

Title	Block intersection numbers of block designs			
Author(s)	Yoshizawa, Mitsuo			
Citation	Osaka Journal of Mathematics. 1981, 18(3), p. 787-799			
Version Type	VoR			
URL	https://doi.org/10.18910/11164			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

BLOCK INTERSECTION NUMBERS OF BLOCK DESIGNS

MITSUO YOSHIZAWA

(Received March 12, 1980)

1. Introduction

Let t, v, k and λ be positive integers with $v \ge k \ge t$. A $t-(v, k, \lambda)$ design is a pair consisting of a v-set Ω and a family \boldsymbol{B} of k-subsets of Ω , such that each t-subset of Ω is contained in λ elements of \boldsymbol{B} . Elements of Ω and \boldsymbol{B} are called points and blocks, respectively. A $t-(v, k, \lambda)$ design is called nontrivial provided \boldsymbol{B} is a proper subfamily of the family of all k-subsets of Ω , then t < k < v. In this paper, we assume that all designs are nontrivial. For a $t-(v, k, \lambda)$ design \boldsymbol{D} we use λ_i $(0 \le i \le t)$ to represent the number of blocks which contain a given set of i points of \boldsymbol{D} . Then we have

$$\lambda_{i} = \frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}} \lambda = \frac{(v-i)(v-i-l)\cdots(v-t+l)}{(k-i)(k-i-l)\cdots(k-t+l)} \lambda \qquad (0 \leqslant i \leqslant t).$$

A $t-(v, k, \lambda)$ design D is called block-schematic if the blocks of D form an association scheme with the relations determined by size of intersection (cf. [3]). In §2, we prove the following theorem which extends the result in [1].

Theorem 1. (a) For each $n \ge 1$ and $\lambda \ge 1$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with k-t=n and $t \ge 3$.

(b) For each $n \ge 1$ and $\lambda \ge 2$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with k-t=n and $t \ge 2$.

REMARK. Since there exist infinitely many 2-(v, 3, 1) designs and since every 2-(v, k, 1) design is block-schematic (cf. [2]), Theorem 1 does not hold for $\lambda=1$ and t=2.

For a block B of a $t-(v, k, \lambda)$ design \mathbf{D} we use $x_i(B)$ $(0 \le i \le k)$ to denote the number of blocks each of which has exactly i points in common with B. If, for each i $(i=0,\dots,k)$, $x_i(B)$ is the same for every block B, we say that \mathbf{D} is block-regular and we write x_i instead of $x_i(B)$. We remark that if a $t-(v, k, \lambda)$ design \mathbf{D} is block-schematic then \mathbf{D} is block-regular. For any t-(v, k, 1) design or any $t-(v, t+1, \lambda)$ design, either of which is block-regular (cf. Lemma 1),

every x_i depends only on i, t, v, k or i, t, v, λ respectively (cf. Lemma 1). And Gross [5] and Dehon [4] respectively classified the t-(v, k, 1) designs and the $t-(v, t+1, \lambda)$ designs both of which satisfy $x_i=0$. But for a block-regular $t-(v, k, \lambda)$ design, x_i depends not only on i, t, v, k, λ but also on others in general (cf. Lemma 1). In §3, we prove the following theorem.

Theorem 2. Let c be a real number with c>2. Then for each $n \ge 1$ and $l \ge 0$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with k-t=n, $v \ge ct$ and $x_i \le l$ for some i $(0 \le i \le t-1)$.

The author thanks Professor H. Enomoto for giving the direct proof of Lemma 5.

2. Proof of Theorem 1

Lemma 1. Let **D** be a block-regular $t-(v, k, \lambda)$ design. Then the following equality holds for $i=0,\dots,k-1$.

$$x_i = \sum_{j=i}^{t-1} {j \choose i} (\lambda_j - 1) {k \choose j} (-1)^{i+j} + \sum_{j=t}^{k-1} {j \choose i} w_j (-1)^{i+j}$$

where
$$x_j \leq w_j \leq (\lambda - 1) \binom{k}{j}$$
 $(t \leq j \leq k - 1)$ and $w_t = (\lambda - 1) \binom{k}{t}$.

Proof. Let B be a block of D. Counting in two ways the number of the following set

 $\{(B', \{\alpha_1, \cdots, \alpha_i\}) \mid B' \text{ a block } (\pm B), B' \cap B \ni \alpha_1, \cdots, \alpha_i, \alpha_j \pm \alpha_{j'} \text{ if } j \pm j'\} \text{ gives } \\ x_i + \binom{i+1}{i} x_{i+1} + \cdots + \binom{t}{i} x_t + \cdots + \binom{k-1}{i} x_{k-1} = (\lambda_i - 1) \binom{k}{i} \text{ for } i = 0, \cdots, t-1, \\ \text{and } x_i + \binom{i+1}{i} x_{i+1} + \cdots + \binom{k-1}{i} x_{k-1} \leqslant (\lambda - 1) \binom{k}{i} \text{ for } i = t, \cdots, k-1. \text{ Let } w_i(t \leqslant i \leqslant k-1) \text{ be the left hand of the above inequality, where } w_i = (\lambda - 1) \binom{k}{t}. \text{ Let } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ be the square matrix with } a_{ij} = \binom{j}{i} \quad (0 \leqslant i, j \leqslant k-1). \text{ Then we have } A = (a_{ij}) \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij} = \binom{j}{i} \text{ the square matrix with } a_{ij$

