Title: Block intersection numbers of block designs

Author(s): Yoshizawa, Mitsuo

Citation: Osaka Journal of Mathematics. 18(3) P.787-P.799

Issue Date: 1981

Text Version: publisher

URL: https://doi.org/10.18910/11164

DOI: 10.18910/11164

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
1. Introduction

Let t, v, k and λ be positive integers with $v \geq k \geq t$. A $t-(v, k, \lambda)$ design is a pair consisting of a v-set Ω and a family B of k-subsets of Ω, such that each t-subset of Ω is contained in λ elements of B. Elements of Ω and B are called points and blocks, respectively. A $t-(v, k, \lambda)$ design is called nontrivial provided B is a proper subfamily of the family of all k-subsets of Ω, then $t < k < v$. In this paper, we assume that all designs are nontrivial. For a $t-(v, k, \lambda)$ design D we use $\lambda_i (0 \leq i \leq t)$ to represent the number of blocks which contain a given set of i points of D. Then we have

$$ \lambda_i = \binom{v-i}{t-i} \binom{v-i}{k-i} \binom{v-i}{k-t+i} \binom{k-i}{k-t+i} \lambda \quad (0 \leq i \leq t). $$

A $t-(v, k, \lambda)$ design D is called block-schematic if the blocks of D form an association scheme with the relations determined by size of intersection (cf. [3]). In §2, we prove the following theorem which extends the result in [1].

Theorem 1. (a) For each $n \geq 1$ and $\lambda \geq 1$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geq 3$.
(b) For each $n \geq 1$ and $\lambda \geq 2$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geq 2$.

Remark. Since there exist infinitely many $2-(v, 3, 1)$ designs and since every $2-(v, k, 1)$ design is block-schematic (cf. [2]), Theorem 1 does not hold for $\lambda=1$ and $t=2$.

For a block B of a $t-(v, k, \lambda)$ design D we use $x_i(B) (0 \leq i \leq k)$ to denote the number of blocks each of which has exactly i points in common with B. If, for each i ($i=0, \ldots, k$), $x_i(B)$ is the same for every block B, we say that D is block-regular and we write x_i instead of $x_i(B)$. We remark that if a $t-(v, k, \lambda)$ design D is block-schematic then D is block-regular. For any $t-(v, k, 1)$ design or any $t-(v, t+1, \lambda)$ design, either of which is block-regular (cf. Lemma 1),
every \(x_i \) depends only on \(i, t, v, k \) or \(i, t, v, \lambda \) respectively (cf. Lemma 1). And Gross [5] and Dehon [4] respectively classified the \(t-(v, k, 1) \) designs and the \(t-(v, t+1, \lambda) \) designs both of which satisfy \(x_i=0 \). But for a block-regular \(t-(v, k, \lambda) \) design, \(x_i \) depends not only on \(i, t, v, k, \lambda \) but also on others in general (cf. Lemma 1). In §3, we prove the following theorem.

Theorem 2. Let \(c \) be a real number with \(c>2 \). Then for each \(n \geq 1 \) and \(l \geq 0 \), there exist at most finitely many block-regular \(t-(v, k, \lambda) \) designs with \(k-t=n, v=ct \) and \(x_i \leq l \) for some \(i \) \((0 \leq i \leq t-1) \).

The author thanks Professor H. Enomoto for giving the direct proof of Lemma 5.

2. **Proof of Theorem 1**

Lemma 1. Let \(D \) be a block-regular \(t-(v, k, \lambda) \) design. Then the following equality holds for \(i=0, \ldots, k-1 \).

\[
x_i = \sum_{j=0}^{i} \binom{i}{j}(\lambda_j-1)\binom{k}{j}(-1)^{i+j} + \sum_{j=0}^{i+1} \binom{i}{j}w_j(-1)^{i+j},
\]

where \(x_j \leq w_j \leq (\lambda-1)\binom{k}{j} \) \((t \leq j \leq k-1) \) and \(w_i=(\lambda-1)\binom{k}{i} \).

