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Abstract

Computational studies on the confinement of fast ions in a tokamak
with toroidal field ripple have been made by means of a newly developed
orbit—following Monte-Carlo code. It is found that collisionless behavior
of fast ions relating to ripple trapping, ripple detrapping and ripple-
enhanced banana drift is of essential importance in the loss process of
fast ions. The collisionless ripple trapping and ripple-enhanced banana
drift produce a large number of loss bands in velocity space and enhance
the loss of fast ions. The amount of loss particles due to respective loss
process 1s significantly influenced by the effect of finite banana size of
fast ions. The ripple-induced loss of fast ions produced by guasi-
perpendicular NBI in a reactor grade tokamak is evaluated by using the
orbit—following Monte-Carlo code. In order to hold down the ripple loss of
fast ions during slowing down to be less than 10 % of the total, the
injection angle 190 — 6;,;! > 20° and the maximum field ripple §; < 0.5%
for typical plasma parameters. Ripple-trapped particles enter specific
narrow areas of the first wall in the course of their gradient-B drift and

cause a significantly large heat loading. Localized heat loads due to



ripple—trapped loss fast ions in the case of quasi—perpendicular NBI may
reach a magnitude of 1 Aﬂ%h#z for the next generation tokamak. Even in the
presence of ripple, charged fusion products are well confined in a device.
The ripple enhanced power loss of alphas during slowing down amounts to

10 % in a reactor grade tokamak with a toroidal field ripple of § ~ 1 %.
Ripple—-enhanced banana drift dominates the loss process of alpha parti—
cles. The ion heat conductivity in a rippled toroidal field is also
investigated numerically by the same code. It is found that the collision
frequency transition of the numerical % from the collisional to the
collisionless regime occurs at the frequency much higher than the theoreti-
cal prediction. Consequently, the numerical XﬁT is about one or two orders
of magnitude smaller than the theoretical one in the low collisionality
regime. Besides the two reasons for the small heat conductivity which have
been assigned previously, the collisionless ripple detrapping and the
effectively high drift frequency for particles with E =4 to 87; which
mainly contribute to the ion heat transport, it is found in the present
investigation that the singular orbit of barely ripple-trapped particle may
reduce the ripple transport. The resulting ripple induced ion heat conduc—
tivity has a much weaker temperature dependence of T? at most. For this
reason, rather large value of field ripple &y ~ 5 %) is required for the

control of burning plasma temperature (T ~ 15 keV ).
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§ 1. Introduction

Searching for the energy resources semipermanently available to the
mankind, invéstigations of the controlled thermonuclear fusion have made a
rapid progress in the last decade. The machine playing a leading role of
the magnetic confinement fusion research is the well-known ~tokamak”.

On the basis of recent studies, large tokamaks are presently under con-
struction in several countries (JT-80C in Japan, TFTR in USA, JET in EC and
T-15 in USSR). 1t is world-widely expected that these large tokamaks are
sure to provide the conclusive information on how to obtain the ignition
plasma, that is, the establishment of the scientific feasibility of fusion.
In the subsequent phase of the research, some experimental reactors (FED
in USA, FER in Japan and INTOR by IAEA) are in the design stage with an aim
to grasp problems on the establishment of the technological feasibility of
fusion.

In the early research of tokamak experiments, there have been discov—
ered many important and unexpected phenomena relating to high temperature
plasma (T;,T. > 1 keV). These phenomena have been elusidated in many
experiments. In addition, theoretical or computational studies have been
useful and become indispensable for the interpretation and expectation of
those experimental results. Although the scientific foundation for the
construction of large tokamaks mentioned above seems to have been esta-
blished by the co—operation of experimental and theoretical investigations,
there still remain several unresolved and unexperienced problems. In the

design of those reactor—grade large tokamaks in planning as well as under



construction, there are many scientific or technological considerations
such as the energy confinement time, the effective heating method, the ash
exhaust, the 3 limitation, the control of burning plasma temperature, the
heat load of the first wall, the tritium breeding, the shielding of
neutrons, etc. Concerning these problems, a lot of information beyond the
present experimental data 1s necessary for the design of reactor-grade
tokamaks. In order to obtain the required information, computational
investigations by means of many kinds of simulation code have been
employed. Therefore, computational study is now considered as not only
giving the key development of magnetic fusion research but also making the
main contribution to the design of fusion devices.

One of the main advantages of tokamak is that its magnetic field is
essentially axisymmetric. In a real tokamak system, however, there is no
other way but to choose the finite number of toroidal field coils, because
of what is feasible in constructing the machine. This results in a non-
axisymmetric component of toroidal magnetic field which is called a
"ripple”. The toroidal field ripple is directly related to some of those
considerations mentioned above. For example, the energy confinement of
high temperature plasma is greatly influenced by the ripple enhanced
transport. The loss processes of injected beam ions and charged fusion
products might be dominated by the field ripple. The ripple induced
transport has been considered to be available for the control of burning
plasma temperature. The ripple enhanced loss of bulk plasma ions, injected
beam ions and fusion—produced alpha particles may cause a dangerous heating
of the first wall exposed to the plasma. Therefore, the toroidal field
ripple has attracted special interest recently, and some theoretical and

experimental investigations have been performed.



Influence of the toroidal field ripple on a plasma confinement has
been extensively investigated from the view point of ripple diffusion’? .
Charged particles once trapped into a ripple well via Coulomb collisions
undergo the gradient-B drift® and move perpendicularly with respect to the
torus mid-plane until they are detrapped from the well by pitch angle
scattering. In the classical theories, this radial displacement due to
collisional ripple-trapping and detrapping has been considered as the basic
process of ripple diffusion (the ripple-trapped diffusion). While, the
toroidal field ripple can also have a significant effect on banana parti-
cles even if they are not trapped in a ripple well. In an axisymmetric
field, the radial displacement due to gradient-B drift in the upper and the
lover side of the mid-plane completely offset each other. In the presence
of ripple, however, they cannot be cancelled and the unbalanced radial
displacement causes another kind of ripple induced transport. The theoret-
ical studies? ® subsequent to the above ripple-trapped diffusion have
revealed this kind of ripple—enhanced banana—drift diffusion.
According to these theories, the ripple induced transport may result in
deleterious effects on the confinement of a high temperature collisionless
plasma, so that the extremely low level of the field ripple is required for
the design of future tokamaks. Recently, however, a renewed, another
attention is paid on the ripple diffusion as a poséible tool of the burning
plasma control in tokamak fusion reactors. It has been predicted, based on
the previous ripple-trapped diffusion theory, that the thermal instability
of D-T burning plasmas can be stabilized by the field ripple
control® 7.8

On the other hand, few experimental works for the ripple diffusion

have been made in the machines Alcator A? and ISX-B'Q:-'D  In Alcator A,



the depletion of the high energy component of bulk plasma ions due to
ripple was observed by perpendicular charge exchange measurements. In
ISX-B, the deterioration of ion energy confinement due to ripple was
evaluated by comparing the ion temperature in similar beam—heated discharge
with O and 18 toroidal field coils. The field ripple 6 is generally
defined by & = ( B™* — Brn )/( B"* + B ) where B'™ and B%'" are the
maximum and minimum values of the toroidal field along a toroidal field
line. The ripple 6 in ISX-B with 9 TF coils is 1.6% at the plasma center
and 10% at the edge (the plasma surface outboard, in the mid-plane), and
with 18 TF coils &6 = 0.01% at the plasma center and 0.7% at the edge. The
uncertainty in ion temperature measurements and the complexity of the
ripple effects on plasma ion confinement make the interpretation of experi-—
mental results to be very difficult. Consequently, these experiments do
not demonstrate conclusively yet that ripple transport agrees with the
theoretical prediction.

Another important feature of toroidal field ripple is the reduction of
the confinement of suprathermal particles such as perpendicularly injected
beam ions and banana-—trapped alpha particles. Enhanced beam penetration by
ripple, the so—called ripple injection, has also been proposed]m'lw. A few
experimental works were carried out in ISX-B concerning the ripple loss of
fast ions produced by neutral beam injection'® 'V, Concurrently with the
experiment of the bulk plasma diffusion by ripple described above, the loss
of fast ions was measured by charge exchange analyzer in ISX-B and a sharp
decrease in fast neutral flux for 9-TF-coil operation was detected. It was
also observed that the central temperature of beam heated plasma (1.1 M)
dropped from 840 eV with 18 TF coils to 460 eV with 9 TF coils. On this

problem, however, only a few theoretical or computational works'*''® have



been made and the behavior of fast ions in a rippled toroidal field remains
unresolved. Hence, the present state of the study on this problem is still
open to be investigated for the design of the next-generation tokamaks.

The toroidal field coil system is one of the major components of
tokamaks. The maximum allowable toroidal field ripple is a determining
factor of the size and number of the coils. In the estimation of allowable
field ripple, there are several indispensable considerations. First, the
estimation of the ripple enhanced loss of fast ions produced by neutral
beam injection must be made. Since ripple—associated loss of fast ions
strongly depends on the birth point in velocity space, the allowable or
critical injection angle is also a significant problem. Secondly, the
ripple loss of suprathermal charged fusion products during slowing down
should be investigated carefully, because the machine with low efficiency
of alpha particle confinement is very difficult to be a reactor. Thirdly,
wve must evaluate the ripple induced transport of the bulk plasma ions which
might influence greatly the plasma heating scenarios for thermonuclear

ignition as well as the control of burning plasma temperature.

Generally, ions 1n a tokamak move periodically around the magnetic
axis, colliding with plasma particles. The theoretical treatment of the
collisional process of ions is described by the bounce averaged Fokker—
Planck equations. Particles in a field ripple, however, show a very
complicated motion!® 'Y which makes it impossible to average the Fokker-—
Planck equation over a bounce motion. For this reason, we have developed
an orbit—following Monte-Carlo simulation code!®:!9.17.18) in yhich the
behavior of ions undergoing Coulomb interactions in a rippled toroidal

field is completely described. The purpose of this paper is to investigate



all the problems mentioned gbove extensively and systematically by using
the newly developed Monte—Carlo code. Especially, the effects of ripple-
modulated particle orbits on the transport phenomena of plasma ions are
carefully studied. Theoretical investigations are also made complemen—
tally.
Consequently, in the present studies obtained is a lot of important
information on the allowable level of the field ripple for the containment
of both injected beam ions and charged fusion products, on the critical
injection angle and on the necessary amount of the field ripple to control
the burning plasma in a reactor tokamak.

In section 2, calculation model for the orbit-following Monte—Carlo
code 1is described. The basic collisionless behaviors of fast ions in a
field ripple discovered in the present investigations are given in section
3. The ripple—associated fundamental properties of fast ions in a colli-
sional plasma are presented in section 4. Ripple loss of fast ions pro—
duced by quasi—perpendicular neutral beam injection is described in section
5. Calculation results for the ripple loss of charged fusion products
during slowing down are explained in section 6. Some considerations on the
ripple diffusion of bulk plasma ions and the feasibility of burn control by
using toroidal field ripple are given in section 7. Conclusions of the

present. investigations are summarized in the last section.
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§ 2. Basic Model for Numerical Analysis

2-1. Introduction

The thermalization process of fast ions 1s described by the drift
kinetic equations with Fokker—Planck collision terms of lLandau form. In an
axisymmetric system, the projection chart of the collisionless guiding
center orbit on a poloidal cross section shows a completely closed contour.
This enables us to solve analytically the above mentioned equations after
linearizing and averaging them over the bounce time of fast ions. Many
authors have adopted this method to solve the slowing—down process of fast
ions produced by NBI"V™® or charged fusion products®. In the presence of
ripple, however, the guiding center orbit never closes and consequently the
loss process of fast ions is seriously affected by the unclose collision-
less orbits.. This makes it very difficult to apply the theoretical method
to solve the relaxation process of fast ions in a non—axisymmetric system.
To make a precise treatment of this kind of problem, an orbit—following
Monte—Carlo simulation code has been newly developed, in which the calcula-
tion of Coulomb collisions is executed at every several time steps of orbit
calculation {(1/10~1/50 bounce time) until the test particle slows down to
the local ion temperature of bulk plasma.

For the convenience of calculations, following assumptions are made in
our orbit—following Monte-Carlo code. The plasma is assumed to be circular

in cross section with minor radius ¢« and all the magnetic surfaces are



concentric circles. The effects of electric potential in a plasma as well
as the finite § on ion orbits might be important. However, the main
purpose of the present investigation is to make it clear the primary
influence of ripple on the confinement of fast ions. Accordingly, these
problems are beyond our scope and left for future studies. The background
plasma parameters are assumed to be immutable during the slowing—down time
Ts.

In the present section, the model magnetic field with ripple for the
calculation of ion trajectory, the equations of guiding center orbit and

the Coulomb collision model using Monte—Carlo techniques are explained.

2-2. Model magnetic field in a tokamak with toroidal field ripple

The magnetic field in a tokamak with finite number of toroidal field

coils can be described by
B =B, (r.0,0), + By(r,0,0)8 + B,(r,0,0)e, , @-1)

where r, 6 are polar co-ordinates in the minor cross section of the torus,
¢ 1s the toroidal angular co-ordinate along the magnetic axis as shown 1in
Fig.2-1 and Ei, E%, E% are the respective unit vectors. The toroidal,

poloidal and radial components of the magnetic field are given by

B, = B, (r,0) + B, (r,0,0) , (2-2-1)
Bo = Ba(r,0) + Ba(r,0,0) , (2-2-2)
B, = B, (r,0,0) . (2-2-3)



Here Ev, and By are the axisymmetric components of the toroidal and poloidal

magnetic field, respectively, and are taken as

Ew = & Bt r (2——3—1>
R
By = ’3Ri B,(r) @-32)

with R; the major radius, B; the toroidal magnetic field on the magnetic
axis, R = Ry+rcosf, and B, the poloidal field produced by plasma current
in a cylindrical model. For the calculation of ripple components of the
magnetic field in eqs. (@-2-1) ~ (2-2-3), B.p, By and B,, we consider a
model toroidal coil current which is a sheet current on a torus as shown in
Fig.2-2. The distribution of the current is of the form

7:(0,9) =E ! (1 + AcosN;p) , (24)

2r Ri+ 1. (0 )cosH

where r.(6) is the distance from the magnetic axis to the toroidal field
coil, Iy the total ampere turns, A the proportion of the ripple current,
and N; the number of toroidal field coils.