$$Aegin{pmatrix} x_0 \ dots \ x_{t-1} \ dots \ x_t \ dots \ x_{k-1} \end{pmatrix} = egin{pmatrix} (\lambda_0-1)inom{k} \ 0 \ dots \ (\lambda_{t-1}-1)inom{k} \ t-1 \end{pmatrix}.$$

Let us set $A^{-1} = (b_{ij}) \ (0 \le i, j \le k-1)$. Since $\sum_{j=m}^{n} (-1)^{j+m} \binom{n}{j} \binom{j}{m} = \delta_{mn}$, we have

 $b_{ij} = {j \choose i} (-1)^{i+j}$. Hence we get the desired result.

Lemma 2. Let **D** be a $t-(v, k, \lambda)$ design with $t, \lambda \ge 2$. If $v \ge k^3$, then there exist three blocks B_1 , B_2 , B_3 of **D** such that $|B_1 \cap B_2| = t-1$, $|B_2 \cap B_3| \ge t$ and $|B_1 \cap B_3| = t-2$.

Proof. Let B be a block of D. Counting in two ways the number of the following set

 $\{(B',\alpha_1,\cdots,\alpha_t)\}\ |\ B' \text{ a block } (\ne B), B'\cap B\ni \alpha_1,\cdots,\alpha_t,\alpha_j \ne \alpha_{j'} \text{ if } j\ne j'\}$ gives $x_t(B)+\binom{t+1}{t}x_{t+1}(B)+\cdots+\binom{k-1}{t}x_{k-1}(B)=(\lambda-1)\binom{k}{t}.$ Since $\lambda\geqslant -2$, there is an integer q $(t\leqslant q\leqslant k-1)$ with $x_q(B)\ne 0$. Hence, we may assume that there exist two blocks B_2,B_3 such that $t\leqslant |B_2\cap B_3|=q$. Let α_1 be a point of B_2-B_3 and $\alpha_2,\cdots,\alpha_{t-1}$ be t-2 points of $B_2\cap B_3$. Set $S=\{B\mid B \text{ a block, } B\supseteq \{\alpha_1,\cdots,\alpha_{t-1}\}\}$, where $|S|=\frac{v-t+1}{b-t+1}\lambda$. Then we have

$$|\{B \in S | |B \cap B_2| \ge t \text{ or } |B \cap B_3| \ge t-1\}| \le \lambda(k-t+1) + \lambda(k-t+2).$$

Hence, if $\frac{v-t+1}{k-t+1}\lambda > \lambda(k-t+1)+\lambda(k-t+2)$, then there exists a block B_1 in S such that $|B_1 \cap B_2| = t-1$ and $|B_1 \cap B_3| = t-2$. On the other hand, $\frac{v-t+1}{k-t+1} > (k-t+1)+(k-t+2)$ holds if $v \ge k^3$. So, the proof of Lemma 2 is completed.

Proposition. Let **D** be a block-schematic $t-(v, k, \lambda)$ design with $t, \lambda \ge 2$.

Then $v < \lambda k^3 \left(\frac{k}{2} \right)^2 holds$.

Proof. By Lemma 1, we have

$$x_{t-2} > (\lambda_{t-2} - 1) \binom{k}{t-2} - (t-1) (\lambda_{t-1} - 1) \binom{k}{t-1} - (k-t) (\lambda - 1) \binom{k}{\left[\frac{k}{2}\right]}^{2}.$$
So, $x_{t-2} > \frac{(v-t+2)(v-t+1)}{(k-t+2)(k-t+1)} \lambda \binom{k}{t-2} - (t-1) \frac{v-t+1}{k-t+1} \lambda \binom{k}{t-1} - (k-t) \lambda \binom{k}{\left[\frac{k}{2}\right]}^{2},$
and

$$x_{t-2} > \frac{(v-k)^2}{k^2} \lambda - (t-1)v\lambda \left(\left\lceil \frac{k}{2} \right\rceil \right) - k\lambda \left(\left\lceil \frac{k}{2} \right\rceil \right)^2.$$

Hence we have

$$x_{t-2} > \frac{v^2}{k^2} \lambda - kv \lambda \left(\begin{bmatrix} \frac{k}{2} \\ 2 \end{bmatrix} \right) - k\lambda \left(\begin{bmatrix} \frac{k}{2} \\ 2 \end{bmatrix} \right)^2. \tag{1}$$

Again by Lemma 1, we have

$$x_{t-1} < \lambda_{t-1} \left(\frac{k}{t-1} \right) + (k-t) \left(\lambda - 1 \right) \left(\left[\frac{k}{2} \right] \right)^2$$

