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                            Abstract

     Computational studies on the confinement of fast ions in a tokamak
    '
wÅ}th toroidal field ripple have been made by means of a newly developed

orbit-following Monte-Carlo code. It is found that collisionless behavior

of fast ions relating to ripple trapping, ripp}e detrapping and ripple-

enhaneed banana drift is of essential importance in the loss proeess of

fast ions. The eollisioniess ripple trapping and ripple-enhaneed banana

drift produce a large number of loss bands in velocity space and enhance

the loss of fast ions. The amount of }oss particles due to respective loss

process is significantly influenced by the effeet of finite banana size of

fast ions. The ripple-induced loss of fast ions produeed by quasi-

perpendicular NBI in a reactor grade tokamak is evdluated by using the

orbit-following Monte--Carlo code. In order to hold down the ripple loss of

fast ions during slowing down to be less than 10 ft";o of the total, the

injeetion angle l90 - e,.jI > 200 and the maximum field ripple 6o < O.5"/o

for typical plasma parameters. Ripple-trapped particles enter specific

narrow areas of the first wall in the eourse of their gradient-B drift and

cause a significantly large heat loading. Loealized heat loads due to
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ripple-trapped loss fast ions in the case of quasi-perpendicular NBI may

reach a magnitude of 1 MV/m2 for the next generation tokamak. Even in the

presence of ripple, charged fusion produets are well confined in a deviee.

 The ripple enhanced power loss of alphas during slowing down amounts to

10 % in a reactor grade tokamak with a toroidal field ripple of 6o -v 1 %.

 Ripple-enhanced banana drift dominates the ioss process of alpha parti-

cles. The ion heat conductivity in a rippled toroidal field is also

investigated numericaliy by the same code. It is found that the collision

frequency transition of the numerical x?-T from the co!lisional to the

collisionless regime oceurs at the frequency much higher than the theoreti-

cal predietion. Consequently, the numerical xB•T is about one or two orders

of magnitude smaller than the theoretical one in the low collisionality

regime. Besides the two reasons for the small heat eonduetivity which have

been assigned previously, the collisionless ripple detrapping and the

effectively high drift frequency for particles with E=4 to 67'i whieh

mainly contribute to the ion heat transport, it is found in the present

investigation that the singular orbit of barely ripple-trapped particle may

reduee the ripple transport. The resulting ripple indueed ion heat eonduc-

tivity has a much weaker temperature dependenee of Tt at most. For this

reason, rather large value of field ripple <6o tN• 5 %) is required for the

control of burning plasma temperature (TB -v 15 k:eV).
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,g 1. Introduction

     Searching for the energy resources semipermanently available to the

mankind, investigations of the controlled thermonuclear fusion have made a

rapid progress in the last decade. The machine playing a leading role of

the magnetic confinement fusion research is the well-known "tokamak".

On the basis of recent studies, iarge tokamaks are presently under con-

struction in several countries <JT--60 in Japan, TFrR in USA, JET in EC and

T-15 in USSR>. It is world-widely expected that these large tokamaks are

sure to provide the conelusive information on how to obtain the ignition

plasma, that is, the establishment of the scientific feasibility of fusion.

 In the subsequent phase of the research, some experimental reaetors (FED

in USA, FER in Japan and INTOR by IAEA) are in the design stage with an aim

to grasp problems oh the establishment of the teehnological feasibiMty of

fusion.

     In the early research of tokamak experiments, there have been discov-

ered many important and unexpected phenomena relating to high temperature

plasma (T,,T, >' 1 keV). These phenomena have been elusidated in many

experiments. In addition, theoretical or computational studies have been

useful and become indispensable for the interpretation and expectation of

those experimental results. Although the scientific foundation for the

eonstruetion of large tokamaks mentioned above seems to have been esta-

blished by the co-operation of experimental and theoretical investigations,

there still remain several unresolved and unexperienced problems. In the

design of those reactor-grade large tokamaks in planning as well as under
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eonstruction, there are many scientific or technological considerations

such as the energy confinement time, the effeetive heating method, the ash

exhaust, the B limitation, the control of burning plasma temperature, the

heat load of the first wall, the tritium breeding, the shielding of

neutrons, etc. Concerning these problems, a lot of information beyond the

present experimental data is necessary for the design of reactor-grade

tokamaks. In order to obtain the required information, computational

investigations by means of many kinds of simulation code have been

employed. Therefore, eomputational study is now considered as not only

giving the key development of magnetic fusion research but also making the

main contribution to the design of fusion devices.

      One of the main advantages of tokamak is that its magnetic field is

essentially axisymmetric. In a real tokamak system, however, there is no

other way but to choose the finite number of toroidal field coils, because

of what is feasible in constructing the machine. This results in a non-

axisymmetric component of toroidal magnetic field which is called a

"ripple". The toroidal field'ripple is directly related to some of those

considerations mentioned above. For example, the energy confinement of

high temperature plasma is greatly influeneed by the ripple enhanced

transport. The loss processes of injected beam ions and charged fusion

products might be dominated by the field ripple. The ripple indueed

transport has been considered to be available for the control of burning

plasma temperature. The rippie enhaneed ioss of bulk plasma ions, injected

beam ions and fusion-produced alpha parti'cles may cause a dangerous heating

of the first wall exposed to the plasma. Therefore, the toroidal field

ripple has attracted special interest recently, and some theoretical and

experiniental investigations have been performed.

                                               '
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     Influence of the toroidal field ripple on a plasma eonfinement has

been extensively investigated from the view point of ripple diffusioni)s2).

Charged partieles once trapped into a ripple well via Coulomb eollisions

undergo the gradient-B drift3) and move perpendicularly with respect to the

torus mid-plane until they are detrapped from the well by pitch angle

scattering. In the elassieal theories, this radial displacement due to

collisional ripple-trapping and detrapping has been considered as the basic

process of ripple diffusion (the ripple-trapped diffusion). While, the

toroidal field ripple ean also have a significant effect on banana parti-

cles even if they are not trapped in a ripple well. In an axisymmetric

field, the radial displacement due to gradient-B drift in the upper and the

lower side of the mid-plane completely offset each other. In the presence

of ripple, however, they cannot be cancelled and the unbalanced radial

displacement causes another kind of ripple induced transport. The theoret-

ical studies4)i5) subsequent to the above ripple-trapped diffusion have

revealed this kind of ripple-enhaneed banana-drift diffusion.

According to these theories, the ripple induced transport may result in

deieterious effects on the confinement of a high temperature coilisionless

plasma, so that the extremely low level of the field ripple is required for

the design of future tokamaks. Recently, however, a renewed, another

attention is paid on the ripple diffusion as a possible tool of the burning

plasma control in tokamak fusion reactors. It has been predieted, based on

the preVious ripple-trapped diffusion theory, that the thermai instability

of D-T burning plasmas can be stabilized by the field ripple

control6)•7)•8) .

     On the other hand, few experimental works for the ripple diffusion

have been made in the machines Aleator A9) and ISX-BiO)•ii), In Aleator A,
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the depletion of the high energy component of bulk plasma ions due to

ripple was observed by perpendieular charge exchange measurements. In

ISX-B, the deterioration of ion energy eonfinement due to ripple was

evaluated by comparing the ion temperature in similar beam-heated diseharge

with 9 and 18 toroidal field eoils. The field ripple 6 is generally

defined by 6 ii ( B$`'"' - B:'in )/( B$a't + B$i'" ) where Bla'a't and Bza'i'i are the

maximum and minimum values of the toroidal field along a toroidal field

line. The ripple 6 in ISX-B with 9 TF coi!s is 1.6% at the plasma eenter

and 10Z at the edge (the plasma surface outboard, in the mid-plane), and

with 18 TF coils 6 == O.OIZ/e at the plasma center and O.7/aoi at the edge. The

uncertainty in ion temperature measurements and the complexity of the

ripple effects on plasma ion eonfinement make the interpretation of experi-

mental results to be very difficult. Consequently, these experiments do

not demonstrate conclusively yet that ripple transport agrees with the

theoretical prediction.

     Another important feature of toroidal field ripple is the reduction of

the confinement of suprathermal particles sueh as perpendicularly injected

beam ions and banana-trapped alpha particles. Enhanced beam penetration by

ripple, the so-ealled ripple injeetion, has also been proposedi2i•i3). A few

experimental works were carried out in ISX-B concerning the ripple loss of

fast ions produced by neutral beam injectioniO)iii), Concurrently with the

experiment of the bulk plasma diffusion by ripple deseribed above, the loss

of fast lons was measured by charge exchange analyzer in ISX-B and a sharp

decrease in fast neutral flux for 9-TF-eoil operation was detected. It was

also observed that the central temperature of beam heated plasma (1.1 MiX)

dropped from 840 eV with 18 TF coils to 460 eV with 9 TF coils. On this

problem, however, only a few theoretical or eomputational worksi4)ii5) have
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been made and the behavior of fast ions in a rippied toroidal field remains

unresolved. Hence, the present state of the study on this problem is still

open to be investigated for the design of the next-generation tokamaks.

      The toroidai field eoil system is one of the major components of

tokamaks. The maximum aliowable toroidal field ripple is a determining

faetor of the size and number of the coils. In the estimation of allowable

field ripple, there are several indispensable considerations. First, the

estimation of the ripple enhaneed loss of fast ions produced by neutral

beam injection must be made. Since ripple-assoeiated loss of fast ions

strongly depends on the birth point in velocity space, the allowable or

critical injection angle is also a signifieant problem. Secondly, the

ripple loss of suprathermal charged fusion produets during slowing down

should be investigated carefully, because the machine with low efficiency

of alpha particle Åëonfinement is very difficult to be a reactor. Thirdly,

we must evaluate the rippie induced transport of the bulk plasma ions which

might influenee greatly the plasma heating seenarios for thermonuclear

ignition as well as the control of burning plasma temperature.

     Generally, ions in a tokamak move periodieally around the magnetic

axis, colliding with plasma particles. The theoretical treatment of the

collisional process of ions is described by the bounee averaged Fokker-

Planck equations. Particles in a field ripple, however, show a very

complicated motibni6)•i7) which makes it impossible to average the Fokker-

Planck equation over a bounee motion. For this reason, we have developed

an orbit-following Monte-Carlo simulation codei5)ti6)•i7)•i8) in whieh the

behavior of ions undergoing Coulomb interactions in a rippled toroidal

field is completely described. The purpose of this paper is to investigate
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all the problems mentioned above extensively and systematically by using

the newly deve}oped tvlonte-Carlo code. Especially, the effects of ripple-

modulated particle orbits on the transport phenomena of plasma ions are

carefully studied. Theoretical investigations are also made complemen-

Consequently, in the present studies obtained is a }ot of important

information on the allowable level of the field ripple for the eontainment

of both injected beam ions and charged fusion products, on the critical

injection angle and on the neeessary amount of the field ripple to control

the burning plasma in a reaetor tokamak.