With the model current described above, the respective field ripple

can be derived by the method of Biot—-Savart as follows;

~/

1 . . ”
cosN;p Ho 95 e—l_.J—t_,/lg [ (Zs~rsinb)cose oy
¢ r—r

(—;D:J2
Il

+ (Ri+rcosO-R.cosp” da,) cosNip ds” ,  (2-5-1)

~ 7

By = sinN;op Ll % —_.-Jt_.—,s [ (RicosbB—-Z.sinb+1r)a,
4r Yo 0l r —r |

+ Resinfa,) sing” sinN;p ds” (2-5-2)



B, = sinN;p Ll yg —_.—Jt_;-,— ( (RysinB+Z.cosh oy
0017 =113

+ R.cosBu,) sing” sinN,o ds” (2-5-3)

where

=2 s
' 2r Rt+4}(9’)cose”

R. =Ry + re(0 )ecost” ,

Z. = re (87 )cosh”
o, = | x(G/)cose/—sinB/),A/1+x2(9/) )
o = [ % (0" )sin® +cosb”) /Jl+x2(6/ ,

ds” = ro (87 J142(07) ( Rytre (0 )cos®”) do’de”

. 1 dre(®)
r 07y  do”

r = ( r, 6; @) ]

i

(re @), 67,, ¢ ),

i

and pg 1s the permeability in the vacuum. The proportion of the ripple
current A is approximately estimated from the first term of the Fourier
expansion of toroidal coil current with respect to toroidal angle, that is,
Nt Pe

sin—— ,
Nt De 2

A ~

wvhere ¢, is the average sector angle of a toroidal coil. With these

expressions, the peak-to-average field ripple &6 in tokamaks can be defined

as



6 (r,0) = 2l 2-6)

The ripple size proper to the machine &§; which indicates the maximum field

ripple in a plasma in usual tokamaks, is given by

6y = 6 (a,0) ,

o

where a is the plasma minor radius. Contours of constant field ripple &
calculated by eq. (286) is shown in Fig.2-3 for the model coil system shown
in Fig.2-2 with eighteen ( N; = 18 ) toroidal field coils which is appropri—
ate to JT-60 (JAERI large tokamak). The result agrees well with the

numerically derived one in actual coil system&.

2-3. QGuiding center equations

Ion trajectories are followed by numerical integration of the stan-

7

dard guiding center equations of motion in a rippled toroidal field

described in the last subsection. The guiding center equations are

- 1 w - B VB B

L = Cpe + 22y 222 4 2, @-7-1)
Z.e B B B

du. 0, Of

dlon _ _ dte OB @-7-2)

dt m Ol

where vy and vyr are the guiding center velocities parallel and perpendic-
ular to the magnetic field line, | the length along the field line, m;, the

charged particle mass, Z; the charge number , e = 1.6x107"9%C



({1} Ui

Hp = ’

2B

B = BB,)% + Bethy)? + BE, 2-8)

respectively. In usual tokamak ordering

B, B B 42, and
B B B

Be v,

B Riq

where 4 ~ 107! and q 1s the safety factor. Under these conditions magnetic

field B in eq. (2-8) can be approximately given by

BuE<1+B‘°B‘°>,

B
<

ol

with

:

B =4 B? + B ,

and the guiding center equations (2-7-1) and (2-7-2) are rewritten in the

forms
ir N
%% ~ o + Wr cosNep + W2 sinNip + Drugn + 04y, (2-9-1)
ai
10 b+ b
%; ~ Yoo + Way cosNig + Wz sinNye + iji—~ﬁ21@n + 004ty (2-9-2)
dt r
o - E@ 4 )
o 2 W + W cosNip + Wy sinNyp + ?;UQH + 0(4*) (2-9-3)
it
cl Ug | ; . a4 <
——= =~ Wy + Wy cosNip + W2 sinNep + OC47) (2-9-4)

dt



vhere

Weo >~ —Us b,

Wep =~ Uy Epg( Ef b,

IV,2 Uy be b, =

e

Woo = Uy —% ( —

oy == Us = ( b,2b

oo = 044y
by
Weo >~ ~Uyg— ( —
R
Wy ~ ~Uj bgb,
R

Wv] =~ UB BG B@ <

1 —

Woo = UBE b

UA = _]‘— ( n
Zte

Up = -2 B |
mng

BI‘ - —g »
B

B() = —qu )
B




— B N
I)(p: ._:.“l’ ba:_iiﬁ,
B B
respectively.
The coefficients W,o, Wy, - - -, W2 , in eqs. 2-9-1) ~ (2-G-4) are

computed at every mesh point in the plasma and tabulated in advance of the
main calculation. For the calculation of guiding center orbit, the time
derivatives of egs. (2-8-1) ~ (2-8-4) are given by the linear interpolation
with those tabulated values. This method can effectively save the computa-
tional time. The integration of orbit equations is executed by a kind of
P-C method (predictor and corrector method). The algorism of the P-C
method is as follows:
1) The guiding center position (r,8,¢) and vy after 1/241 is pre—
dicted with time derivatives at time t.
X, =Xty +dX/dti, 4t/2 .
2) The time derivatives at )_(':Yp is defined.
dX/dt | o124
3) The new (r,0,¢) and vyy at t + 4t 1is calculated by
X(t+dt) =Xt) + d¥/dt | teipoge 4t
The velocity components of fast ion parallel and perpendicular to the

maghetic field line are given by

Uy = Yy »

2B

The calculation results from the above P-C method have been examined

Uyl

by comparing them with those from the Runge-Kutta method, and a very good

agreement, | rp¢ — npKi/Qz<110*5 after a bounce of motion, is obtained.



The orbit calculation with this level of error is accurate enough for the
orbit-following Monte-Carlo code, because the simulation step of Coulomb
collision interrupts the orbit calculation at every 1/10 ~ 1,/50 bounce

time.

2-4. Collision model using Monte-Carlo techniques

The collisional process of fast ions has been simulated by a technique
of Monte—Carlo. Provided that a test particle change its velocity compo-
nents parallel and perpendicular to the magnetic field line from
{ vy, ve) to ( vy, vL) by collision with field particles as shown in

Fig.2-4, relations among these velocity components are given by

vi o= un + szlﬂ-~» Avtlg-sino , (2-10)
v v
vl o= ((v+ du 2+ duf - vig)\2 @-11)

where v ( = 4Jui® + v,°) is the total velocity of the test particle, Q the
Larmor phase, 4u; the longitudinal component of the velocity change, and
dvy the transverse componenﬁ, respectively. The velocity changes Ain and
Advy result from the slowing-down and pitch-angle scattering of the test
particles due to Coulomb collision with field particles. Under the assump—
tion that the field particles have a Maxwellian velocity distribution, the

mean values and mean square deviations of 4u; and 4vu; are given by®

\Jl; B J;)h Z:/£rm+m m,u(&J ' (2-12)

’

ug Ts p n [p 2/(11



— = 0.0 2-13)
3
<dufx B Ly Al e m p) (2-14)
ug 2 e T w2 Ty 172 29,37
< du?> _ §\/7-5Mt A_{Z 72 mp’/2 n,-:
Uﬁz 2 Ts p ? mtl/z Tpll/z
. die e ) %) 1
[ nixp) + X/ _ Xp ) 7z 2-15)
pr ZXp Xp

where 7, is the charge number of the respective plasma species denoted by
pi=e,i--- ), m the electron mass, m the test particle mass, 4t a

time interval,

. D, -
My = (mt/me>&“ (1+mt/me>1 ,
A2
mp, v- 1
Xp = a -
my g~ T,

1(x,) = Erf <«/x—p> ~ 2 %p/T exp (~Xp)
vp = 4/2]6Teo/mt s

and T, is the slowing—down time of test particles with mass number 4; and

charge number Z; at plasma center defined by
7o = 0.125(A/Z)%) [Too (keV)¥% /o (101903 . (2-16)

The summation E: in egs. (2-11),(2-13) and (2-14) is taken for all the
plasma species. The plasma parameters such as temperature T; and plasma
density ng in the above expressions are normalized by the electron temper—
ature T.n and the electron density n.g at the plasma center.

In the present Monte-Carlo simulation, Adv; and 4dv; are computed by

generating normal random numbers with the mean values and the mean square



deviations given by eqgs. (2-12) ~ (2-15), The Larmor phase  in eq. (2-10) is
given by a uniform random number between zero and 2r.

The validity of the collision model described above has been confirmed
by comparing the numerical result with analytical one. If the velocity of
fast ions v exists between the ion thermal velocity and the electron
thermal velocity, that is, vn~<izL<1@T, the two dimensional Fokker-Planck
equation”’™ in a fully ionized plasma without electric field can be

written in the form

: 18 [ 1 m v VAR ,
At v v \2tsm v <Z> aJdvu V-

U v’ Z 5 —~
—%—Z—fi——a——a 22 L swn, @-17)
2ts v <Z> 8n an

where

oy

E. U~ 14.8<7>3T,

a
Zeft = Z Zy"p/Me
P
2 ;
<Z)::§:Z;nphk-nmﬂm ,

’:)

-~ - D P
(Z) = Z 2/ Me - mp/my - Tp/Te

P

Ui ..
n =— = sin¢ ,
U

and ¢ 1s the pitch angle, respectively. The first term of eq. (2-17)
describes the velocity diffusion, the second the slowing down, the third
the pitch angle scattering and the fourth the fast ion source, respec—

tively. If the velocity diffusion term is eliminated, the analytical



solution of eq. (2-17) with

SE, ) = L (1-0)8 (1-v0 )6 (=m0 ) @-18)
e

can be given by

fu,g,t) = 3Ip7s Yo+ 1/2)[1 + ul (1 - exp@t/Te)) |
2re n
X Pp (00 P )8[1® — [ (1 + udexp (-3t/7s) — ul)] (2-19)

where 8(x;i—x2) 1s the delta function, P, the Legendre function, I the

source current of fast ions, u = v/ug , u. = 1./ and

c(n)::zgﬁilzjéii .

6 <Z>
The numerically derived pitch angle scattering process using 500 test
particles with ny=1.0 (in eq.(2-18)) is shown in Fig.2-b for various
t/t<. The pitch angle distribution of fast ions given by the v-integration
of eq.(2-19) is also shown in Fig.2-5 by the dashed curve. It is clearly

seen from Fig.2-5 that the numerical result fairly agrees with the theoret-—

ical one.

2-5. Charge—exchange model using Monte-Carlo techniques
The charge—exchange process of fast ions is also simulated by Monte—

Carlo techniques. The charge-exchange probability during a small time

interval 4t is given by



Py (d4t) =1 — exp(-ng <ov>dt) 2-20)

~ ng <ovu>gedt
where ny is the neutral density, <ou>. the charge—exchange reaction rate
of fast ions with back ground neutrals. To simulate the charge—exchange
process, a simple hit-or-miss Monte-Carlo method is employed. The charge-

exchange probability eq. (2-20) is calculated at every time step 4t for all

the test particles., that is,
Pr}):<dt)l) (l:1v2y ........ y[\ﬂ')) s

where N, is the total number of test particles. Simultaneously, N, uniform
random numbers xSandow (1),1=1,2,......... ,N,) are also generated at every
4t . Comparing P.,(4t,1) with xS&am (i) for all the test particles, we
switch on the calculation of charge-exchange process for only the particles
vhose P, (41,1) 1s greater than x4 (1). Once a fast ion is charge—
exchanged, it becomes a fast neutral and makes a straight flight in a
plasma until it is reionized by the field particles or lost to the first

wall. The reionization probability is described by
. Pion (s) = f exp <"/1/&ion ) dl‘(///-(ion , (2-21 )
Q0

where A is the flight length, &;,, the ionization mean free path. The
above integration is executed up to

Xréncdon = Pion ()5
where ¥l 1S another uniform random number between zero and unity. If a
fast neutral hits the first wall without being reionized, it is labeled as

a charge—exchange loss particle.



Since the main purpose of the present paper is to investigate the
ripple—associated loss process, the charge-exchange process described above

is "switched-off” in the following sections without notice.
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Fig.2-2 Simplified model of toroidal field coil system for the
calculation of ripple field divergence—free as well as curl-free.



Fig.2-3 Constant contours of field ripple in JT-60.

S
]
<y

Fig.2-4 Velocity change due to Coulomb collision.
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Fig.2-5 Simulation of pitch angle scattering. The solid lines
indicate the Monte—Carlo results using 500 test particles and the
dashed curves the thoeretical ones.



8§ 3. Collisionless Behavior of Fast Ions in Ripple

3-1 Introduction

Guiding center orbits in a magnetic field with toroidal ripple have
essential importance in the behavior of fast ions during their slowing down
process, so that we exclude the collisional process of fast ions with field
particles in this section. Three kinds of processes are the typical
features of fast ion collisionless behavior in ripple as pointed out by the
authors' 2%

(a) collisionless ripple trapping,

(b) collisionless ripple detrapping, and

{c) ripple-enhanced banana drift.

These processes have been investigated by solving numerically the
guiding center orbit eqs. (2-7-1) and (2-7-2). The above mentioned behav—
iors of fast ions depend on the collisionless orbits near banana tips,
accordingly, those orbits are solved analytically in order to understand
the numerical results. Parameters for the present calculations are taken
as those appropriate to JT-80 which are summarized in Table 3-1. The
toroidal coil system of JT-80 has been designed so that the maximum
toroidal field ripple at the plasma edge &; is less than 0.5 % of the
toroidal magnetic field strength as shown in Fig.2-3. The main purpose of
the present investigation in this section, however, is to make it clear the

ripple effect on the collisionless behavior of fast ions, we set the field

ripple 8¢ at 1 % in this and in the next section.