So,

$$x_{t-1} < \frac{v}{2} \lambda \left(\left\lceil \frac{k}{2} \right\rceil \right) + (k-1) \lambda \left(\left\lceil \frac{k}{2} \right\rceil \right)^{2}. \tag{2}$$

From now on, we may assume that $v \ge k^3$. By Lemma 2, there exist three blocks B_1 , B_2 , B_3 of \mathbf{D} such that $|B_1 \cap B_2| = t - 1$, $|B_2 \cap B_3| = q$ ($t \le q \le k - 1$), and $|B_1 \cap B_3| = t - 2$. By Lemma 1, we have

$$x_{q} \leq (\lambda - 1) {k \choose q} < \lambda {\left\lceil \frac{k}{2} \right\rceil}. \tag{3}$$

Hence, by (1), (2) and (3), we have

$$x_{t-2} - x_{t-1} x_q > \frac{v^2}{k^2} \lambda - k v \lambda \left(\left\lceil \frac{k}{2} \right\rceil \right) - k \lambda \left(\left\lceil \frac{k}{2} \right\rceil \right)^2 - \lambda^2 \left(\left\lceil \frac{k}{2} \right\rceil \right)^2 \left\{ \frac{v}{2} + (k-1) \left(\left\lceil \frac{k}{2} \right\rceil \right) \right\} \; .$$

Thus, we have that

$$x_{t-2} - x_{t-1} x_q > \frac{v^2}{k^2} \lambda - \lambda^2 \left(\left\lceil \frac{k}{2} \right\rceil \right)^2 v - k \lambda^2 \left(\left\lceil \frac{k}{2} \right\rceil \right)^3.$$
Hence, $x_{t-2} - x_{t-1} x_q > 0$ holds if $v \ge k^3 \left(\left\lceil \frac{k}{2} \right\rceil \right)^2 \lambda$. (4)

Let $B_1, B_2, B_3, \dots, B_{\lambda_0}$ be the blocks of \mathbf{D} . Let A_k $(0 \le k \le k)$ be the k-adjacency matrix of \mathbf{D} of degree λ_0 defined by

$$A_h(i,j) = \begin{cases} 1 & \text{if } |B_i \cap B_j| = h, \\ 0 & \text{otherwise.} \end{cases}$$

Since D is block-schematic, we have

$$A_i A_j = \sum_{h=0}^k \mu(i,j,h) A_h \quad (0 \leqslant i,j \leqslant k)$$

where $\mu(i, j, h)$ is a non-negative integer. Let a be the all-1 vector of degree λ_0 . Then,

$$A_i A_j \boldsymbol{a} = \sum_{h=0}^k \mu(i,j,h) A_h \boldsymbol{a}$$
.

Hence we have $x_i x_j = \sum_{h=0}^{k} \mu(i,j,h) x_h$. In particular,

$$x_{t-1}x_q = \sum_{h=0}^{k} \mu(t-1, q, h)x_h, \qquad (5)$$

where $\mu(t-1,q,t-2)$ is a positive integer, because $|B_1 \cap B_2| = t-1$, $|B_2 \cap B_3| = q$ and $|B_1 \cap B_3| = t-2$. Hence, by (4) and (5), we have $v < k^3 \binom{k}{2}^2 \lambda$.

Lemma 3. For each $n \ge 1$, there is a positive integer $N_1(n)$ satisfying the following: If **D** is a $t-(v,k,\lambda)$ design with k-t=n and $t \ge N_1(n)$, then there exist two blocks B_1 and B_2 of **D** such that $|B_1 \cap B_2| = t-1$.

Proof. Let **D** be a $t-(v, k, \lambda)$ design with k-t=n. Let **B** be a block of **D**. Counting in two ways the number of the following set

$$\{(B', \{\alpha_1, \dots, \alpha_t\}) \mid B' \text{ a block } (\pm B), B' \cap B \ni \alpha_1, \dots, \alpha_t, \alpha_j \neq \alpha_{j'} \text{ if } j \neq j'\}$$
 gives
$$x_t(B) + \binom{t+1}{t} x_{t+1}(B) + \dots + \binom{k-1}{t} x_{k-1}(B) = (\lambda - 1) \binom{k}{t}.$$

Since
$$\frac{\binom{t+i}{t-1}}{\binom{t+i}{t}} = \frac{t}{i+1} \quad (i \geqslant 0), \text{ we have}$$

$$\binom{t}{t-1} x_{t}(B) + \binom{t+1}{t-1} x_{t+1}(B) + \dots + \binom{k-1}{t-1} x_{k-1}(B) \leqslant t(\lambda-1) \binom{k}{t}. \tag{6}$$