Proof. Let \(\delta \) be a block of \(D \). Counting in two ways the number of the following set

\[
\{(B', \{\alpha_i, \ldots, \alpha_i\}) \mid B' \text{ a block (} \neq B, B' \cap B \supseteq \alpha_i, \ldots, \alpha_i, \alpha_j \neq \alpha_{j'} \text{ if } j \neq j' \}\}
\]

gives

\[
x_i + \binom{i+1}{i}x_{i+1} + \cdots + \binom{t}{i}x_t + \cdots + \binom{k-1}{i}x_{k-1}=(\lambda_i-1)\binom{k}{i}
\]

for \(i=0, \ldots, t-1 \), and

\[
x_i + \binom{i+1}{i}x_{i+1} + \cdots + \binom{k-1}{i}x_{k-1} \leq (\lambda_i-1)\binom{k}{i}
\]

for \(i=t, \ldots, k-1 \). Let \(w_t(t \leq i \leq k-1) \) be the left hand of the above inequality, where \(w_i=(\lambda-1)\binom{k}{i} \). Let \(A=(a_{ij}) \) be the square matrix with \(a_{ij}=\binom{i}{j} \) \((0 \leq i, j \leq k-1) \). Then we have

\[
A \begin{pmatrix} x_0 \\ \vdots \\ x_{i-1} \\ x_t \\ \vdots \\ x_{k-1} \end{pmatrix} = \begin{pmatrix} (\lambda_0-1)\binom{k}{0} \\ \vdots \\ (\lambda_{t-1}-1)\binom{k}{t-1} \\ w_t \\ \vdots \\ w_{k-1} \end{pmatrix}.
\]

Let us set \(A^{-1}=(b_{ij}) \) \((0 \leq i, j \leq k-1) \). Since \(\sum_{j=m}^{n} (-1)^{j+m} \binom{n}{j} \binom{m}{j} = \delta_{mn} \), we have
\[b_{ij} = \binom{j}{i} (-1)^{i+j}. \] Hence we get the desired result.

Lemma 2. Let \(D \) be a \(t-(v,k,\lambda) \) design with \(t, \lambda \geq 2 \). If \(v \geq k^3 \), then there exist three blocks \(B_1, B_2, B_3 \) of \(D \) such that \(|B_1 \cap B_2| = t-1 \), \(|B_2 \cap B_3| \geq t \) and \(|B_1 \cap B_3| = t-2 \).

Proof. Let \(B \) be a block of \(D \). Counting in two ways the number of the following set
\[\{ (B', \alpha_1, \ldots, \alpha_t) \mid B' \text{ a block (not } B \text{), } B' \cap B \ni \alpha_1, \ldots, \alpha_t, \alpha_j \neq \alpha_{j'} \text{ if } j \neq j' \} \]
gives
\[x_t(B) + \binom{t+1}{t} x_{t+1}(B) + \cdots + \binom{k-1}{t} x_{k-1}(B) = (\lambda-1) \binom{k}{t}. \]
Since \(\lambda \geq 2 \), there is an integer \(q \) \((t \leq q \leq k-1)\) with \(x_t(B) = q \). Hence, we may assume that there exist two blocks \(B_2, B_3 \) such that \(t \leq |B_2 \cap B_3| = q \). Let \(\alpha_1 \) be a point of \(B_2 - B_3 \) and \(\alpha_2, \ldots, \alpha_t-1 \) be \(t-2 \) points of \(B_2 \cap B_3 \). Set \(S = \{ B \mid B \text{ a block, } B \ni \{ \alpha_1, \ldots, \alpha_t-1 \} \} \), where \(|S| = k \). Then we have
\[\left| \{ B \in S \mid |B \cap B_2| \geq t \text{ or } |B \cap B_3| \geq t-1 \} \right| \leq \lambda(k-t+1)+\lambda(k-t+2). \]
Hence, if \(\frac{v-t+1}{k-t+1} > \lambda(k-t+1)+\lambda(k-t+2) \), then there exists a block \(B_1 \) in \(S \) such that \(|B_1 \cap B_2| = t-1 \) and \(|B_1 \cap B_3| = t-2 \). On the other hand, \(\frac{v-t+1}{k-t+1} > (k-t+1)+(k-t+2) \) holds if \(v \geq k^3 \). So, the proof of Lemma 2 is completed.

Proposition. Let \(D \) be a block-schematic \(t-(v,k,\lambda) \) design with \(t, \lambda \geq 2 \). Then \(v < \lambda k^3 \left(\binom{k}{2} \right)^2 \) holds.