3-2 Collisionless ripple trapping

If we employ the usual tokamak ordering, by is much less than 5;,
therefore If,; in eq. (2-9-4) is much less than W, and the variation in ¢
along the magnetic field line is much greater than that in 8. Under these
condition, we can find a toroidal angle ¢ which makes dB/0!l or duy/dt to

be zero if
| Woo/Woo | < 1.0.

The above condition is the well-known condition for a ripple well to

occur and

a = W0/W2

Bysiné
- ) (3-1)
N;B, + B;cosO — Bysinb

o

N rsinf ‘ (3-2)
NiRq(r,06)8(r,8)

1s the ripple-well parameter, where g{(r,8) is the safety factor. The

effective ripple well depth can be written in the form
Beff = 2 6(1,0)A (a), (3-3)

wvhere

Al) = 1.0 - o® —lal( g — sin' 1wl ), (3-4)

When ions exist within the ripple well region defined by |«l<1.0, they



have a chance to be trapped in a ripple well.

It must be noted that, taking account of the finite size of the banana
orbit (which has been neglected in the classical ripple diffusion theory) ,
ions can be collisionlessly trapped in a ripple well even if they are
initially free from ripple wells. In order to describe this process, let
us consider a particle passing just over the top of a magnetic field
corrugation. This particle stays in the ripple well near a banana tip for
a comparatively long time and moves into a different ripple well region due
to the gradient-B drift. The drifting particle can be trapped in the
ripple well, if the ripple encountered has a higher corrugation. This
situation of the particle motion is illustrated in Fig.3-1.

The collisionless ripple—-trapping zones are obtained by the numerical
integration of the guiding center equations and are shown in Fig.3-2 in the
space of initial pitch angle ¢ and toroidal angle ¢ for fast ions born at
r=0.9 and 6 = O . The central zone in this figure corresponds to the

direct ripple—trapping region defined by a well-known relation
(Ui /v)? < bupy.

The finite banana size effect makes this zone asymmetric with respect
to both ¢ and ¢. In addition to this central zone, a series of collision-
less ripple-trapping bands due to the finite banana size effect appear as
shown in Fig.3-2.

According to an analytical study (see Appendix), the ripple trapping
band width 4¢ can be represented in terms of the initial pitch angle ¢ on
the mid-plane, and given by

_ Nté(rbt ’ebt )

4¢ do (a — sinNigyr ) cos¢ (3-5)



where A¢p is the toroidal ahgle difference between the banana tips with
zero and finite banana size and ( ry;, O, @b ) 1S the banana tip point
with zero banana size, respectively (see Fig.A-1). As shown in Appendix,

Ad¢ 1is proportional to the gradient-B drift velocity

_ me UJ_Z

=
2eZ:BiR;
therefore the width of these side bands becomes broad with the increase of

the banana size.

3-3 Collisionless ripple detrapping

Fast ions trapped in a ripple well undergo the gradient-B drift with
velocity vg. In general, the ripple well depth 6. 1is not constant along
the gradient-B drift trajectory. If ripple-trapped particles get into a
lower ripple region, they can be detrapped collisionlessly from the well
when they reach the point where

Oets < (Uu/v}2

In the usual toroidal field coil system, the ripple well &, has its peak
on the mid-plane and decreases with the distance from the mid-plane. Under
some conditions of the spatial change of ripple size and the radial distri-
bution of plasma current density, Oesf can have the minimum (8.ff Jnin on the
drift trajectory and it can fall within the plasma region. The contours of
(6eff dmin  in JT-60 with a parabolic current density distribution are also
shown in Fig.3-3. The particle trapped in the region (:) cannot be

detrapped without collision. On the other hand, particles initially

‘28ﬁ



trapped in the region (:), (:) or (:) with

fugl > v 4/ (5eff Imin

are detrapped from the ripple well on their way toward the lines (8¢ff uin-

Deeply trapped particles with

lupl < v 4/ (6eff Inin

are never detrapped collisionlessly and escape out of the plasma. It is
apparent that all of the particles trapped in the region (:) are detrapped
during their gradient-B drift. As described above, the collisionless
ripple—-detrapping process limits the radial excursion of the ripple-trapped
particles and prevents their loss. Consequently this process plays an
important role on the loss of fast ions and the ripple-associated diffusion

of bulk plasma ions.

3-4 Ripple-enhanced banana drift

Collisionless banana drift enhanced by ripple has been discussed by K.
T. Tsang and he has estimated the diffusion coefficient by taking account
of the radial component B, of the toroildal field ripple. 'The B, banana
drift is not significant for fast ions. Another ripp1e~induced banana
drift which originates in the finite banana size, is more important for
particles with higher energy. In the presence of ripple, the banana orbit
of a ripple untrapped particle is seriously disturbed. As is shown in
Fig.3-4, the ripple untrapped particles, especially barely untrapped
particles, undergo a large radial drift at the ripple peak point near their

banana tip. The radial excursion of the guiding center after a half bounce



of banana is plotted in Fig.3-5 as a function of the initial pitch angle
for 75 keV fast ions born initially at r/a = 0.9 on the mid-plane. The
white blanks in Fig.3-5 correspond to the collisionless ripple trapping
regions described in § 3-2 .

The discontinuous step size of the radial drift 4r is given by
Ar = T, Vg SinOy; (3-6)

where 1,4, 1s the resident time of a barely untrapped particle in the ripple

well at a banana tip and is approximately given by

2.83 R

1‘1/2

trp ’ (3‘7>
Nt VL0

Trb =

for a small value of |«l (lal<0.5) where t,, is a numerical factor
having a value of about 10 in case of large safety factor q. It must be
noted that the radial drift A4r is inversely proportional to Jg and this
nature of the banana drift is essentially different from B, banana drift.
The hatched regions in Fig.3-5 indicate the loss regions. If the
ripple amplitude is reduced to zero keeping other parameters unchanged,
these loss regions disappear. This indicates that new prompt loss regions

are induced by the toroidal field ripple.

35 Collisionless loss region in velocity space
Collisionless behaviors of fast ions described above produce new

prompt loss region associated with toroidal field ripple in the velocity

space, 1n addition to the well-known loss region due to the loss orbits in



an axisymmetric toroidal field, hereafter referred to simply as banana loss
cone, and the direct ripple trapping loss cone (| vy/u!l <4 0ess).
Collisionless loss regions in the velocity space are shown in Fig.3-6 for
protons whose initial point is (0.9a, 0.0, #/N ). Figure 3-6-(a) shows the
prompt loss region in an axisymmetric tokamak. Collisionless loss region
in the presence of ripple are shown in Fig.3-6-(b), (c) and (d), where
collisionless orbits are followed for 0.5, 1.0 and 5.0 bounce time of
banana motions, respectively. The banana loss cone and the direct ripple
trapping loss cone are easily recognized in Fig.3-6-(b). One should note
that one of the boundaries of the banana loss cone is strongly disturbed by
the ripple. Loss bands begin to appear in both sides of the direct ripple
trapping loss cone after one bounce time of banana and their number
increases with the bounce time. These loss bands result from the colli-
sionless ripple-trapping and ripple—enhanced banana drift.

Most of the loss bands appear in the pitch angle region | ¢ | <(,,

vhere ¢, 1s the pitch angle defined by

Rt + rocosOq

=

2
cos~Cq

hY

(3-8)
Rt + 10

with 6, the poloidal angle on the line t«l =1.0 at r=1rg and ry the
initial minor radius. The banana tip of the fast ion with this pitch angle
just touches the boundary line of the ripple well region.

Although collisionless ripple trapping does not occur in the pitch
angle region | ¢ 1 <¢,, the radial drift of fast ions is still enhanced by
ripple. This ripple-enhanced radial excursion disturbs the boundary of the

banana loss cone in the region ¢<-¢,.



36 Concluding remarks

Collisionless process of fast ions have been investigated by following
the collisionless guiding center orbits. It has been found that there are
three kinds of collisionless behaviors as typical features of fast ions in
a rippled toroidal field;

(a) collisionless ripple trapping,

{(by collisionless ripple detrapping, and

(¢! ripple—-enhanced banana drift.

The collisionless ripple—trapping occurs in an uneven distribution of the
toroidal field ripple and the pitch angle width of the trapping region is
proportional to the banana size of fast ions. The radial excursion step
size due to the ripple-enhanced banana drift is also proportional to the
banana size of fast ions and is inversely proportional to the square root
of the local ripple size at the banana tip point in the region lal < 1.0.
The collisionless ripple trapping as well as the ripple-enhanced banana
drift produce a large number of loss bands in velocity space and strongly

disturb the well-known banana loss cone.
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Table 3-1 Calculation parameters
major radius R = 3.03m
minor radius a = 0.9 mnm
toroidal field B¢ = 45 T
plasma current jp(r) = Jo(I-(r/a)®)

jo = 4.73/q, MA/w?
safety factor Qa = 3.5
plasma lon species H
number of toroidal Ny = 18
field coils
maximum toroidal 80 = 0.01
field ripple
energy of fast ion E = 715 keV
fast ion species H
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banana size effect in an inhomogeneous field ripple.
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Fig.3-3 Collisionless ripple—detrapping process and ripple well
structure.
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Fig.3-4 Schematic of ripple—enhanced banana drift in the
vicinity of a banana tip.
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§ 4. Collisional Behavior of Fast Ions in Ripple

4-1. Introduction

As described in the last section, there exist two kinds of fast ion
loss processes associated with the toroidal field ripple; ripple trapping
and ripple—enhanced banana drift!? . Owing to the collisional as well as
collisionless ripple—detrapping processes, it is difficult to distinguish
between ripple-trapped loss and banana—drift loss. Here, however, we
classify the loss particles by their final state; that is, if the fast ions
are trapped in a ripple well when they hit the first wall, we count them as
ripple—trapped loss particles and if théy are not trapped, banana-drift
loss particles. Typical orbits during slowing down are shown in Fig.4-1,;
(a), (b) for ripple-trapped loss particles and (c), (d) for ripple—enhanced
banana—drift loss particles.

In this section the loss of fast ions during slowing—-down process is
investigated in the case where fast ions are originated at a specific point
within the plasma region ( ro =0.8a 3. The fast ions are assumed to have a
uni—directional velocity and mono—energy ( 75 keV ). Plasma temperatures
and density are given to be spatially uniform as summarized in Table 4-1.

In order to investigate the ripple-associated loss process we estimate
the total energy loss time of fast ions 7;s . The first interest in 7,
lies in its dependence on the initial pitch angle of fast ions, which is
shown in Fig.4-2. Only the positive side of the initial pitch angle is

considered to exclude the effects of ripple free loss orbits (loss orbits



in an axisymmetric field). The loss time T,; shows sharp changes at the
pitch angles ¢ = ¢4 and ¢,. The pitch angle {4 is given by 4@§}} and the
fast ions whose initial pitch angle is less than ¢4 are directly trapped in
a ripple well. The other critical pitch angle ¢, is given in § 3-5. Three
regions of the initial pitch angle are recognized clearly in Fig.4-2;

1) direct ripple-trapping region |¢1<¢y ,

25 intermediate region ¢y <ic¢|1<¢, , and

3) collisional region | {i>¢,

4-2. Direct ripple-trapping regioh C1Ct < <Cq

Fast ions with initial pitch angle less than {4 are trapped directly
in a ripple well and lost to the first wall in a very short time. The loss
time agrees with z./uy where z, is the vertical length from the ripple-

trapped point to the first wall.

4-3. Intermediate region ( ¢y <| ¢l <¢q )

It is noticeable that the loss time 1) 1n thié pitch angle region is
smaller by two orders of magnitude than the slowing-down time T, as shown
in Fig.4-2. It has been considered that the ripple-associated loss cone is
the direct ripple-trapping region described in the last subsection. This
result indicates that a kind of loss cone is effectively formed also in
this pitch angle region.

As discussed in § 3, the finite banana size gives rise to the colli-



sionless ripple trapping as.well as the ripple—enhanced banana drift. They
produce a lot of loss bands in this pitch angle region as shown in Fig. 3-6.
Fast ions are easily scattered into these loss bands via small pitch angle
scattering with plasma particles. Therefore, fast ions in this pitch angle
region are lost to the wall through cooperative process of these collision-
less behaviors and Coulomb interactions with field particles.

In the following, we investigate the ripple-trapped loss process and

the ripple-enhanced banana-drift loss process, individually.

4-3-1. Ripple—-trapped loss

In Fig.4-2 the ripple-trapped loss time 7,;/7s, the energy loss time
of ripple—trapped loss particles, is also plotted. The dotted»curve shows
the ripple—trapped loss time for fast ions whose banana size is artific—
ially reduced to zero until they are trapped in a ripple well, that is,
only the collisional effect is taken into consideration for the ripple—
trapping process. What is evident on comparing the above two lines is that
the ripple—trapped loss is enhanced significantly by the finite banana size
effect in the intermediate region.

To investigate the ripple-trapping process, we consider the ripple-—
trapping time 7;, the time defined as the reciprocal of the ripple trapping
rate. There is a series of pitch angle ¢, measured on the mid-plane with
which fast ions are reflected at one of the ripple vertices. The diffe—
rence between the two adjacent pitch angles A¢ (= ¢y — ¢k ) can be given
by

'y sinby: 27w 1

A¢ ~ (4-3)

Ry + 1y Niq sin 28,



The collisional pitch angle change of fast ions in one banana bounce time

T, 1s approximately given by

A Th/Td>»

where 14 is the deflection time. If A¢,. is comparable to 4¢x , it can be

4d¢he ~

A

considered that the pitch angle of fast ions is sufficiently spread over
the pitch angle width 4¢, in a bounce time. This condition is usually
satisfied for the fast ions produced by neutral beam injection in tokamaks.
For fast ions to be trapped in a ripple well, the finite banana size
effect on ripple trapping or a sufficient pitch angle scattering while they
pass through a ripple well is required. Here we estimate the ripple
trapping due to each process.

Under the condition of A4¢, ~ 4<¢,., the collisionless ripple trapping

time due to the finite banana size effect is simply given by

where A¢ 1is the pitch angle band width of collisionless ripple trapping
given by eq.(3-5). On the other hand if only the pitch angle scattering in
the ripple well at a banana tips contributes to the ripple trapping, the

collisional ripple trapping rate 7, 1s given by

7.8 ~ Jra/te ACKTH (4-5)

where 7,, is the time interval given by eq. (3-7) and 4¢; 1is the pitch
angle corresponding to 4<¢, observed at the ripple peak point near a banana

tip defined by



2
&

= 24¢ singy J( Ri+ 1ot )/ (Rt 1 cosBye ).