Counting in two ways the number of the following set

$$\{(B', \{\alpha_1, \dots, \alpha_{t-1}\}) | B' \text{ a block } (\pm B), B' \cap B \ni \alpha_1, \dots, \alpha_{t-1}, \alpha_j \pm \alpha_{j'} \text{ if } j \pm j'\}$$
 gives $x_{t-1}(B) + \binom{t}{t-1} x_t(B) + \binom{t+1}{t-1} x_{t+1}(B) + \dots + \binom{k-1}{t-1} x_{k-1}(B)$

$$= (\lambda_{t-1} - 1) \binom{k}{t-1}. \tag{7}$$

By (6) and (7), we have

$$\begin{split} &x_{t-1}(B)\!\geqslant\!(\lambda_{t-1}\!-\!1)\binom{k}{t-1}\!-\!t(\lambda\!-\!1)\binom{k}{t}\,,\quad\text{and}\\ &x_{t-1}(B)\!\geqslant\!\frac{v\!-\!t\!+\!1}{n\!+\!1}\,\lambda\frac{(n\!+\!t)\cdots t}{(n\!+\!1)!}\!-\!\frac{(n\!+\!t)\cdots t}{(n\!+\!1)!}\!-\!(\lambda\!-\!1)\frac{(n\!+\!t)\cdots t}{n!}\,. \end{split}$$

Since **D** is a nontrivial design, $v > k+t \ge 2t+n$. Hence we have

$$x_{t-1}(B) > \left(\frac{(t+n+1)\cdots t}{(n+2)!} - \frac{(t+n)\cdots t}{n!}\right)\lambda$$
.

Set $f(t) = \frac{(t+n+1)\cdots t}{(n+2)!} - \frac{(t+n)\cdots t}{n!}$. Then there is a positive integer $N_1(n)$ such that $f(t) \ge 0$ holds if $t \ge N_1(n)$. Hence, the proof of Lemma 3 is completed.

Lemma 4. For each $n \ge 1$, there is a positive integer $N_2(n)$ satisfying the

following: If **D** is a $t-(v, k, \lambda)$ design with k-t=n and $t \ge N_2(n)$, then there exist three blocks B_1 , B_2 , B_3 of **D** such that $|B_1 \cap B_2| = t-1$, $|B_2 \cap B_3| = t-1$ and $|B_1 \cap B_3| = t - n - 2$.

Proof. Let **D** be a $t-(v, k, \lambda)$ design with k-t=n. We may assume $t \ge N_1(n)$, where $N_1(n)$ is a positive integer obtained in Lemma 3. Therefore, there exist two blocks B_2 and B_3 of \mathbf{D} with $|B_2 \cap B_3| = t-1$. Let $\alpha_1, \dots, \alpha_{n+1}$ be n+1 points of B_2-B_3 and α_{n+2} , ..., α_{t-1} be t-n-2 points of $B_2 \cap B_3$. Set $S = \{B \mid B \text{ a block, } B \supseteq \{\alpha_1, \dots, \alpha_{t-1}\}\}, \text{ where } |S| = \frac{v - t + 1}{h - t + 1}\lambda.$ Then we have

$$|\{B \in S | |B_2 \cap B| \ge t \text{ or } |B_3 \cap B| \ge t - n - 1\}| \le \lambda(k - t + 1) + \lambda(k - t + n + 2).$$

Hence, if $\frac{v-t+1}{k-t+1}\lambda > \lambda(n+1)+\lambda(2n+2)$, then there exists a block B_1 in S such that $|B_1 \cap B_2| = t-1$ and $|B_1 \cap B_3| = t-n-2$. On the other hand, since v > k+t=2t+n, we have that $\frac{v-t+1}{n+1} > (n+1)+(2n+2)$ holds if $t \ge 3(n+1)^2$. Lemma 4 holds if $N_2(n) = \max\{N_1(n), 3(n+1)^2\}$.

Proof of Theorem 1. First, let us suppose that **D** is a block-schematic $t-(v, k, \lambda)$ design with k-t=n and $t, \lambda \ge 2$. By Proposition, we may assume that $t \ge N_2(n)$, where $N_2(n)$ is a positive integer obtained in Lemma 4. By Lemma 1 we have

$$\begin{split} x_{t-n-2} > & \lambda_{t-n-2} \binom{t+n}{t-n-2} - \sum_{j=t-n-1}^{t-1} \binom{j}{t-n-2} \lambda_j \binom{t+n}{j} - \sum_{j=t}^{t-1} \binom{j}{t-n-2} \lambda \binom{t+n}{j}, \\ \text{where } & \lambda_{t-n-2} \binom{t+n}{t-n-2} = \frac{(v-t+n+2)\cdots(v-t+1)}{(n+n+2)\cdots(n+1)} \lambda \cdot \frac{(t+n)\cdots(t-n-1)}{(2n+2)!}, \\ & \sum_{j=t-n-1}^{t-1} \binom{j}{t-n-2} \lambda_j \binom{t+n}{j} < (n+1) \lambda_{t-n-1} \frac{(t+n)!}{(t-n-2)!} \\ & = (n+1) \frac{(v-t+n+1)\cdots(v-t+1)}{(n+n+1)\cdots(n+1)} \frac{(t+n)!}{(t-n-2)!} \lambda, \\ \text{and } & \sum_{j=t}^{t-1} \binom{j}{t-n-2} \lambda \binom{t+n}{j} < n \frac{(t+n)!}{(t-n-2)!} \lambda. \end{split}$$