     In section 2, calculation model for the orbit-following Monte-Carlo

eode is described. The basic collisionless behaviors of fast ions in a

field ripple discovered in the present investigations are given in section

3. The ripple-associated fundamental properties of fast ions in a colli-

sional piasma are presented in section 4. Ripple loss of fast ions pro-

dueed by quasi-perpendieular neutral beam injection is deseribed in section

5. Caleulation results for the ripple loss of charged fusion products

during slowing down are explained in section 6. Some considerations on the

ripple diffusion of bulk plasma ions and the feasibility of burn control by

using toroidal field ripple are given in section 7. Conclusions of the

present investigations are summarized in the last section.
                   '
                   '
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,g 2. Basic Modei for Numerical Analysis

2-1. Introduction

     The thermalization process of fast ions is described by the drift

kinetic equations with Fokker-Planck collision terms of L.andau form. In an

axisymmetric system, the projection chart of the eollisionless guiding

center orbit on a poloidal cross section shows a completely closed contour.

This enables us to solve analytically the above mentioned equations after

linearizing and averaging them over the bounce time of fast ions. Many

authors have adopted this method to solve the slowing-down process of fast

ions produced by NBIi)-4) or eharged fusion products5). In the presenee of

                                                             '
ripple, however, the guiding center orbit never closes and consequentiy the

loss process of fast ions is seriously affected by the unc!ose collision-

less orbits.. This makes it very difficult to apply the theoretieal method

to solve the relaxation process of fast ions in a non-axisymmetric system.

To make a precise treatment of this kind of problem, an orbiVfollowing

Monte-K)arlo simulation code has been newly deveioped, in which the ealcula-

tion of Cou}omb eollisions is executed at every severai time steps of orbit

caleulation (1/10-L-1/50 bounce time) until the test particle slows down to

the local ion temperature of bulk plasma.

     For the eonvenienee of caleuiations, following assumptions are made in

our orbit-following Monte-Carlo code. The plasma is assumed to be circu!ar

in eross section with minor radius a and all the magnetie surfaces are

                                 -8 --



coneentrie circles. The effects of electric potential in a plasma as well

as the finite B on ion orbits might be important. However, the main

purpose of the present investigation is to rnake it elear the primary

influence of ripple on the confinement of fast ions. Accordingly, these

problems are beyond our scope and left for future studies. The background

plasma parameters are assumed to be immutable during the slowing-down time

Ts' '
     In the present section, the model magnetic field with ripple for the

calculation of ion trajectory, the equations of guiding eenter orbit and

the Coulomb collision model using Monte-Carlo techniques are explained.

2-2. Model magnetic field in a tokamak with toroidal field ripple

    The magnetic field in a tokamak with finite number of toroidal field

coils can be described by

    - -- -- -.-   B=Br (r,O,ep )er + Be (r,e,Åë)ee + B, (r,e,ep >e, , (2-1)

where r, e are polar eo-ordinates in the minor cross section of the torus,

q is the toroidal angular co-ordinate along the magnetic axis as shown in

           -- - -+Fig.2-1 and e,, ee•, e, are the respeetive unit vectors. The toroidal,

poloidal and radial eomponents of the magnetic field are given by

   B, =: B,(r,O)+g,(i-,e,Åë), (2-2-1)

   Be=B-o <r,e)+ g,} <r,e,Åë>, <2"2-2)

   B,= g, (r,e,Åë). (2-2-3)

                                 -9-



Here B, and Bb are the axisymmetric components of the toroidal and poloidal

magnetic field, respectively, and are taken as

    B, = g' B, , (2-31)         R

    Zie=&' B,(?'`), (2"3-2>         R

with Rt the major radius, Bt the toroidal magnetie field on the magnetie

axis, R = Rt+rcose, and Bp the poloidal field produced by plasma eurrent

ln a cylindrical model. For the ealeulation of ripple components of the

magnetic field in eqs. (2-2-1) -- <2-2-3), B,,, ge and 2;,, we consider a

model toroidal coil current which is a sheet current on a torus as shown in

Fig.2-2. The distribution of the current is of the form

    3', (e,Åë)= IO 1 <1 + AcosNtq), (2-4)
             2z Rt+ r. (e )cose

where r.(e) is the distance from the magnetic axis to the toroidal field

coil, Io the total ampere turns, A the proportion of the ripple current,

and Nt the number of toroidal field eoils.

    With the model current deseribed above, the respective field ripple

ean be derived by the method of Biot-Savart as follows;

                        N-   Btp = COsAitQ ltilll !i,i,eI-r. Ilif.I3[(Zc-rsine)cosQ-qr

        '                                             --                                                          -                           + (Rt+rcosO-R.cosep )cr,]cosNtÅë ds , (2-5--1)

                        Y   ge = sintVtQ i'; S(.l,eiiir. ItL.i3[(Rtcose-Z.sine+r)a.

                                               --l                                + Rcsinect,]sinq sinNtep ds ,                                                                 (2-5-2 )
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                        At-    Br = sinNtQ S'Il; [i,i,eizit. Il}..i3C(Rtsine+Zceose)e.

                                 + R,cosec{,] sinÅë-sinNtÅë-ds' , <2-s-3)

where

      A.. Io A      3t= - -,                      )eose             Rt+ 1-. (e           2T

                    --      R. = Rt + r.(e )eose ,

                   --      z. -- r•.(e )cose , .

                                    0-                --                             -      cN, = C x (e )eose -sine ) / 1+xL (e ) ,

      c{y = c x(e!)sine'+cose') / 1+x2(e-) ,

      cts- = r.(e!) i+x2<e') ( Rt+r.(e-)eose') de-do/ ,

         -. 1 clr. (e')
      x(e )= . .,                      de              r. (e                   )

      -      r = ( r, e, Q) ,

      r-- :.. ( r. (e-), ei,, Åë- ),

and lio is the permeability in the vacuum. The proportion of the ripple

current A is approximately estimated from the first term of the Fourier

expansion of toroidal coil current with respect to toroidal angle', that is,

    A -. 4 sinlY/!.!2gttpc ,

        Nt goc 2

where q. is the average seetor angle of a toroidal coil. With these

expressions, the peak-to-average field ripple 6 in tokamaks can be defined

as
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             B, (i-•,e,o) .
              B, (?-,e)

The ripple size proper to the machine 6o which indieates the maximum field

ripple in a plasma in usual tokamaks, is given by

    6o = 6 (ct,O) ,

where a is the plasma minor radius. Contours of constant field ripple 6

calculated by eq.<2-6) is shown in Fig.2-3 for the model coil system shown

in Fig.2-2 with eighteen (Nt == 18 > toroidal field coils which is appropri-

ate to JT60 (JAERI large tokamak). The result agrees well with the

numerically derived one in actual coil system6).

2B. Guiding center equations

      Ion trajectories are followed by numerical integration of the stan-

dard guiding eenter equations of motion7) in a rippled toroidal fie}d

described in the last subsection. The guiding center equations are

                               - --    -. 1, nit p,B V,i•B B    Vcg -- <Iln} +- l-t.. 11)-Å~- +- 'Vg el,. (2-7-1)
                                  BB             Zte                        BB

   dv,,,it l.i,, aB.

    clt lflt 6)l

where vgli and vgÅ} are the guiding center velocities parallel and perpendic-

ular to the magnetic field iine, Z the length along the field line, nit the

charged particle mass, Zt the charge number , e= 1.6Å~10-i9C ,
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        Ei,- -B-Bp, i'J"e=Ile,

respectively.

     The coefficients Iti,o, IV,1,•••, Iti,2 , in eqs.(2-9-1) -v (2-9-4) are

computed at every mesh point in the plasma and tabulated in advance of the

main calculation. For the ealculation of guiding center orbit, the time

derivatives of eqs.(2-9--1) -v (2-9-4) are given by the iinear interpolation

with those tabulated values. This method can effectively save the eomputa-

tional time, The integration of orbit equations is executed by a kind of

P-C method (predictor and corrector method>. The algorism of the P-C

method is as'follows:

     1) The guiding center position (r,e,gD) and v,ll after 1/2At is pre-

       dicted with time derivatives at time t.

             -- - --             Xp = X(t> + clX/cltit d t/2 .

                              -- --    2) The time derivatives at X= Xp is defined.

              .             ctX/d t l t+i /2 nt •

    3> The new (r,e,go) and v,) +i at t + 2 t is cal eulated by

             ----             X( t+A t) = X(t ) + cLX'/dt I t.1 /2 ri , d t.

The veloeity components of fast ion parallel and perpendicular to the

magnetie field line are given by

        vn = V,) Il ,

        v. - VIEI iTB .

    The calculation results from the above P-C method have been examined

by comparing them with those from the Runge-Kutta method, and a very good

agreement, 1 rp-c - i'R-xi /a < 10-5 after a bounce of motion, is obtained.
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 The orbit calculation with this level of

orbit-following Monte-Carlo code, beeause

collision interrupts the orbit calculation

tlme.

error is accurate enough for the

the simulation step of Coulomb

 at every 1/10 -v 1/50 bounce

2-4. Collision model using Monte-Carlo techniques

    The collisional process of fast ions has been simulated by a technique

of Monte-Carlo. Provided that a test partiele change its velocity compo-

nents parallel and perpendicular to the magnetic field line from

( vu, vÅ}) to <vl' t, vl) by collision with field particles as shown in

Fig.2-4, relations among these velocity eomponents are given by

    vri =vti +Avt -lliiLi -Avt -l!ltL sing, (2-io)
                   vv

    vl/ = C(vt Avi )2 + dvt2 - vfi 2'] i/2 , <2-">

where v (= vtt2' + vi2) is the total veiocity of the test particle, 9 the

Larmor phase, dvi the longitudinal component of the velocity change, and
                          '
Avt the transverse component, respectively. The velocity changes rivt and

Avt result from the slowing-down and pitch-angle scattering of the test

particles due to Coulomb collision with field particles. Under the assump-

tion that the field particles have a Maxwellian veioeity distribution, the

mean values and mean square deviations of Avt and ri vt are given by8)

                                   -   stt( Zl l-Jt> = -ww3 Jtt ,NIt ri tz zF,L) llttJ,+lltt JllllL}-p ll (•Zp) , (2rm12)

                     Ts p iltt Tp                                      2zl)      u/s 2
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   <A vt>
      1.)t3

    "( A.)iS.2> = -32 •vfT, A/t-i:ti \, zp2 ii,'flli. T;.iPi il'}iil3P/l , (2-i4)

   <-'IA,,LfiJ,t2)> = -32 .vfTT N, -il'lili >I,], z,2 II,IIIIi T:.iil/2

                            [ ti (x,) + Cliid/;-uU,P> - itt{IllllP,) ] x,1i/2 , (2'i5)

where Zp is the charge number of the respective plasma species denoted by

p L: =] e,i••• ), m.- the electron mass, mt the test particle mass, At a

tlme interval,

     fYt = (;nt/ine )3/2 (1+rnt!iin. )-i ,

              `')          lstp u" 1
      Xp= n=.'          mt vl3L Tt,

     yi (xp) = Erf (fi) - 2VllJJTi e.vp (-x,) ,

      vts -- 2ScTeo/mt ,

and T, is the slowing-down time of test partieles with mass number At and

charge number Zt at plasma center defined by

      "t's =L O.I25<.At/Zt2)[T.o(k'eV)3/2/n.o<10i9iir3>] . (2-16)

The summation Z in eqs. (2-11),<2-13) and (2-14) is taken for all the

plasma species. The plasma parameters sueh as temperature Tp- and plasma

density Rp' i'n the above expressions are normalized by the electron temper-

ature T.c) and the electron density n.o at the plasma center.