~

(d<K)

Figure 4-3 shows the dependence of 7;/ts on B; calculated by the
Monte—Carlo simulation code for q, ( = aBi/RiB, (@) ) =3.5. It is shown that
T:/Ts has a proportional increase with B, in a low B; range. The ripple-
trapping time in this region agrees well with Tﬂw given by eq.(4-4). In
order to clarify the effect of the finite banana size. the ripple-trapping
time of fast ions with zero banana size is also shown in Fig.4-3, in which
case only the collisional ripple-trapping process is taken into considera-
tion. In the high B; range, the banana size becomes small and the colli-
sional trapping turns to be dominant. The numerically derived ripple—
trapping time in this region also fairly agrees with the collisional
ripple—trapping time 7;° described by eq. (4-5). The agreement of the
numerical ripple—trapping rate with analytical one in both large and small
banana size region supports the evidence that our orbit—following Monte—
Carlo code well describes the behaviors of fast ions undergoing Coulomb
collisions in a rippled toroidal field.

The ripple—trapped loss time 7,; is also plotted in Fig.4-3. 1If the
ripple-detrapping process 1s not accounted, 1,; may be given by T + = Uy
where =, 1s the vertical length from the ripple-trapped point to the plasma
surface. The loss time 7,; 1s somewhat larger than w; + z./uy especially
in the high B; range. This difference comes from the ripple-detrapping
process Which prevents the fast ions from escaping directly out of the

plasma region.



4-3-2. Ripple—-enhanced banana—drift loss

Even if fast ions are not trapped in the ripple well near a banana
tip} they can take a large radial drift as shown in Fig.3-5. This kind of
radial drift cannot be cancelled in a bounce time. In a top-bottom sym-—
metric ripple field, however, outward and inward drift are balanced in many
bounces, therefore, ripple transport of fast i1ons may be described by a
diffusive process, which is much different from the convective one in a
top—bottom asymmetric ripple field® .

In order to estimate the diffusion coefficient, we consider a simple
model of the banana drift instead of the saw—tooth—-shaped one as shown in
Fig.4-4. The random walk step size drgy ( =Cgpdr ) and the effective
collision time At ( =7, dC¢L/ACp ) are calculated by means of a least
square method. The diffusion coefficient of the ripple-enhanced banana
drift is represented by

< 4 rgpm> Cap® (4r)?

N N - ) (4-86)
4t (¢ /d¢p ) To

The analytical calculation described in Appendix shows that C%ﬁ%/(dgﬁ/dﬂkb)
is about 0.02 for all the value of ! «l less than unity.

The energy loss time 7,, calculated by the orbit-following Monte-Carlo
code 1s shoyn in Fig.4-5 as a function of B;. In the low B; region, T,,/7Ts
is proportional to B;°. This nature of the B; dependence of 7,, is well
described by the diffusion process mentioned above, and the loss time
defined by the diffusion coefficient (eq. (4-6)) agrees well with that of

Monte-Carlo calculation.



As the toroidal field becomes high, t,,/7s changes its B; dependence.

In order to understand this nature of 7,,, we count the number of parti-
cles undergoing more than one séquential process of ripple-trapping and
detrapping. The number ration of these particles to the total banana—drift
loss particles N'/N is plotted against B; in Fig.4-5. In the high B,
region ( By > 5T ), N“/N is so large that the virtual banana drift due to
the sequential process of ripple-trapping and detrapping process predomi-
nates over the collisionless ripple—-enhanced banana drift described in

§ 3-4 . This kind of radial drift has been considered as the basic process

4 of bulk plasma ions which is discussed in

of ripple-trapped diffusion
§7. The histories of the banana—drift loss particles with

N /N=0 and N°/N > 1.0 are shown in Fig.4-1 (c) and (d), respectively.

4-4, Collisional region (1<¢I1>¢,)

Fast ions in this pitch angle region can be lost to the wall by
diffusing into the intermediate region as well as into the ripple-modulated
loss cone due to the ripple—enhanced banana drift described in § 3-5.

Particles scattered into the intermediate region escape from the
plasma region through the processes described in § 4-3. Therefore the
collisional process is essential for the loss of fast ions in this pitch
angle region, and the loss time 7, is less affected by the finite banana
size of fast ions as shown in Fig.4-2.

Concerning the loss of fast ions scattered into the banana loss cone,
it should be noted that the loss cone is strongly disturbed by the toroidal

field ripple as shown in Fig.3-6. This ripple-modulated loss cone signifi-



cantly enhances the loss of fast ions with initial pitch angle less than

45, Concluding remarks

Collisional behaviors of fast ions coupled with the guiding center
motions in a rippled toroidal field ripple have been invéstigated for fast
ions which originate in a specific point in a plasma with uni-directional
velocity and mono—energy. There are three initial pitch angle regions with
respect to the loss process of fast ions;

1) direct ripple-trapping region | <¢|1<¢y ,

2) intermediate region ¢{gq<i¢|<¢, , and

3) collisional region | i >¢,

Most of fast ions with pitch angle |[¢1<¢{, are lost in a time
interval much shorter than the slowing-down time. Therefore, a kind of
loss cone is effectively formed in this pitch angle region. Under the
condition A4¢x < A¢,., the ripple trapping time due to finite banana size
effect is simply given by

4 ¢k
TJB = — T4.

4<
The diffusion coefficient of ripple—enhanced banana drift for fast ions in

the intermediate region can be approximately given by

(dr)°

33

DB - 0.02

which is independent of the collisionality.
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Table 4-1

Calculation parameters

major radius
minor radius
toroidal field

plasma temperature

plasma density

plasma current

safety factor
plasma ion species
effective Z

charge number
of impurity ion

number of toroidal
field coils

maximum toroidal
field ripple

energy of fast ion

initial position
of fast ion

Rt = 3.03 m
a = 0.9 m
Bt = 4.5 T
Te(r) = 1 keV (uniform)

Ti(r) = Te(r)
ne(r) = 2.0 x 10" w3  (uniform)

G () = jo=(r/a)®)

Jo = 4.73/q. MA/n?
Qa = 3.b

H+

Zoft = 1.5 (uniform)
Zinp = 8.0 (oxygen)

Nt = 1 8

o) = 0.01

E = 75.0 keV

r/a = 0.9 6 = 0.0




RIPPLE-ENHANCED BANANA-DRIFT LOSS

Fig.4-1 Guiding center orbits of loss particles in the slowing
down process; (a), (b) for ripple-trapped loss particles and (c),
(d) for ripple—enhanced banana—drift loss particles.
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Fig.4-5 Banana-drift loss time normalized by slowing down time
T;0/Ts and relative number of particles undergoing more than one
sequential process of ripple-trapping and detrapping among banana
drift loss particles N /N versus B;. Calculation parameters as
in Table 4-1 with initial pitch angle ¢ =



§ 5., Ripple Loss of Fast Ions Produced by Quasi-perpendicular NBI
5-1. Introduction

Neutral beam injection is the most promising plasma heating method
which has been demonstrated in many fusion devices" ™. 'As the machine
becomes large in size, the beam energy should be improved for the suffic—
ient beam penetration. The acceleration voltage, however, is limited
within about 150~200 keV for deuteron beam due to the deterioration of the
neutralization efficiency of energetic ions. This leads us to choose the
quasi-perpendicular neutral beam injection to save the beam path length
from the plasma surface to the center. As the injection angle approaches
perpendicular with respect to the magnetic axis, the birth point of fast
ions is brought close to the effective ripple loss cone described in § 4-3
and the ripple-associated loss of fast ions is increased. Therefore, the
ripple loss of fast ions produced by neutral beam injection strongly
depends not only on the field ripple but also on the injection angle.

The consideration on the ripple loss of injected beam ions is impor—
tant from the view point not only of the beam energy confinement but also
of the protection of the first wall from the loss particles. The ripple-
trapped loss particles undergo a gradient-B drift and may lost to the
specific narrow area on the first wall. This kind of particle loss results
in an enhancement of the local heat loading.

The loss of the beam power due to the toroidal field ripple® as well

as the consequent local heat deposition on the first wall? are the essen—



tial problems in the design.of the neutral beam injection for reactor grade
large tokamaks. The main objective of the development of our orbit—
following Monte-Carlo code is to obtain a lot of useful information on the
design of NBI and on the plasma heating scenario in a large tokamak by

evaluating the ripple loss of fast ions produced by NBI.

5-2. Birth distribution of fast ions

Fast neutral atoms injected into an ohmically heated plasma are
ionized or charge exchanged by interactions with field plasma ions and
electrons. The fraction of neutral beams which is trapped in a plasma can

be described by'?

Luax 2r ra L
S = Zkkao fo fobf(rb,eb)exp[—fo bne (r)o; (Ep/k)dL)

XN (1)0; (Ep/K)rpdrydfpdLy , 5-1)
where r,,0, are polar co—ordinates in the beam cross section perpendicular
to the beam line, L, the beam path length, L,,. the maximum beam path
length which intersects the plasma column, @, the neutral beam radius, E
the primary beam energy, vy, the density fraction of beam atoms with energy
of F,/k. o; the total ionization cross section. and f(r,,0,) the normalized

distribution of beam density which gives

a, r2r
fo fo Fre,0p ) rpcinydB, = 1.0 .

Provided that the cross section for ionization of atomic hydrogen by

stripped impurity ions is of the form'! 19



G = Zlmé( Op + Ocx s

where 0, is the ionization cross section of atomic hydrogen by protons, oc.
the cross section for charge exchange by protons in atomic hydrogen‘m and
Ziwp the charge number of impurity ions. Then the total ionization cross

section is given by
0i = 0o + (Op + Oez) [ fi + (1= F)08 (Zogr — £)°4 7,

where o, 1s the cross section for ionization of atomic hydrogen by elec—
trons, Z.s the effective Z and f; = ni/ne.

Here we consider a circular cross—sectional neutral beam with

. c
fre,0,) = =% exp (1 — (np/ay)?) (5-2)
Ty
where c4 = e/(e—-1). Introducing new variables

Jeg (1—exp (~ (ro/ay )?))

ry, =
0f = 0,/21
L5 = Lo/Lnax

and substituting eq. (6-2) into eq.(5-1), we obtain

1 ptopl Ly,
S = 2Loadne [ [ [ X0 L[ "ne (o Bk dL)
L Qv JO 0

X (r)0; (Ey/k )Ty drydby dly . (5-3)
Since the total number of test particles is limited within about 2000 due
to the long computational time, the Monte-Carlo integration method is again
adopted to calculate S numerically, in which five uniform random ﬁumbers

corresponding to r,, O,, L,, beam ion species k, and co—injection fraction



are generated for every sampling point (= test particle ).

For example, the above method is adopted to the calculation of birth
profile of fast ions produced by neutral beam injection in JT-80. The
qua§i~perpendicular NBI system for JT-680 is shown in Fig.b-1. Calculation
results, projections of birth points on the minor cross section, are shown
in Fig.5-2 for various plasma densities; (a) for n.p = 3x10"% w3, (b) for
Neg = 1x10%° w3 and (c) for nd)=:2x10m)nf3, respectively. As shown in
Fig.52, the neutral beam in JT-60 comes at an angle with respect the
mid—-plane ( an oblique injection ), in which case the initial pitch angle

of fast ions is described by

¢ = cos™! (4 (Re+1cosB0)/ (Re+1) cosCh)

~ Com + COLCon ——— (1-cosby) (5-4)
2<Rt+7”>

where 6y is the poloidal angle of birth point and ¢,, is the angle of the
beam line with respect to the plane which is vertical to the magnetic axis
and contains the birth point. In an oblique beam injection described
above, the pitch-angle of fast ions measured in the the mid-plane becomes
somevhat greater than {,, . Therefore, an oblique NBI is favourable to
prevent the ripple loss of injected beam ions.

We see from Fig.52 that the radial profile of initial beam—power
density depends onbplasma deposition. The fraction of fast 1ons deposited
in the plasma periphery where the field ripple is large in size, increases
with the plasma density. Consequently, the ripple loss of fast ions

produced by NBI may be a strong function of the bulk plasma density.



5-3. Ripple loss of fast ions during slowing down

As described in § 4-1, the ripple—associated loss can be categorized
into two groups: ripple-trapped and ripple—-enhanced banana-drift loss
particles. In the present paper, the fraction of power loss due to ripple-
trapped loss particles during slowing down is denoted by G,; ., that due to
ripple—enhanced banana—drift loss particles by G,, and the total loss by
Gt -

First, to estimate the allowable field ripple and injection angle, the
mapping of ripple-induced power loss of fast ions produced by neutral beam
injection is investigated. In order to deal with generalities, the injec-—
tion geometry is chosen so that the beam line is on the same level with the
mid-plane. Constant contours of the power loss fraction G; in space of the
maximum field ripple 5, and the complementary injection angle |90 — O;y; |
are shown in Fig.5-3. The injection angle 6;,; 1is defined by an angle
between the magnetic axis and the beam line. In a plasma with small aspect
ratio ( R;/a < 10.0), a geometrical effect makes the angle | {,,! somewhat
greater than than [90 — 6;,;1° , especially near the plasma periphery.

Furthermore, in an oblique injection the initial pitch angle becomes
greater than 1| ¢,! as shown in eq.(5-4). The geometrical 6;,; in JT-80 is
about 90+12° , however, the effective injection angle corresponding to the
initial pitch-angle of fast ions near the plasma periphery is
Oin; = 90+ (20~25)° . Parameters of the neutral beams used in the present
investigations are summarized in Table 5-II. For example, in JT-80 with
the maximum field ripple &y 0.4% to 0.5% and the effective injection angle
Oinj ~ 90£ (20~25)" , the loss of injected beam ions 1s estimated to be

only ~ 10% of the total power.



