = £""/(*i-i)''

pour des certaines coordonnέes inhomogenes (xy y) P2 de oύ ?=95 / _ 1 +Σ Λ, (2ΪJ-I)~',
ι=0

fl, GC (i=0, •••, λ2) avec αλl=t=O et a=(a0, •••, aλl) si (1=0, ao=O). De plus on a

/Γ.i.(λl)(«; cox, ω2y) =/Γ.i.cχ1)(β*; *> y)

(11.12) a* = αj ω""^"1^, α* = (aft, •••, α*χ) #£ ω3 = 1 .

Theordme 11.2. Soίt \R, φ\ unepaire normalisέe appartenant a Π~(l31 λi).
Alors ίl existe des coordonnέes inhomgenes (x3 y) de P2 et des nombres complexes
a^C (i=0, •••, λx) avec ̂ λ l Φ0 (si 1=0, ao=O) tels que

(11.13) R = ^^"//(Λ^OVr1

02/ § = 9 ? , !
i = 0

Rέciproquement, toute paire (R, φ) dέfinίe de la manίere ci-dessus avec des
nombres complexes arbitraires a{ et un nombre complexe £=t=0 est une paire norma-
lίsέe appartenant a Π~(l, 1 λ^:

En effet, pour [JR, φ\, d'aprέs le corollaire 11.5, il existe des coordonnόes
inhomgέnes (x, y) de P2 et des nombres complexes a^C (i=0, •• ,λ1) avec
# λ i φ0 (si 1=0, aQ=0) tels que/soit donnόe par la relation (11.11). Considόrons
la rόsolution minimale [M\ X', p'] et Γespace produit (P1χP\ η[) pour R^x.
Soient (z, w) les coordonnάes telles que Rj^op^goηl e t φ^^p =z w°η[. On
dόsigne par i?*, 9?*et/* respectivement les fonctions R, φ e t / regardόes en tant

λ l

que fonctions sur (P1χP1, η[). Alors/*+l s'όcrit {(w+Σ aiz~i)mi+zil}lz'1.
v , =o

D'autre part, pour (f+ί)=S0+U—rSoo, SOo(=S/

0) et U( = SJi) correspond-
ent aux points (0, 0) et (oo, oo) par η[°p'~ι respectivement. II est immόdiat
que le transformό propre de *SΌ est donnό par

(^4~Σ aiZ"1}1"1-^^1 = 0 .
t=0

on a done

R* =



572 H. KASHIWARA

oύ c^C*, puisque i?* a un pole d'ordre un en #=oo qui est le transformό
propre de μ)'°(Jι) par η{. On a aussi

puisque 9?* est non constante sur # = 0 0 . La relation (11.13) est ainsi obtenue.
La rόciproque est όvidente.

REMARQUE 11.3. On dέsίgne par [Rΐ.i.^icήy φT,i,(λl)(a)] la paire \R, φ\
donnέe par (11.13) avec c= 1. On a alors

RT.i.ζxjia; ωx, ω2y) = ωRj,i,(λl)(α*; #, y)

Φli.iKjia; ωx} ω2y) = ωVΓ.i.&!>(«*; ̂  ^)

oώ α, α* ^ί ω satisfont aux relations (11.12).

(b) Le cas oύ IΓ(l, N; \l9 - , λ^Φ//"(/ , 1 λx).

L e m m e 11.9. Soίt \R, φ\ une paire normalίsέe appartenant a Π*(l, N;
"'y ^N) Alors ίl existe une paire normalisέe [R'y φ'\ appartenant a II*(l, N— 1
"> ^N-ι) et des nombres complexes a^C (/=0, •••, \N) avec βλiV.Φ0 tels que

(11.14) f=ς»iR'Ίw

ou ξ = φΊR'+ΣiaiR'i.
i = 0

Rέciproquement, toute fonction f dέfinίe de la manure ci-dessus avec des nombres
complexes arbίtraίres a{ est de type (0, 2).