     In the present tvlonte-Carlo sÅ}mulation, dvt and Aut are eomputed by

generating normal random numbers with the mean values and the mean square

                                 - I7-



deviations given by eqs.(2-12) tv <2-15). The Larmor phase Q in eq.(2-10) is

given by a uniform random number between zero and 2n.

     The validity of the collision model deseribed above has been confirmed
                                      '
by comparing the numerical result with analytical one. If the velocity of

fast ions v exists between the ion thermal velocity and the electron

thermal velocity, that is, viT< v<<v.7 , the two dimensional Fokker-Planck

equationi)-4) in a fully ionized plasma without electric field can be

written in the form

    /Lf =r Il.si .//)v (2i. -:iP: VÅí3 (ve3 + vc3 tzZ>) > -3){,) + iil,: aOv (T.                                                      2 (v3 + v.3 )f)

         + 2I, Vi33 .Z.Zl oOn(i-??2' >:9; ;g.? +s(TJ,t), (2-i7)

where

and < is

describes

the pitch

tively.

E. = Ill/!!lltvc2 !y 14.8<Z>2/3Te ,

      2

Zeff = : Zp2' np/ne ,

       p
<Z>' J=: 2 Zp2np/lle ' mp/tilt ,

       ir)

 (z) :=: Z ZpL; np/n. • rnp/int • Tp/Te ,

       l)
  ?? = tYll!-i = sin(." ,

      v

the pitch angle, respectively.

 the velocity diffusion, the

 angle scattering and the

If the velocity diffusion term

   second

fourth

 The first term of eq.(2-17)

     the slowing down, the third

  the fast ion source, respec-

is eliminated, the analytical

-18-



solution of eq.(2-17) with

   s( il, t)=-IB6 (to )6 (v- tio )6 (7?-77o) (2-18)
            e

can be given by

    f(.,7?,t) = 3IBTs >l] (n + 1/2)p + u.3 {1 - exp (3t/T.>)]C(n)

               2ne n

               xP. ("oo )P. (n)6['u3 - C<1 + u.3 )exp(-3t/T,)- u.3)] (2-19)

where 6(.[ti-.ft2) is the delta function, P. the Legendre function, IB the

source eurrent of fast ions, u = v/vo , u. = vc/vo and

    c (n) = n(R+1) Zeff .

             6 <Z>

The numerically derived pitch angle seattering process using 500 test

particles with no =: 1.0 (in eq.(2-18)> is shown in Fig.2-5 for various

t/T.. The piteh angle distribution of fast ions given by the v-integration

of eq.(2-19'> is also shown in Fig.2-5 by the dashed curve. It is clearly

seen from Fig.2-5 that the numerical result fairly agrees with the theoret-

icai one.

2-5. Charge-exchange model using Monte--Carlo techniques

     The charge--exchange process of fast ions is also simulated by tvlonte-

Carlo techniques. The charge-exchange probability during a small time

interval At is given by

                                  - I9-



    Pcx(ziO=1- eip (-no <ov>..dt) (2-20)
            -v no <ov>c.t A t

where nc) is the neutral density, <ou>'., the charge-exchange reaction rate

of fast ions with back ground neutrais. To simulate the charge-exchange

proeess, a simple hit-or-miss Monte--Carlo method is employed. The charge-

exchange probability eq.(2-20) i's calcuiated at every time step At for all

the test particles, that is,

    Pox- <ri t,i )' <i=1•2,........,Np ) ,

where Np is the total number of test partieles. Simultaneously, Aip uniform

random numbers (x9-d'.d..<i.),i=1,2,.........,Np) are also generated at every

rit. Comparing P..(dt,'i) with xC,'E,d,.<i) for all the test particles, we

switch on the calculation of charge-exehange process for only the particles

whose Pcx(rit,O is greater than x9tF-,d.,,(i). Once a fast ion is eharge-

exchanged, it becomes a fast neutral and makes a straight flight in a

plasma until it is reionized by the field particles or lost to the first

wall. The reionization probability is described by

  'Pion (S)= .LLI)Sea'P (r-K/ il ion) ct il/`l ion , (2"21)

where tk is the flight length, Ki.. the ionization mean free path. The

above integration is executed up to

    XllAndetn = Pion(s),

where xr//,d.. is another uniform random number between zero and unity. If a

fast neutral hits the first wall without being reionized, it is labeled as

a charge-exchange loss particle.
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     Since the main purpose of the present paper is to investigate the

ripple-associated loss proeess, the charge-exehange process described above

is "switehed-off" in the following sections without notice.
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,6 3. Collisionless Behavior of Fast !ons in Ripple

3-1 Introduction

     Guiding center orbits in a magnetic field with toroidal ripple have

essential importance in the behavior of fast ions during their slowing down

process, so that we exclude the collisional proeess of fast ions with field

particles in this section. Three kinds of processes are the typical

features of fast ion collisionless behavior in ripple as pointed out by the

authorsi)•2')-3) :

     <a) collisionless ripple trapping,

     (b) collisionless ripple detrapping, and

     <c) ripple-enhanced banana drift.

     These processes have been investigated by solving numericaily the

guiding center orbit eqs. (2-7-1) and <2-7-2). The above mentioned behav-

iors of fast ions depend on the collisionless orbits near banana tips,

aceordingly, those orbits are solved analytically in order to understand

the numerical results. Parameters for the present calculations are taken

as those appropriate to JT-60 which are summarized in Table 3-I. The

toroidal coil system of JT-60 has been designed so that the maximum

toroidal field ripple at the plasma edge 6o is less than O.5 e/o of the

toroidal magnetic field strength as shown in Fig.2-3. The main purpose of

the present investigation in this section, however, is to make it clear the

ripple effect on the eollisionless behavior of fast ions, we set the field

rippie 6o at 1 95 in this and in the next seetion.
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3.2 Coliisionless ripple trapping

     If we employ the usual tokamak ordering, be is much less than bp,

therefore I(.i in eq.(2-9-4) is mueh less than Iif.2 and the variation in Q

along the magnetic field line is much greater than that in e. Under these

condition, we can find a toroidal angle q which makes OB/Ol or dvg"/dt to

be zero if

    lIVvoAiiv2I < 1.0.

     The above condition is the well-known condition for a ripple well to

occur and

    or = IVvoAtiv2

               Besine      "V NtB,+g,cose-Besine' (3-i)
            rsine
        Nt Rq (r,e )6 (r, e )

is the rippie-well parameter, where q<r,e) is the safety factor. The

effective ripple well depth can be written in the form

    6.ff =26(r,e )A (or ), (3-3)
where

   A(cy)= 1,o-c(2' -iori(lll - sin-i1civE). ((iF4>
                          2

When ions exist within the ripple well region defined by 1c{I<1.0, they
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have a chanee to be trapped in a ripple well.

     It must be noted that, taking aecount of the finite size of the banana

orbit (which has been neglected in the ciassical ripple diffusion theory) ,

ions can be collisionlessly trapped in a ripple well even if they are

initially free from ripple wells. In order to describe this proeess, let

us consider a particle passing just over the top of a magnetic field

corrugation. This particle stays in the ripple well near a banana tip for

a comparatively long time and moves into a different ripple well region due

to the gradient-B drift. The drifting particle ean be trapped in the

ripple well, if the ripple encountered has a higher corrugation. This

situation of the particle motion is illustrated in Fig.3-1.

     The e611isionless ripple-trapping zones are obtained by the numerical

integration of the guiding eenter equations and are shown in Fig.3-2 in the

spaee of initial pitch angle < and toroidal angle Åë for fast ions born at

r = O.9ci and e = O" . The central zone in this figure corresponds to the

direct ripple-trapping region defined by a well-known relation

    <v"/v)2 < (Beff.

    The finite banana size effect makes this zone asymmetric with respect

to both ("' and Åë. In addition to this central zone, a series of collision-

less ripple-trapping bands due to the finite banand size effeet appear as

shown in Fig.3-2.

    Aecording to an analytical study (see Appendix), the ripple trapping

band width As' can be represented in terms of the initial pitch angle g on

the mid-plane, and given by

    Ag ., Nt6(rtit'ebt)AgD (or - sinivtgDbt )cos(g , <3-5)

                                                              '
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where Ago is the toroidal ahgle differenee between the banana tips with

zero and finite banana size and ( rbt, ebt, epbt ) is the banana tip point

with zero banana size, respectively (see Fig.A-l). As shown in Appendix,

riep is proportional to the gradient-B drift velocity

              2          rttt vÅ}
    Vd == '         2e.ZtBtRt

therefore the width of these side bands beeomes broad with the increase of

the banana size.

3-3 Collisionless rippie detrapping

     Fast ions trapped in a ripple well undergo the gradient-B drift with

velocity vd. In general, the ripple well depth 6.ff is not constant along

the gradient-B drift trajeetory. If' ripple-trapped particles get into a

lower ripple region, they ean be detrapped collisionlessly from the well

when they reach the point where

    6eff <.- (z,"/v>L' .