Proof. By Lemma 1, we have
\[x_{t-2} > (\lambda t-2) \binom{k}{t-2} - (t-1) (\lambda t-1) \binom{k}{t-1} - (k-t) (\lambda-1) \binom{k}{2}. \]
So,
\[x_{t-2} > \frac{(v-t+2)(v-t+1)}{(k-t+2)(k-t+1)} \lambda \binom{k}{t-2} - (t-1) \frac{v-t+1}{k-t+1} \lambda \binom{k}{t-1} - (k-t) \lambda \binom{k}{2}, \]
and
\[x_{t-2} > \frac{(v-k)^2}{k^2} \lambda - (t-1) v \lambda \binom{k}{2} - k \lambda \binom{k}{2}. \]
Hence we have
\[x_{t-2} > \frac{v^2}{k^2} \lambda - k v \lambda \binom{k}{2} - k \lambda \binom{k}{2}. \] (1)
Again by Lemma 1, we have
\[x_{t-1} < \lambda x_{t-1} \left(\binom{k}{t-1} + (k-t-1) \left(\binom{k}{2} \right)^2 \right). \]

So,
\[x_{t-1} < \frac{\nu}{2} \lambda \left(\binom{k}{2} \right) +(k-1) \lambda \left(\binom{k}{2} \right)^2. \] (2)

From now on, we may assume that \(v \geq k^3 \). By Lemma 2, there exist three blocks \(B_1, B_2, B_3 \) of \(D \) such that \(|B_1 \cap B_2| = t-1, |B_2 \cap B_3| = q (t \leq q \leq k-1) \), and \(|B_1 \cap B_3| = t-2 \). By Lemma 1, we have
\[x_q \leq (\lambda-1) \left(\binom{k}{q} \right)^2. \] (3)

Hence, by (1), (2) and (3), we have
\[x_{t-2} - x_{t-1} x_q > \frac{\nu^2}{k^2} \lambda - k\lambda \left(\binom{k}{2} \right)^2 - k\lambda^2 \left(\binom{k}{2} \right)^2 \frac{\nu}{2} + (k-1) \left(\binom{k}{2} \right)^2. \]

Thus, we have that
\[x_{t-2} - x_{t-1} x_q > \frac{\nu^2}{k^2} \lambda - \lambda^2 \left(\binom{k}{2} \right)^2 \left(\binom{k}{2} \right)^2. \]

Hence, \(x_{t-2} - x_{t-1} x_q > 0 \) holds if \(v \geq k^3 \left(\binom{k}{2} \right)^2 \). (4)

Let \(B_1, B_2, B_3, \ldots, B_n \) be the blocks of \(D \). Let \(A_h \) \((0 \leq h \leq k)\) be the \(h \)-adjacency matrix of \(D \) of degree \(\lambda_0 \) defined by
\[A_h(i, j) = \begin{cases} 1 & \text{if } |B_i \cap B_j| = h, \\ 0 & \text{otherwise}. \end{cases} \]

Since \(D \) is block-schematic, we have
\[A_i A_j = \sum_{h=0}^{k} \mu(i, j, h) A_h \quad (0 \leq i, j \leq k), \]
where \(\mu(i, j, h) \) is a non-negative integer. Let \(a \) be the all-1 vector of degree \(\lambda_0 \). Then,
\[A_i A_j a = \sum_{h=0}^{k} \mu(i, j, h) A_h a. \]

Hence we have \(x_i x_j = \sum_{h=0}^{k} \mu(i, j, h) x_h. \) In particular,
\[x_{t-1} = \sum_{k=0}^{t} \mu(t-1, q, h) x_k, \]
where \(\mu(t-1, q, t-2) \) is a positive integer, because \(|B_1 \cap B_2| = t-1, |B_2 \cap B_3| = q \) and \(|B_1 \cap B_3| = t-2 \). Hence, by (4) and (5), we have \(v < k^2 \left(\frac{k^2}{k^2} \right)^{\lambda} \).

Lemma 3. For each \(n \geq 1 \), there is a positive integer \(N_i(n) \) satisfying the following: If \(D \) is a \(t-(v, k, \lambda) \) design with \(k-t=n \) and \(t \geq N_i(n) \), then there exist two blocks \(B_1 \) and \(B_2 \) of \(D \) such that \(|B_1 \cap B_2| = t-1 \).