Pour toute paire normalίsέe \cmιRf, cs*(N~^<p'] (cGΞC*), on a

En effet, on prend une paire [i?', 9?'] du lemme 11.7. Considόrons la
rόsolution minimale [M\ Σ', p'] et Γespace produit (P 1 X P 1 , η'2) pour i?\
Soient ( ,̂ u) les coordonnόes telles que R'°p'=z°r)2 et {<prjR')°p =u°η'2. On
dάsigne p a r / * la fonction/ regardόe en tant que fonction sur (P1χP1> η'2).
Alors M\\(Σ\iJN})ϋ 0, Soo} | est isomorphe a Γespace produit {(z9 u)\ z(=C,
u^C} par η2°μ?tN~lmy le transformό propre de JN par elle est donnό par z=0;
SO (=U) et SL (=Soo) correspondent aux points (0, 00) et (°o, 0) respective-
ment done la restriction de/* a CxC est un polynόme qui a un zόro seulement
en T qui est le transformό propre de T et en # = 0 . En outre, les ordres de
zόro en 1 et en z=0 sont mt et s](N) respectivement. D'aprόs le meme
raisonnement que pour le cas prόcόdent, T est donnόe par
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oύ tf, e C (i=0, , \N-x) et flAjeC*. Done, en remarquant que φmιjRts^N"l)

prend la valeur constante — 1 en [/, on obtient la relation (11.14).

Thόordme 11.3. Supposons / ^ 0 , ΛΓ^l ίrf (JV, £)Φ(1, —). Soit [R, φ]

une paίre normalisέe appartenant a IP (/, N\ Xly •••, λ # ) . Alors il existe une paire

normalisέe unique \R', <pr] appartenant a IP (I, N—l; \ly •••, \N-i) et des nombres

complexes a^C ( /=0, •••, XN-I), <zλjΓE:C* tels que

(11.15) R = ζ^R^iN)mrι

Λ i r

ou ξ=φΊR'-\-^ΣJ tyR'* et ζ—ζmι
»=0

Rέciproquement, toute paire (R, φ) dέfinie de la maniere ci-dessus avec des

nombres complexes arbitraίres a{ est une paire normalisέe appartenant a // ε(/, N;

En eίfet, on prend une paire [Rf, φ'] du lemme 11.9. Alors [cmιR\

cs*(N-Vφ'] (c^C) est notre paire. Considόrons le meme espace (P1χP1> η'2)

pour Rr et les memes coordonnόes (z, u) que pour le lemme 11.9. On dόsίgne

par i?* et φ* respectivement les fonctions R et φ regardόes en tant que

fonctions sur (P 1 X P 1 , 97Q. Alors i?* est une fonction rationnelle qui admet un

zόro d'ordre mi seulement en le transform^ propre So de So et un pole d'ordre

un seulement en # = 0 sur {(#, ί/)GC2}. Comme M\\(Σ\{JN}) U 0 , S^} \ est

isomorphe & tout Γespace (z, u), JN est isomorphe ^ z=0 et U (resp. Soo) corre-

spond au point (0, 00) (resp. (oo, 0)) par η&μf'**'1- D'aprέs le meme raison-

nement que pour le cas (a), on όcrit

R* = c\ _
1=0

1 = 0

En remplaςant [R\ φ'] par [c mιR'y c~s*(N l)φ'\ on peut supposer a=\ dέs le

dέbut.

La rόciproque est όvidente.

REMARQUE 11.4. Sous la situation du thέoreme 11.3, en prenant Γautre paire

\R!\ φ"] donnέe par [<p2R'y ωφ'\ on a

(11.16) R = ω2ζ
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ou ξ'=φ"l

(11.17) af = a^-1 (0^i^XN) et ω3 = 1 .