 In the usual toroidal field coil system, the ripple well 6.ff has its peak

on the mid-plane and deereases with the distance from the mid-p!ane. Under

some conditions of the spatial change of ripple size and the radial distri-

                      ,bution of plasma current density, 6.ff ean have the minimum (6e.ff)min on the

drift trajectory and it can fall within the plasma region. The contours of

(6off).i, in JT60 with a parabolic eurrent density distribution are also

shown in Fig.3-3. The particle trapped in the region O cannot be

detrapped without collision. On the other hand, particles initially
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trapped in the region @, @ or @ with

    I v" [ > V (6eff )min

are detrapped from the ripple well on their way toward the lines (6eff)n}in.

Deeply trapped particles with

    1 vll i < V (6eff )min

are never detrapped collisionlessly and escape out of the plasma. It is

apparent that all of the particles trapped in the region (5) are detrapped

during their gradient-B drift. As deseribed above, the collisionless

ripple-detrapping proeess limits the radial exeursion of the ripple-trapped

particles and prevents their loss. Consequently this process plays an

important role on the loss of fast ions and the ripple-assoeiated diffusion

of bulk plasma ions.

3-4 Ripple-enhanced banana drift

     Collisionless banana drift enhanced by ripple has been discussed by K.

T. Tsang and he has estimated the diffusion coefficient by taking account

of the radial component b,- of the toroildal field ripple. 'The 2g, banana

drift is not significant for fast ions. Another ripple-induced banana

drift which originates in the finite banana size, is more important for

particles with higher energy. In the presence of ripple, the banana orbit

of a ripple untrapped particle is seriously disturbed. As is shown in

Fig.3-4, the ripple untrapped partieles, especially barely untrapped

particles, undergo a large radial drift at the ripple peak point near their

banana tip. The radial excursion of the guiding center after a half bounce
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of banana is plotted in Fig.3-5 as a 'funetion of the initial piteh angle

for 75 keV fast ions born initially at r/ct = O.9 on the mid-plane. The

white blanks in Fig.3-5 correspond to the collisionless ripple trapping

regions described in g 3-2 .

     The discontinuous step size of the radial drift Ar is given by

    Ar= T'rb vd sinebt, (36)
where i',b is the resident time of a barely untrapped particle in the ripple

well at a banana tip and is approximately given by

         2.83R    T"b ='Ntl.)l61/2 trp, (3-7)
for a small value of Ied (1ql<O.5) where t,p is a numerical factor
                             'having a value of about 10 in case of large safety factor q. It must be

noted that the radial drift Ar is inversely proportional to V5 and this

nature of the banana drift is essentially different from g, banana drift.

    The hatched regions in Fig.3-5 indicate the loss regions. If the

ripple amplitude is reduced to zero keeping other parameters unchanged,

these loss regions disappear. This indicates that new prompt loss regions

are indueed by the toroidal field ripple.

3-5 Collisionless
        '

    Collisionless

prompt loss region

space, in addition

loss region in velocity space

    '

behaviors of fast ions described above produce new

associated with toroidal field ripple in the veloeity

to the well-known loss regton due to the loss orbits in
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an axisymmetric toroidal field, hereafter referred to simply as banana loss

cone, and the direct ripple trapping loss cone (IvR/vI< V5}7f).

 Collisionless loss regions in the velocity space are shown in Fig.3-6 for

protons whose initial point is (O.9ci, O.O, i/N ). Figure 3-6-(a) shows the

prompt loss region in an axisymmetric tokamak. Collisionless loss region

in the presence of ripple are shown in Fig.3-6-(b), (c) and (d>, where

collisionless orbits are followed for O.5, 1.0 and 5.0 bounee time of

banana motions, respectively. The banana loss cone and the direct ripple

trapping loss cone are easily recognized in Fig.3-6-(b). One should note

that one of the boundaries of the banana loss cone is strongly disturbed by

the ripple. Loss bands begin to appear in both sides of the direct ripple

trapping loss cone after one bounee time of banana and their number

inereases with the bounce time. These loss bands result from the colli-

sionless ripple-trapping and ripple-enhanced banana drift.

     Most of the loss bands appear in the piteh angle region KI<g.,

where (:. is the pitch angle defined by

    eos2(:. ., Rt+i"OeOSea (3-s)
              Rt + i'o

with (j. the poloidal angie on the line l((i =1.0 at r= ro and ro the

initial minor radius. The banana tip of the fast i.on with this piteh angle

just touehes the boundary line of the rippie well region.

     Although collisionless ripple trapping does not oecur in the pitch

angle region I<1<(:., the radial drift of fast ions is still enhanced by

ripple. This ripple-enhanced radial excursion disturbs the boundary of the

banana loss eone in the region 9<-9a.
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3-6 Concluding remarks

     Collisionless process of fast ions have been investigated by following

the collisionless guiding eenter orbits. It has been found that there are

three kinds of collisionless behaviors as typical features of fast ions in

a rippled toroidal field;

        '     (a.> collisionless ripple trapping,

     <bl> eollisionless ripple detrapping, and

     (c) ripple-enhanced banana drift.

The collisionless ripple-trapping oeeurs in an uneven distribution of the

toroidal field ripple and the piteh angle width of the trapping region is

proportional to the banana size of fast ions. The radial excursion step

size due to the ripple--enhaneed banana drift is also proportional to the

banana size of fast ions and is inversely proportional to the square root

of the local ripple size at the banana tip point in the region lcN1 < 1.0.

 The eo}lisionless ripple trapping as well as the ripple-enhanced banana

drift produce a large number of loss bands in velocity space and strongly

disturb the well-known banana loss cone.
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g 4. Coliisional Behavior of Fast Ions in Rippie

4-1. Introduction

     As described in the last section, there exist two kinds of fast ion

loss processes associated with the toroidal field ripple; ripple trapping

and ripple-enhanced banana drifti)'2). Owing to the eollisional as well as

collisionless ripple-detrapping processes, it is diffieult to distinguish

between ripple-trapped loss and banana-drift loss. Here, however, we

classify the loss particles by their final state; that is, if the fast ions

are trapped in a ripple well when they hit the first wall, we eount them as

ripple-trapped loss particles and if they are not trapped, banana-drift

loss partic!es. Typieal orbits during slowing down are shown in Fig.4-1;

(a), (b> for ripple-trapped loss particles and (c), (d) for ripple-enhanced

banana-drift loss particles.

     In this section the loss of fast ions during slowing-down process is

investigated in the case where fast ions are originated at a specific point

within the plasma region ( ro = O.9c-t ),. The fast ions are assumed to have a

uni-directional velocity and mono-energy ( 75 k'e-,V ): Plasma temperatures

and density are given to be spatially uniform as summarized in Table 4-I.

     In prder to investigate the ripple-associated loss process we estimate

the total energy loss time of fast ions 'vl.. The first interest in Tls

lies in its dependence on the initial pitch angle of fast ions, which is

shown in Fig.4-2. 0nly the positive side of the initial pitch angle is

eonsidered to exclude the effeets of ripple free }oss orbits <loss orbits
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in an axisymmetric field). The loss time Tt, shows sharp changes at the

piteh angles <= <d and <.. The pitch angle gd is given by V5I;7 and the

fast ions whose initial pitch angle is less than <:d are directly trapped in

a ripple well. The other critical pitch angle C. is given in b9 3-5. Three

regions of the initial pitch angle are recognized clearly in Fig.4-2;

     1> direet ripple-trapping region 1<l<gd ,

    2> intermediate region 9d < K"1<g. , and

    3) collisional region [Ci>• Ca .

4-2. Direct ripple-trapping region < t

    Fast ions with initial pitch angle

in a ripple well and lost to the first

time agrees with z,/vd where z, is the

trapped point to the first wall.

gI < (."d >

 less than <d are trapped

wall in a very short time

vertical length from the

 directly

. The loss

rippie-

4-3. Intermediate region (Cd < KI<'.9ct )

     It is noticeable that the loss time Tis

smaller by two orders of magnitude than the

in Fig.4-2. It has been considered that the

the direct ripple-trapping region described

result indicates that a kind of loss cone is

this pitch angle region.

    As discussed in .sg 3, the finite banana
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 in this piteh angle region is

slowing-down time T, as shown

 ripple-associated loss cone is

in the last subsection. This

 effectively formed also in

 size gives rise to the eolli-



sionless ripple trapping as.well as the ripple-enhanced banana drift. They

produce a lot of loss bands in this pitch angle region as shown in Fig.3-6.

 Fast ions are easily scattered into these loss bands via small pitch angle

scattering with plasma particles. Therefore, fast ions in this pitch angle

region are lost to the wall through cooperative process of these coliision-

less behaviors and Coulomb interactions with field particles.

     In the following, we investigate the ripple-trapped loss proeess and

the ripple-enhanced banana-drift loss process, individuaMy.

4-3-1. Ripple-trapped loss

     In Fig.4-2 the ripple-trapped loss time T,t/T,, the energy loss time

of ripp!e-trapped loss particles, is also plotted. The dotted. eurve shows

the ripple-trapped loss time for fast ions whose banana size is artific-

ially reduced to zero until they are trapped in a ripple well, that is,

oniy the eollisional effect is taken into consideration for the ripple-

trapping process. What is evident on comparing the above two lines is that

the ripple-trapped loss is enhaneed significantly by the finite banana size

effect in the intermediate region.

     To investigate the ripple-trapping process, we consider the ripple-

trapping time Tt, the time defined as the reciprocal of the ripple trapping

rate. There is a series of pitch angle Ck measured on the mid-plane with

which fast ions are reflected at one of the ripple vertices. The diffe-

rence between the two adjaeent pitch angles di 9k(= <k.i - <k ) can be given

by

           rbt sinObt 27c 1
              + rbt Ntqsin 2C",           Rt
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The collisional pitch angle change of fast ions in one banana bounce time

Tb is approximately given by

    Agb. •N- !E V?g71;[i,

           2

where Td is the defleetion time. If A9b. is comparable to Agk , it can be

eonsidered that the piteh angle of fast ions is sufficiently spread over

the piteh angle width A<k in a bounce time. This eondition is usually

satisfied for the fast ions produced by neutral beam injection in tokamaks.

 For fast ions to be trapped in a ripple well, the finite banana size

effect on ripple trapping or a sufficient pitch angle seattering while they

pass through a ripple well is required. Here we estimate the ripple

trapping due to eaeh process.

