

Title	On certain cohomology groups attached to Hermitian symmetric spaces. II
Author(s)	Matsushima, Yozô; Murakami, Shingo
Citation	Osaka Journal of Mathematics. 1968, 5(2), p. 223–241
Version Type	VoR
URL	https://doi.org/10.18910/11150
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Matsushima, Y. and Murakami, S. Osaka J. Math. 5 (1968), 223-241

ON CERTAIN COHOMOLOGY GROUPS ATTACHED TO HERMITIAN SYMMETRIC SPACES (II)

YOZÔ MATSUSHIMA AND SHINGO MURAKAMI

(Received June 28, 1968)

Introduction

Let X=G/K be a bounded symmetric domain in \mathbb{C}^N , where G is a semisimple Lie group with finite center and K is a maximal compact subgroup of G. An automorphic factor j on X is a \mathbb{C}^∞ -mapping $j: G \times X \to GL(S)$, S being a finite dimensional complex vector space, which satisfies the conditions:

- 1) j(s, x) is holomorphic in $x \in X$ for each $s \in G$;
- 2) j(ss', x) = j(s, s'x)j(s', x) for $x \in X$ and $s, s' \in G$.

Let x_0 be the point of X=G/K represented by the coset K. An automorphic factor j defines a representation τ of the group K by the formula $\tau(t)=j(t, x_0)$ for $t \in K$ and we say that j is a prolongation of the representation τ of K. We know that, given a representation τ of K in a complex vector space S, there exists an automorphic factor $J_{\tau}: G \times X \to GL(S)$ which is a prolongation of τ and which we call the canonical automorphic factor of type τ [4, 6, Part II]. Moreover, if τ is an irreducible representation of K, then the automorphic factors which are prolongations of τ are equivalent to each other [6, Appendix].

Let j be an automorphic factor on X. Then G acts on $X \times S$ as a group of holomorphic transformations if we define the action of $s \in G$ by putting

$$s(x, u) = (sx, j(s, x)u)$$

for $(x, u) \in X \times S$.

Now let Γ be a discrete subgroup of G. Then Γ acts on X properly and discontinuously. In the following we assume that the quotient space $\Gamma \setminus X$ is compact and that Γ acts freely on X and let $M = \Gamma \setminus X$. Then M is a compact complex Kähler manifold. Moreover, Γ acts on $X \times S$ and let E(j) be the quotient of $X \times S$ by the action of $\Gamma: E(j) = \Gamma \setminus (X \times S)$. Then E(j) is a holomorphic vector bundle over M with typical fibre S. In this paper we consider exclusively the case where j is a canonical automorphic factor J_{τ} . In this case the vector bundle $E(J_{\tau})$ may be interpreted in the following way [6]. Let X_u be the hermitian symmetric space of compact type associated with X. The representation τ of K defines a "homogeneous" vector bundle $E_u(\tau)$ over X_u . Now X is imbedded in X_u as an open submanifold and Γ acts on $E_u(\tau)|X$ as a group of bundle automorphisms, where $E_u(\tau)|X$ denotes the portion of $E_u(\tau)$ over X. Then the quotient of $E_u(\tau)|X$ by the action of Γ is a holomorphic vector bundle over M which is isomorphic to $E(J_\tau)$.

Let $E(J_{\tau})$ denote the sheaf of germs of holomorphic sections of $E(J_{\tau})$. Each cohomology class in $H^{q}(M, E(J_{\tau}))$ is represented by an $E(J_{\tau})$ -valued harmonic q-form which we shall call an automorphic harmonic q-form of type J_{τ} . In particular, for q = 0 an automorphic harmonic 0-form is nothing but a holomorphic automorphic form of type J_{τ} in the usual sense.

In Part I of this paper we shall show that an automorphic harmonic q-form η of type J_{τ} is identified with a set $(f_S)_{S \in W_1^{\Lambda}(q)}$ of holomorphic automorphic forms f_S of type J_{τ_S} provided that the highest weight Λ of the representation τ of K satisfies a certain condition; here W_{Λ}^1 denotes a subset of the Weyl group of the Lie algebra \mathfrak{g}^c uniquely determined by Λ and τ_S is a representation of K determined by Λ and S in a certain way. We shall show also that, for $q=q_{\Lambda}$, where q_{Λ} is a number uniquely determined by Λ , the set $W_{\Lambda}^1(q)$ consists of a single element; thus every automorphic harmonic q-form η of type J_{τ} is identified with a holomorphic automorphic form of type J_{τ_S} for $q=q_{\Lambda}$.

In Part II of this paper we shall prove a formula which expresses the dimension of the space of "automorphic forms" in terms of the unitary representation of G in $L^2(\Gamma \setminus G)$. Combined with the results obtained in Part I we obtain a formula on the dimension of the space of automorphic harmonic forms which might be interesting in view of a conjecture stated by Langlands in [3].

Part I

1. We retain the notation introduced in the introduction. We have a decomposition of the Lie algebra

$$\mathfrak{g}^{c} = \mathfrak{n}^{+} \oplus \mathfrak{n}^{-} \oplus \mathfrak{k}^{c}$$
 ,

where \mathfrak{k}^c is the complexification of the subalgebra \mathfrak{k} of \mathfrak{g} corresponding K and \mathfrak{n}^{\pm} are abelian subalgebras of \mathfrak{g}^c such that

$$[\mathfrak{k}^{c}, \mathfrak{n}^{\pm}] \subset \mathfrak{n}^{\pm}, [\mathfrak{n}^{+}, \mathfrak{n}^{-}] \subset \mathfrak{k}^{c}$$
.

Moreover, \mathfrak{k} contains a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and \mathfrak{n}^+ and \mathfrak{n}^- are spanned by root vectors corresponding to the roots of \mathfrak{g}^c (with respect to the Cartan subalgebra \mathfrak{h}) (see [6, Part II]). We denote by Ψ the set of all roots α such that the root vector X_{α} belongs to \mathfrak{n}^+ . Then

$$\mathfrak{n}^+ = \sum_{\boldsymbol{\omega} \in \Psi} \boldsymbol{C} X_{\boldsymbol{\omega}} \quad \text{and} \quad \mathfrak{n}^- = \sum_{\boldsymbol{\omega} \in \Psi} \boldsymbol{C} X_{-\boldsymbol{\omega}}$$

with $X_{-\alpha} = \bar{X}_{\alpha}$, where - denotes the conjugation of g^c with respect to the real form g. We choose X_{α} in such a way that

$$\varphi(X_{\alpha}, X_{-\alpha}) = 1$$
,

where φ denotes the Killing form of g^c .

We know that there exists an ordering of the roots such that the roots in Ψ are all positive. We fix once and for all such an ordering of roots. We denote by Θ the set of all positive roots not belonging to Ψ . Then the root vector of $\beta \in \Theta$ belongs to t^c . We call a root α belonging to Ψ (resp. Θ) as a non-compact (resp. compact) positive root. We shall denote by Σ the set of all roots and by Σ^+ (resp. Σ^-) the set of all positive (resp. negative) roots.

Let W be the Weyl group of \mathfrak{g}^c . W is a group of linear transformations of the dual space \mathfrak{h}_0^* of the real vector space $\mathfrak{h}_0 = \sqrt{-1}\mathfrak{h}$ in \mathfrak{g}^c and W is generated by the reflections $S_a(\alpha \in \Sigma^+)$ with respect to the hyperplanes $P_a = \{\lambda \mid (\alpha, \lambda) = 0\}$.

We shall denote by W_1 the subgroup of W generated by S_β with $\beta \in \Theta$. W_1 is isomorphic to the Weyl group of \mathfrak{t}^c . For $T \in W$, let

$$\Phi_T = T(\Sigma^-) \cap \Sigma^+$$

and let

$$n(T) =$$
 the number of roots in Φ_T .

Let W^1 be the subset of the Weyl group W consisting of all $T \in W$ such that $\Phi_T \subset \Psi$. It is easy to see that T belongs to W^1 if and only if $T^{-1}(\Theta) \subset \Sigma^+$.

Now let τ be an irreducible representation of K in a complex vector space S. Then τ defines an irreducible representation of the complex reductive Lie algebra \mathfrak{k}^c which we shall denote by the same letter τ . Let Λ be the highest weight of τ . Then we have

$$(\Lambda, \beta) \ge 0$$
 for all $\beta \in \Theta$.