6° Demonstration des propositions 7.2 et 9.2. On calcule ici n, t et r
qui ont άtό donnέs sans demonstrations dans les propositions 7.2 et 9.2. Soit
[i?, φ] une paire normalisέe appartenant d //*(/> JV; λ2, -^X^) ( £ = ± et iV^l).
Soit /* le membre & Γextremite de Σ*, qui appartient & Xk. Alors on a

(11.18) i r j
^Φ) = \NmlSl(N)+\N+(sKN)Y pour N^

En effet, rappelons le thόorέme 11.3 et la remarque 11.2. Pour Γespace
produit (P1xP\ η[) de Rf et ses coordonnάes (zy w) telles que RΌp'=zoη[ et
<p'°p'=zϋoη'ly Γimage propre deJN_λ par Γapplication ηΊoμf'1*'1 est donnά par
z=oo. On peut done calculer les ordres (11.18) d'aprέs les relations (11.15).

Soit Jo le membre, qui appartient & 3Oy & Γextrόmitό de Σoo. Si iV==l, on a

(11.19) ord/o(^) = Umtf+m/W-l

oτάjlΦ) = χimιs](l)+χ1+(s](l)Y.

En effet, la situation dans le cas II+ (/, 1 λx) est la meme que celle du cas
prόcάdent. Dans le cas //"(/, 1; λ2), sous la situation du thόorόme 11.2, en
prenant Γautre (P1xP1

i η'2) pour R^ et ses coordonnόes (z, u) avec u=vjfzy

Γimage propre de/ 0 pa*" Γapplication η2°μ)'° est donnό par # = 0 . Done (11.19)
est aussi une consequence des relations (11.13).

En outre, on a

(11.20)

pour N^2 et ί

En effet, d'apres la remarque 11.2, Γordre de K (resp. φ) en Bk est όgal &
celui de K (resp. φ) en Jk_v La famille Xk est linέaire. D'ailleurs, on a
I-AI Π |(Σ*U {t))\Xt|=0 pour l ^ A ^ i V - 1 . D'autre part, d'apres (11.18),
on 2LθxάBπφ)=XN{mι)

2-\-mιs]{N)—\. Ici, on remarque qu'on aord / i v r(J^)=l
et \XN\ Π |Σ*\-Γ*| = 0 . Done, d'apres la formule (RF.2), on peut facilement
obtenir (11.20).

D'aprέs les relations (11.20), il est immόdiat que

(11.21) ord/ o(£) = Π (λ*K)2+/«,ίJ(*)-l)

{φ)= {XNmlS)(N)+\N+{s]{N)Y) ^
Jfe = l
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Maintenant, pour calculer n et ty considόrons le graphe de 30. Soit C* le
membre de 30 qui coupe &.. On a alors |£Γ0| Π(3u f)=0 et |£?o\{C*} | Π
Soo=0. D'aprέs le meme raisonnement que pour le lemme 9.6, Γordre de R
(resp. φ) en S*, est 6gal a celui de R (resp. φ) en C*. On a les relations (11.21).
DΌύ, en appliquant la mέthode de calcul de m et s, on peut calculer n et t, par
suite r. On a done terminέ la demonstration des propositions 7.2 et 9.2.

7° Conclusion dans le cas oύ //*(/, N; Xl9 •••, λjv) ( £ = ± et iV^l). Soit
(#, J/) des coordonnόes inhomogenes de P 2 . Soient iV un entier ^ 1 et λ =
(λi, -~,\N)(=NN OU iVί ou ΛΓ est Γensemble des entiers ^ 0 et N+=N\{0}.
Soit ®(JV; λ)={α=(Λy f ί); ajti^Cy ajfKjΦ0}. Ici, les indices (j, ί) parcourent
les intervalles l^j^Net oki^Xj. Soit ©0(ΛΓ; λ)={α=(Λy§ί)G©(iV; λ); alt0

= 0 } . On prend a=(aJti)e®(N; λ) (resp. @0(ΛΓ; λ)) et a'=(ajti)G®(N-U λ')
(resp. ©0(iV—1; λ')) avec λ = ( λ l f •••, λ^-!, λ*) et λ '=(λ ! , ,— λ^-O On note
a'<a si ajti=ajti pour tout l^j^N— 1 et