     Under the condition of A<k -v A<b., the eollisionless ripple trapping

time due to the finite banana size effect is simpiy given by

     FB H A{;k
    Tt
          Ag

where riC is the pitch angle band width of collisionless ripple trapping

given by eq.(3-5). On the other hand if enly the pitch angle scattering in

the ripple well at a banana tips contributes to the ripple trapping, the

collisional ripple trapping rate TtC is given by

    T' tC '"x-• `rd/T ,b A<k' Tb, (4-5)
where T,b is the time interval given by eq.(3-7) and A", is the pitch

angle corresponding to A<k observed at the ripple peak point near a banana

tip defined by
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    (ri (-`k'. )2 = 2ri gk singk < Rt+ rt,t )/( Rt+ rt,t cosebt )•

     Figure 4-3 shows the dependence of Tt/T, on Bt calculated by the

Monte-Carlo simulation code for q. ( =- ctBt/RtBp (a .) ) = 3.5. It is shown that

Tt/T, has a proportional increase with Bt in a low Bt range. The ripple-

trapping time in this region agrees well with TtFB given by eq.(4-4). In

order to clarify the effect of the finite banana size, the ripple-trapping

time of fast ions with zero banana size is also shown in Fig.4-3, in which

case only the collisional ripple-trapping process is taken into considera-

tion. In the high Bt range, the banana size becomes small and the colli-

sional trapping turns to be dominant. The numerically derived ripple-

trapping time in this region also fairly agrees with the collisional

ripple-trapping time TtC deseribed by eq.(4-5). The agreement of the

numerical ripple-trapping rate with analytical one in both large and small

banana size regi'on supports the evidence that our orbit-following Monte-

Carlo code well describes the behaviors of fast ions undergoing Coulomb

collisions in a rippled toroidal field.

     The ripple-trapped loss time T.t is also plotted in Fig.4-3. If the

rippie--detrapping process is not accounted, T,t may be given by Tt + :-s/t)ci

where z, js the vertical length from the ripple---trapped point to the plasma

surface. The loss time 'r,t is somewhat !arger than ":•t+ z,/v,l especially

in the high Bt range. This difference eomes from the ripple-detrapping

proeess "hich prevents the fast ions from eseaping directly out of the

plasma region.
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4-3-2. Ripple-enhanced banana-drift loss

    Even if fast ions are not trapped in the ripple well near a banana

tip, they can take a large radiai drift as shown in Fig.3-5. This kind of

radial drift cannot be caneelled in a bounce time. In a top-bottom sym-

metric ripple field, however, outward and inward drift are balanced in many

bounces, therefore, ripple transport of fast ions may be deseribed by a

diffusive process, whieh is mueh different from the convectÅ}ve one in a

top-bottom asymmetrie ripple field3).

     In order to estimate the diffusion eoefficient, we consider a simple

model of the banana drift instead of the saw-tooth-shaped one as shown in

Fig.4--4. The random walk step size Ar•BD <= CBDdr ) and the effective

           .-eollision time A• t (= Tbri (:l,/A(-"BD ) are calculated by means of a least

square method. The diffusion coeffieient of the ripple-enhanced banana

drift is represented by

               r)                          no   DBD "v <"li l'Bt'"> .... CBDL <A?")`. (46>
                        !            At <A (:k/A (:BD> 'rb

The analytical calcula`tion described ln Appendix shows that CBI)2' /(A<:k'•/'A(-LBD)

is about O.02 for all the value of !`.Nr less than unity.

    The energy loss time T,, calculated by the orbit-following fvlonte-Carlo

code is shown in Fig.4-5 as a function of Bt. In the low Bt region, Tro/Ts

is proportional to Bt2. This nature of the Bt dependenee of "t,. is well

described by the diffusion process mentioned above, and the loss time

defined by the diffusion coefficient <eq.(4-6)) agrees well with that of

Mente-Carlo calcuIation.
                                               '
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     As the toroidal field beeomes high, T,./T, ehanges its Bt dependenee.

 In order to understand this nature of T,., we count the number of parti-

cles undergoing more than one sequential process of ripple-trapping and

detrapping. The number ration of these partieies to the total banana-drift

loss particles N- /N is plotted against Bt in Fig.4-5. In the high Bt

region (Bt > 5T ), N!/N is so large that the virtual banana drift due to

the sequential proeess of ripple-trapping and detrapping process predomi-

nates over the collisionless ripple--enhanced banana drif' t described in

g 3-4 . This kind of radial drift has been considered as the basic process

of ripple-trapped diffusion4) of bulk plasma ions which is diseussed in

g7. The histories of the banana-drift loss particles with

N-/N=O and N//N >1.0 are sh6wn in Fig.4-1 (c) and (d), respectively.

4--4. Collisional region (I<l><a )

     Fast ions in this piteh angle region can be lost to the wail by

diffusing into the intermediate region as well as into the ripple-modulated

loss cone due to the ripple-enhanced banana drift described in g 3-5.

     Particles scattered into the intermediate region escape from the

plasma region through the proeesses described in g 4-3. Therefore the

collisional proeess is essential for the loss of fast ions in this piteh

angle region, and the loss time Tt. i's less affected by the finite banana

size of fast ions as shown in Fig.4-2.

     Coneerning the loss of fast ions seattered into the banana loss eone,

it should be noted that the ioss cone is strongly disturbed by the toroidal

field ripple as shown in Fig.3-6. This ripple-modulated loss eone signifi-
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cantly

-<a.

enhanees the loss of fast ions with initial piteh angle less than

4-5. Concluding rernarks

    Collisional behaviors of fast ions eoupled with the guiding center

motions in a rippled toroidal field ripple have been investigated for fast

ions which originate in a specific point in a plasma with uni--directional

veloeity and mono-energy. There are three initiai pitch angle regi'ons with

respect to the loss process of fast ions;

     1) direct ripple-trapping region I<l<<d ,

     2) intermediate region <d <lg"1<<. , and

     3) eollisional regiolt I<I><a .

     Most of fast ions with pitch ang!e I<I<<. are lost in a time

interval much shorter than the slowing-down time. Therefore, a kind of

loss cone is effectively formed in this pltch angle region. Under the

cdndition ri gk < Agb., the ripple trapping time due to finite banana size

effeet is simply given by

     FB - `d {}k
        - Tb•    Tt
          Ag
                              '
The diffusion coefficient of ripple-enhanced banana drift for fast ions in

the intermediate region ean be approximately given by

              ( rl r)2'
    DBD -,. o.02

                T6

which is independent of the collisionality.
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Tab Le 4-I Calcuiation parameters

major radius

minor radius

toroidal field

p!asma temperature

plasma density

plasma current

safety factor

plasma ion species

effective Z

charge number
of impurity ion

number of toroidal
field coils

maximum toroidal
field ripple

energy of fast ion

initia! position
of fast ion

Rt

a

Bt

Te (r)

Ti (r)

lle (r)

jp(T-)

jo

qa

H'

Ze f' f

Zimp

Nt

6o

E

r/ct

3. 03 m

O.95 in

4.5 T
1 keV

Te (r)
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jo (1 - (r/a )2 )

4.73/q. Ats/m2
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Fig.4-2 Relative energy
loss time to slowing down
time versus initial pitch
angle. The total loss time
Tts/Ts (--e->• and loss time
of ripple--trapped loss
particles T,t/T, <I-O--) for
fast ions with finite banana
size. The dotted curve
<--Å~---.) is the one for fast
ions whose banana size is
artifieially redueed to zero
until they are trapped in a
ripple well. Calculation
parameters as in Table 4-I.
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g 5. Ripple Loss of FasL rons Produced by Quasi-perpendicular NB!

5--1. Introduction

                                                 '

     Neutral beam injection is the most promising plasma heating method

which has been demonstrated in many fusion devieesi)-7). 'As the maehine

becomes iarge in size, the beam energy should be improved for the suffic-

ient beam penetration. The acceleration voltage, however, is limited

within about 150•--200 keV for deuteron beam due to the deterioration• of the

neutralization efficieney of energetÅ}c ions. This leads us to ehoose the

quasi-perpendicular neutral beam injection to save the beam path length

from the plasma surface to the center. As the injection angle approaches

perpendicular with respect to the magnetic axis, the birth point of fast

lons is brought close to the effeetive ripple loss cone deseribed in g 4-3

and the rippie-associated loss of fast ions is inereased. Therefore, the

ripple loss of fast ions produced by neutral beam injection strongly

depends not only on the fieid ripple but also on the injection angle.

    The consideration on the ripple loss of injected beam ions is impor-

tant from the view point not only of the beam energy confinement but also

of the protection of the first wall from the loss particles. The ripple-

trapped loss particles undergo a gradient-B drift and may lost to the

specific narrow area on the first wall. This kind of particle loss results

in an enhancement of the iocal heat loading.

    The loss of the beam power due to the toroidal field ripple8) as well

as the consequent iocal heat deposition on the first wall9) are the essen-
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tial problems in the design.of the neutral beam injection for reactor grade

large tokamaks. The main objective of the development of our orbit-

following Monte-Carlo code is to obtain a lot of useful information on the

design of NBI and on the plasma heating scenario in a large tokamak by

evaluating the ripple loss of fast ions produced by NBI.

5-2. Birth distribution of fast ions

     Fast neutral atoms injected into an ohmically heated plasma are

ionized or charge exchanged by interactions with field plasma ions and

electrons. The fraction of neutrai beams whieh is trapped in a plasma can

be deseribed bylO)

                                    '
    s ., \7k foLMaXfo2nfoabf(rb , eb )exp c -foLbn. (r)oi (Eb/k )ctL]

                             x ne (r)oi (Eb/k')rbdrbdebclLb, (5-1)

where rb,eb are polar eo-Drdinates in the beam cross seetion perpendieular

to the beam line, Lb the beam path length, L... the maximum beam path

length whieh intersects the plasma column, ab the neutral beam radius, Eb

the primary beam energy, orp, the density fraction of beam atoms with energy

of Eb/k. oi the totai ionization cross section, and f(rb,eb) the normalized

distribution of beam density which gives

        '

    foabfo2nf(rb,eb)rbdi-bdeb ::: i•O •

     Provided that the cross section for ionization of atomie hydrogen by

stripped impurity ions is of the formii)•i2') '
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    o. = Zlth2( op + ocx ),

where op is the ionization cross section of atomic hydrogen by protons, o..

the cross section for charge exchange by protons in atomic hydrogeni3) and

Zi.p the charge number of impurity ions. Then the total ionization cross

seetion is given by

    Oi = Oe + (Op + ocx)( fi + (1 -fi )O'6 (Z.ff ff fi )O'4 ] ,

                         '
where u. is the cross section for ionization of atomic hydrogen by elec-

trons, Z.ff the effective Z and fi = ni/n..