We shall assume that τ satisfies the following condition:

(*)
$$(\Lambda, \alpha) \ge 0$$
 for all $\alpha \in \Psi$.

Then $(\Lambda, \gamma) \ge 0$ for all $\gamma \in \Sigma^+$ and hence there exists an irreducible representation of \mathfrak{g}^c whose highest weight is Λ . We shall denote this representation of \mathfrak{g}^c by ρ and by Λ' the lowest weight of ρ .

Now put

$$W^{1}_{\Lambda} = \{T \in W^{1} | T\Lambda' = R_{1}\Lambda\},\$$

where R_1 is the unique element of W_1 such that

$$R_{1}(\Theta) = -\Theta$$
.

Further we let

$$W_{\Lambda}^{1}(q) = \{T \in W_{\Lambda}^{1} | n(T) = q\}$$

For $T \in W^1$ we shall denote by τ_T the irreducible representation of \mathfrak{k}^c whose highest weight is $-\xi'_T$, where

$$\xi_T' = T\Lambda' + \langle \Phi_T \rangle = T(\Lambda' - \delta) + \delta;$$

here, for any subset Φ of Σ , $\langle \Phi \rangle$ denotes the sum of the roots belonging to Φ and $\delta = \langle \Sigma^+ \rangle / 2$.

Now we can state

Theorem 1. In the notation introduced above, to each automorphic harmonic q-form η of type J_{τ} , where τ satisfies the assumption (*), we can associate uniquely a set $(f_S)_{S \in W_{\Lambda}^{1}(q)}$ of holomorphic automorphic forms of type J_{τ_S} and each of such a set corresponds to an automorphic harmonic q-form η of type J_{τ} . In other words we have the following isomorphism of the cohomology groups:

$$H^q(M, \boldsymbol{E}(J_{\tau})) \simeq \sum_{S \in \boldsymbol{W}^1_{\Lambda}(q)} H^0(M, \boldsymbol{E}(J_{\tau_S})).$$

REMARK 1. If $q=N=\dim_c M$, this theorem reduces to the duality theorem of Serre as we shall see later.

REMRAK 2. Actually we shall prove Theorem 1 without the assumption that Γ acts freely on M. See Theorem 1' in § 2.

Under the same assumption (*) on Λ , let q_{Λ} be the number of positive roots $\alpha \in \Psi$ such that $(\Lambda, \alpha) > 0$.

Then we have

Theorem 2. If $q < q_{\Lambda}$, then $W^{1}_{\Lambda}(q)$ is empty. Moreover, $W^{1}_{\Lambda}(q_{\Lambda})$ consists of a single element T_{0} such that

$$\Phi_{T_0} = \{ \alpha \in \Psi | (R_1 \Lambda, \alpha) > 0 \}.$$

Thus we have

$$\begin{aligned} H^{q}(M, \ \boldsymbol{E}(J_{\tau})) &= 0 \quad for \quad q < q_{\Lambda}; \\ H^{q}{}_{\lambda}(M, \ \boldsymbol{E}(J_{\tau})) &\simeq H^{0}(M, \ \boldsymbol{E}(J_{\tau_{T_{0}}})), \end{aligned}$$

where the highest weight of the irreducible representation τ_{T_0} of t^c is

$$-\xi'_{T_0} = -T_0\Lambda' - \langle \Phi_{T_0} \rangle.$$

REMRAK 3. The vanishing of the cohomology groups $H^{q}(M, E(J_{\tau}))$ for $q < q_{\Lambda}$ has been already proved in [5]. We also remark that $R_{1}\Lambda$ is the lowest weight of the representation τ of \mathfrak{k}^{c} .

The proof of these theorems will be given in the following sections.

2. We shall recall here some results proved in [4] and [5]. Let ρ be an irreducible representation of g^c in a complex vector space F with highest weight Λ .

Restricting the representation ρ of g^c to n^- , we may consider F as an **A***) \mathfrak{n}^- -module. Let $C(\mathfrak{n}^-, F) = \sum_a C^a(\mathfrak{n}^-, F)$ be the cochain complex of the abelian Lie algebra \mathfrak{n}^- with coefficients in F, where $C^q(\mathfrak{n}^-, F)$ is the vector space of all q-linear alternating maps of \mathfrak{n}^- into F. By the Killing form φ of \mathfrak{g}^c we can identify \mathfrak{n}^+ with the dual space of \mathfrak{n}^- and hence $C(\mathfrak{n}^-, F)$ with $F \otimes \wedge \mathfrak{n}^+$ and $C^{q}(\mathfrak{n}^{-}, F)$ with $F \otimes \bigwedge^{q} \mathfrak{n}^{+}$. Let $(,)_{F}$ be the inner product in F such that $(\rho(x)u, v)_F = (u, \rho(\bar{x})v)_F$ for all $x \in \mathfrak{n}^+ \oplus \mathfrak{n}^-$ and $(\rho(y)u, v)_F = -(u, \rho(\bar{y})v)_F$ for all $y \in t^c$, where - denotes the conjugation of g^c with respect to g. The Killing form φ of \mathfrak{g}^c defines an inner product in \mathfrak{n}^+ such that $\{X_{\alpha} | \alpha \in \Psi\}$ is an orthonormal basis. Using these inner products in F and n^+ we can define an inner product in $C(\mathfrak{n}^-, F)$ which we denote by (,). Let d^- be the coboundary operator. Then there exists an operator δ^- of degree -1 such that $(d^{-}c, c') = (c, \delta^{-}c')$ for all $c, c' \in C(\mathfrak{n}^{-}, F)$. Let $\Delta^{-} = d^{-}\delta^{-} + \delta^{-}d^{-}$. An element $c \in C^q(\mathfrak{n}^-, F)$ is called a harmonic q-cocyle if $\Delta^- c = 0$. Every cohomology class of $H^{q}(\mathfrak{n}^{-}, F)$ is represented by a unique harmonic cocyle. Let \mathcal{H}^{q} be the space of all harmonic q-cocyles.

Now $C^{q}(\mathfrak{n}^{-}, F) = F \otimes \bigwedge \mathfrak{n}^{+}$ is a \mathfrak{k}^{c} -module, where $y \in \mathfrak{k}^{c}$ operates on F and \mathfrak{n}^{+} respectively by $\rho(y)$ and $\operatorname{ad}(y)$. Let

(1)
$$F \otimes \bigwedge^{q} \mathfrak{n}^{+} = \Sigma_{\xi'} m_{\xi'} U_{\xi'}$$

be a decomposition of $F \otimes \bigwedge^{q} \mathfrak{n}^{+}$ into direct sum of irreducible \mathfrak{k}^{c} -modules $U_{\mathfrak{k}'}$, where \mathfrak{k}' denotes the lowest weight of the irreducible representation $\tau_{\mathfrak{k}'}$ of \mathfrak{k}^{c} in $U_{\mathfrak{k}'}$ and $m_{\mathfrak{k}'}$ denotes the multiplicity of $\tau_{\mathfrak{k}'}$.

For $T \in W^1$, let

$$\xi_T' = T \Lambda' + \langle \Phi_T \rangle.$$

Then the mapping $T \rightarrow \xi'_T$ is an injection of W^1 into the set $\{\xi'\}$ of lowest weights appearing in (1) and we have:

$$\mathcal{H}^{q} = \sum_{\boldsymbol{r} \in \boldsymbol{W}^{1}(q)} U_{\boldsymbol{\xi}'\boldsymbol{r}}, \qquad \boldsymbol{m}_{\boldsymbol{\xi}'\boldsymbol{r}} = 1,$$

where $W^{1}(q) = \{T \in W^{1} | n(T) = q\}$. This result is due to Kostant [2].

B. The g^c-module F decomposes into sum $F=S_1+S_2+\cdots+S_m$ of mutually orthogonal t^c -submodules such that

* See [4] §§8, 10 or [6].