Hence we have

$$x_{t-n-2} > \frac{(v-t)^{n+2}(t-n-1)^{2n+2}}{((2n+2)!)^2} \lambda - (v-t+n+1)^{n+1}(t+n)^{2n+2} \lambda. \tag{8}$$

Again by Lemma 1, we have

$$x_{t-1} < \frac{v-t+1}{n+1} \lambda {t+n \choose t-1} + \sum_{j=t}^{k-1} {j \choose t-1} \lambda {t+n \choose j}$$
, and

$$x_{t-1} < (v-t+1)(t+n)^{n+1}\lambda + n(t+n)^{n+1}\lambda$$
.

Hence we have

$$x_{t-1}^2 < (v-t+n+1)^2(t+n)^{2n+2}\lambda^2$$
. (9)

By (8) and (9), we have

$$x_{t-n-2}-x_{t-1}^2>\frac{(v-t)^{n+2}(t-n-1)^{2n+2}}{((2n+2)!)^2}\lambda-2(v-t+n+1)^{n+1}(t+n)^{2n+2}\lambda^2.$$

Set
$$f(t) = \frac{\lambda}{((2n+2)!)^2} t^{n+2} \cdot (t-n-1)^{2n+2} - 2\lambda^2 (t+n+1)^{n+1} (t+n)^{2n+2}$$
.

Then there is a positive integer $N(n, \lambda)$ ($\geqslant N_2(n)$) such that $f(t) \geqslant 0$ holds if $t \geqslant N(n, \lambda)$. Since v - t > t, we have that

$$x_{t-n-2} - x_{t-1}^2 > 0$$
 holds if $t \ge N(n, \lambda)$. (10)

By the similar argument as in the proof of Proposition, we have

$$x_{t-1}^2 = \sum_{h=0}^k \mu(t-1, t-1, h) x_h , \qquad (11)$$

where $\mu(t-1, t-1, h)$ is a non-negative integer. Moreover, since $t \ge N_2(n)$ $\mu(t-1, t-1, t-n-2)$ is a positive integer by Lemma 4. Hence, by (10) and (11), we have $t \le N(n, \lambda)$. Therefore, $k \le N(n, \lambda) + n$. Hence by Proposition, the proof of Theorem 1 is completed on condition that $\lambda \le 2$.

Next, let us suppose that D is a block-schematic t-(v, k, l) design with k-t=n and $t\geqslant 3$. (The proof of the case $\lambda=1$ is similar to that of the case $\lambda\geqslant 2$. Then, we give an outline of it.) By Theorem in [1], we may assume that $t\geqslant N_2(n)$, where $N_2(n)$ is a positive integer obtained in Lemma 4. By Lemma 1, we get

$$x_{t-n-2}-x_{t-1}^2>\frac{(v-t)^{n+2}(t-n-1)^{2n+2}}{((2n+2)!)^2}-2(v-t+n+1)^{n+1}(t+n)^{2n+2}\;.$$

Hence, there is a positive integer N(n) ($\geqslant N_2(n)$) such that $x_{t-n-2}-x_{t-1}^2>0$ holds if $t\geqslant N(n)$. On the other hand, the following equation holds:

$$x_{t-1}^2 = \sum_{h=0}^k \mu(t-1, t-1, h) x_h,$$

where $\mu(t-1, t-1, h)$ is a non-negative integer and $\mu(t-1, t-1, t-n-2)$ is positive. Therefore, we have $t \le N(n)$, and so $k \le N(n) + n$. Hence by Theorem in [1], the proof of Theorem 1 is completed on condition that $\lambda = 1$. Thus, Theorem 1 is proved.

3. Proof of Theorem 2

Lemma 5. Let **D** be a block-regular $t-(v, k, \lambda)$ design. Then the following equality holds for $i=0, \dots, t-1$.

$$x_{i} = \frac{\lambda \binom{k}{i}}{\binom{v-t}{k-t}} \left\{ \binom{v-k}{k-i} + (-1)^{t+i+1} \sum_{i=0}^{k-t-1} \binom{t-i-1+q}{q} \binom{v-k+q}{k-t} \right\} + (\lambda-1) \sum_{j=1}^{t-1} \binom{j}{i} \binom{k}{j} (-1)^{i+j} + \sum_{j=i}^{k-1} \binom{j}{i} w_{j} (-1)^{i+j},$$

where $x_j \leqslant w_j \leqslant (\lambda - 1) \binom{k}{j}$ $(t \leqslant j \leqslant k - 1)$ and $w_t = (\lambda - 1) \binom{k}{t}$.

(The essential part of Lemma 5 is [5, Lemma 6].)