Proof. Let \(D \) be a \(t-(v, k, \lambda) \) design with \(k-t=n \). Let \(B \) be a block of \(D \). Counting in two ways the number of the following set
\{ \((B', \{ \alpha_1, \ldots, \alpha_t \}) \mid B' \text{ a block (} \neq B \), \(B' \cap B \ni \alpha_1, \ldots, \alpha_t, \alpha_j \neq \alpha_j \), if \(j \neq j' \) \} gives
\[x_{t-1}(B) + \binom{t+1}{t} x_{t+1}(B) + \cdots + \binom{k-1}{t} x_{k-1}(B) = (\lambda-1) \binom{k}{t}. \]
Since \(\binom{t+i}{t} = \frac{t}{t+i} \binom{t+i-1}{i+1} \) \((i \geq 0)\), we have
\[\binom{t+i}{t} = \frac{t}{t+i} \binom{t+i-1}{i+1} \] \((i \geq 0)\)
\[\binom{t}{t-1} x_{t-1}(B) + \binom{t+1}{t-1} x_{t+1}(B) + \cdots + \binom{k-1}{t-1} x_{k-1}(B) \leq t(\lambda-1) \binom{k}{t}. \]
Counting in two ways the number of the following set
\{ \((B', \{ \alpha_1, \ldots, \alpha_{t-1} \}) \mid B' \text{ a block (} \neq B \), \(B' \cap B \ni \alpha_1, \ldots, \alpha_{t-1}, \alpha_j \neq \alpha_j \), if \(j \neq j' \) \} gives
\[x_{t-1}(B) + \binom{t}{t-1} x_{t}(B) + \binom{t+1}{t} x_{t+1}(B) + \cdots + \binom{k-1}{t} x_{k-1}(B) \] \[= (\lambda-1) \binom{k}{t-1}. \]
By (6) and (7), we have
\[x_{t-1}(B) \geq (\lambda-1) \binom{k}{t-1} - t(\lambda-1) \binom{k}{t}, \]
and
\[x_{t-1}(B) \geq \frac{v-t+1}{n+1} \lambda \frac{(n+t) \cdots t}{(n+1)!} \frac{(n+t) \cdots t}{(n+1)!} - \frac{(\lambda-1) (n+t) \cdots t}{n!}. \]
Since \(D \) is a nontrivial design, \(v \geq k+t \geq 2t+n \). Hence we have
\[x_{t-1}(B) \geq \frac{(t+n+1) \cdots t}{(n+2)!} \frac{(t+n+1) \cdots t}{n!} \lambda. \]
Set \(f(t) := \frac{(t+n+1) \cdots t}{(n+2)!} \frac{(t+n+1) \cdots t}{n!} \). Then there is a positive integer \(N_i(n) \) such that \(f(t) \geq 0 \) holds if \(t \geq N_i(n) \). Hence, the proof of Lemma 3 is completed.

Lemma 4. For each \(n \geq 1 \), there is a positive integer \(N_2(n) \) satisfying the
following: If \(D \) is a \(t-(v, k, \lambda) \) design with \(k-t=n \) and \(t \geq N_2(n) \), then there exist three blocks \(B_1, B_2, B_3 \) of \(D \) such that \(|B_1 \cap B_2|=t-1 \), \(|B_2 \cap B_3|=t-1 \) and \(|B_1 \cap B_3|=t-n-2 \).

Proof. Let \(D \) be a \(t-(v, k, \lambda) \) design with \(k-t=n \). We may assume \(t \geq N_1(n) \), where \(N_1(n) \) is a positive integer obtained in Lemma 3. Therefore, there exist two blocks \(B_2 \) and \(B_3 \) of \(D \) with \(|B_2 \cap B_3|=t-1 \). Let \(\alpha_1, \alpha_2, \ldots, \alpha_{t-1} \) be \(n-1 \) distinct points of \(B_2 \cup B_3 \) and \(\alpha_{n+1}, \ldots, \alpha_{t-1} \) be \(t-n-2 \) distinct points of \(B_1 \). Set \(S=\{B|B \text{ a block}, B \supseteq \{\alpha_1, \ldots, \alpha_{t-1}\}\} \), where \(|S|=(v-t+1)/(k-t+1) \). Then we have

\[
|\{B \in S| |B \cap B_2| \geq t \text{ or } |B \cap B_3| \geq t-n-1\}| \leq (k-t+1)+\lambda(k-t+n+2).
\]

Hence, if \(v-t+1/(k-t+1) > \lambda(n+1)+\lambda(2n+2) \), then there exists a block \(B_1 \) in \(S \) such that \(|B_1 \cap B_2|=t-1 \) and \(|B_1 \cap B_3|=t-n-2 \). On the other hand, since \(v>k+t-2t+n \), we have that \(v-t+1/(n+1)+(2n+2) \) holds if \(t \geq 3(n+1)^2 \). Thus, Lemma 4 holds if \(N_2(n)=\max\{N_1(n), 3(n+1)^2\} \).