1) $\rho(X)S_t \subset S_{t-1}$ for $X \in \mathfrak{n}^+$ and $\rho(Y)S_t \subset S_{t+1}$ for $Y \in \mathfrak{n}^-$ for $t=1, 2, \dots, m$, where $S_0 = S_{m+1} = (0)$;

2) S_1 and S_m are simple \mathfrak{k}^c -modules and the highest weight of the representation of \mathfrak{k}^c in S_1 is Λ . Moreover

$$\begin{split} S_1 &= \left\{ u \!\in\! F \,|\, \rho(X) u = 0 \quad \text{for all} \quad X \!\in\! \mathfrak{n}^+ \right\}, \\ S_{\textit{\textit{m}}} &= \left\{ u \!\in\! F \,|\, \rho(Y) u = 0 \quad \text{for all} \quad Y \!\in\! \mathfrak{n}^- \right\}. \end{split}$$

(See [4, Lemma 5.2] or [6, Lemma 6.1].)

Let

$$\mathscr{H}^{\scriptscriptstyle 0, oldsymbol{q}} = (S_{\scriptscriptstyle 1} {\otimes} \, \bigwedge^{{}^{oldsymbol{q}}} \, \mathfrak{n}^{\scriptscriptstyle +}) \cap \mathscr{H}^{oldsymbol{q}} \; .$$

Then

(2)
$$\mathcal{H}^{0,q} = \sum_{T \in W_{\Lambda}^{1}(q)} U_{\xi'_{T}}$$

where, as in §1, $W^{1}_{\Lambda}(q) = \{T \in W^{1} | T\Lambda' = R_{1}\Lambda, n(T) = q\}.$

Proof. Since $\mathcal{H}^{0,q}$ is a \mathfrak{k}^c -submodule of \mathcal{H}^q and \mathcal{H}^q is a direct sum of simple \mathfrak{k}^c -modules $U_{\mathfrak{k}',\mathfrak{m}}$ which are not isomorphic to each other, we have

$$\mathcal{H}^{\mathbf{0},\boldsymbol{q}} = \sum_{\boldsymbol{T} \in \boldsymbol{A}} U_{\boldsymbol{\xi}'\boldsymbol{q}}$$

where A is a subset of $W^{1}(q)$. Then $U_{\xi'_{T}}$ is contained in $S_{1} \otimes \bigwedge^{q} \mathfrak{n}^{+}$ with multiplicity 1 for $T \in A$.

Now let

$$F = \sum_{\mu'} n_{\mu'} F_{\mu'}$$

be the decomposition of F into direct sum of simple t^c -submodules $F_{\mu'}$ with lowest weight μ' and with multiplicity $n_{\mu'}$. Then $S_1 = F_{R_1\Lambda}$ and $n_{R_1\Lambda} = 1$. For any $T \in W^1$, $T\Lambda$ appears as one of μ' with $n_{T\Lambda'} = 1$. Indeed, as $T^{-1}(\Theta) \subset \Sigma^+$, $\langle T\Lambda', \beta \rangle = \langle \Lambda', T^{-1}\beta \rangle \leq 0$ for all $\beta \in \Theta$ and therefore $T\Lambda'$ is the lowest weight of an irreducible respresentation of t^c which is contained in F and the eigenspace for the weight $T\Lambda'$ is of dimension 1. Now let $T \in A$. Then $\xi'_T = T\Lambda' + \langle \Phi_T \rangle$ and hence the 1-dimensional eigenspace for the weight ξ'_T is contained in $F_{T\Lambda'} \otimes \bigwedge^q \mathfrak{n}^+$. On the other hand, it is contained in $S_1 \otimes \bigwedge^q \mathfrak{n}^+$. Therefore we should have $S_1 = F_{T\Lambda'}$ and hence $R_1\Lambda = T\Lambda'$. Thus $T \in W^1_{\Lambda}(q)$. Let, conversely, $T \in W^1_{\Lambda}(q)$. Then $F_{T\Lambda'} = S_1$, because $T\Lambda' = R_1\Lambda$ and $F_{T\Lambda'} \otimes \bigwedge^q \mathfrak{n}^+ \supset U_{\xi'_T}$ and therefore $T \in A$. Thus we have proved that $A = W^1_{\Lambda}(q)$ and hence our assertion.

C. Now let τ be a representation of K in a complex vector space S and let Γ be a discrete subgroup of G such that $\Gamma \setminus G$ is compact. We don't need to

assume that Γ acts freely on X = G/K. Let $A^{0,q}(\Gamma, X, J_{\tau})$ denote the vector space of all S-valued differential forms of type (0, q) on X such that

$$(\eta \circ L_{\gamma})_x = J_{\tau}(\gamma, x)\eta_x$$

for all $\gamma \in \Gamma$ and $x \in X$, where L_{γ} denotes the transformation of X by γ . Then $\Sigma_q A^{0,q}(X, \Gamma, J_{\tau})$ is a complex with coboundary operator d'' and we denote by $H^{0,q}(X, \Gamma, J_{\tau})$ the q-th cohomology group of this complex. Each cohomology class of $H^{0,q}(X, \Gamma, J_{\tau})$ is represented by a harmonic form which we shall call an *automorphic harmonic q-form of type* J_{τ} . In the case q = 0, an automorphic harmonic form is a holomorphic function f on X such that $f(\gamma x) = J_{\tau}(\gamma, x)f(x)$ for all $\gamma \in \Gamma$ and $x \in X$, i.e. a holomorphic automorphic form of type J_{τ} .

If Γ acts freely on X, then the cohomology group $H^{0,q}(X, \Gamma, J_{\tau})$ is isomorphic to $H^{q}(M, E(J_{\tau}))$.

D. From now on we assume that τ is an irreducible representation of K such that the highest weight Λ of τ satisfies the condition (*) in §1, i.e. $(\Lambda, \alpha) \geq 0$ for all roots $\alpha \in \Psi$. There exists then an irreducible representation ρ of \mathfrak{g}^c in a complex vector space F whose highest weight is Λ . Then we have a decomposition $F=S_1+S_2+\cdots+S_m$ of F into direct sum of \mathfrak{k}^c -submodules such that the representation space S of τ is isomorphic to S_1 as \mathfrak{k}^c -module.

We assume that the representation ρ of \mathfrak{g}^{c} is induced from a representation ρ of the group G. Let $A(X, \Gamma, \rho)$ be the vector space of all F-valued r-forms ω on X such that $\omega \circ L_{\gamma} = \rho(\gamma)\omega$ for all $\gamma \in \Gamma$. Then $\Sigma_{r} A^{r}(X, \Gamma, \rho)$ is a complex with coboundary operator d (d being the operator of exterior differentiation) and each element of the cohomology group $H^{r}(X, \Gamma, \rho)$ is represented by a unique harmonic form; moreover $H^{r}(X, \Gamma, \rho) = \sum_{r=\rho+q} H^{p,q}(X, \Gamma, \rho)$, where $H^{p,q}(X, \Gamma, \rho)$ denotes the cohomology classes represented by harmonic forms of type (p, q) (see [4], [5], [6]). We have proved in [5] the following results:

a) $H^{0,q}(X, \Gamma, J_{\tau}) \cong H^{0,q}(X, \Gamma, \rho);$

b) The space of harmonic forms of type (0, q) in $A^{q}(X, \Gamma, \rho)$ is identified with the space of all $F \otimes \bigwedge^{q} \mathfrak{n}^{+}$ valued smooth functions f on $\Gamma \setminus G$ satisfying the following condition:

(i) $Yf = -(\rho \otimes \operatorname{ad}_{+}^{q})(Y) f$ for all $Y \in \mathfrak{k}$.

(ii) For every point $x \in \Gamma \setminus G$, the value $f(x) (\in F \otimes \bigwedge^{q} \mathfrak{n}^{+})$ is a harmonic cocycle of $C^{q}(\mathfrak{n}^{-}, F) = F \otimes \bigwedge^{q} \mathfrak{n}^{+}$ and moreover $f(x) \in S_{1} \otimes \bigwedge^{q} \mathfrak{n}^{+}$.

(iii) $X_{\alpha}f=0$ for all $\alpha \in \Psi$;

here we consider an element $X \in \mathfrak{g}^c$ as a complex vector field on $\Gamma \setminus G$ which is a projection of the left invariant complex vector field X on G. For the details see [5, Theorem 7.1 and Lemma 6.1].