1) Les formes canoniques de [R, φ\.
Nous allons dόfinir par rόcurrence en N> les fonctions rationnelles

R].N,\(a) et <p],N,x(a) sur P 2 avec paramέtre a<=®(N; λ) (si (/, f)=(0, —), alors

Si (e, iV)=(+, 1), on dόfinit [Λ?,iiλ(α), <pti,λ(a)] par [iϊ, >̂] donnόe par les
relations (11.15) avec [R\ <p']= [[Rh φ,]], X&N1 (si 7=0, alors λEΞNl) et
αG@(l;λ).

Si (S, iV)=(—, 1), on a dόfini [i?Γ,i.λ(α)> ^Γ.IΛW] P a r [-̂> ^] donnόe par les
relations (11.13) avec c=l, λ^N1 et α e ( S ( l ; λ ) (si 7=0, alors λ e i V i et

En gάnόral, pour iV^2, on dέfinit [i?/,Λr,λ(α)> ^/ .^ΛW] P a r [̂ > 9̂ ] donnόe
par les relations (11.15) avec [Rr, 9>Ί=[^/.iv-iΛ/(α/)> <Pzι.N-\,χ(a')y λ=(λ! , --sλ^)
eiV^ (si 7=0, alors λeΛΓ?), λ ^ ^ , - , XN^\ a<EΞ®(N; X) et α'e®(i\Γ-l λ')
tels que α ' < α (si (7, £)=(0, - ) , alors a<=Ξ®0(N; X) et α'eE©o(iV-l λ') Alors,
d*aprds les thόorέmes 11.2 et 11.3, on peut conclure le

Thόorέme 11.4. Toute [R],N,\(a), <p*,N,\(a)] e s t u n e Pa^re normalisέe
appurtenant a IΓ(l, N; Xu •••, XN).

Rέciproquement, si [R, <p] est une paire normalίsέe appartenant a II* (ly N;

\y *"> ^>N)J al°rs H exίste un automorphisme algέbήque c de P2 et un point α e

@(iV; λ) (si (I, 6)=(09 - ) , alors a<EL®0(N; X)) tels que

R = cmiR*tNtλ(a)oι

φ = Cs^N)φ)tNtX(ά)ot

ou C G C * .

En plus, si α* et i* satisfont aux relations ci-dessus, JOJ*~ doit etre I'automor-

phisme de P2
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2) Les polynόmes dόfinis par [R*,N,\(a), φ*,N,\(a)] On a dόja vu les

polynόmes (Ph Qh Φo) dέfinis par [[Rh φi\]. En gόnόral, on appelle (P, Q> Φ)

polynόmes dέfinis par [R, φ] si P, Q, et Φ sont les polynόmes de x et y qui

dάfinissent les diviseurs SOy S* et T de [R, 9?] et si on a R=PmIQn, φ=ΦPsIQ'.

Pour [i?/,iv,λ(α), ^/,AΓΛ(«)]» on pose: Si (5, N)=(—, 1), alors

ΦΓ,U(«) =
1 = 0

Si (6, ΛΓ)Φ(-, 1), alors

Plsja) = {δ' r+(Φ!.i.»)"' '}/P',

Ici, si (£, iV)=(+, 1), alors P', Φ', «', s', t' et r signifient P,, Φo, ί«;+1, ί;,

ί/+1 et r^ l λi) respectivement et si iV^2, alors ils signifient PJ.JV-IΛ'C*'')'

Φ'.N-ιΛr(a'), n]{N-l; λ1; - . λ ^ ) , *Ϊ(JV-1), t](N-l;Xu-,XN) et r?(ΛΓ;

λi, •••, λjy) respectivement. Alors, d'apres les theoremes 11.2, 11.3, 11.4 et les

relations (11.9), (11.10), on a le

Corollaire 11.6. (PΊιNiλ(a), Qh Φ;,jv.λ(«)) sont les polynβmes dέfinis par
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