     Here we consider a circular cross-seetional neutral beam with

    f(rb,eb>= C92 expCl-(rb/ab)2], (5-2)
              zab

where cg = e/(e-1). Introdueing new variables

    rb- = c, [1-e tp (- (rb /ab )2 )]

     -    eb = e6/2n

     -    Lb = Lb/Lmax

and substituting eq.(5-2) into eq.(5-1), we obtain

    s = 2Lmon-Zk "yk YloifJifotexp( m Ln}axfoLbn. (r)oi <Eb/kA )ctL]

                                          --                                                --                            x ne (r)oi (Eb/k )rb drb deb ctLb . (5-3)

Since the total number of test particles is limited within about 2000 due

to the long computational time, the Monte-Carlo integration method is again
                                                        'adopted to ealculate S numerically, in which five uniform random numbers

corresponding to rb, eb, L6, beam ion speeies k", and co-injection fraction
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are generated for every sampling point (=- test particle ).

     For example, the above method is adopted to the ealeulation of birth

profile of fast ions produced by neutral beam injection in JT-60. The

quasi-perpendicular NBI system for JT-60 is shown in Fig.5-1. Calculation

results, projections of birth points on the minor cross section, are shown

in Fig.5-2 for various plasma densities; <a) for n.o = 3Å~10i9 rrt-3 , (b) for

n..o= 1Å~1020 m-3 and (c) for n.o == 2xl020 m'3 , respeetively. As shown in

Fig.5-2, the neutral beam in JT-60 comes at an angle with respect the

mid-plane ( an oblique injection ), in whieh case the initial pitch angle

of fast ions is described by

    g = cos-i[ (Rt+rcoseo)/(Rt+r) cosC6.) ,

                                                                        '                       r                            (1-coseo) , (5-4)      "v <b. + COt<bm
                    2 (Rt+r)

where eo is the poloidal angle of birth point and gb. is the angle of the

beam line with respect to the plane which is vertical to the magnetic axis

and contains the birth point. In an oblique beam injection described

above, the pitch-angle of fast ions measured in the the mid-piane beeomes

somewhat greater than gSb. . Therefore, an oblique NBI is favourable to

prevent the ripple loss of injected beam ions.
                                                  '
     We sp"e from Fig.5-2 that the radia} profile of initial beam-power

density depends on plasma deposition. The fraction of fast ions deposited

in the plasma periphery where the field ripple is large in size, inereases

with the plasma density. Consequently, the ripple loss of fast ions

produced by NBI may be a strong function of the bulk plasma density.
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5-3. Ripple loss of fast ions during slowing down

     As described in g 4-1, the ripple-assoeiated loss can be eategorized

into two groups: ripple-trapped and ripple--enhaneed banana-drift loss

particles. In the present paper, the fraction of power loss due to ripple-

trapped loss particles during slowing down is denoted by G,t, that due to

ripple-enhanced banana-drift loss particles by C,. and the total loss by

     First, to estimate the allowable field rippie and injection angle, the

mapping of ripple-induced power loss of fast ions produced by neutral beam

injection is investigated. In order to deal with generalities, the injec-

tion geometry is chosen so that the beam line is on the same level with the

mid-plane. Constant eontours of the power loss fraction Ct in space of the

maximum field ripple 6. and the complementary injection angle l90 - ei.il

are shown in Fig.5--3. The injection angle ei.j js defined by an angle

between the magnetic axis and the beam line. In a plasma with small aspect

ratio <Rt/a < 10.0), a geometrical effect makes the angle Kb,,l somewhat

greater than than l90 - ei.jl" , especially near the p!asma periphery.

 Furthermore, in an oblique injection the initial pitch angle beeomes

greater than 1Cb.I as shown in eq.(5--4). The geometrical ei.j jn JT--60 is

about 90Å}12" , however, the effeetive injection angle corresponding to the

initial pitch-angle of fast ions near the plasma periphery is

ei,j = 90Å} (20-v25)" . Parameters of the neutral beams used in the present

investigations are summarized in Table 5-II. For example, in JT-60 with

the maximum fieid ripple 6o O.4% to O.5a/S and the effective injeetion angle

ei.j -v 90Å}(20-v25)O , the loss of injected beam ions is estimated to be

oniy •'L 10% of the total power.
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     Next, the details of the ripple-associated loss of fast ions , C,t and

Gro, against injection angle 90 - ei,i for 6o = O.5% are shown in Fig.5-4.

 To make it clear the effect of the toroidal field rippie on the loss of

fast ions, the banana orbit loss in an axlsymmetric magnetie field C.. is

also plotted in Fig.5--4. The difference between Gt and G.. can be consid-

ered as the contribution of ripple, It is noted that in a toroidal field

ripple banana-orbit loss is remarkably enhanced even in the co-injection

scheme. Consequently, in the presence of ripple, the total loss of fast

ions has no significant difference between the eounter- and the

co-injection of neutral beams with a quasi-perpendieular injection angle.

 From a view point of reducing the fast ion loss, the co-injection scheme

is somewhat preferable to the eounter-injection in the larger injeetion

angle region. However, the ripple-enhanced banana-drift loss G,. does not

decrease sufficiently with an increase of the complementary angle of ei.j

in the co-injection side, At the injection angles of JT60, the power loss

fraetion of injected beams is estimated to be about 8 to 112/o for

co-injeetion and 12 to 14"/S for counter-injeetion with the parameters used

here. In an axisymmetric toroidal field, power loss fractions of 1.59i for

co-injection and 5.5Z•/a' for counter-injection are estimated. Therefore, the

loss of fast ions is enhanced by the toroidal field ripple by a factor of

3.

     The ripple loss of injected beam ions depends also on their radial

birth profile which is briefly shown in g 5--1. Hence, the plasma density

dependence of ripple loss is an important consideration to estimate the

maximum plasma density in neutral beam injection heating. Various power

loss fractions associated with beam injection are shown in Fig.5-5 as a

function of the average plasma density n.. In Fig.5--5, C.. denotes the
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charge-exehange loss of fast ions during slowing down and C,h the loss of

injeeted neutral beams due to shine through. The neutral particle density

for the aalculation of charge-exchange loss described in .a 2-4 is obtained

by solving a Boltzmann equation with respect to neutrals whieh is three

dimensional in veloeity space and one dimensional in real spacei4). Both

ripple-induced losses a,. and C,t are roughly proportional to the average

plasma density. In high density plasma ( - n. > 2-v3Å~10i9 m'3), the ripple

loss dominates the loss proeess of fast ions produced by'a quasi-

perpendieular neutral beam injection.

5-4. Localized heat loading on the first wall due to ripple-trapped

      ioss particies

     As discussed in g 3T2, the ripple weli is formed in the region

defined by

    1od <L
 '
In this region, the corrugated field has a minimum at Ntoi = 2nn + sinrtcr

with the adjacent maximum at NtÅë2 = ( 2n + cM/lc!l )n - sin-ior, where n is any

integer less than N•t.

     From the guiding center equation (2-7-2), we obtain a relati'on for

ripp1e-trapped partic!es:

         '

   1rn,(R 9Lt )2'+ip =wt. (5'`-5)
    2           dt

Here
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    V=t.tmB6Nt(a'rp+cosNto/Nt ), (sc)                                  .t

and iPt == IP<g>t), where g)t is the toroidal angle at the turning point of a

ripple-trapped oscillation. The ripple well depth is given by

    AV = V, (ep2 ) - cb (Åëi )

          '
                                            '

       =Avo c.,tri":EIi -iod (-Z!-sin-iiai )), (s-7)
                         2

where AVo = 2ti.B6 is the ripple weil depth at lcNI = O.

    For a particle trapped barely in the ripple well (Vt =V(gD2)), the

oscillation width in the toroidal angle becomes Ao ==lapk - go2(, where gpk js

determined by

   cxbi'tÅëk + cosNtepk = < 2n + cx/ l al )na - (xsin'1or +".

 Any ripple trapped particles exist within the region bounded by ( o2 , epK- )

during their gradient-B drift. It is noted that the oscillation band width

AW becomes small with the inerease of lcMI toward unity, and Ag) =O and

AxP =O at lal = 1.

    In a reactor-grade tokamak, various kinds of ions, such as thermal

plasma ions, beam injeeted ions, and alpha-particles, can be lost out of

the plasma region qnder the influence of ripple. Particles whose banana

tips are in the ripple-well region <lal<1), ean be rapidly tfapped by

ripple oF undergo large radial banana drift as shown in the last seetion.

 Even if the banana tips exist outside the ripple-well region, some frac-

tion of those ions ean be scattered into the region and lost by rippie

trapping or ripple-enhanced banana drift.
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     In the present investigation, the fast ions produeed by neutral beam

injection is typieally considered. The parameters used here are summarized

in Table 5-I and 5-II. From the Monte-Carlo ealculations with these

parameters, we evaluate the fraetion of loss power against the injected

beam power: 3.5ee' for ripple-trapped loss and 8% for banana drift loss.

     The deposition of the loss ions is mapped on the plasma surface r == a

as shown in Fig.5-6. We see that the ripple-rapped loss ions are distri-

buted within the region ( go2, <pk ). Furthermore, they are also coneentrated

in a narrow region of the poloidal angle. This poloidal loealization comes

from the trapping process which means that ions are scattered from the

region free of ripple well into the shaUow well region, lcNS-vl, and are

ripple-trapped before diffusing into the deeper well region, 1c{I<<1. Fast

neutrals due to eharge-exehange loss distribute almost uniformly on the

r' = a surfaee, and no noticeable localization was observed. The ripple-

trapped loss particles hit the first wall of the containment vessel and the

banana--drift loss particies may enter the materia} limiter or the neutra-

lizer plate in a divertor system.

  ' The feature of ripple-trapping seems to be important for the loca}iza-

tion of loss particles. The well depth for ripple trapped particles is

given by

    cAio) t, = wt -- ip <Åë1 >,

                                      aand [AV,]t, becomes equal to AiV for barely trapped particles. The ;napping

of ripple-trapped loss ions on the c( - CAW]t, plane is shown in Fig.5-7.

 It is found that fast ions are barely trapped in the shallow well, and

this tendeney beeomes pronounced with the increase of the ion energy.

    The poloidal profiles, re, as weli as the toroidal ones, r,,
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are shown in Fig.5-8 for the heat deposition of loss particles, where

    re = R fo2rc/N'g( o, gD )ciq -

and

    F, == a flg( e, ep )cte

with the loss power density g( O, ep ) on the r=a surfaee. The loss power

associated with the ripple-trapped loss ions is eoncentrated in a region

30" <e<45" and 10" <gD<15" of every toroidal coil section, which is less

than lto" of the plasma surfaee area. The banana drift-ioss power has a

rather broad profiie in the poloidal direction but is localized toroidally.