Thus we may identify an automorphic harmonic q-form η with an $F \otimes \bigwedge^{q} \mathfrak{n}^{+}$ valued function f on $\Gamma \backslash G$ satisfying the above three conditions. We denote by \mathscr{L} the vector space consisting of all these functions. It follows from (ii) that every $f \in \mathscr{L}$ is actually $\mathscr{H}^{0,q}$ valued. $\mathscr{H}^{0,q}$ is a direct sum of simple \mathfrak{t}^{c} -modules $U_{\mathfrak{t}_{T}}(T \in W^{1}_{\Lambda}(q))$. To simplify the notation we put $U_{T} = U_{\mathfrak{t}_{T}}$ and let τ'_{T} denote the representation of \mathfrak{t}^{c} in U_{T} . Then $\tau'_{T}(Y) = (\rho \otimes \mathrm{ad}^{q}_{+})(Y)$ on U_{T} for all $Y \in \mathfrak{t}^{c}$.

Let $f_T(x)$ denote the U_T -component of f(x) for $x \in \Gamma \setminus G$. Then $f = \sum f_T$ and \mathcal{L} decomposes into direct sum

$$\mathcal{L} = \Sigma_T \mathcal{L}_T$$
,

where \mathcal{L}_T consists of all U_T -valued functions f_T on $\Gamma \backslash G$ satisfying

$$\begin{array}{ll} 1_T) & Y f_T = -\tau'_T(Y) f_T , \quad \text{for all} \quad Y \in \mathfrak{k}; \\ 2_T) & X_x f = 0 \quad \text{for all} \quad \alpha \in \Psi . \end{array}$$

The inner product in $F \otimes \wedge \mathfrak{n}^+$ defines an inner product in U_T such that $(\tau'_T(Y)u, v) + (u, \tau'_T(\bar{Y})u) = 0$ $(Y \in \mathfrak{t}^C)$. Let \sharp be the conjugate linear isomorphism of U_T onto the dual space U_T^* defined by

$$(\#u)(v) = (v, u)$$
 for all $v \in U_T$.

Let τ_T denote the representation of \mathfrak{k}^c in U_T^* contragredient to τ'_T . Then we have

$$\tau_T(Y) \sharp u = \sharp(\tau_T'(\bar{Y})u)$$

for $Y \in \mathfrak{t}^c$. For every U_T -valued function f on $\Gamma \setminus G$ we define U_T^* -valued function #f on $\Gamma \setminus G$ by putting

$$(\#f)(x) = \#f(x)$$
.

Then, for $X \in \mathfrak{g}^c$, we have

$$#(Xf) = \bar{X}(#f) \, .$$

Thus # defines a conjugate linear isomorphism of \mathcal{L}_T onto the complex vector space \mathcal{L}_T^* consisting of all U_T^* valued functions h on $\Gamma \setminus G$ satisfying

$$\begin{array}{ll} 1_T^*) \quad Yh = -\tau_T(Y)h \quad \text{ for all } Y \in \mathfrak{k}; \\ 2_T^*) \quad X_{-a}h = 0 \quad \text{ for all } \beta \in \Psi. \end{array}$$

On the other hand by [4], a function $h \in \mathcal{L}_T^*$ is identified with a holomorphic automorphic form of type J_{τ_T} ; in fact for a holomorphic automorphic form a(x) on X let $\tilde{h}(s) = J_{\tau_T}(s, x_0)^{-1} a(\pi(s))$, for $s \in G$, where $\pi: G \to X$ denotes the canonical projection. Then the function \tilde{h} on G is left invariant by Γ and hence \hat{h} defines a function h on $\Gamma \setminus G$ and this function h satisfies the above two conditions. Thus we have proved the following Theorem 1'.

Theorem 1'. Let Γ be a discrete subgroup of G such that $\Gamma \setminus G$ is compact. Let τ be an irreducible representation of K with highest weight Λ such that $(\Lambda, \alpha) \ge 0$ for all $\alpha \in \Psi$. Then the space of automorphic harmonic q-forms of type J_{τ} is isomorphic to the direct sum of the spaces of holomorphic automorphic forms of type J_{τ_T} , where T ranges over the subset $W^1_{\Lambda}(q)$ of the Weyl group W of \mathfrak{g}^c and where τ_T denotes the irreducible representation of \mathfrak{k}^c with the highest weight $-T\Lambda' - \langle \Phi_T \rangle$, Λ' being the lowest weight of the irreducible representation ρ of \mathfrak{g}^c with highest weight Λ .

REMARK 1. Let $q=N=\dim_C X$. There exists a unique element $R \in W$ such that $R(\Sigma^+)=\Sigma^-$. Let $R^1=R_1^{-1}R$. Then $R^1 \in W^1$ and $\Phi_{R^1}=\Psi$. In fact, $(R^1)^{-1}(\Theta)=R^{-1}R_1(\Theta)=R^{-1}(-\Theta)\subset\Sigma^+$ and hence $R^1 \in W^1$. Moreover since Ψ is the set of weights of the \mathfrak{t}^C -module \mathfrak{n}^+ and since $R_1 \in W_1$, we have $R_1(\Psi)=\Psi$ and hence $R((R^1)^{-1}\Psi)=\Psi\subset\Sigma^+$ and hence $(R^1)^{-1}\Psi\subset\Sigma^-$. Thus $\Psi\subset R^1(\Sigma^-)$ and hence $\Psi=\Phi_{R^1}$. Thus $R^1 \in W^1(N)$. Next we show that $R^1 \in W_{\Lambda}^1(N)$, i.e. $R^1\Lambda'=R_1\Lambda$. In fact, we have $R\Lambda'=\Lambda$, i.e. $R_1R^1\Lambda'=\Lambda$. But $R_1^2=1$ and hence $R^1\Lambda'=R_1\Lambda$. Moreover, it is clear that $W_{\Lambda}^1(N)$ consists of a single element and hence $W_{\Lambda}^1(N)=\{R^1\}$. Now we show that

$$au_{R_1} = \sigma \otimes au^*,$$

where σ is the 1-dimensional representation of \mathfrak{k} in $\bigwedge^{N}\mathfrak{n}^{-}$ defined by $\sigma(Y) = \operatorname{tr}(\operatorname{ad}_{-}(Y))$ $(Y \in \mathfrak{k}^{c})$ and τ^{*} is the contragredient of τ . In fact, the highest weight of $\tau_{R_{1}}$ is $-R^{1}\Lambda' - \langle \Phi_{R_{1}} \rangle = -R_{1}\Lambda - \langle \Psi \rangle$. On the other hand, the weight of σ is $-\langle \Psi \rangle$ and the highest weight of τ^{*} is $-R_{1}\Lambda$ and hence $\tau_{R_{1}} = \sigma \otimes \tau^{*}$. By Theorem 1, we have $H^{0,N}(X, \Gamma, J_{\tau}) \cong H^{0,0}(X, \Gamma, J_{\sigma \otimes \tau^{*}})$. If Γ acts freely on X, we have $E(J_{\sigma \otimes \tau^{*}}) = K \otimes E(J_{\tau})^{*}$, where K denotes the canonical bundle of $M = \Gamma \setminus X$ and $E(J_{\tau})^{*}$ is the dual vector bundle of $E(J_{\tau})$ and hence the isomorphism $H^{N}(M, E(J_{\tau})) \cong H^{0}(M, K \otimes E(J_{\tau})^{*})$ and this is a special case of Serre duality theorem.