Proof of Theorem 1. First, let us suppose that \(D \) is a block-schematic \(t-(v, k, \lambda) \) design with \(k-t=n \) and \(t \geq 2 \). By Proposition, we may assume that \(t \geq N_2(n) \), where \(N_2(n) \) is a positive integer obtained in Lemma 4. By Lemma 1 we have

\[
x_{t-s-2} > \lambda_{t-s-2}(t-n-2) - \sum_{j=1}^{s+1} \lambda_j(t-n-2) \lambda(t-n-1) - \sum_{j=1}^{s+1} \lambda_j(t-n-1),
\]

where \(\lambda_{t-s-2}(t-n-2) = (v-t+n+2) \cdots (v-t+1)/(t-n+1) \cdots (t-n)! \),

\[
\sum_{j=1}^{s+1} \lambda_j(t-n-2) \lambda(t-n-1) < (n+1) \lambda_{t-s-1}(t-n-2) !
\]

\[
= (n+1) (v-t+n+1) \cdots (v-t+1)/(t-n+1) \cdots (t-n-1) ! \lambda(t-n-2) !
\]

and

\[
\sum_{j=1}^{s+1} \lambda_j(t-n-2) \lambda(t-n) < n (t-n+1)/(t-n-2) ! \lambda(t-n-1) !
\]

Hence we have

\[
x_{t-s-2} > (v-t)^{s+1}(t-n-1)^{2n+2} \lambda - (v-t+n+1)^{s+1}(t-n)^{2n+2} \lambda.(8)
\]

Again by Lemma 1, we have

\[
x_{t-1} < \frac{v-t+1}{n+1} \lambda(t-n-1) + \sum_{j=1}^{s+1} \lambda(t-n-1) \lambda(t-n) ,
\]

and
Hence we have
\[x_{t-1} < (v-t+1) (t+n)^{n+1} n(t+n)^{n+1}. \]

By (8) and (9), we have
\[x_{t-1}^2 < (v-t+n+1)^2 (t+n)^{2n+2} \lambda^2. \] (9)

By the similar argument as in the proof of Proposition, we have
\[x_{t-1}^2 = \sum_{h=0}^{k} \mu(t-1, t-1, h) x_h, \] (11)

where \(\mu(t-1, t-1, h) \) is a non-negative integer. Moreover, since \(t \geq N(n, \lambda) \) \(\mu(t-1, t-1, t-n-2) \) is a positive integer by Lemma 4. Hence, by (10) and (11), we have \(t \leq N(n, \lambda) \). Therefore, \(k \leq N(n, \lambda) + n \). Hence by Proposition, the proof of Theorem 1 is completed on condition that \(\lambda \leq 2 \).

Next, let us suppose that \(D \) is a block-schematic \(t-(v, k, l) \) design with \(k-t=n \) and \(t \geq 3 \). (The proof of the case \(\lambda = 1 \) is similar to that of the case \(\lambda \geq 2 \). Then, we give an outline of it.) By Theorem in [1], we may assume that \(t \geq N(n, \lambda) \), where \(N(n, \lambda) \) is a positive integer obtained in Lemma 4. By Lemma 1, we get
\[x_{t-1}^2 - x_{t-1}^2 > \frac{(v-t)^{n+2} (t-n-1)^{2n+2}}{(2n+2)^2} - 2(v-t+n+1)^{n+1} (t+n)^{2n+2}. \]

Hence, there is a positive integer \(N(n) (\geq N(n, \lambda)) \) such that \(x_{t-1}^2 - x_{t-1}^2 > 0 \) holds if \(t \geq N(n) \). On the other hand, the following equation holds:
\[x_{t-1}^2 = \sum_{h=0}^{k} \mu(t-1, t-1, h) x_h, \]

where \(\mu(t-1, t-1, h) \) is a non-negative integer and \(\mu(t-1, t-1, t-n-2) \) is positive. Therefore, we have \(t \leq N(n) \), and so \(k \leq N(n) + n \). Hence by Theorem in [1], the proof of Theorem 1 is completed on condition that \(\lambda = 1 \). Thus, Theorem 1 is proved.
3. Proof of Theorem 2

Lemma 5. Let D be a block-regular $t-(v, k, \lambda)$ design. Then the following equality holds for $i=0, \cdots, t-1$.