Proof. In this proof, we use the following three combinatorial identities:

(i)
$$\binom{-a}{b} = (-1)^b \binom{a+b-1}{b}$$
,

(ii)
$$\sum_{r} {a \choose r} {b+r \choose c} (-1)^r = (-1)^a {b \choose c-a}$$
 $(a \ge 0)$,

(iii)
$$\sum_{r} {a \choose r} {b \choose c-r} = {a+b \choose c}$$
 $(a \ge 0)$.

By Lemma 1, we have

$$x_{i} = \sum_{j=i}^{t-1} {j \choose i} (\lambda_{j} - 1) {k \choose j} (-1)^{i+j} + \sum_{j=i}^{k-1} {j \choose i} w_{j} (-1)^{i+j},$$

where
$$x_j \leq w_j \leq (\lambda - 1) \binom{k}{j}$$
 $(t \leq j \leq k - 1)$.

Then,
$$x_i = \lambda \sum_{j=i}^{t-1} {j \choose i} (\lambda'_j - 1) {k \choose j} (-1)^{i+j} + (\lambda - 1) \sum_{j=i}^{t-1} {j \choose i} {k \choose j} (-1)^{i+j} + \sum_{j=i}^{t-1} {j \choose j} w_j (-1)^{i+j},$$

where
$$\lambda_j' = \frac{\binom{v-j}{t-j}}{\binom{k-j}{t-j}} = \frac{\binom{v-j}{k-j}}{\binom{v-t}{k-t}} \quad (0 \leqslant j \leqslant t-1).$$

Hence, in order to prove Lemma 5, it is sufficient to show that the following equality holds for $i=0, \dots, k-1$.

$$\sum_{j=i}^{t-1} {j \choose i} (\lambda_j' - 1) {k \choose j} (-1)^{i+j}$$

$$= \frac{\binom{k}{i}}{\binom{v-t}{k-t}} \left\{ \binom{v-k}{k-i} + (-1)^{t+i+1} \sum_{q=0}^{k-t-1} \binom{t-i+1+q}{q} \binom{v-k+q}{k-t} \right\}. \tag{12}$$

First suppose that $t \le i \le k-1$. Then,

$$\sum_{q=0}^{k-t-1} {t-i-1+q \choose q} {v-k+q \choose k-t} = \sum_{q=0}^{k-t-1} {(-1)^q \binom{i-t}{q} \binom{v-k+q}{k-t}} \quad \text{(cf. (i))}$$

$$= (-1)^{i-t} {v-k \choose k-1}.$$
 (cf. (ii))

Hence, the right hand of (12)=0=the left hand of (12).

Let $A=(a_{rs})$ be the square matrix with $a_{rs}=\binom{s}{r}(0\leqslant r,\ s\leqslant k-1)$. Since $\det(A) \neq 0,\ A^{-1}=\binom{s}{r}(-1)^{r+s}(0\leqslant r,\ s\leqslant k-1)$ and (12) holds for $i=t,\cdots,k-1$, we have that (12) holds for $i=0,\cdots,k-1$ if the following holds for $i=0,\cdots,t-1$.

$$\sum_{j=1}^{k-1} {j \choose i} \frac{{k \choose j}}{{v-t \choose k-t}} \left\{ {v-k \choose k-j} + (-1)^{t+j+1} \sum_{q=0}^{k-t-1} {t-j-1+q \choose q} {v-k+q \choose k-t} \right\} = (\lambda_i'-1) {k \choose i}.$$
(13)

Since
$$\binom{j}{i}\binom{k}{j} = \binom{k}{i}\binom{k-i}{k-j}$$
,

the left hand of (13) =
$$\frac{\binom{k}{i}}{\binom{v-t}{k-t}} \sum_{j=i}^{k-1} \binom{k-i}{k-j} \left\{ \binom{v-k}{k-j} + (-1)^{t+j+1} \sum_{q=0}^{k-t-1} \binom{t-j-1-q}{q} \binom{v-k+q}{k-t} \right\}.$$
 (14)

Now,
$$\sum_{j=i}^{k-1} {k-i \choose k-j} {v-k \choose k-j} = \sum_{j=i}^{k-1} {k-i \choose j-i} {v-k \choose k-j}$$
$$= \sum_{k=0}^{k-i} {k-i \choose k} {v-k \choose k-i-k} - 1 \quad (h=j-i)$$
$$= {v-i \choose k-i} - 1. \quad (cf. (iii))$$
(15)