 This toroidal localization of banana-drift loss power is accounted for the

rippleenhanced banana drift which becomes significantly large near the

rippled field maximum at gD2.

     The heat load on the first wall due to ripple-trapped loss ibns

reaehes O.7-N-O.8 MV/in2 at its peak under the eonditions investigated here.

 The power density of the banana-drift loss ions on the Mmiter or the

neutralizer plate basically depends on their geometrical configuration.

 However, the heat load is estimated to be tens of A'fiV/in2 on the usual

poloidal limiter or neutralizer plate.

     The situation concerning the localization of heat deposition is the

same for the ripple loss of bulk plasma ions, r.f. heated ions and alpha

partieles. Hence, the heat loading is enhanced further by these partieles

in tokamak reaetor. Effective protection against the localized heat

deposition due to ripple may be essentiai in the first-wall thermal design.

                             '
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5-5. Concluding remarks

     Ripple-associated loss of fast ions produced by a quasi-perpendicular

neutral beam injection has been investigated numerieally by use of the

orbit-foJlowing Monte-Cario code. Conclusions obtained in the present

investigations are summarized as follows:

1) The ripple enhanced ioss dominates the loss of fast ions produced by a

   quasi-perpendicular neutral beam injection in a reactor-grade tokamal(.

2.> In order to hold down the ripple loss of fast ions to be less than 10%

   of the total, i90 - ei,jl > 20" and 6o < O.5r{•S for the typieal plasma

   parameters summarized in Table 5-I.

3) Banana-drift loss of fast ions is significantly enhanced by the field

   ripple not only in the counter-injection but also in the eo-injection.

   Consequently, no remarkable advantage of eo-injection can be expeeted

   for a quasi-perpendicular injection in the presence of ripple.

4> One of the essential features of the ripple-trapped loss is the locali-

   zation of the loss particles in a specific narrow area on the first

   wall. This causes a serious heat load probiem of the first wall,

   especially for a long pulse neutral beam injection heating.
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Tctble 5-I Plasma parameters

major radius

minor radius

toroida-1 field

plasma temperature

plasma density

plasma current

safety faetor

plasma ion species

effective Z

charge number
of impurity ion

number of toroidal
field coils

maximum toroidal
field ripple

Rt =`'

ct=
Bt =]
Te (}" > =.

Ti (,"> =

TeO =
?'le <r> =

]leO =

,ip('r') =

J' O =
C]a :=
H+

Zef'f =

Zimp =

Nt :=

6o=

3. 03 m

O.95 ni

4.5 T
          ,-Tec, ( 1 - O'/ct )"

7' e <l- >

1.o Å~ lo4 ey
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1.o x loL'O inm3

,io (1- <. )"/c! />2 >

4. 73/q. iYxt /m2

3.5

1.5 <uniform)

8.0 (oxygen>

18

O.O05
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TctbZe 5-II Parameters of neutal beams in JT60

beam energy

beam power

power ratio of neutral
beam components

effective injection
angle

injection scheme

beam partiele species
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Fig.5-3 Constant eontours
of power loss fraction in
space of maximum field
ripple and injection angle
Caiculation parameters as in
Table 5-I and 5--II.
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,g 6. Ripple Loss of Suprathermal Alpha Particles during Slowing Down

6-1. rntroduction

     In the last decade, studies on both prompti)-3) and non-prompt4)-9) loss

of high-energy charged fusion products were earried out by many authors,

and it has been concluded that alpha particles are well confined in an

axisymmetric reaetor grade tokamak if the contamination of the burning

plasma is sufficiently low.

     In a real tol<amak system, the discrete nature of toroidai field coils

produces a small, but finite, field ripple. The effects of the toroidal

field ripple on the confinement of fast ions produced by neutral beam

injectioniO)-i3) and on the transport eoefficients of buik plasma ionsi4)'i9)

have been investigated extensively, while only a few works5)•20) are devoted

tQ the confinement of charged fusion products in a rippled toroidal field

so that this problem is stiil unresolved. The design of next generation

tokamaks urgently requires a detailed investigation of this problem.

    Recently, Goldston et ctl. predicted that there is a critical field

ripple which causes the collisionless banana orbit to be ergodie and

greatiy enhances the banana particle lbss2i). The allowable toroidal field

ripple due to this ergodic loss of banana trapped partieles with an energy

of 3.5 iNIeV is estimated to be less than O.3%'" in a reactor grade tokamak.

This faet may substantially affect the reactor concept if the prediction is

correct.
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     Even if the fraction of banana-trapped particles interacting with the

toroidai field ripple is large, the loss time of these particles is finite

and their energy can be transferred to the plasma via Coulomb eollisions.

 Accordingly, in the present paper, we investigate the ripple effects on

the slowing-down proeess of alpha particles by an orbit-following Monte-

Carlo code in whieh the behavior of fast ions undergoing Coulomb collisions

with bulk plasma in a rippled toroidal field is exactly deseribed, and

estimate the permissible level of field ripple in a reactor grade tokamak.

                               '
6-2. Calculation results and discussions

     Numerieal investigations are performed for the pararneters appropriate

to the next generation tokamak (INTOR) which are summarized in Table 6-I.

Initially, about 500 test particles are uniformly distributed in a plasma

with an energy of 3.5 MeV and weighted according to the local fusion

reaction rate. We suppose that the distribution of their initial pitch

angle is isotropic. After the particles have been launched, we follow them

until they all slow down to "v 2T,.

     The model toroidal field coil for the calculation of the field ripple

is shown in Fig,6-1 and the constant eontours of field ripple 6 (= g,/B)

calculated by the method described in tt 2-2 are shown in Fig.6-2 for 6o =

O.750/o. In the presence of g, and ge, the well-known ripple well parameter

cM is approximately given by eq.(3-1). The boundaries of the ripple well

region defined by 1orl = 1.0 are also shown in Fig.6-2. The lines defined

by k.Nl =; 1.0 for the case in which both B, and Be are eliminated from

eq.(3-1> are also represented in Fig.6-2 (dashed eurves). On the assump-

                                  -72-



tion of the usual tokamak ordering, the last two terms in the denominator

of eq.(3-1) is much smaller than the first. Therefore, the ripple weil

region in the self-consistent ripple field covers only a slightly wider

area than that in the ripple field 4 only.

6-2-1. Prompt loss of alpha particles

     Effects of ripple on the prompt loss region in velocity spaee are

investigated by foilowing collisionless guiding center orbits numerically

in the ripple field shown in Fig.6-2. Figure 6--3(a), (b) and (c) show the

loss region of alphas whose birth points are r/a :O.9, O.8 and O.7 in the

mid-plane, respectiveiy. Their initial toroidai angle is set at n/Nt.

Collisionless orbits are followed untA alpha partieles return to the

mid-plane or escape to the first wall. It is very interesting that small

loss branches appear on both boundaries of the direet ripple-trapping loss

cone in the high-velocity region. These branches have not been discovered

fdr fast ions with energy of 100 keV at mosti2). Figure 6-3(c) shows a

very distorted ripple-trapping loss cone only in the high-veioeity region.

 Generally, the collisionless ripple-detrapping proeessi2) limits the pitch

angle width of the direct ripple trapping loss cone. It must be noted that

in the present ripple field any particle trapped at r/a := O.7 in the

mid-plane (Fig.6--3(c)) are detrapped from the ripp}e well without collision

on their gradient-B drift path. The particle detrapped in a collisionless

fashion starts to make an excursion along a banana orbit. If the particle

has a very high velocity like an alpha particle, the banana orbit can

interseet the wall. This kind of loss process gives rise to those small
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loss branches. The prompt and non-prompt ripple-trapped loss of alpha

particles have been investigated theoretically on the assumption that no

collisionless ripple-detrapping oceurs5)•20), The above mentioned loss

process will, however, make it very difficult to analyticaily estimate the

energetic-alpha-particle }oss in a realistic ripple field.

     The boundary of the banana loss cone is also strongly disturbed by

ripple, whieh may enhanee the banana orbit loss of alphas.

     As is shown in Fig.6-2, the ripple-well region covers a wide area

inside the torus. However, no effect of ripple on the loss cone boundary

for barely banana-trapped or transit particles is not observed. This

indicates that the effect of the ripple inside the torus on fast ion loss

may be expected to be small.
                                                            '
     The prompt loss depends strongly on the ripple size. The loss frac-

tions in a plasma with parameters summarized in Table 6-I are -xJ Yo, 3/to and

7% for 6o = O.59e, 1.ori and 1.5%e, respectively. If the maximum rippie size

is less than 1%, the ripp)e-induced prompt loss can be negleeted.

6-2-2. Non-prompt loss of alpha particles

(1) Evaluation of the Goidston-White-Boozer criterion for fast ion ioss

     Goldston, White and Boozer have theoretieally found a limit on field

ripple for particies with large banana size2i) which is approximately given

by

               1    6C= (tvt req/e ')3/2pq-' <6-1>
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where p is the gyroradius, E the inverse aspeet ratio, q the safety factor

and q- =dq/dr. The particle whose banana tip is in the region

    6> 6e

is predicted to be lost in a very short time, because of collision!ess

stoehastic orbits. For example, the boundaries of the ergodic loss region

6= 6. are shown in Fig.6-4 for various 6o in INTOR with q. = 2,5.
                                                     i
     To evaluate the Go!dston-White-Boozer eriterion, hereafter referred to

as G.W.B. eriterion, we investigate the loss process of alpha particles

which originate at a specific point in the mid-plane (ri.t = O.6a) with

identical pitch angle and energy. Their initiai toroidai angle is assumed

to be uniformly distributed between O and 2T/Alt. First we measure the loss

time Tt. which is defined by

            No
    Tts= '         cUVL /dt I ,=o

where NL is the number of loss particles and No is the total partiÅë}e

nu.mber. The loss time Tt. in a collisionless plasma is shown in Fig.6-5 by

the solid line as a function of the normalized pitch angle </<., where C.

is the critical piteh angle defined by

      o. Rt + rintCOS()c
    cosL (-c
              Ro + 1"int

with e. the poloidal angle at r=ri,t on the line 6= 6.. As is evident

from Fig.6-5, the eollisionless Tt, shows a very sharp change at < -v <. as

was predicted by Goldston et al. Furthermore, we eompare this numeriealiy

derived eritical pitch angle with theoretical one by changing the gyrora-
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dius of the alpha particles. The hatched region in Fig.6--6 is the theoret-

ical ergodic loss region; the numerically derived eritical points are shown

by crosses. We see that the two results are in a fairly good agreement.