Next, the details of the ripple-associated loss of fast ions , G,; and

G, » against injection angle 90 — 0;,; for &, = 0.5% are shown in Fig.5-4.
To make it clear the effect of the toroidal field ripple on the loss of
fast ions, the banana orbit loss in an axisymmetric magnetic field G, is
also plotted in Fig.5-4. The difference between G; and G;, can be consid-
ered as the contribution of ripple. It is noted that in a toroidal field

ripple banana-orbit loss is remarkably enhanced even in the co—injection
scheme. Consequently, in the presence of ripple, the total loss of fast
ions has no significant difference between the counter— and the
co—-injection of neutral beams with a quasi—perpendicular injection angle.
From a view point of reducing the fast ion loss, the co—injection scheme
is somewhat preferable to the counter-injection in the larger injeétion
angle region. However, the ripple-enhanced banana—-drift loss G,, does not
decrease sufficiently with an increase of the complementary angle of 0y,;
in the co—~injection side. At the injection angles of JT-60, the power loss
fraction of injected beams is estimated to be about 8 to 11% for
co—injection and 12 to 14% for counter—injection with the parameters used
here. In an axisymmetric toroidal field, power loss fractions of 1.5% for
co—injection and 5.5% for counter—injection are estimated. Therefore, the
loss of fast ions is enhanced by the toroidal field ripple by a factor of
3.

The ripple loss of injected beam ions depends also on their radial
birth profile which is briefly shown in § 5-1. Hence, the plasma density
dependence of ripple loss is an important consideration to estimate the
maximum plasma density in neutral beam injection heating. Various power
loss fractions associated with beam injection are shown in Fig.55 as a

function of the average plasma density n,. In Fig.5-5, G., denotes the



charge—exchange loss of fast ions during slowing down and G, the loss of
injected neutral beams due to shine through. The neutral particle density
for the calculation of charge—exchange loss described in § 2-4 is obtained
by solving a Boltzmann equation with respect to neutrals which is three
dimensional in velocity space and one dimensional in real space'® . Both
ripple-induced losses G,, and G,; are roughly proportional to the average
plasma density. In high density plasma ( n, > 2«43x10‘9nf3), the ripple
loss dominates the loss process of fast ions produced by a quasi-

perpendicular neutral beam injection.

54. Localized heat loading on the first wall due to ripple-trapped

loss particles

As discussed in § 3-2, the ripple well is formed in the region

defined by

lal < 1.

In this region, the corrugated field has a minimum at N,p; = 2n7 + sin '«

vith the adjacent maximum at N;p2 = ( 2n + q/!cxl)n~—sinf%x, wvhere n is any
integer less than N;.

From the guiding center equation (2-7-2), we obtain a relation for

ripple-trapped particles:

1 a
L (R 2y =, (5-5)
2 dt

Here



Y = aBON; ( ap + cosNip/Nt ), 5-6)

and Y; = Y{(p;), where ¢; is the toroidal angle at the turning point of a

ripple-trapped oscillation. The ripple well depth is given by

MY = Y(p2) — ¥(p1)
= Mo (1o - lal (g—sin"lal I, (5-7)

where Ayy = 2,B6 1is the ripple well depth at | «l = 0.
For a particle trapped barely in the ripple well (Y = ¥(p2)), the
oscillation width in the toroidal angle becomes Ap =!| ot — @21, where ¢ is

determined by

1 2

N + cosNigpr = (2n+ o/ al Yo —asin o + 41 — o,

Any ripple trapped particles exist within the region bounded by (¢2 , ¢ )
during their gradient-B drift. It is noted that the oscillation band width
Ay becomes small with the increase of [ «al toward unity, and Ap =0 and
Ay=0 at tal =1.

In a reactor—grade tokamak, various kinds of ions, such as thermal
plasma ions, beam injected ions, and alpha-particles, can be lost out of
the plasma region under the influence of ripple. Particles whose banana
tips are in the ripple-well region ({al<1), can be rapidly trapped by
ripple of undergo large radial banana drift as shown in the last section.

Even if the banana tips exist outside the ripple-well region, some frac—
tion of those ions can be scattered into the region and lost by ripple

trapping or ripple—enhanced banana drift.



In the present investigation, the fast ions produced by neutral beam
injection is typically considered. The parameters used here are summarized
in Table 5-1 and 5-II. From the Monte-Carlo calculations with these
parameters, we evaluate the fraction of loss power against the injected
beam power: 3.5% for ripple-trapped loss and 8% for banana drift loss.

The deposition of the loss ions is mapped on the plasma surface r=a
as shown in Fig.56. We see that the ripple-trapped loss ions are distri-
buted within the region ( ¢2, ¢r ). Furthermore, they are also concentrated
in a narrow region of the poloidal angle. This poloidal localization comes
from the trapping process which means that ions are scattered from the
region free of ripple well into the shallow well region, |«l~1, and are
ripple-trapped before diffusing into the deeper well region, | «!<!. Fast
neutrals due to charge—exchange loss distribute almost uniformly on the
r =a surface, and no noticeable localization was observed. The ripple-
trapped loss particles hit the first wall of the containment vessel and the
banana-drift loss particles may enter the material limiter or the neutra-
lizer plate in a divertor system.

The feature of ripple-trapping seems to be important for the localiza—
tion of loss particles. The well depth for ripple trapped particles is

given by
LAY) br = W — {1,

and (Ay];, becomes equal to Ay for barel& trapped particles. The mapping
of ripple-trapped loss ions on the « — 4 (AY):, plane is shown in Fig.5-7.
It is found that fast ions are barely trapped in the shallow well, and
this tendency becomes pronounced with the increase of the ion energy.

The poloidal profiles, I'y, as well as the toroidal ones, T,



are shown in Fig.5-8 for the heat deposition of loss particles, where

27[/Nf
Iy = Rfo g( 6, ¢ o

and

T
T, = a‘[ g( 0, ¢ )dd

with the loss power density g( 8, ¢ ) on the r=a surface. The loss power
associated with the ripple-trapped loss ions is concentrated in a region
30° <O<45 and 100 <¢<15 of every toroidal coil section, which is less
than 1% of the plasma surface area. The banana drift—loss power has a
rather broad profile in the poloidal direction but is localized toroidally.
This toroidal localization of banana-drift loss power is accounted for the
ripple—enhanced banana drift which becomes significantly large near the
rippled field maximum at ¢p.

The heat load on the first wall due to ripple-trapped loss ions
reaches 0.7~0.8 M{W/m° at its peak under the conditions investigated here.

The power density of the banana-drift loss ions on the limiter or the
neutralizer plate basically depends on their geometrical configuration.
However, the heat load is estimated to be tens of MW/m® on the usual

poloidal limiter or neutralizer plate.

The situation concerning the localization of heat deposition is the
same for the ripple loss of bulk plasma ions, r.f. heated ions and alpha
particles. Hence, the heat loading is enhanced further by these particles
in tokamak reactor. Effective protection against the localized heat

deposition due to ripple may be essential in the first-wall thermal design.



5-5. Concluding remarks

Ripple-associated loss of fast ions produced by a quasi—perpendicular

neutral beam injection has been investigated numerically by use of the

orbit-following Monte—Carlo code. Conclusions obtained in the present

investigations are summarized as follows:

1)

3)

The ripple enhanced loss dominates the loss of fast ions produced by a

quasi—perpendicular neutral beam injection in a reactor-grade tokamak.

) In order to hold down the ripple loss of fast ions to be less than 10%

of the total, 190 — 6;,;! > 20" and 8y < 0.5% for the typical plasma
parameters summarized in Table 5-1.

Banana—-drift loss of fast ions is significantly enhanced by the field
ripple not only in the counter-injection but also in the co-injection.
Consequently, no remarkable advantage of co—injection can be expected
for a quasi—perpendicular injection in the presence of ripple.

One of the essential features of the ripple-trapped loss is the locali-
zation of the loss particles in a specific narrow area on the first
wall. This causes a serious heat load problem of the first wall,

especially for a long pulse neutral beam injection heating.
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Table 5-1

Plasma parameters

major radius
minor radius
toroidal field

plasma temperature

plasma density

plasma current

safety factor
plasma 1on species
effective Z

charge number
of impurity ion

number of toroidal
field coils

maximum toroidal
field ripple

R t -
&} =

By =

Telr)
Ti(r) =

TeO

i

Ne (1)

Il

N0
Jp(r) =
Jo =
G =
H

Loty =

Zimp =

3.03
0.95

4.5

in

in

T

Teo (1-(r/a)®

Te(r)

1.0 x 10% eV

Neo (1—(r/a )

1.0 x 1029 43

. . . . 2 N
Jo{l=0r/a))

4.73/q, MA /’1712

3.5

1.5

8.0

18

0.005

(uniform)

(oxygen )




Table 5-11 Parameters of neutal beams in JT-60

beam energy E = 75 keV
beam power P = 20 My
power ratio of neutral Pg @ Pgr ¢ Pes
beam components =0.6:0.3:0.1
effective injection Binj about +70 deg. (co)
angle +110 deg. {(counter)
injection scheme Peo @ Peounter = 1 11
beam particle species H

PLASMA

VACUUM VESSEL

TOROIDAL COILS

Fig.5-1 Neutral beam injection system in JT-80.



Fig.5-2 Radial profile of beam—power density for various plasma

density: n.(r) =ne. (1 — (r/a)4] .




Fig.5-3 Constant contours
of power loss fraction in
space of maximum field
ripple and injection angle.
Calculation parameters as in
Table 51 and 5-1I.

Fig.5-4 Power loss fraction
of fast ions produced by NBI
in JT-60 against injection
angle. G,; and G,, are the
ripple—trapped loss and the
banana—drift loss. Gi, 1is
the banana orbit loss in an
axisymmetric field. G; is
the sum of G,; and G, .
Calculation parameters as in
Table 5-1 and 5-1II.
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05 1 [
Gex : charge-exchange loss

Ggh @ shine through
Grt : ripple -trapped loss
Gro : banana-drift loss

POWER LOSS FRACTION G

Fig.5-5 Power loss fraction of injected beam versus average
plasma density. G., 1is the charge—exchange loss during

slowing down and G, 1is the loss due to shine through. G; is the
sum of Gy ,Ger Gy and Gy . Calculation parameters without notice
are as in Table 5-I and 5-11I.
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§ 6. Ripple Loss of Suprathermal Alpha Particles during Slowing Down

6-1. Introduction

In the last decade, studies on both prompt"”™® and non-prompt¥™® loss
of high-energy charged fusion products were carried out by many authors,
and 1t has been concluded that alpha particles are well confined in an
axisymmetric reactor grade tokamak 1f the contamination of the burning
plasma is sufficiently low.

In a real tokamak system, the discrete nature of toroidal field coils
produces a small, but finite, field ripple. The effects of the toroidal
field ripple on the confinement of fast ions produced by neutral beam

injection”””B) and on the transport coefficients of bulk plasma iong'®19

5.20)  are devoted

have been investigated extensively, while only a few works
to the confinement of charged fusion products in a rippled toroidal field
so that this problem is still unresolved. The design of next generation
tokamaks urgently requires a detailed investigation of this problem.

Recently, Goldston et al. predicted that there is a critical field
ripple which causes the collisionless banana orbit to be ergodic and
greatly enhances the banana particle loss®’. The allowable toroidal field
ripple due to this ergodic loss of banana trapped particles with an energy
of 3.5 MeV is estimated to be less than 0.3% in a reactor grade tokamak.

This fact may substantially affect the reactor concept if the prediction is

correct.



Even if the fraction of banana—trapped particles interacting with the
toroidal field ripple is large, the loss time of these particles is finite
and their energy can be transferred to the plasma via Coulomb collisions.

Accordingly, in the present paper, we investigate the ripple effects on
the slowing—-down process of alpha particles by an orbit-following Monte-—
Carlo code in thch the behavior of fast ions undergoing Coulomb collisions
with bulk plasma in a rippled toroidal field is exactly described, and

estimate the permissible level of field ripple in a reactor grade tokamak.

6-2. Calculation results and discussions

Numerical investigations are performed for the parameters appropriate
to the next generation tokamak (INTOR) which are summarized in Table 6-1.
Initially, about 500 test particles are uniformly distributed in a plasma
with an energy of 3.5 MeV and weighted according to the local fusion
reaction rate. We suppose that the distribution of their initial pitch
angle is isotropic. After the particles have been launched, we follow them
until they all slow down to ~ 2T;.

The model toroidal field coil for the calculation of the field ripple
is shown in Fig.6-1 and the constant contours of field ripple & G:E%/B)
calculated by the method described in § 2-2 are shown in Fig.6-2 for &; =
0.75%. In the presence of B, and By, the well-known ripple well parameter
« 1s approximately given by eq. (3-1). The boundaries of the ripple well
region defined by | al = 1.0 are also shown in Fig.6-2. The lines defined
by {«l =1.0 for the case in which both B, and By are eliminated from

eq. (3-1) are also represented in Fig.6-2 (dashed curves). On the assump-



tion of the usual tokamak ordering, the last two terms in the denominator
of eq.(3-1) is much smaller than the first. Therefore, the ripple well
region in the self-consistent ripple field covers only a slightly wider

area than that in the ripple field B, only.

6-2-1. Prompt loss of alpha particles

Effects of ripple on the prompt loss region in velocity space are
investigated by following collisionless guiding center orbits numerically
in the ripple field shown in Fig.6-2. Figure 6-3(a), (b) and {(c) show the
loss region of alphas whose birth points are r/a = 0.9, 0.8 and 0.7 in the
mid-plane, respectively. Their initial toroidal angle is set at =n/N;.
Collisionless orbits are followed until alpha particles return to the
mid—-plane or escape to the first wall. It is very interesting that small
loss branches appear on both boundaries of the direct ripple-trapping loss
cone in the high-velocity region. These branches have not been discovered
for fast ions with energy of 100 keV at most'? . Figure 6-3{(c) shows a
very distorted ripple-trapping loss cone only in the high-velocity region.