REMARK 2. We have $(-\xi'_T, -\xi'_T+2\delta)=(\Lambda, \Lambda+2\delta)$ for any T, where $\delta = \sum_{\alpha > 0} (\alpha/2)$. In fact $\xi'_T = T(\Lambda' - \delta) + \delta$ and hence $(-\xi'_T, -\xi'_T+2\delta) = (T(\Lambda' - \delta), T(\Lambda' - \delta)) - (\delta, \delta) = (\Lambda' - \delta, \Lambda' - \delta) - (\delta, \delta) = (\Lambda', \Lambda') - 2(\Lambda', \delta) = (R\Lambda, R\Lambda) - 2(R\Lambda, R(R^{-1}\delta)) = (\Lambda, \Lambda) - 2(\Lambda, -\delta) = (\Lambda, \Lambda+2\delta).$

3. In this section we shall prove Theorem 2. Let R and R_1 be the elements in W and W_1 respectively such that $R(\Sigma^+) = -\Sigma^+$ and $R_1(\Theta) = -\Theta$. Then $R^2 = R_1^2 = 1$. Let

$$V_{\Lambda} = \{T \in W \mid T\Lambda = \Lambda\}.$$

Then we see easily that $R_1 V_{\Lambda} R = \{T \in W \mid T\Lambda' = R_1\Lambda\}$ and hence

$$(1) W^1_{\Lambda} = W^1 \cap R_1 V_{\Lambda} R.$$

On the other hand we have

$$W^1 = R_1 W^1 R .$$

In fact, let $T \in W^1$ and $\alpha \in \Theta$. Then $(R_1TR)^{-1}\alpha = RT^{-1}R_1\alpha \in RT^{-1}(-\Theta)$ $\subset -R\Sigma^+ = \Sigma^+$ and hence $(R_1TR)^{-1}\Theta \subset \Sigma^+$ which shows that R_1TR is in W^1 . Thus $R_1W^1R \subset W^1$. But we have $R_1^2 = R^2 = 1$ and hence we get $W^1 \subset R_1W^1R$ and hence (2). From (1) and (2) we obtain:

$$(3) W^1_{\Lambda} = R_1(W^1 \cap V_{\Lambda})R.$$

Let

$$(W^1 \cap V_\Lambda)(q) = \{T \in W^1 \cap V_\Lambda | n(T) = q\}.$$

For a subset Φ of Σ^+ , Φ^c will denote the complement of Φ in Σ^+ .

Lemma 1. Let $T \in W^1$. Then $\Phi_{R_1TR} = R_1(\Psi \cap \Phi_T^c)$ and hence $n(R_1TR) = N - n(T)$, where N denotes the number of roots in Ψ .

Proof. We first remark that $R_1(\Psi) = \Psi$ and that, as R_1TR and T are in W^1 , Φ_{R_1TR} and Φ_T are subsets of Ψ . Φ_{R_1TR} consists of all $\alpha \in \Psi$ such that $(R_1TR)^{-1}\alpha < 0$. Now $(R_1TR)^{-1}\alpha = RT^{-1}R_1\alpha$ ($\alpha \in \Psi$) is negative if and only if $T^{-1}R_1\alpha$ is positive. But $R_1\alpha \in \Psi$ and hence $T^{-1}R_1\alpha$ is positive if and only if $R_1\alpha \notin \Phi_T$ and this proves Lemma 1.

From (3) and Lemma 1 we get

(4)
$$W^{1}_{\Lambda}(q) = R_{1}(W^{1} \cap V_{\Lambda})(N-q)R.$$

Let now

(5)
$$\Psi^{\circ}_{\Lambda} = \{ \alpha \in \Psi | (\Lambda, \alpha) = 0 \}.$$

Then the number of roots in Ψ^0_{Λ} is $N-q_{\Lambda}$.

Lemma 2. If $T \in W^1 \cap V_{\Lambda}$, then $\Phi_T \subset \Psi^0_{\Lambda}$.

Proof. Let $\alpha \in \Phi_T$. Then $\alpha \in \Psi$ and $T^{-1}\alpha < 0$ and hence $(\Lambda, T^{-1}\alpha) = (T\Lambda, \alpha) \le 0$. Since $T \in V$, we have $T\Lambda = \Lambda$ and hence $(\Lambda, \alpha) \le 0$. By our assumption on Λ , $(\Lambda, \alpha) \ge 0$ and therefore $(\Lambda, \alpha) = 0$ and this shows that $\alpha \in \Psi_{\Lambda}^{\circ}$.

From Lemma 1 and 2 we see that, if $T \in W^1_{\Lambda}$, then $n(T) \ge q_{\Lambda}$ which proves the first part of Theorem 2.

Now we are going to show that there exists a unique elements $S \in W^1 \cap V_{\Lambda}$ such that $\Phi_S = \Phi_{\Lambda}^0$. Then $T_0 = R_1 S R$ will be the unique element in $W_{\Lambda}^1(q_{\Lambda})$ and $\Phi_{T_0} = \{R_1 \alpha \mid \alpha \in \Psi, (\Lambda, \alpha) > 0\} = \{\alpha \mid \alpha \in \Psi, (R_1 \Lambda, \alpha) > 0\}.$

First we remark that the uniqueness of T such that $\Phi_T = \Psi_{\Lambda}^{\circ}$ follows from a results of Kostant [2, Prop. 5.10]^{*}: The mapping $T \to \Phi_T$ ($T \in W$) defines an injection of W into the set of subsets of Σ^+ .

Now let

$$\mathfrak{g}_u = \sqrt{-1}\mathfrak{m} + \mathfrak{k}$$
,

where $\mathfrak{g}=\mathfrak{m}+\mathfrak{k}$ is the Cartan decomposition of \mathfrak{g} so that $\mathfrak{m}^{c}=\mathfrak{n}^{+}+\mathfrak{n}^{-}$. Then $\mathfrak{g}_{\mathfrak{u}}$ is a compact real form of \mathfrak{g}^{c} . Let $H_{\mathfrak{o}}$ be the element in \mathfrak{h} such that $\varphi(H, H_{\mathfrak{o}}) = \sqrt{-1} \Lambda(H)$ for all $H \in \mathfrak{h}$. Then $[H_{\mathfrak{o}}, X_{\mathfrak{a}}] = \sqrt{-1} (\Lambda, \alpha) X_{\mathfrak{a}}$ for all root α .

Let l be the centralizer of H_0 in g_u . Then l is the Lie algebra of a compact Lie group and l^c is identified with the centralizer of H_0 in g^c . We see easily that

$$\mathfrak{l}^c = \mathfrak{h}^c \!\!+\!\!\sum_{lpha \in \Xi} \left(\mathfrak{g}_{lpha} \!+\! \mathfrak{g}_{-lpha}
ight)$$
 ,

where $\Xi = \{\alpha \in \Sigma^+ | (\Lambda, \alpha) = 0\}$ and \mathfrak{g}_{α} denotes the 1-dimensional eigenspace for the root α .

Let G_u be the adjoint group of \mathfrak{g}_u and L the subgroup of G_u consisting of all $\sigma \in G_u$ such that $\sigma(H_0) = H_0$. Then the Lie algebra of L is \mathfrak{l} and, L being the centralizer of a 1-parameter subgroup, L is connected. Now let $T \in V_{\Lambda}$.

We consider W as a group of linear transformations of \mathfrak{h} by identifying roots α with elements $H_{\mathfrak{a}}$ in \mathfrak{h} such that $\sqrt{-1} \alpha(H) = \varphi(H, H_{\mathfrak{a}})$ for all $H \in \mathfrak{h}$. Then we know that for $T \in W$ there exists an element $t \in G_{\mathfrak{a}}$ such that $t(X) \in T(X)$ for all $X \in \mathfrak{h}$. Then $T\Lambda = \Lambda$ implies $t(H_0) = H_0$ and hence tbelongs to L. Thus T belongs to the Weyl group of \mathfrak{l}^c . It follows then that V_{Λ} is the subgroup of W generated by $S_{\mathfrak{a}}$ with $\alpha \in \Xi$, where $S_{\mathfrak{a}}$ denotes the reflection with respect to the hyperplane $\alpha = 0$.

Now let

$$\Omega = \{\alpha \in \Sigma^+ | (\Lambda, \alpha) > 0 \}.$$

Then $\Xi \cup (-\Xi) \cup \Omega$ is a closed system, i.e. if α and β belong to this set of roots and $\alpha + \beta$ is also a root, then $\alpha + \beta$ belongs also to this set. Then

$$\mathfrak{u} = \mathfrak{h}^c + \sum_{lpha \in \Xi} (\mathfrak{g}_{lpha} + \mathfrak{g}_{-lpha}) + \sum_{lpha \in \Omega} \mathfrak{g}_{lpha}$$
 $= \mathfrak{l}^c + \sum_{lpha \in \Omega} \mathfrak{g}_{lpha}$

is a parabolic subalgebra and \mathcal{I}^c and $\sum_{\alpha \in \Omega} \mathfrak{g}_{\alpha}$ are the reductive part and the nilpotent part of u respectively. Then by a theorem of Kostant [2, Prop. 5.13], every $T \in W$ is written uniquely

^{*} The existence of $T \in W$ such that $\Phi_T = \Psi_{\Lambda^0}$ follows also the same proposition, but it is not easy to see that $T \in W_{\Lambda}$.