\[x_i = -\frac{\lambda \binom{k}{i}}{\binom{v-k}{k-t}} \left(\binom{v-k}{k-i} + \sum_{j=0}^{k-i} \binom{k}{j} \binom{t-i-1+q}{q} \binom{v-k+q}{k-t} \right) \]

\[+ (\lambda-1) \sum_{j=1}^{k-i} \binom{j}{i} \binom{k}{j} \binom{t-j-1+q}{q} \binom{v-k+q}{k-t} \]

where $x_j \leq w_j \leq (\lambda-1) \binom{k}{j}$ ($1 \leq j \leq k-1$) and $w_i = (\lambda-1) \binom{k}{t}$.

(The essential part of Lemma 5 is [5, Lemma 6].)

Proof. In this proof, we use the following three combinatorial identities:

1. \[(\binom{-a}{b}) = (-1)^a \binom{a+b-1}{b} \]
2. \[\sum \binom{a}{r} \binom{b+r}{c} (-1)^r = (-1)^a \binom{b}{c-a} (a \geq 0) \]
3. \[\sum \binom{a}{r} \binom{b}{c-r} = \binom{a+b}{c} (a \geq 0) \]

By Lemma 1, we have

\[x_i = \sum_{j=1}^{k-i} \binom{j}{i} (\lambda_j-1) \binom{k}{j} (-1)^{i+j} + \sum_{j=1}^{k-i} \binom{j}{i} w_j (-1)^{i+j} \]

where $x_j \leq w_j \leq (\lambda-1) \binom{k}{j}$ ($1 \leq j \leq k-1$).

Then,

\[x_i = \lambda \sum_{j=1}^{k-i} \binom{j}{i} (\lambda_j-1) \binom{k}{j} (-1)^{i+j} + (\lambda-1) \sum_{j=1}^{k-i} \binom{j}{i} \binom{k}{j} (-1)^{i+j} \]

\[+ \sum_{j=1}^{k-i} \binom{j}{i} w_j (-1)^{i+j} \]

where $\lambda_j = \binom{v-j}{t-j} \binom{v-t}{k-t} \binom{k-j}{t-j} = (0 \leq j \leq t-1)$.

Hence, in order to prove Lemma 5, it is sufficient to show that the following equality holds for $i=0, \cdots, k-1$.

\[\sum_{j=1}^{k-i} \binom{j}{i} (\lambda_j-1) \binom{k}{j} (-1)^{i+j} \]
First suppose that \(t \leq i \leq k-1 \). Then,

\[
\sum_{t=0}^{k-i-1} \binom{t-i+1+q}{q} \binom{v-k+q}{k-t} = \sum_{t=0}^{k-i-1} \binom{t-i}{q} \binom{v-k+q}{k-t} = (-1)^{i-t} \binom{v-k}{k-1}.
\]

Hence, the right hand of (12) = 0 = the left hand of (12).

Let \(A=(a_{rs}) \) be the square matrix with \(a_{rs}=\binom{s}{r} \) (0 \(r, s \leq k-1 \)). Since \(\det(A) \neq 0 \), \(A^{-1} = \left(\binom{s}{r} \right) (0 \leq r, s \leq k-1) \) and (12) holds for \(i=t, \cdots, k-1 \), we have that (12) holds for \(i=0, \cdots, k-1 \) if the following holds for \(i=0, \cdots, t-1 \).

\[
\sum_{j=1}^{k-i} \binom{j}{i} \binom{k}{i} \binom{v-k}{k-j} = \binom{k-i}{k-j} \binom{v-k+q}{k-t} = (-1)^{t+j+1} \sum_{t=0}^{k-i-1} \binom{t-j+1+q}{q} \binom{v-k+q}{k-t} = (\lambda_i-1) \binom{k}{i}.
\]

Since \(\binom{j}{i} \binom{k}{i} = \binom{k-i}{k-j} \),

the left hand of (13) = \(\binom{k}{i} \sum_{j=1}^{k-i} \binom{k-i}{k-j} \binom{v-k}{k-j} + (-1)^{t+j+1} \sum_{t=0}^{k-i-1} \binom{t-j+1+q}{q} \binom{v-k+q}{k-t} \).

Now, \(\sum_{j=1}^{k-i} \binom{k-i}{k-j} \binom{v-k}{k-j} = \sum_{j=i}^{k-i} \binom{k-i}{j-i} \binom{v-k}{k-j} = \sum_{h=i}^{k-i} \binom{k-i}{h} \binom{v-k}{k-i-h} = (\lambda_i-1) \binom{v-k}{k-i} \).