Generally, the collisionless ripple—detrapping process'? 1limits the pitch
angle width of the direct ripple trapping loss cone. It must be noted that
in the present ripple field any particle trapped at r/a =0.7 in the
mid-plane (Fig.6-3{(c)) are detrapped from the ripple well without collision
on their gradient-B drift path. The particle detrapped in a collisionless
fashion starts to make an excursion along a banana orbit. If the particle
has a very high velocity like an alpha particle, the banana orbit can

intersect the wall. This kind of loss process gives rise to those small



loss branches. The prompt and non-prompt ripple-trapped loss of alpha
particles have been investigated theoretically on the assumption that no
collisionless ripple-detrapping occurs® 29 . The above mentioned loss
process will, however, make it very difficult to analytically estimate the
energetic—alpha—particle loss in a realistic ripple field.

The boundary of the banana loss cone is also strongly disturbed by
ripple, which may enhance the banana orbit loss of alphas.

As 1s shown in Fig.6-2, the ripple-vwell region covers a wide area
inside the torus. However, no effect of ripple on the loss cone boundary
for barely banana—trapped or transit particles is not observed. = This
indicates that the effect of the ripple inside the torus on fast ion loss
may be expected to be small.

The prompt loss depends strongly on the ripple size. The loss frac—
fions in a plasma with parameters summarized in Table 6-1 are ~ 2%, 3% and
7% for 6y = 0.5%, 1.0% and 1.5%, respectively. If the maximum ripple size

is less than 1%, the ripple—induced prompt loss can be neglected.

6-2-2. Non-prompt loss of alpha particles
(1) Evaluation of the Goldston—White-Boozer criterion for fast ion loss

Goldston, White and Boozer have theoretically found a limit on field
ripple for particles with large banana size®?" which is approximately given

by

1
b = s 6-1)
(Niq/€ Y "pg




where p is the gyroradius, € the inverse aspect ratio, q the safety factor

and q° =dq/dr. The particle whose banana tip is in the region

5> 6

is predicted to be lost in a very short time, because of collisionless

stochastic orbits. For example, the boundaries of the ergodic loss region

6 =56, are shown in Fig.6-4 for various &y in INTOR with q,=2.5 .

To evaluate the Goldston—White—Boozer criterion, hereafter referred to
as G.W.B. criterion, we investigate the loss process of alpha particles
which originate at a specific point in the mid-plane (r;,; = 0.6a) with
identical pitch angle and energy. Their initial toroidal angle is assumed
to be uniformly distributed between O and 2r/N;. First we measure the loss

time 1) which is defined by

_ No
dNL/dt | 4o

Tls
where N is the number of loss particles and Ny is the total particle
number. The loss time 7;; in a collisionless plasma is shown in Fig.6-5 by
the solid line as a function of the normalized pitch angle ¢/¢., where ¢,
is the critical pitch angle defined by

Ry + ricos6,

2 . )
cos“C. = 6-2)
Ro + Tint

with 6. the poloidal angle at r = r;,+ on the line § =6,.,. As is evident
from Fig.6-5, the collisionless 1, shows a very sharp change at ¢ ~ ¢. as
was predicted by Goldston et al. Furthermore, we compare this numerically

derived critical pitch angle with theoretical one by changing the gyrora-—



dius of the alpha particles, The hatched region in Fig.6-6 is the theoret—
ical ergodic loss region; the numerically derived critical points are shown

by crosses. We see that the two results are in a fairly good agreement.

(2) Collisional effects on transport phenomena of banana—trapped alpha

particles

Effects of pitch angle scattering of alpha particles by bulk ions are
investigated from the following point of view:

1) pitch angle scattering from ¢ > ¢, into ¢ < ¢. and resultant enlarge-
ment of loss region,
2) enhancement of transport of confined banana particles.

The loss time 7 in the presence of Coulomb collisions is shown in
Fig.6-5 by dashed curves. The slowing down time 7 is about 10*t, (7 is
the bounce time of 3.5 MeV banana—trapped alpha particles), and the deflec—
tion time is chosen as 14/7s ~ 190 (Zesr = 1.5) and t4/ts ~ 60 (Zess = 5.0).

Other parameters are as the same as those in sub-section 6-2-2 (1). As is
shown in this figure, no significant difference is observed between the
collisional and collisionless loss time in the region ¢ < ¢.. The diffu-
sion coefficient which is roughly estimated as (a — rin: )°/Tic 1S of the
order of 10 mz/s and approximately agrees with the ripple-plateau diffusion

coefficient!” given by

DRP (4 rm>2
Tb

(6-3)

wvhere Ar, is the radial displacement described by<"



Ara = (Nem/sindy V2 (q/e)3%ps, (6-4)

with 6, the poloidal angle of the banana tip. It is very interesting that
the collisional effect moderates the change of 7| near ¢, and enlérges the
loss region effectively. The enlargement of the loss region may be caused
by the collision enhanced ergodicity of banana particles with pitch angle
¢ ~ ¢. as well as by the scattering of particles from the pitch angle
region ¢ > ¢. into the collisionless ergodic region ¢ < (..
Next, we show the diffusion coefficient D for(non;ergodic) banana

particles confined in a collisionless way with pitch angle ¢ > ¢,
(¢~ 1.4¢. ) in Fig.6- 7. The diffusion coefficient is defined as

DB — 1 d

= 5&?[; (r; —<r>)2 w;/ Zi:w,-J ,

where

<r> = Zr,’wi/ Zwi.
i i

Here, r; is the radial position of the ith test particle and w; the parti-
cle density weight. It is found that D in this region is proportional to
the ion collision frequency y; and is in the order of 107! n@/s wvhich is
about 10 ~ 100 times greater than the axisymmetric neoclassical transport
coefficient D, but much less than D .

The pitch-angle change corresponding to the reduction of toroidal
angle Ad¢ = r/N; of a banana tip can approximately be written as

rsinf, 7w 1

4¢, ~ : 6-5)
Ry + r Nyg sinZ2¢

and the effective collision frequency



vers = (m/(@4¢,)) % vy, (6-6)

Then the diffusion coefficient for confined banana particles is roughly

given by
DB~ (2410) veoss
~ 7 (Ny/sin ) (g/e)° sinf2¢ (pd)? v;. (6-7)

The solid line in Fig.6-7 is the diffusion coefficient calculated by the
above expression. The analytical diffusion coefficient agrees well with
the numerical one. It should be noted that D*® has a very strong depen—
dence on (q/¢). The numerically derived diffusion coefficients are shown
in Fig.6-8 as a function of the safety factor q,. These values agree well
with the analytical D® of eq. (6-7) (the solid line in Fig.6-8). This
dependence of D¢ on q indicates that the plasma current is a very impor-—

tant parameter for the containment of charged fusion products.

(3) Ripple-enhanced power loss of alpha particles

The evolution of the time integrated power loss fraction during
slowing down (collisional power loss fraction) is shown in Fig.6-8 by the
solid curve. The evolution of the loss fraction in a collisionless plasma
(collisiénless power loss fraction) is also shown in Fig.6-9 by the dash-
dotted curve. Of course, the time derivative of the loss fraction in
Fig.6-9 gives the rate of power loss. The collisionless loss rate shows a

very slow decay since particles never slow down. On the other hand, the



collisional loss rate shows a very abrupt change in the very early stage of
slowing—down (<0.37s) and is reduced to zero. This is due to the decrease
of fast ion energy and the consequent shrinking of the ergodic loss region.
It should be noted that the initial loss rate in the collisional case is

greater than that in the collisionless one. This result is well explained
by the collisional effects on the local diffusion coefficient as described
in the last sub-—section.

The collisional power loss fraction is shown by the solid line in
Fig.6-10 as a function of the maximum ripple size §3. FEvidently, the loss
fraction depends strongly on the ripple size. The initial portion of

banana—trapped particles is approximately given by

<«/;> = foafb (r W erdr /[Oafb(r)rdr

where f,(r) is the birth profile of the alpha particles. As the field
ripple §; decreases, the power loss fraction becomes much smaller than
<Je> .

The power loss fraction for &y = 1% for the condition of the next-—
generation tokamak summarized in Table 6-1 is about 13%. Since the loss
fraction in the axisymmetric toroidal field is 3%, the ripple-enhanced loss
fraction can be considered to amount to only ~ 10%. Even in the presence
of ripple, the energy of charged fusion products is well confined in a

plasma.



(4) Ripple-enhanced particle loss of alpha particles

From the view point of ash exhaust, ripple-enhanced particle loss is
an interesting and important problem. Particle loss fraction are shown by
the dashed-curves in Fig.6-9 and 6-10. Figure 6-3 shows that the decay of
the particle loss rate is much slower than that of power loss rate and a
large number of low energy alphas are continuously lost to the first wall.

This is due to the pitch-angle scattering which is very important for
slowed—down particles. The particle loss fraction approaches <QJE> in
the limit of high 83. For the data of Table 6-I, the fraction of particle
loss 1s 1.5 to 1.8 times as large as that of power loss for a maximum
ripple size 0.4% < 863 < 1.5% as shown in Fig.6-10. The difference between
the power and the particle loss fractions probably comes from the effect of
slowing—down. This kind of ripple-enhanced alpha particle loss in the
slowing down process may alleviate the problem of ash accumulation.

Ripple—associated loss particles can be categorized into two
groups'? . ripple—trapped and banana—drift loss particles. In the present
investigations, only a negligible amount of ripple-trapped loss particles
1s observed. This implies that the ripple—enhanced banana drift dominates
the loss process of not only the energetic but also slowed-down alpha

particles.

(5) Spatial distribution of loss alpha particles on the first wall

The localized heat load on the first wall caused by the ripple-trapped

loss of fast ions produced by neutral beam injection has been studied® .



Here, we investigate the distribution of heat load due to the ripple-
enhanced loss of charged fusion products.

For the convenience of calculations, we consider a first wall which
faces the plasma surface without any unevenness like material limiters; the
wall radius r, is assumed to be a. The finite-larmor-radius modification
of the poloidal angle where alpha particles intersect the wall is not taken
into account” . The two-dimensional distribution of the heat load due to
loss alpha particles is shown in Fig.6-11 for 69 =1.5%. Since the total
number of test particles is limited because of the long CPU time, the
distribution is very rugged. The peak heat flux, however,is roughly
estimated at 1.5 MW/m°. The average heat load on the first wall is about
0.1 MW/m?, therefore, the peaking factor is about 15. The maximum heat
flux for &y = 0.75% is about 0.7 MM/mZ. The linear interpolation indicates
that the peak heat load may reach the order of 1 Amomﬁ if &y exceeds 1%.

This level of heat load needs some mechanism to remove it from the first
wall for the case of long-pulse operation.

It is very noticeable that a large number of loss particles hit the
first wall in the vicinity of the mid-plane as shown in Fig.6-11. This
kind of poloidal angle distribution characterizes the ripple—enhanced
banana drift loss and is very different from that of loss particles in an
axisymmetric tokamak which shows a very wide distribution® ¥:? ., This
property of loss alphas might be capable of removing them from the burning
plasma by use of a pump limiter outbocard, on the mid-plane. It must be
noted that the toroidal angle distribution is also uneven as is shown in
Fig.6-11. The radial component of the field ripple B, has a toroidal angle
dependence of sinMN;p. therefore, the magnetic surface expands radially in

the region O0<¢<r/N¢. It can be considered that this makes the torocidal



angle distribution of loss alphas uneven.

6-3.

Concluding remarks

The slowing—down process of suprathermal alpha particles in a rippled

toroidal field has been investigated by an orbit—followihg Monte-Carlo

code.

(1)

@)

3

4)

o),

6)

Conclusions of the present investigation are summarized as follows:
Small prompt—loss branches appear on both boundaries of the direct
ripple trapping loss cone owing to the effect of large banana size.
Collisionless ripple loss process of alpha particles is numerically
investigated. The G.W.B. criterion for alpha particle loss has been
verified numerically.

Although the initial energy of charged fusion products is very high,
collisional effects, slowing down as well as pitch angle scattering,
are very important for the estimation of their ripple-enhanced
particle and power losses.

The ripple-enhanced banana drift dominates the loss process of alpha
particles.

The diffusion coefficient D® for confined banana particles with
pitch angle ¢ > ¢, is approximately given by eq. (6-7). For the
plasma parameters summarized in Table 6-I with &y ~1%, D8 of 3.5
MeV alpha particles is of the order of 107! m?/s which is much
larger than DNC (axisymmetric neoclassical diffusion) and much less
than DFP (ripple—-plateau diffusion).

The ripple—enhanced power loss for §; = 1% is about 10% of the total



fusion power of charged particles.

(7) The effect of ripple on particle loss is very important for not only
energetic but also slowed—down alphas. The fraction of particle
loss is about 1.5 to 1.8 times as large as that of power loss for
0.4% < 8o < 1.9%.

(8) The wall heat load due to loss alpha particles is localized and its

peak value reaches the order of 1 M/m? if 8¢ exceeds 1%.

The present investigations show that there is a possibility of realiz-
ing the design of tokamak reactors with a realistic field ripple of & ~1%,
permitting 10% power loss of alpha particles. Ripple loss of alpha parti—
cles, however, depends on their birth profile as well as on the-safety
factor q. Therefore, calculations should be made for various profiles of
plasma parameters including the plasma current in order to provide a
satisfactory answer to the questions arising in the design of fusion

reactors. These investigations will be reported in a future paper.
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Table 6-1

Plasma parameters

major radius
minor radius
toroidal field

plasma temperature

plasma density

plasma current

safety factor
effective Z

charge number
of impurity ion

number of toroidal
field coils

Ry
a
B
Te (r)
(Tp(r)

ne (r)
(np (r)
Ny
Jp(r)
Jo

Qa
Zett

Zimp

Ne

i

i

53 m

1.2 m

55 T

Ti(r) = T,(1—(r/a)?
Tr(r) = Ti(r))

2.0 x 10* eV
np (1-(r/a)?)
ni(r))
4.0 x 102 n3

nr(r) =

jo(1=(r/a)®)

3.3/q.  MA/w?