 $T = T_{\Lambda}T^{\Lambda}, \ T_{\Lambda} \in V_{\Lambda}, \ T^{\Lambda} \in V^{\Lambda},$

where $V^{\Lambda} = \{T \in W | \Phi_T \subset \Omega\}.$

Lemma 3. Let $U \in W^1$ and let

$$U = ST, S \in V_{\Lambda}, T \in V^{\Lambda}.$$

Then $\Phi_s = \Phi_U \cap \Psi^{\circ}_{\Lambda}$.

Proof. Let $\alpha \in \Omega$. Then $(\Lambda, \alpha) > 0$ and $(\Lambda, \alpha) = (S^{-1}\Lambda, S^{-1}\alpha) = (\Lambda, S^{-1}\alpha)$, because $S^{-1}\Lambda = \Lambda$. Then $S^{-1}\alpha$ is positive and belongs to Ω . Hence $\Phi_S \cap \Omega = \phi$.

Next let $\alpha \in \Xi \cap \Theta$. Since $U \in W^1$, we have $U^{-1}\alpha > 0$. Suppose $S^{-1}\alpha$ is negative. Then $-S^{-1}\alpha = T(-U^{-1}\alpha) > 0$ and $-U^{-1}\alpha > 0$ and hence $T(-U^{-1}\alpha)$ belongs to Φ_T . Since $T \in V^{\Lambda}$, Φ_T is contained in Ω and hence $-S^{-1}\alpha \in \Omega$. One the other hand, as $\alpha \in \Xi$ and $S \in V_{\Lambda}$, we have $(\Lambda, -S^{-1}\alpha) = (S\Lambda, -\alpha) = -(\Lambda, \alpha) = 0$ and this contradicts the fact $-S^{-1}\alpha \in \Omega$. Therefore $S^{-1}\alpha$ must be positive for all $\alpha \in \Xi \cap \Theta$ and this shows that $\Phi_S \cap \Xi \cap \Theta = \phi$.

Finally let $\alpha \in \Xi \cap \Psi$. Suppose $U^{-1}\alpha < 0$ and $S^{-1}\alpha > 0$. Then $S^{-1}\alpha = TU^{-1}\alpha$ and hence $S^{-1}\alpha \in \Xi \cap \Phi_T \subset \Xi \cap \Omega = \phi$ and this is a contradiction. Therefore if $U^{-1}\alpha < 0$, then $S^{-1}\alpha$ must be negative. Analogously we can show that if $U^{-1}\alpha > 0$, then $S^{-1}\alpha > 0$. These show that

$$\Phi_{\mathsf{S}} \cap \Xi \cap \Psi = \Phi_{\mathsf{U}} \cap \Xi \cap \Psi = \Phi_{\mathsf{U}} \cap \Psi^{\circ}_{\mathsf{A}}.$$

On the other hand we have

 $\Sigma^{+} = \Xi \cup \Omega = (\Xi \cap \Psi) \cup (\Xi \cap \Theta) \cup \Omega \text{ (disjoint)}$

Therefore we get from what we have proved so far

$$\Phi_S = \Phi_U \cap \Psi^0_\Lambda \,.$$

Lemma 4. An element U of W belongs to $W^1 \cap V_{\Lambda}$ if and only if $\Phi_U \subset \Psi_{\Lambda}^{\circ}$.

Proof. By Lemma 2, if $U \in W^1 \cap V_{\Lambda}$, Φ_U is contained Ψ_{Λ}° . Conversely, let $\Phi_U \subset \Psi_{\Lambda}^{\circ}$ and let $U = S \cdot T$ as in Lemma 3. Then $\Phi_S = \Phi_U$ by Lemma 3. But the mapping $T \to \Phi_T$ is bijective and hence $U = S \in V_{\Lambda}$. But $\Phi_U \subset \Psi_{\Lambda}^{\circ} \subset \Psi$ and hence $U \in W^1$. Thus $U \in W^1 \cap V_{\Lambda}$.

Now let $R^1 = R_1 R$. Then $R^1 \in W^1$ and $\Phi_{R^1} = \Psi$ (see Remark 1 in § 2). Let $R^1 = ST$ as in Lemma 3. Then S belongs to $W^1 \cap V_{\Lambda}$ and $\Phi_S = \Phi_{R^1} \cap \Psi_{\Lambda}^0 = \Psi_{\Lambda}^0$. Thus S is the unique element in $(W^1 \cap W)$ $(N-q_{\Lambda})$ and Theorem 2 is proved.

From Theorems 1' and 2 we get the following theorem.

Theorem 2'. The assumptions and the notation being as in Theorems 1' and 2, the space of automorphic harmonic q_{Λ} -forms of type J_{τ} is isomorphic to the

space of holomorphic automorphic forms of type $J_{\tau_{T_0}}$, where T_0 is the unique element in $W^1_{\Lambda}(q_{\Lambda})$. We have

$$\Phi_{T_0} = \{ \alpha \in \Psi | (R_1 \Lambda, \alpha) > 0 \}.$$

The highest weight of τ_{T_0} is

$$-T_0R\Lambda - \langle \Phi_{T_0} \rangle$$
.

PART II

We retain the notation introduced in Part I^{*)}. Let $\mathfrak{g}=\mathfrak{m}+\mathfrak{k}$ be the Cartan decomposition of \mathfrak{g} and let $\{X_1, \dots, X_m\}$ and $\{Y_1, \dots, Y_r\}$ be the bases of \mathfrak{m} and \mathfrak{k} respectively such that $\varphi(X_i, X_j) = \delta_{ij}, \varphi(Y_a, Y_b) = -\delta_{ab}$ $(i, j=1, \dots, m; a, b=1, \dots, r)$. Then the Casimir operator C is the differential operator on G given by

$$C = \sum_{i=1}^{m} X_{i}^{2} - \sum_{a=1}^{r} Y_{a}^{2}.$$

We denote by $C^{\infty}(G, V)$ the complex vector space of all C^{∞} -functions on G with values in a finite dimensional complex vector space V.

1. Let τ be a representation of K in a complex vector space V and let Γ be a discrete subgroup of G. By an automorphic form of type $(\Gamma, \tau, \lambda_{\tau})$ we mean a function $f \in C^{\infty}(G, V)$ satisfying the following three conditions (cf. [1]):

1) $f(gk) = \tau(k^{-1})f(g), k \in K, g \in G;$

2) $f(\gamma g) = f(g), \gamma \in \Gamma, g \in G;$

3) $Cf = \lambda_{\tau} f$, where λ_{τ} is a complex constant depending only on τ .

We denote by $A(\Gamma, \tau, \lambda_{\tau})$ the vector space of all automorphic forms of type $(\Gamma, \tau, \lambda_{\tau})$.

Proposition 1. Assume $\Gamma \setminus G$ is compact. Then the dimension of the vector space $A(\Gamma, \tau, \lambda_{\tau})$ is finite.

Proof. ([1]). It follows from the condition 1) for automorphic forms that $Yf = -\tau(Y)f$ for $Y \in \mathfrak{k}$ and $f \in A(\Gamma, \tau, \lambda_{\tau})$. Put

$$C' = \sum_{a=1}^r Y_a^2.$$

Then $C'f = \tau(C')f$, where $\tau(C') = \sum_{a=1}^{r} \tau(Y_a)^2$. Let

$$L = C + 2C' = \sum_{i=1}^{m} X_{i}^{2} + \sum_{a=1}^{r} Y_{a}^{2}.$$

^{*} In Part II we don't need to assume that G/K has a G-invariant complex structure.

Then L is a left invariant elliptic differential operator on G. For $f \in A(\Gamma, \tau, \lambda_{\tau})$ we have

$$Lf = Mf$$
,

where M denotes the endomorphism of V defined by

$$M = \lambda_{\tau} I + 2\tau(C')$$

Let F(x) be a polynomial such that F(M)=0 and let P=F(L). Then P is also a left invariant elliptic operator on G and we have Pf=0 for $f \in A(\Gamma, \tau, \lambda_{\tau})$.