On the other hand,

$$\sum_{j=i}^{k-1} {k-i \choose k-j} (-1)^{t+j+1} \sum_{j=0}^{k-1-1} {t-j-1+q \choose q} {v-k+q \choose k-t}
= \sum_{j=0}^{k-t-1} (-1)^{t+1} {v-k+q \choose k-t} \sum_{j=i}^{k-1} {k-i \choose j-i} {t-j-1+q \choose q} (-1)^{j}
= \sum_{j=0}^{k-t-1} (-1)^{t+1} {v-k+q \choose k-t} \sum_{j=i}^{k-1} {k-i \choose j-i} {j-t \choose q} (-1)^{j+q} \quad (cf. (i))$$

$$=\sum_{q=0}^{k-t-1} (-1)^{t+1} {v-k+q \choose k-t} {\sum_{k=0}^{k-t} {k-i \choose k} {i-t+k \choose q} (-1)^{i+k+q} - {k-t \choose q} (-1)^{k+q} }$$

$$=\sum_{q=0}^{k-t-1} (-1)^{t+1} {v-k+q \choose k-t} {\{(-1)^{(k-i)+(i+q)} {i-t \choose q-k+i} - {k-t \choose q} (-1)^{k+q} \}}$$

$$=\sum_{j=0}^{k-t-1} (-1)^{t+k+q} {v-k+q \choose k-t} {k-t \choose q}$$

$$=(-1)^{k+t} \sum_{q=0}^{k-t} {k-t \choose q} {v-k+q \choose k-t} (-1)^q - {v-t \choose k-t}$$

$$=(-1)^{k+t+k-t} {v-k \choose k-t-k+t} - {v-t \choose k-t}$$

$$=(-1)^{k+t+k-t} {v-k \choose k-t-k+t} - {v-t \choose k-t}$$

$$=1 - {v-t \choose k-t}.$$

$$(16)$$

Hence by (14), (15) and (16), we have that

the left hand of (13) =
$$\frac{\binom{k}{i}}{\binom{v-t}{k-t}} \left\{ \binom{v-i}{k-i} - 1 + 1 - \binom{v-t}{k-t} \right\}$$
$$= \left\{ \binom{(v-i)}{k-i} - 1 \right\} \binom{k}{i} = \text{the right hand of (13)}.$$

Thus, Lemma 5 is proved.

Lemma 6. For each $k \ge 2$ and $l \ge 0$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $x_i \le l$ for some i $(0 \le i \le t-1)$.

Proof. In order to prove Lemma 6, it is sufficient to show the following: For each $k \ge 2$, $l \ge 0$, t $(1 \le t < k)$ and i $(0 \le i < t)$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $x_i \le l$.

Let k, l, t and i be integers with $k \ge 2$, $l \ge 0$, $1 \le t < k$ and $0 \le i < t$, and let D be a block-regular $t-(v, k, \lambda)$ design with $x_i \le l$. By Lemma 1, we have

$$x_{i} = \sum_{j=i}^{t-1} {j \choose i} (\lambda_{j} - 1) {k \choose j} (-1)^{i+j} + \sum_{j=t}^{k-1} {j \choose i} w_{j} (-1)^{i+j} ,$$
where $x_{j} \leq w_{j} \leq (\lambda - 1) {k \choose j}$ $(j=t, \dots, k-1)$. Therefore,
$$x_{i} - l > \left(\frac{(v-i) \cdots (v-t+1)}{(k-i) \cdots (k-t+1)} \lambda - 1 \right) {k \choose i} - \sum_{j=i+1}^{t-1} {j \choose j} \frac{(v-j) \cdots (v-t+1)}{(k-j) \cdots (k-t+1)} \lambda - 1 \right) {k \choose j} - \sum_{j=i+1}^{k-1} {j \choose j} (\lambda - 1) {k \choose j} - l .$$

In the above expression, if we suppose that k, l, t and i are constants, and that v and λ are variables with v > k and $\lambda \ge 1$, then we can obtain the following:

The right hand of the expression $=\lambda \cdot f(v) + \lambda \cdot g(v) + d$, where f(v) is a polynomial in v of degree t-i with the leading coefficient of f(v)>0, g(v) is a polynomial in v of degree t-i-1, and d is a constant. Hence, there exists a constant C(k, l, t, i)>0 such that $x_i-l>0$ holds if $v \ge C(k, l, t, i)$. Namely, if $x_i \le l$, then v < C(k, l, t, i).

Proof of Theorem 2. By Lemma 6, we may assume that $t \ge \frac{2n + ((2n+2)!)^2}{c-2} + 2n$. Let **D** be a block-regular $t - (v, t + n, \lambda)$ design with $v \ge ct$, $t \ge \frac{2n + ((2n+2)!)^2}{c-2} + 2n$, and $x_i \le l$ for some $i (0 \le i \le t-1)$. Set $v = mt \ (m \ge c)$, where m is not always integral. By Lemma 5, we have

$$x_{i} = \frac{\lambda \binom{t+n}{i}}{\binom{(m-1)t}{n}} \left\{ \binom{(m-1)t-n}{t+n-i} + (-1)^{t+i+1} \sum_{q=0}^{n-1} \binom{t-i-1+q}{q} \binom{(m-1)t-n+q}{n} \right\} + (\lambda - 1) \sum_{j=i}^{t-1} \binom{j}{i} \binom{t+n}{j} (-1)^{i+j} + \sum_{j=i}^{t-n-1} \binom{j}{i} w_{j} (-1)^{i+j},$$

$$(17)$$

where $x_j \leqslant w_j \leqslant (\lambda - 1) \binom{t+n}{j}$ $(t \leqslant j \leqslant k-1)$.