2.5

1.5 (uniform)
8.0 (oxygen)

12
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Fig.6-1 Simplified model of toroidal field coil system for
calculation of divergence— and curl—free ripple field.
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Fig.6-2 Field ripple distribution (BMB) in the minor cross
section for &y = 0.795%. Ripple-well region in divergence— and
curl-free ripple field is shown by the solid lines ; B, =B = 0.0
ripple field by the dotted.
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Fig.6-3 Collisionless loss region of alpha particles for &y =
0.795%. Minor radii of starting points are r/a = 0.9(), 0.8(b)
and 0.7(c). Initial 0 and ¢ are set at O° and 15 , respectively
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Fig.6-4 Boundary lines of ergodic loss region defined by & = &

for various maximum ripple size &p.
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Fig.6-5 Loss time against initial pitch angle for collisionless
g ) and collisional plasma (==---). Initial position of test

(

particles is set at 1/a = 0.6 on the mid-plane and §y = 0.75%.
Plasma parameters are uniform in space.
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Fig.6-6 Collisionless ergodic loss region in space of gyroradius
and initial pitch angle. Numerically derived critical points are
shown by crosses. Initial point of test particles is set at r/a =
0.6 in the mid-plane and 63 = 0.75%. Plasma parameters are
uniform in space.
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Fig.6-7 Diffusion coefficient D® versus collisionality for
confined banana—trapped alpha particles with E~3.5 MeV at r/a =
0.6. Field ripple 5y = 0.75%, safety factor g, = 2.5.
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Fig.6-8 Diffusion coefficient D8 versus safety factor q, for
confined banana—trapped alpha particles with E~3.5 MeV at r/a =
0.6. The field ripple 6yp = 0.75%, collision frequency vy; ~ 0.3
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§ 7. Ripple Diffusion of Bulk Plasma Ions and Burn Control

7-1. Introduction

The discrete nature of toroidal field coils destroys the axisymmetry
of a tokamak. This unperfect axisymmetry results in additional neoclassi-—
cal transport phenomena such as ripple-trapped diffusion, ripple-plateau
diffusion and banana—drift diffusion, which are investigated theoretically
by a number of authors’™) . Recently, calculations of the ripple associ-
ated ion thermal conductivity have been made by using orbit—-following
Monte-Carlo code for tokamak?, stellarator”, and torsatron® magnetic
field configurations. Some of these results show that the numerically
derived ion thermal conductivity is much smaller than the theoretical
prediction, especially in the low collisionality regime.

Concerning the calculation results of tokamak, there have been two
assignments for the reason of the small ion thermal conductivity. P.N.
Yushmanov has supposed”) that this is accounted for the collisionless
ripple detrapping which is described in §3-3. Another reason has been
considered by K.C. Shaing and his co-worker® . The usual 1/v; scaling of
ripple-trapped diffusion is valid only for v, greater than the toroidal
drift frequency wy for the energy of £ =4 ~ 87T; which is much greater than
that given in the previous work! .

One of the most important problems in the design of a tokamak
reactor? is how to control the thermal excursion which may occur after the

plasma 1s ignited. Recently, it has been shown theoretically that the



control of the burning plasma température is feasible by using a variable
toroidal field ripple ( & from ~ 0.5% to ~ 2% at most)!9-1)  This was
based on the assumption that the ripple induced ion thermal conductivity
has a temperature dependence of T7/2 1 However, recent numerical study®
does not show that the ripple transport coefficient has such a strong T;
dependence, especially in the low collisionality (high temperature) regime.
Therefore, it is doubtful whether this method is effective for burn
control.

In the present paper we investigate the ripple diffusion process in
detail to find out the conclusive reason for the small ripple ion thermal
conductivity. Finally, basing on the numerically derived data for ripple
diffusion coefficient, the necessary amount of field ripple to control the

burning plasma is estimated.

7-1. Calculation model and assumptions

To evaluate the ion thermal conductivity by using an orbit-following
Monte-Carlo code, plasma density and temperatures are given to be uniform
in space. The magnetic field ripple in a tokamak can be given by eqs. (2-5-
1) ~ (@5-3). In this section, however, for the convenience to compare
the numerical results with analytical ones, we employ an artificial field
ripple in which the collisionless ripple trapping nor the collisionless
ripple detrapping hardly occurs. Such field ripple can be approximately

given by solving the following equation,

7/

5 1 1 - B, ,
A L — A" (@) C(z), (7-1)
z NeRig 1 — A7 (o)

)

o))



where z is the coordinate vertical to the mid-plane ( =rsinf), A{(x) the

function described by eq. (3-4), « the ripple—well parameter defined by

eq. (3-1),
B; :L%,
B, dr
A ()= « dA(a)’
Ala) da
and
z/Az)? for |zl < |Az!,
C(z) =
1.0 for 1zl = 1Az .

The solution of eq. (7-1) gives the effective ripple well &gy

(=2.06(r,8)A(a)) which is constant on the gradient-B drift trajectory in

the region |z!| = | Azl . The ripple on the mid-plane is given in the form
o (—R =R 2 e RS R,
Rt + 1 - Rb
&6(r,0) =
0 for R< Ry, .

With the field ripple derived by eq. (7-1), the toroidal, poloidal and

radial components of the magnetic field are given by

R

B, = Bwo—l;t (1 +86(r,08)cosNig ), (7-2)
R

By = -Eth(rL - (7-3)



B, = L rié—(r/B¢)dr/, (7-4)
rRY0 3¢
respectively.

Note that the model ripple field described by egs. (7-1) ~ (7-4) is
divergence-free, but still non—curl-free. In order to test whether this
model field carries validity or not, both ion thermal conductivities in the
field with and without B, component were investigated. For all the plasma
parameters in Table 7-I, however, we could not find out any significant
difference between those results. The magnitude of the poloidal component
of the ripple which makes the field to be curl-free as well as divergence—
free, is of the same order with B,. This indicates our model field is
enough to describe the ripple transport in a tokamak.

Test particles with pitch angle and energy distribution corresponding
to an isotropic Maxwellian are initially set on a specific magnetic surface
and launched. The particles which mainly contribute to the ripple induced
ion heat conductivity is in the energy range 4T; < E <6T; and in the pitch
angle region 1 ¢!l < ¢, . It must be noted that the fraction of ions in the
high energy tail of a Maxwell distribution E > 4T; is about 0.1 and
¢q~ 0.2. This indicates that a large number of test particles are neces—
sary for the Monte—Carlo calculation with good accuracy. In our orbit-
following Monte-Carlo code, about 10000 test particles are used. Moreover,
for the improvement of calculation accuracy, we employ a kind of importance
sampling method, in which test particles are uniformly distributed in the
velocity space and weighted according to the local isotropic Maxwellian.

With this method, the number of test particles which are effective for the

ripple enhanced ion thermal conductivity can be improved by a factor of 4.



Since magnetic surfaces are assumed to be concentric circles, the ion
thermal~-conductivity x; can be defined as a time differential coefficient

of the minor radius variance, that is,

_1d O - <> 2w/ Ywi) (7-5)

Xi =
2dt i

where

<r> = erw,-/ ij,
] ]

w; 1s the energy density weigh of the j”‘ test particle.

7-3. Numerical results of ripple transport coefficient

The ion thermal conductivity defined by eq. (7-5) describes the total
conductivity x!. The ripple-associated ion thermal conductivity x? is

assumed to be separated from x! by

-
=1l = 2

where ¥¥ is the ordinary neoclassical conductivity which is also calcu—
lated with the same orbit—following Monte—Carlo code by “switching-off”™ the
ripple terms in the guiding center equations.

It has been considered that there are three kinds of ripple induced
transport phenomena, diffusion due to collisional ripple trapping and
detrapping, ripple—enhanced banana-drift diffusion and ripple-plateau dif-

fusion, whose ion thermal conductivities are denoted as x?T, xﬁb, x?),



respectively, 1n the present paper.

Monte—Carlo simulations were performed for parameters of a large
tokamak which are summarized in Table 7-I. 1In Fig.7-1, the numerically
derived % at r/a = 0.8 is plotted as a function of the ion-ion collision
frequency y;, in which electron and ion temperatures are fixed at D keV.

It must be noted that in the ripple field described in §7-2, the ripple
well region (lal=1.0) 1is congruous precisely to the region R= R,, and
neither the ripple well nor the corrugation of B field oéccurs in the region
R < R,. Therefore, the contribution of the particles whose banana tips are
out of the ripple—well region to the ripple plateau conductivity x?) can be
neglected.

The contribution of banana-drift diffusion to x? was investigated
analytically. For the parameters in Table 7-I, the analytical x? by Tsang
also takes the value in the order of 103 ~10™* w’/s . Therefore, the
numerical ion thermal conductivity %! shown in Fig.7-1 can be considered as
the one due to collisional ripple-trapping and detrapping, »% ~ T

For comparison, theoretical x'T derived by Connor and Hastie® is also
shown in Fig.7-1 by the dash—-dotted line. It is noticeable that the
Monte—Carlo results approximate to the analytical values in the limit of
high collisionality and that the difference between the analytical and the
numerical results increases as v; decreases. The reason of this phenomena
will be discussed in the next section in detail.

From the view points of the confinement of high temperature plasma or
the control of burning plasma, the most interesting point in the ripple
transport is the dependence of x§ on plasma temperature. The numerical X?
against T; is shown in Fig.7-2. The theoretical 7 ( « T2y is also

plotted in Fig.7-2. In the high temperature region (low collisionality),



the numerical % is much less than the theoretical % and their difference
increasés with T;, which is the same phenomenon as in Fig.7-1. ,In the low
collisionality regime, the ion thermal conductivity due to ripple-enhanced
banana-drift> x?) is negligibly small and x?’ is also much smaller than
¥ For T; < 1 keV, however, x?’ turns to be greater than x?T and x?’ is
also in the same order with %7 . We suppose that this makes the numerical
+? somewhat greater than the analytical x?T in the low temperature region.
Because of the large error bar, the contributions of x?) and x?> to x? in
this region are still unresolved.
The resulting ripple associated ion thermal conductivity X? shows a

much weaker plasma temperature dependence of T? at most.

7-4. Reasoning for the small ripple transport coefficient

There have been two assignments for the reason why the numerically
derived ¥ is much smaller than the theoretical one in the low collisiona—
lity regime. P.N. Yushmanov has supposed that this is accounted for the
collisionless ripple-detrapping process described in §3 . In the present
field ripple given in §7-2, however, the collisionless ripple detrapping
is sufficiently suppressed. Therefore, the numerically derived small ion
thermal conductivity shown in the last section cannot be explained by this
reason only. Recently, K. Shaing and J. Callen have pointed out that the
particles with energy of £ = 4~8 T; in the tail of the distribution func-
tion make dominant contribution to neoclassical ripple transport coeffic—
ients. These particles trapped in a ripple well have very high gradient-B

drift velocity and can hit the wall without detrapping from the ripple



well. Therefore, the usual.l/y; scaling is valid only for wv.¢; > wy(E) at
E =4~8T;, where wy is the toroidal drift frequency.

Here, we have performed some calculations to make it clear whether
above mentioned reason is a conclusive one or not. Keeping the plasma
parameters and the ripple distribution unchanged, the numerical ion thermal
conductivities are calculated by changing the plasma minor radius, that is,
by prolonging the drift time Ar/uy ( = 1/wqy ) where Ar is the minor radius
difference between the initial magnetic surface to the first wall. The
ratio of the numerically derived ion thermal conductivity to the theoreti-
cal one is shown in Fig.7-3 against the drift time for p; = 80.0 and 200.0.

The ion thermal conductivity x¥ increases with the drift time to some
extent though, it reaches a limit. The limiting values are shown in
Fig.7-1 by the dashed curve. As is obvious from Fig.7-1, the limiting
values are still much smaller than the theoretical values especially in the
low collisionality regime. This indicates that there is another reason for
the small ion heat conductivity, which is more important than the former
two assignments. As discussed previously the numerical x? can be consid-
ered as T, it is inferred from Fig.7-3 that there is another mechanism
which make the ripple trapping rate and/or the effective random walk step
size to be much smaller than those based on an analytical model given by
Stringer!) .

In order to investigate the basic process of ripple diffusion, we have
measured. the correlation time. For the convenience of calculations, the
distribution of ripple is given so that te effective ripple well depth is
spatially uniform in the plasma. The energy of the test particles is
monocromatic ( K = 5T; ) and their pitch angle distribution is given to be

isotropic. The correlation time is an important measure for the diffusion
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process, which is defined by the e-folding time of the correlation function

given by

<& ()¢ (t+T)> ’ (7-8)
<E(t)>>

Je(T) =

where << > 1indicates the time average. Since the correlation time of the
ripple diffusion due to ripple-trapping is the average captivity time in a
ripple well, we assume the function ¢(t) in eq. (7-8) as

1.0 for the time while particles are
trapped in a ripple well,

gty =
0.0 for the time while they are not.
Here, when the normalized well depth d, becomes less than unity, we judge
that they are captured by ripple. The well depth d, is defined by

d = m /2 v + V) — vipr) ’ (7-7)

Ay

where ¥, AY and ¢; are the same as those in § 54.
The correlation time 7. is shown in Fig.7-4 as a function of the
ripple bounce time T, (eq.{(3-7)), where 7,, and 7. are normalized by the

effective collision time

i

and by the average effective collision time

CTep> T;ff, (7-9)

respectively. Contrary to the theoretical prediction, the numerical .
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shows a strong dependence on 7,, and takes a value much smaller than
<Teff> 1in the low collisionality regime. In the high 7,,/<t.;> region,
T. approximates to <t.f;> , which is also confirmed by the data for sta-
tionary orbits in Fig.7—4. The ion thermal conductivity in a ripple field
deduced from the Monte—Carlo code shown in Fig.7-1 and 7-2 can be well
explained qualitatively by the above mentioned nature of 7. since

; (UaTe )?
AT~ DT S 2

Te
The theoretical ion thermal conductivity has been derived from a

bounce averaged Fokker—Planck equation with the assumption that the bounce
frequency of a ripple-trapped particle w,;, is much greater than the effec—
tive collision time vesr (= 1/7¢r ). In a rippled toroidal field, however,
the Fokker—Planck equation cannot be bounce averaged for the particles with
well depth d, =1.0 (barely ripple—trapped particles), because the residence
time of these particles in the vicinity of a ripple peak point ¢ = ¢2 (see
§5-4 ) diverges. In order to look into this effect, correlation time is
calculated for the case (case (:)) in which the criterion of normalized
well depth for ripple-trapping is artificially reduced, that is, the
particles are recognized to be trapped by ripple when their d, = Si;, with
St =dy <1.0 (case (:)). Results are shown in Fig.7-5 by the solid line.
The correlation time with an unartificial criterion for ripple-trapping
Jjudgement S;;, = 1.0 and with the well depth Ay = d}AY* where AY* is the
well depﬁh for the case (:), is also plotted in Fig.7-5 by the dashed line.
The correlation time with artificial criterion for ripple trapping (case
(:)> shows a very sharp change near d) = 1.0 . While, To/<Teff>> with an

unartificial ripple-trapping criterion {case (:)) does not show any signif-
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icant change against the well depth. The particle with d, =1.0 stays
extremely long time near a ripple peak point where the potential difference
Ve — ¥~ ¢2) € Ay with ¥; and y(p) given by eq. (55) and (56), respec-
tively. Consequently, the singular orbit with d, =1.0 may work as a
barrier on a particle to be deeply trapped in a ripple well. This is
inferred from the comparison of those two lines shown in Fig.7-b. If
particles are prevented to be deeply trapped in a ripple—well, their walk

step or the transport coefficient is effectively reduced .