On the other hand,

\[
\sum_{j=1}^{k-i} \binom{k-i}{k-j} (-1)^{t+j+1} \sum_{t=0}^{k-i-1} \binom{t-j+1+q}{q} \binom{v-k+q}{k-t} = \sum_{t=0}^{k-i-1} \binom{v-k+q}{k-t} \sum_{j=1}^{k-i} \binom{k-i}{j-i} \binom{t-j+1+q}{q} (-1)^j = \sum_{t=0}^{k-i-1} \binom{v-k+q}{k-t} \sum_{j=1}^{k-i} \binom{k-i}{j-i} \binom{t-j}{q} (-1)^{j+q} (\text{cf. (i)})
\]
Hence by (14), (15) and (16), we have that

\[
\text{the left hand of (13)} = \frac{\binom{k}{i}}{\left(\frac{v-t}{k-t}\right)^{i}} \left\{ \binom{v-k-i}{k-t} - 1 + \binom{v-t}{k-t} \right\} = \left\{ \frac{\binom{v-i}{k-i}}{\left(\frac{v-t}{k-t}\right)^{i}} - 1 \right\} \binom{k}{i} = \text{the right hand of (13)}.
\]

Thus, Lemma 5 is proved.

Lemma 6. For each \(k \geq 2 \) and \(l \geq 0 \), there exist at most finitely many block-regular \(t-(v, k, \lambda) \) designs with \(x_i \leq l \) for some \(i \) (0 \(\leq i \leq t-1 \)).

Proof. In order to prove Lemma 6, it is sufficient to show the following: For each \(k \geq 2 \), \(l \geq 0 \), \(t \) (1 \(\leq t \leq k \)) and \(i \) (0 \(\leq i \leq t \)), there exist at most finitely many block-regular \(t-(v, k, \lambda) \) designs with \(x_i \leq l \).

Let \(k, l, t \) and \(i \) be integers with \(k \geq 2 \), \(l \geq 0 \), 1 \(\leq t \leq k \) and 0 \(\leq i \leq t \), and let \(D \) be a block-regular \(t-(v, k, \lambda) \) design with \(x_i \leq l \). By Lemma 1, we have

\[
x_i = \sum_{j=t}^{k-1} \binom{i}{j} (\lambda_j - 1) \binom{k}{j} (-1)^{i+j} + \sum_{j=t}^{k-1} \binom{i}{j} \omega_j (-1)^{i+j},
\]

where \(x_i \leq \omega_j \leq (\lambda - 1) \binom{k}{j} \) (\(j = t, \ldots, k-1 \)). Therefore,

\[
x_i - l > \binom{v-t}{k-t} \cdots \binom{v-t+1}{k-t} (\lambda - 1) \binom{k}{j} - \sum_{j=t}^{k-1} \binom{i}{j} (\lambda_j - 1) \binom{k}{j} - l.
\]
In the above expression, if we suppose that \(k, l, t \) and \(i \) are constants, and that \(v \) and \(\lambda \) are variables with \(v > k \) and \(\lambda \geq 1 \), then we can obtain the following:

The right hand of the expression \(\lambda \cdot f(v) + \lambda \cdot g(v) + d \), where \(f(v) \) is a polynomial in \(v \) of degree \(t - i \) with the leading coefficient of \(f(v) > 0 \), \(g(v) \) is a polynomial in \(v \) of degree \(t - i - 1 \), and \(d \) is a constant. Hence, there exists a constant \(C(k, l, t, i) > 0 \) such that \(x_i < l \) holds if \(v > C(k, l, t, i) \). Namely, if \(x_i < l \), then \(v < C(k, l, t, i) \).

Proof of Theorem 2. By Lemma 6, we may assume that \(t \geq \frac{2n + ((2n + 2)l)^2}{c-2} + 2n \). Let \(D \) be a block-regular \(t-(v, t+n, \lambda) \) design with \(v > ct, t \geq \frac{2n + ((2n + 2)l)^2}{c-2} + 2n \) and \(x_i < l \) for some \(i \) \((0 \leq i < t-1)\). Set \(v = mt \) \((m \geq c)\), where \(m \) is not always integral. By Lemma 5, we have

\[
x_i = \frac{\lambda(t+n)}{n} \bigg\{ \binom{t+n}{i} \bigg((m-1)t-n \bigg) + (t-i+1) \sum_{j=0}^{r-1} \binom{t-i-1+q}{j} \binom{m-1}{q} \bigg(t-n+q \bigg) \bigg\}
+ (\lambda-1) \sum_{j=1}^{r-1} \binom{j+n}{j} \binom{t+n}{j} (-1)^{i+j} + \sum_{j=i}^{r-1} \binom{j}{i} x_j (1)^{i+j},
\]

where \(x_j < x_j \leq (\lambda-1) \binom{j+n}{j} \) \((t \leq j < k-1)\).