Now,
$$(\lambda - 1) \sum_{j=i}^{t-1} {j \choose i} {t+n \choose j} (-1)^{i+j} + \sum_{j=i}^{t-n-1} {j \choose i} w_j (-1)^{i+j}$$

$$= -(\lambda - 1) \sum_{j=i}^{t+n} {j \choose i} {t+n \choose j} (-1)^{i+j} + \sum_{j=i}^{t+n-1} {j \choose i} w_j (-1)^{i+j}$$

$$> -2\lambda (n+1) \frac{(t+n)!}{i!(t-i)!}.$$
(18)

On the other hand,

$$\frac{\lambda \binom{t+n}{i}}{\binom{(m-1)t}{n}} \left\{ \binom{(m-1)t-n}{t+n-i} + (-1)^{t+i+1} \sum_{i=0}^{n-1} \binom{t-i-1+q}{q} \binom{(m-1)t-n+q}{n} \right\}
> \frac{\lambda \binom{t+n}{i}}{\binom{(m-1)t}{n}} \left\{ \binom{(m-1)t-n}{t+n-i} - n\binom{t+n-i}{n} \binom{(m-1)t}{n} \right\}
> \frac{\lambda (t+n)!((m-1)t-n)!((m-1)t-n)!}{i!(t+n-i)!((m-1)t)!(t+n-i)!((m-2)t-2n+i)!} - \frac{\lambda (t+n)!}{i!(t-i)!} \tag{19}$$

By (17), (18) and (19), we have

$$\frac{x_i i! (t-i)!}{(t+n)! \lambda} > \frac{\{((m-1)t-n)!\}^2 (t-i)!}{((t+n-i)!)^2 ((m-1)t)! ((m-2)t-2n+i)!} - 5n.$$

Then since $\frac{i!(t-i)!}{(t+n)!\lambda} \le \frac{!}{(t+n)!\lambda} < 1$, we have

$$x_{i} > \frac{((m-1)t-n)\cdots((m-2)t-2n+i+1)}{((m-1)t)\cdots((m-1)t-n+1)\cdot(t+n-i)\cdots(t-i+1)\cdot(t+n-i)!} - 5n.$$

Hence,
$$x_i > ((m-1)t-n)\frac{((m-1)t-n-1)\cdots((m-1)t-2n)}{((m-1)t)\cdots((m-1)t-n+1)}$$

$$\cdot \frac{((m-1)-2n-1)\cdots((m-1)t-3n)}{(t+n-i)\cdots(t-i+1)}$$

$$\cdot \frac{((m-1)t-3n-1)\cdots((m-2)t-2n+i+2)}{(t+n-i)\cdots(2n+3)} \cdot \frac{(m-2)t-2n+i+1}{(2n+2)!} -5n$$

holds if $t-i \ge n+3$, and

$$x_{i} > ((m-1)t-n) \frac{((m-1)t-n-1)\cdots((m-1)t-2n)}{((m-1)t)\cdots((m-1)t-n+1)} \cdot \frac{((m-1)t-2n-1)\cdots((m-2)t-2n+i+1)}{((2n+2)!)^{2}} - 5n$$

holds if $2 \leq t - i \leq n + 2$,

and
$$x_i > ((m-1)t-n)\frac{((m-1)t-n-1)\cdots((m-1)t-2n)}{((m-1)t)\cdots((m-1)t-n+1)}\frac{1}{((n+1)!)^2} - 5n$$

holds if t-i=1.

In any case, since $t \ge \frac{2n + ((2n+2)!)^2}{c-2} + 2n$, we have

$$x_{i} > ((m-1)t-n) \frac{((m-2)t)^{n}}{((m-1)t)^{n}} \cdot \frac{1}{((n+1)!)^{2}} - 5n$$

$$> \frac{((c-1)t-n)}{((n+1)!)^{2}} \left(\frac{c-2}{c-1}\right)^{n} - 5n.$$

Therefore, there exists a positive integer N(c, n, l) $\left(\ge \frac{2n + ((2n+2)!)^2}{c-2} + 2n \right)$ such that $x_i - l > 0$ holds if $t \ge N(c, n, l)$. Namely, if $x_i \le l$, then $t \le N(c, n, l)$. Hence by Lemma 6, the proof of Theorem 2 is completed.

References

- [1] T. Atsumi: An extension of Cameron's result on blockschematic Steiner systems, J. Combin. Theory Ser. A 27 (1979), 388-391.
- [2] R.C. Bose: Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
- [3] P.J. Cameron: Two remarks on Steiner systems, Geom. Dedicata 4 (1975), 403-418.
- [4] M. Dehon: Sur les t-designs dont un des nombres d'intersection est nul, Acad. Roy. Belg. Bull. Cl. Sci. (5) 61 (1975), 271-280.
- [5] B.H. Gross: Intersection triangles and block intersection numbers for Steiner systems, Math. Z. 139 (1974), 87-104.

Division of Mathematics Keio University Hiyoshi, Yokohama 223 Japan