7-5. Burn temperature control using toroidal field ripple

Recently, assuming the theoretical ripple enhanced ion thermal conduc—
tivity, feasibility of burn temperature control by using a variable

1.1 As discussed

toroidal field ripple is demonstrated by several authors
in the previous subsections, however, the ripple induced ion thermal
conductivity is much smaller than the theoretical prediction especially in
the low collisionality regime and has an ion temperature dependence of T?
at most. These results are very favorable for the plasma heating to
ignition though, they are unfavorable for the application of ripple trans—
port to the burn control.

In the present section, basing on the numerically derived ion thermal
conductivity, the necessary amount of field ripple for the control of
burning temperature is estimated by solving a simple power balance with an

assumption of a zero—dimensional plasma model. The power balance in a

burning plasma can be written in the form
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Pf“Pxé_Pxi"Pa—Pbr"‘Psy:O7 (7—1O>

wvhere Pf, Py » Py » Py+ Py, and Ps, are the fusion power, the electron
conduction loss, the ion conduction loss, the alpha—particle loss due to
field ripple, the bremsstrahlung radiation loss'?, and the synchrotron
radiation loss'®, respectively. Provided that both spatial distributions

b

of plasma density and temperature are parabolic, the fusion power is given

byMr)
P; = 1.8 mpnyr <ou>pr

where np, nr and <ou>pr are the average deuteron density, the average
tritium density and the fusion reaction rate at the average ion temperature
(T; = T;). The electron and ion conduction losses P, and P,; are esti-
mated at r =0.7a with electron and ion thermal conductivities

_ 5x10"
[

Xe mz/s,

and

xi = 3+ (T,
respectively. The theoretical ion heat conductivity in an axisymmetric
system' is employed for »* and the numerically derived ion heat conduc—
tivity for T . The ripple induced alpha-particle loss during slowing—down
P, is also estimated numerically (see §6 ).

The relation between the burning plasma temperature Tp and the maximum
field ripple &3 solved by eq. (7-10) is shown in Fig.7-6. The dashed line
in Fig.7-6 shows the burning temperature given by eq. (7-10) with theoreti-
cal ion thermal conductivity?, which fairly agrees with the result solved
by a detailed one dimensional tokamak simulation code'!’ . According to the

present numerical study, rather large values of §; ( ~ 5%) are required in
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order to achieve the appropriate burning temperature Tg ( ~ 1bkeV).

7-6.

Concluding remarks

Ripple transport has been investigated numerically by an orbit-

following Monte—Carlo code. Conclusions obtained in the present investiga-

tions are summarized as follows:

()

)

3)

4)

It is found that the collision frequency transition from the colli-
sional ( %7 o« 1/v; ) to the collisionless ( ¥/ e« u; ) regime for the
numerically derived ion thermal conductivity occurs at a frequency
much greater than the theoretical prediction. Consequently, numeri-—
cal xRT becomes much smaller than the theoretical one, especially in
the low collisionality regime.

The resulting ripple induced ion heat conductivity shows a much
weaker temperature dependence of T? at most.

For the reasons of this small ion heat conductivity in the low
collisionality regime, there have been two assignments, the colli-
sionless ripple detrapping and the high drift frequency wy for
particles with E =4 to 6T; which mainly contribute to the ion heat
transport. Besides these two reasons, it is found that the singular
orbit of barely ripple-trapped particles with d, = 1.0 may prevent
them from being deeply trapped in a ripple well and may reduce the
ripple transport.

A simple study basing on the power balance of burning plasma with
numerically derived ion heat conductivity shows that rather large

values of 8y ( ~5%) are required for the control of burning plasma
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temperature Tp ( ~ 15 keV).
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Table T-1

Plasma parameters

major radius
minor radius
toroidal field

plasma temperature

plasma density

plasma current

safety factor
plasma ion species
effective Z

number of toroidal
field coils

R = 3.03 m
a = 0.95 m
Bt = 45 T
Toe(r) = Tg (uniform)
T, (ry = Tio (uniform)

Teo,Tio = 1.0 — 20.0  keV
Ne(r) = ngo (uniform)

neo = 1.0x 10" —5.0 x 10%
ip(r)y = Jo(1=(r/a)®)

4.73/q. MA/m°

30 =

Qa = 3.0

H*

Zety = 1.0 (uniform)
N = 18
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Fig.7-1 1Ion thermal conductivity versus collisionality. The
solid line is the numerically derived X? in a plasma with finite
minor radius and the dashed curve is the one in the limit of
large minor radius. The theoretical x{ is shown by the dash-
dotted line. Initial radial position of ions is 1r/ua=0.8,
T.=T,=bkeV and the muximum field ripple §yp=1%. Other parameters
as in Table 7-1.
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Fig.7-2 1Ion thermal conductivity versus plasma ion temperature.
The solid line indicates the numerical »¥, and the dash-dotted
line the theoretical one. The dashed curve shows the theoretical
ion thermal conductivity due to banana drift by Tsang. Initial
radial position of ions is r/a=0.8, n.=5»x10"wm™> and the muximum
field ripple 63=1%. Other parameters as in Table 7-1.
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Fig.7-3 Numerical ion thermal conductivity normalized by the
theoretical one as a function of the drift time for y; = 80.0 and

200.0.
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Fig.7-4 Numerically derived correlation time as a function of
ripple bounce time. The dashed line shows the results for
stationary orbit in which the orbit calculations are
"switched—-off".
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§ 8. Concluding Remarks

Studies on the confinement of fast ions produced by a quasi-
perpendicular neutral beam injection and suprathermal charged fusion
products in a rippled toroidal field during slowing down have been exten—
sively performed by means of a newly developed orbit—following Monte-Carlo
simulation code. The ripple-associated neoclassical transport coefficient
has been also investigated by the same code.

It has been found that the collisionless behaviors of fast ions, the
collisionless ripple trapping, collisionless ripple detrapping and the
ripple—enhanced banana drift, have essential roles on the loss process of
fast ions in a toroidal field ripple. The collisionless ripple trapping
occurs in a torpidal field ripple which becomes higher with the displace-—
ment vertical to the mid—plane. The pitch-angle width of the collisionless
ripple-trapping region is proportional to the gradient-B drift velocity or
the banana size of fast ions. The ripple-enhanced banana drift of fast
ions is also proportional to their banana size and inversely proportional
to the square root of the local field ripple at their banana tip in the
region lal < 1.0. The collisionless ripple trapping and the ripple—
enhanced banana drift produce a large number of loss bands in the velocity
space (in the pitch angle region | ¢! < ¢,) and strongly disturb the banana
loss cone. It has been considered that the ripple loss cone is the pitch-
angle region | ¢! < 4/b.4s. However, most of fast ions with pitch angle

>~

I ¢l < ¢, are lost in a time interval much shorter than the slowing—down

>

time. Consequently, a kind of loss cone is effectively formed in this
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pitch angle region.

Ripple—associated loss dominates the loss of fast ions produced by a
quasi-perpendicular neutral beam injection in a reactor—grade tokamak. In
order to hold down the ripple loss of fast ions to be less than 10% of the
total, 190 — 0;,;| > 20" and &y < 0.5% for the typical plasma parameters.

Banana—drift loss is significantly enhanced by the toroidal field ripple
not only in the counter—injection but also in the co—injection. The
ripple—trapped loss does not show any pronounced difference between co— and
counter—injection. Hence, in the presence of ripple no remarkable -advan—
tage of co-injection can be expected in a quasi-—perpendicular neutral beam
injection.

One of the essential features of the ripple-trapped loss is the
localization of the loss particles in a specific area on the first wall.

This causes a serious problem of heat loading on the first wall, espe-
cially in the long pulse NBI heating. Localiéed heat load due to ripple-—
trapped ioss ions may reach a magnitude of 1MW/m? for the next—generation
tokamak.

Although the initial energy of charged fusion products is very high,
collisional effects, the slowing down as well as the pitch angle scatter—
ing, dominate their ripple loss. Even in the presence of ripple, the
energy of alpha particles is well confined in a plasma. The ripple
enhanced power loss for §y = 1% is about 10% of the total. The fraction of
the particle loss is about 1.5 ~ 1.8 times as large as that of power loss
for 0.4% <60<1.%%. The ripple—-enhanced banana drift dominates the loss
process of alpha particles and only a trace amount of ripple-trapped loss
particles is observed. The diffusion coefficient for confined banana

particles with pitch angle ¢ >¢. is approximately given by

—113—



D = 7 (Ny/sindy )3 (¢/€ Psin®e¢ (p6)2; .

For the plasma parameters of a tokamak reactor with & ~ 1%, D® of 3.5 MeV
alpha particles is of the order of 107! wé/s whiéh is much greater than
the axisymmetric neoclassical diffusion and much less than the ripple-
plateau diffusion. It is shown in the present investigation that there is
a possibility of realizing the design of tokamak reactors with a realistic
field ripple of &3 ~1%, permitting 10% power loss of alpha particles.

It is found that the collision frequency transition from the colli-
sional ( xw~a:1/ui ) to the collisionless ( x$~a:ui ) regime for the
numerically derived ion thermal conductivity occurs at a frequency much
greater than the theoretical prediction. Consequently, numerical 7
becomes much smaller than the theoretical one, especially in the low
collisionality regime. The resulting ripple induced ion heat conductivity
shows a much weaker temperature dependence of T¢ at most. Besides the two
reasons of this small ion heat conductivity in the low collisionality
regime, the collisionless ripple detrapping and the high drift frequency wy
for particles with £ =4 to 6T; which mainly contribute to the ion heat
transport, it is found in the present investigation that the singular orbit
of barely ripple-trapped particles may prevent them from being deeply
trapped in a ripple well and may reduce tﬁe ripple transport. A simple
study basing on the power balance of burning plasma with numerically
derived ion heat conductivity shows that rather large values of &y ( ~ 5%)

are required for the control of burning plasma temperature Tg ( ~ 15 keV).
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Appendix:

Fast Ion Behavior near Banana Tip in a Toroidal Field Ripple

Provided that By < B, and vy < vy , the guiding center egs. (2-9-1)—-(2-

9-4) are represented by

di

dr
dt

do

dt

5159
dt

By introducing a normalized time 7 = t/C; where C; =4/2/N;:R/vy and a

_ M BiRe

2

(bgsin® — 6(r,0)N;sinN;o) ,
my

&,,_sine
e R ’

. 1 b
Po ~ (1 -R/R )+ 2wy,
eZtr2 r

1
—Ui
R

A-1)

(A-2)

(A-3)

(A-4)

toroidal angle with the coil pitch periodicity ¢ = N;¢ , the guiding center

eqs. (A-1)-(A—4) can be reduced in the vicinity of a banana tip to

—+cpt+teor + €1 (@ —Py) — (¢ + €27 + €3(d - Py)) sind = O,

co = bpsing,

C] = Nt5<r,9)y

R: [1 1

€g = -—,t, - — rs—gsinze vCt
R \q dr

€1 = —R—,t, L scosf,
R- I\It q';
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‘36 cosh
g2 = N; <@sin6 + 9— cos > UgCs

ar a6 r
€3 = _(?i R and
qao0
E
Yg = —m—m.
eZthBt

The solution of eq. (A-5) is approximately given by

¢
(@) = Sn_[p d@/«/Z[U(Cbo) -U@)), (A-6)
0
where
U@d) = cod + crcosd +eghr (@,80) + €1 (92/2 — $pd)

-~ 2o (®,P9) — £3 (sind — sin®g — (@—Py)cos? ) ,

]
A (@,80) = f¢ @) db,
(4]

o
A2 (@,90) =[b‘r*(®)sin¢d®
0

¢
(@) =j;d®/«/2[U*(®o) @),
4]
U (@) = co® + crcosd + g (®2/2 — Byd) — £3 [sind — sindy — (®-Bg)cosd) ,

Sn=1.0 for >%; and -1.0 for ¢<d; , and &; is the toroidal angle at the
banana tip.
The pitch-angle band width A4¢ for collisionless ripple—trapping is

approximately given by
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4¢ ~ —é( bgsin®y ~ N;8sind, )4® cos¢, (A-T)

where ¢ is the pitch angle of fast ion and 4¢ is the toroidal angle
difference between the banana tips with and without banana size as shown in

Fig.A-1. In case of small lal (lal €£1.0), 4% can be described by

19 = (eok; — e262)/ [Jciu@)) (4-8)
where

u(®) = dU(¢)/de

i

K

Jeih @,,8,), and

Kz = +cihs (@, ).

Here, &, and &, are the toroidal angles satisfying the following condi-

tions:
U@d) =0, and U@®,) = Ud).

For a large value of the safety factor q, the parameter g, and &3 become

sufficiently small and k; and k2 are described as functions of « only.
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Fig.A-1 Fast ion orbit near banana tip in a ripple field
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