Now,

\[
(\lambda-1) \sum_{j=1}^{r-1} \binom{j+n}{j} \binom{t+n}{j} (-1)^{i+j} + \sum_{j=i}^{r-1} \binom{j}{i} x_j (1)^{i+j}
= (\lambda-1) \sum_{j=1}^{r-1} \binom{j+n}{j} \binom{t+n}{j} (-1)^{i+j} + \sum_{j=i}^{r-1} \binom{j}{i} x_j (1)^{i+j}
> -2\lambda(n+1) \frac{(t+n)!}{i!(t-i)!}.
\]

On the other hand,

\[
\frac{\lambda(t+n)}{n} \bigg\{ \binom{t+n}{i} \bigg((m-1)t-n \bigg) + (t-i+1) \sum_{j=0}^{r-1} \binom{t-i-1+q}{j} \binom{m-1}{q} \bigg(t-n+q \bigg) \bigg\}
+ (\lambda-1) \sum_{j=1}^{r-1} \binom{j+n}{j} \binom{t+n}{j} (-1)^{i+j} + \sum_{j=i}^{r-1} \binom{j}{i} x_j (1)^{i+j}
> \frac{\lambda(t+n)!}{i!(t+n-i)!} \frac{(m-1)t-n)!}{(m-1)t-n)!} \frac{(m-1)t-n)!}{(m-2)t-2n+i)!} \frac{\lambda(t+n)!}{i!(t-i)!}.
\]

By (17), (18) and (19), we have
Then since \(\frac{t!}{(t+n)!} \leq \frac{1}{\lambda} < 1 \), we have

\[
x_i > \frac{x_i!(t-i)!}{(t+n)!} \frac{\{(m-1)t-n\}^2(t-i)!}{(t+n-i)!^2((m-1)t)!(m-2)t-2n+i!} - 5n.
\]

Hence, \(x_i \geq \frac{(m-1)t-n}{(m-1)t} \cdot \frac{((m-1)t-n-1) \cdots ((m-1)t-2n+i+1)}{((m-1)t) \cdots ((m-1)t-n+1) \cdot (t+n-i) \cdots (t-i+1)} \cdot \frac{((m-1)t-3n-1) \cdots ((m-2)t-2n+i+2) \cdot (m-2)t-2n+i+1}{(2n+3)!(2n+2)!} - 5n \)

holds if \(t-i \geq n+3 \), and

\[
x_i > ((m-1)t-n) \cdot \frac{(m-1)t-n-1}{(m-1)t} \cdots ((m-1)t-2n) \cdots (m-1)t-n+1 \cdot \frac{(m-1)t-2n-1}{(2n+2)!} - 5n \]

holds if \(2 \leq t-i \leq n+2 \),

and \(x_i \geq ((m-1)t-n) \cdot \frac{(m-1)t-n-1}{(m-1)t} \cdots ((m-1)t-2n) \frac{1}{(n+1)!} - 5n \)

holds if \(t-i = 1 \).

In any case, since \(t \geq \frac{2n+(2n+2)!}{c-2} \cdot 2n \), we have

\[
x_i > ((m-1)t-n) \cdot \frac{(m-2)t}{(m-1)t} \cdot \frac{1}{((n+1)!)^2} - 5n
\]

\[
> \frac{(c-1)t-n}{(c-1)!} \cdot \frac{(c-2)^n}{(c-1)!} - 5n.
\]

Therefore, there exists a positive integer \(N(c, n, l) \left(\geq \frac{2n+(2n+2)!}{c-2} \cdot 2n \right) \) such that \(x_i - l > 0 \) holds if \(t \geq N(c, n, l) \). Namely, if \(x_i \leq l \), then \(t \leq N(c, n, l) \). Hence by Lemma 6, the proof of Theorem 2 is completed.
References

Division of Mathematics
Keio University
Hiyoshi, Yokohama 223
Japan