Now by the second condition on automorphic forms, we may consider f as a *V*-valued function on $\Gamma \setminus G$ and by the left invariance of P, we may consider Pas an elliptic operator on $\Gamma \setminus G$. The manifold $\Gamma \setminus G$ being compact, the vector space of all *V*-valued functions on $\Gamma \setminus G$ satisfying the equation Pf=0 is finite dimensional and in particular $A(\Gamma, \tau, \lambda_{\tau})$ is finite dimensional.

EXAMPLE. Let us assume that G/K is a bounded symmetric domain in \mathbb{C}^N as in Part I and let J_{τ} be the canonical automorphic factor of type τ . Assume τ is irreducible and let Λ be the highest weight of τ . Then the space of all holomorphic automorphic forms of type J_{τ} on G/K is identified with the space of all automorphic forms of type $(\Gamma, \tau, \lambda_{\tau})$ with

$$\lambda_{\tau} = (\Lambda, \Lambda + 2\delta),$$

where

$$\delta = \sum_{lpha > 0} lpha/2 = \langle \Sigma^+
angle/2$$
 .

2. Let T be a unitary representation of G in a Hibert space H and let C_T be the Casimir operator of the representation T. C_T is a self-adjoint operator of H with a dense domain and if T is irreducible, there exists a complex number λ_T such that $C_T \varphi = \lambda_T \varphi$ for all φ in the domain of C_T .

Let T be irreducible and let T_K be the restriction of T onto K. Then T_K is a unitary representation of K and it is known that T_K decomposes into a countable sum of irreducible representations of K and each irreducible representation τ of K enters in T_K with finite multiplicity which we shall denote by $(T_K; \tau)$.

Let U be the unitary representation of G in the Hibert space $L_2(\Gamma \setminus G)$: $(U(g)f)(x)=f(xg), x \in \Gamma \setminus G, g \in G$. We know that U decomposes into sum of a countable number of irreducible unitary representations in which each irreducible representation T enters with a finite multiplicity which we shall denote by (U: T).

Note that we have $C_U f = Cf$ for $f \in L_2(\Gamma \setminus G) \cap C^{\infty}(\Gamma \setminus G)$.

Theorem 3. Assume that $\Gamma \setminus G$ is compact and τ is irreducible. Then

CERTAIN COHOMOLOGY GROUPS (II)

dim
$$A(\Gamma, \tau, \lambda_{\tau}) = \sum_{T \in \mathcal{D}_{\lambda_{\tau}}} (U: T)(T_K: \tau^*),$$

where τ^* denotes the irreducible representation of K contragredient to τ and $D_{\lambda_{\tau}}$ denotes the set of irreducible representations T of G such that $\lambda_T = \lambda_{\tau}$, λ_T being the constant such that $C_T \varphi = \lambda_T \varphi$ for all φ in the domain of the Casimir operator C_T .

From Theorem 2' and Remark 1 in Part I, $\S2$ and Example in Part II, $\S1$, we obtain the following corollary.

Corollary. The notation and the assumptions being as in Theorems 2' and 3, the dimension of the space of automorphic harmonic q_{Λ} -forms of type J_{τ} is equal to

$$\sum_{T\in D_{<\Lambda,\Lambda+2\delta>}} (U:T)(T_K:\tau'_{T_0}),$$

where τ'_{T_0} denotes the irreducible representation of K with lowest weight

$$\xi_{T_0}'=T_{\scriptscriptstyle 0}\Lambda'+\!\langle\Phi_{T_{\scriptscriptstyle 0}}
angle$$
 ,

where

$$\Phi_{T_0} = \{ \alpha \in \Psi | (R_1 \Lambda, \alpha) > 0 \}.$$

3. Proof of Theorem 3. Let

$$L^2(\Gamma \setminus G) = \sum_{a=1}^{\infty} \oplus H_a$$

be the decomposition of $L^2(\Gamma \setminus G)$ into direct sum of irreducible invariant closed subspaces and let

$$U_a = U | H_a .$$

Let a be an index such that $C_{U_a} \varphi = \lambda_\tau \varphi$ for φ in the domain of C_{U_a} and let

$$m_a = ((U_a)_K : \tau^*)$$
 .

Further let

$$H_a = \sum_{b=1}^{\infty} \oplus H_{a,b}$$

be the decomposition of H_a into direct sum of irreducible K-invariant subspaces. We may assume that for $b=1, 2, \dots, m$, the irreducible representation of K in $H_{a,b}$, is equivalent to τ^* .

Take a basis $\{v_1, \dots, v_n\}$ of the representation space V of τ and let

$$au(k) v_\lambda = \sum_\mu au_\lambda^\mu(k) v_\mu$$
 , $k \!\in\! K$

Then there exists a basis $\{f_{a,b}^1, \dots, f_{a,b}^n\}$ of $H_{a,b}$ such that

(1)
$$f_{a,b}^{\lambda}(xk) = \sum_{\mu} \tau_{\mu}^{\lambda}(k^{-1}) f_{a,b}^{\mu}(x)$$

for $k \in K$ and $x \in \Gamma \setminus G$. Define a V-valued function $f_{a,b}$ on $\Gamma \setminus G$ by putting

$$f_{a,b}(x) = \sum_{\lambda} f^{\lambda}_{a,b}(x) v_{\lambda}$$

Then

$$f_{a,b}(xk) = \tau(k^{-1})f_{a,b}(x) .$$

Put

 $\tilde{f}_{a,b}=f_{a,b}\circ\pi$,

where π denotes the projection of G onto $\Gamma \setminus G$. Then $\tilde{f}_{a,b}$ satisfies the conditions 1) and 2) of automorphic forms of type $(\Gamma, \tau, \lambda_{\tau})$. If $\{g_{a,b}^1, \cdots, g_{a,b}^n\}$ is another basis of $H_{a,b}$ satisfying the condition (1), then there exists a complex number α such that $\alpha g_{a,b}^{\lambda} = f_{a,b}^{\lambda}$ for $\lambda = 1, \cdots, n$ by Schur's Lemma. Therefore the function $\tilde{f}_{a,b}$ is well defined up to constant multiple.

Let us prove that $\tilde{f}_{a,b}$ is differentiable and satisfies the equation $C\tilde{f}_{a,b} = \lambda_{\tau}\tilde{f}_{a,b}$. To show this it is sufficient to show that every function $\varphi \in H_{a,b}$ is differentiable. In fact, φ is then in the domain of the operator $C_U = C$ and $C_U \varphi = C_{U_a} \varphi = \lambda_{\tau} \varphi$ (Remark that C is a differential operator on G left invariant by G and hence we may consider C as a differential operator on $\Gamma \setminus G$. To show the differentiability of $\varphi \in H_{a,b}$, we remark first that for any $h \in C^{\infty}(\Gamma \setminus G)$ and $\psi \in H_a$ we have

(2)
$$(Ch, \psi) = (h, \lambda_{\tau} \psi).$$

In fact, let ψ be an element in the domain of the operator C_{U_a} . Then $(Ch, \psi) = (C_U h, \psi) = (h, C_{U_a} \psi) = (h, \lambda_\tau \psi)$. The elements ψ being dense in H_a , the equality (2) holds for any $\psi \in H_a$. Now let $\varphi \in H_{a,b}$. Then for any $Y \in \mathfrak{k}$,

$$\lim_{t\to 0}\frac{1}{t}(U_a(\exp tY)\varphi-\varphi)=U'_a(Y)\varphi$$

exists. In fact, $U'_{a}(Y)\varphi = -\tau^{*}(Y)\varphi$. In particular

$$U'(C')\varphi = \tau^*(C')\varphi$$

where, as in the proof of Proposition 1 in §1, we put $C' = \sum Y_a^2$. Let

L = C + 2C'.

Then for any $\varphi \in H_{a,b}$ and $h \in C^{\infty}(\Gamma \setminus G)$ we get from (2):

$$egin{aligned} (Lh,\,arphi) &= (Ch,\,arphi) + 2(C'h,\,arphi) = (h,\,\lambda_ au arphi) + (h,\,2 au^*(C')arphi) \ &= (h,\,Barphi)\,, \end{aligned}$$

where $B = \lambda_{\tau} I + 2\tau^*(C')$ is an endomorphism of the finite dimensional vector space $H_{a,b}$. By induction we get $(L^k h, \varphi) = (h, B^k \varphi)$ for $k=1, 2, \dots,$. Let F(x) be a polynomial such that F(B)=0 and let P=F(L). Then $(Ph, \varphi)=0$. This shows that the distribution D_{φ} defined by $D_{\varphi}(h) = (h, \varphi)$ satisfies the elliptic equation $PD_{\varphi}=0$. Then φ is differentiable and in fact $P\varphi=0$.

Thus we have shown that for each index a such that $U_a \in D_{\lambda_\tau}$, we get m_a functions $\tilde{f}_{a,b}(b=1,\cdots,m_a)$ belonging to $A(\Gamma,\tau,\lambda_\tau)$. If c is another index such that $U_c \in D_{\lambda_\tau}$, then we get also functions $\tilde{f}_{c,d}$ $(d=1, 2, \cdots, m_c; m_c = ((U_c)_K; \tau^*))$ belonging to $A(\Gamma, \tau, \lambda_\tau)$ and it is easy to see that $\tilde{f}_{a,b}$ and $\tilde{f}_{c,d}$ are linearly independent. By Proposition 1, the dimension $A(\Gamma, \tau, \lambda_\tau)$ is finite. It follows then that the number of the irreducible unitary representations T of G belonging to D_{λ_τ} such that $(U: T) \neq 0$ and $(T: \tau^*) \neq 0$ is finite. We may therefore assume that U_1, U_2, \cdots, U_t are these unitary representations. For each $a, 1 \leq a \leq t$. We get functions $\tilde{f}_{a,b}$ $(1 \leq b \leq ((U_a)_K; \tau^*))$ in $A(\Gamma, \tau, \lambda_\tau)$ and these functions are linearly independent. The number of these functions equals $\sum_{a=1}^{t} ((U_a)_K; \tau^*)$ which is equal to $\sum_{n \in T^*} (U: T)(T_K; \tau^*)$. Thus we get

dim
$$A(\Gamma, \tau, \lambda_{\tau}) \geq \sum_{\tau \in D_{\tau}} (U:T)(T_K:\tau)$$
.

Now let $\tilde{f} \in A(\Gamma, \tau, \lambda_{\tau})$ and let

$$\widetilde{f}(g) = \sum_{\lambda} \widetilde{f}^{\lambda}(g) v_{\lambda} \,, \qquad g \in G \,.$$

Then \tilde{f}^{λ} is a differentiable function on G such that $\tilde{f}^{\lambda}(\gamma g) = \tilde{f}^{\lambda}(g)$ for all $\gamma \in \Gamma$. Then there exists a differentiable function f^{λ} on $\Gamma \setminus G$ such that $f^{\lambda} = \tilde{f}^{\lambda} \circ \pi$. Then we have

$$f^{\lambda}(xk) = \sum_{\mu} \tau^{\lambda}_{\mu}(k^{-1}) f^{\mu}(x)$$

for all $k \in K$ and $x \in \Gamma \setminus G$. Moreover

$$Cf^{\lambda} = \lambda_{\tau} f^{\lambda}$$
.

Let P_a be the projection of $L^2(\Gamma \setminus G)$ onto H_a . If h is differentiable, we have $P_aXh = \lim_{t \to 0} \frac{1}{t} P_a(U(\exp tX)h - h) = \lim_{t \to 0} \frac{1}{t} (U_a(\exp tX)P_ah - P_ah) = U'_a(X)P_ah$. It follows that P_ah is in the domain of $C_{U_a} = \sum_i U'_a(X_i)^2 - \sum_b U'_b(Y_b)^2$ and $P_aCh = C_{U_a}P_ah$. Thus we get:

$$C_{U_a} P_a f^{\lambda} = \lambda_{\tau} P_a f^{\lambda}$$
.

It follows that, if $U_a \notin D_{\lambda_\tau}$, then $P_a f^{\lambda} = 0$. Therefore we have:

(3)
$$f^{\lambda} = P_1 f^{\lambda} + P_2 f^{\lambda} + \dots + P_t f^{\lambda}.$$

Let $a \in [1, t]$ and assume $P_a f^{\lambda} \neq 0$ for some λ . Let F be the linear subspace of H_a spanned by $\{P_a f^1, P_a f^2, \dots, P_a f^n\}$. Then $F \neq (0)$ and F is K-invariant. In fact

$$egin{aligned} U_a(k)P_af^\mu &= P_aU(k)f^\mu = P_a\sum_
u au^\mu_
u(k^{-1})f^
u \ &= \sum_
u au^\mu_
u(k^{\mu-1})P_af^
u \,. \end{aligned}$$

Let $\{\xi^1, \dots, \xi^n\}$ be the basis of V^* dual to the basis $\{v_1, \dots, v_n\}$ of V. The linear map of V^* onto F defined by $\xi^{\nu} \rightarrow P_a f^{\nu}$ is a K-homorphism and in fact a K-isomorphism, because V^* is irreducible. It follows that $P_a f^1, \dots, P_a f_u$ are linearly independent and F is contained in $\sum_{b=1}^{m_a} \bigoplus H_{a,b}$ because of the orthogonality relation. Then we can write:

$$P_a f^{\lambda} = \sum_{b=1}^{m_a} \sum_{\mu=1}^n \alpha(b)^{\lambda}_{\mu} f^{\mu}_{a,b}$$

Then

$$(P_a f^\lambda)(xk) = \sum_{b,\mu} lpha(b)^\lambda_\mu f^\mu_{a,b}(xk) \ = \sum_{b,\mu,\tau} lpha(b)^\lambda_\mu au^\mu_
u(k^{-1}) f^
u_{a,b}(x) \,.$$

On the other hand

$$egin{aligned} &(P_af^\lambda)(xk) = \sum_\mu au^\lambda_\mu(k^{-1})(P_af^\mu)(x) \ &= \sum_\mu au^\lambda_\mu(k^{-1})\sum_{b,
u}lpha(b)^\mu\!f^
u_{a,b}(x)\,. \end{aligned}$$

Therefore we get:

$$\sum_{\mu} \alpha(b)^{\lambda}_{\mu} \tau^{\mu}_{\nu}(k^{-1}) = \sum_{\mu} \tau^{\lambda}_{\mu}(k^{-1}) \alpha(b)^{\mu}_{\nu} \qquad (\lambda, \nu = 1, \cdots, n) .$$

By Schur's Lemma we have $\alpha(b)^{\lambda}_{\mu} = \alpha_{a,b} \delta^{\lambda}_{\mu}$ where $\alpha_{a,b}$ is a constant depending on *a* and *b*. Thus

$$P_a f^{\lambda} = \sum_{b=1}^{m_a} \alpha_{a,b} f^{\lambda}_{a,b}$$
 ,

whence $f^{\lambda} = \sum_{a} P_{a} f^{\lambda} = \sum_{a,b} \alpha_{a,b} f^{\lambda}_{a,b}$. Therefore $\sum_{a,b} f^{\lambda} v_{\lambda} = \sum_{\lambda} \alpha_{a,b} f_{a,b}$. It follows then \tilde{f} is a linear combination of $\bar{f}_{a,b}$'s and therefore $\{\tilde{f}_{a,b}\}$ form a basis of the vector space $A(\Gamma, \tau, \lambda_{t})$ and the theroem is proved.

UNIVERSITY OF NOTRE DAME OSAKA UNIVERSITY

Bibliography

- [1] A. Borel: Introduction to automorphic forms, Proc. Symposia in Pure Math. 9 Amer. Math. Soc. 1966, 199–210.
- [2] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
- [3] R.P. Langlands: Dimension of spaces of automorphic forms, Proc. Symposia in Pure Math. 9 Amer. Math. Soc. 1966, 253-257.
- [4] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365– 416.
- [5] Y. Matsushima and S. Murakami: On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1-35.
- [6] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture Notes, Univ. of Chicago, 1966.
- [7] Y. Matsushima: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, J. Differential Geometry 1 (1967), 99-109.