(2) Collisional effects on transport phenomena of banana-trapped alpha

     particles

     Effects of piteh angle seattering of alpha particles by bulk ions are

investigated from the following point of view:

   1) pitch angle scattering from < > <. into g < <. and resultant enlarge-

      ment of loss region;

   2) enhancement of transport of confined banana particles.

     The loss time Ti. i'n the presenee of Coulomb collisions is shown in

Fig.6-5 by dashed curves. The slowing down time i7. is about 104Tb (Tb is

the bounce time of 3.5 "IeV banana-trapped alpha particles), and the deflec-

tion time is chosen as Td/T. 'v 190 (Z.ff =1.5) and Td/T. "v 60 (Z.ff= 5.0).

 Other pararneters are as the same as those in sub-section 6-2-2 (1). As is

shown in this figure, no significant difference is observed between the

collisional and collisioniess loss time in the region g< <.. The diffu-

sion coefficient which is roughly estimated as (a - ri.t)`/Tl. is of the

             .1order of 10 nt"/s and approximately agrees with the ripple-plateau diffusion

coefficienti7) given by

          (A r. )2
    DRP -.                                                                     (&3)
            Tb

where Ar,, is the radial displacement deseribed by2'i)
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    Arm = (Nt T/sineb )i/2 (q/E )3/2p6, (6--4)

with eb the poloidal angle of the banana tip. It is very interesting that

the collisional effect moderates the ehange of Tt. near g. and enlarges the

loss region effectively. The enlargement of the loss region may be caused

by the eollision enhanced ergodicity of banana particles with piteh angle

g -k- g. as well as by the scattering of particles from the pitch angle

region < > <. into the eollisionless ergodie region < < <..

     Next, we show the diffusion eoefficient DCB for(non-ergodic) banana

particles confined in a eoilisionless way with pitch angle 9 > g.

(g t'v 1.4<. ) in Fig.6-- 7. The diffusion coeffieient is defined as

    DcB = .1 -fl [2 ( ri -<r> )2 u),/ Zivi] ,

         2dt i- i
where

    <r> = Zriw,/ 2w,.

           ii
Here, ri is the radial position of the ith test particie and wi the parti-

cle density weight. It is found that DCB in this region is proportional to

the ion collision frequency vi and is in the order of 10-i rn2/s which is

about 10 tN• 100 times greater than the axisymmetric neoclassical transport

coefficient DNC , but much less than DRP .

    The pitch-angle change eorresponding to the reduction of toroidal

angle ri tp == n/Nt of a banana tip can approximately be written as

          rsineb n 1    b<p "v                                                                   (6-5)
          Rt + r Ntq sin2C

and the effective col!ision frequency
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    veff= [z/ (2 zi g"q ))2 vi. (6F6)
Then the diffusion coefficient for confined banana particles is roughly

given by

                '
    DCB "v (2Ar.)2 },eff

       t-v z(Nt/sineb )3 (q/E )5 sin229 (p6)2 vi. (6--7)

The solid line in Fig.6-7 is the diffusion eoefficient caleulated by the

above expression. The analytical diffusion coefficlent agrees well with

the numerical one. It should be noted that DCB has a very strong depen-

dence on (q/s). The numerically derived diffusion coeffieients are shown

in Fig.6-8 as a function of the safety factor q.. These values agree well

with the analytieal DCB of eq.(6--7) (the solid line in Fig.6-8). This

dependence of DCB on q indicates that the plasma eurrent is a very impor-

tant parameter for the containment of charged fusion products.

(3) Ripple-enhanced power loss of alpha particles

     The evolution of the time integrated power loss fraetion during

s].owing down (collisional power loss fraction) is shown in Fig.6--9 by the

solid curve. The evolution of the loss fraction in a collisionless plasma

<collisionless power loss fraction) is also shown in Fig.6-9 by the dash-

dotted curve. Of course, the time derivative of the loss fraction in

Fig.6-9 gives the rate of power loss. The collisionless loss rate shows a

very slow decay sinee partieles never slow down. On the other hand, the
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eollisional loss rate shows a very abrupt change in the very early stage of

slowing-down (<O.3T.) and is reduced to zero. This is due to the decrease

of fast ion energy and the consequent shrinking of the ergodic loss region.

 It should be noted that the initial loss rate in the collisional case is

greater than that in the co!lisionless one. This result is well explained

by the aollisional effects on the local diffusion coeffieient as described

in the last sub-section.

     The collisional power loss fraction is shown by the solid line in

Fig.6-10 as a function of the maximum ripple size 6o. Evidently, the ioss

fraetion depends strongly on the ripple size. The initial portion of

banana-trapped partieles is approximately given by

    <VE> ]= foafb (,-)VErclr /fo"fb (r)rdr

where fb(r) is the birth profile of the alpha particles. As the field

ripple 6o decreases, the power loss fraction becomes much smaller than

<G>.

     The power loss fraction for 6o -- 1% for the condition of the next-
 '
generation tokamak summarized in Table 6-I is about 13"/e. Since the loss

fraction in the axisymmetric toroidal field is 3%, the 'ripple-enhanced loss

fraction can be considered to amount to only tv 10"/a. Even in the presence

of ripple. the energy of charged fusion products is well confined in a

plasma.
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(4) Ripple-enhanced partiel.e loss of alpha particles

     From the view point of ash exhaust, ripple-enhanced particle loss is

an interesting and important problem. Particle loss fraction are shown by

the dashed-curves in Fig.6-9 and 6-10. Figure 6-9 shows that the deeay of

the particle loss rate is much slower than that of power loss rate and a

large number of low energy alphas are continuously lost to the first wall.

 This is due to the pitch-angle scattering whieh is veryJ important for

slowedriown particles. The partiele loss fraetion approaches < VE> jn

the limit of high 6o. For the data of Table 6-I, the fraetion of particle

loss is 1.5 to 1.8 times as large as that of power loss for a maximum

ripple size O.4% < 6o < 1.5% as shown in Fig.6-10. The difference between

the power and the particle loss fraetions probably comes from the effect of

slowing-down. This kind of ripple-enhaneed alpha particle loss in the

slowing down process may alieviate the problem of ash aceumu!ation.

     Ripple-associated }oss particles can be categorized into two

groupsi2) : ripple-trapped and banana-drift loss particles. In the present

investigations, only a negligible amount of ripple-trapped loss particles

is observed. This implies that the rippie-enhanced banana drift dominates

the loss process of not only the energetic but also slowed-down alpha

particles.

(5)

loss

Spatial distribution of loss alpha particles on the

The localized heat load on the first ' wall caused by

of fast ions produced by neutral beam injection has
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 Here, we investigate the distribution of heat load due to the rippie-

enhanced loss of charged fusion products.

     For the convenience of calculations, we consider a first wall whieh

faees the plasma surface without any unevenness like material limiters; the

wall radius r. is assumed to be a. The finite-Larmor-radius modification

of the poloidal angie where alpha particles intersect the wall is not taken

into account7). The two-dimensional distribution of the heat load due to

loss alpha particles is shown in Fig.6--11 for 6o =1.59/e. 'Since the total

number of test particies is limited because of the long CPU time, the

distribution is very rugged. The peak heat flux, however,is roughly

                     .1estimated at 1.5 MV/'m`. The average heat load on the first wall is about

O.1 AAti/nt2' , therefore, the peaking factor is about 15. The maximum heat

flux for 6o = O.75%e is about O.7 MV/nt2. The linear interpolation indicates

that the peak heat load may reach the order of 1 MV/in2 if 6o exceeds 19e.

 This level of heat load needs some meehanism to remove it from the first

wall for the ease of long-pulse operation.

     It is very noticeable that a large number of loss particles hit the

first wall in the vicinity of the mid-plane as shown in Fig.6-11. This

kind of poloidal angle distribution characterizes the ripple-enhaneed

banana drift loss and is very different from that of loss particles in an

axisymmetric tokamak whieh shows a very widpv distribution2)j3)•7). This

property of loss alphas might be capable of removing them from the burning

plasma by use of a pump limiter outboard, on the mid-plane. It must be

noted that the toroidal angle distribution is also uneven as is shown in

Fig.6-11. The radial component of the field ripple B, has a toroidal angle

dependence of sirLAItQ; therefore, the magnetic surface expands radially in

the region O<ep<re/fVt. It can be considered that this makes the toroidal
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angle distribution of loss alphas uneven.

6-3. Concluding remarks

     The slowing-down process of suprathermal alpha particles in a rippled

toroidal field has been investigated by an orbit-following Monte-Carlo

eode. Conelusions of the present investigation are summarized as follows:

   <1) Small prompt-loss branches appear on both boundaries of the direet

       ripple trapping loss cone owing to the effect of large banana size.

   (2) Collisioniess ripple ioss proeess of alpha partieles is numerically

       investigated. The G,W.B. criterion for alpha particle loss has been

       verified numerically.

   (3) Although the initial energy of charged fusion products is very high,

       collisional effects, slowing down as well as pitch angle seattering,

      are very important for the estimation of their ripple-enhanced

      particle and power losses.

   (4) The ripple-enhanced banana drift dominates the loss proeess of alpha

      particles.

   <5) 'i"he diffusion coefficient DCB for confined banana partieles with

      piteh ang!e g> g. is approximately given by eq.(6-7>. For the

      plasma parameters summarized in Table 6--I with 6o -vl"/o, DCB of 3.5

      tYeV alpha partieles is of the order of 10-i ni2/s which is mueh

      larger than DNC (axisymmetrie neoclassical diffusion) and rnuch less

      than DRP (ripple-plateau diffusion).

   <6> The ripple--enhaneed power loss for 6o == 1% is about 10% of the total
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       fusion power of eharged particles.

   (7) The effect of ripple on particle loss is very important for not only

       energetic but also slowed-down alphas. The fraetion of particle

       loss is about 1.5 to 1.8 times as large as that of power loss for

       O.4% < 6o < 1.59S.

   (8) The wall heat load due to loss alpha particles is !ocalized and its

       peak value reaches the order of1 iW/rn2 if 6o exeeeds 1%.

     The present investigations show that there is a possibility of realiz-

Å}ng the design of tokamak reactors with a realistic field rippie of 6o -vl"/o',

permitting 1or/e power ioss of alpha particies. Ripple loss of alpha parti-

eles, however, depends on their birth profile as well as on the'  safety

factor q. Therefore, ea!culations should be made for various profiles of

plasma parameters ineluding the plasma current in order to provide a

satisfactory answer to the questions arising in the design of fusion

reactors. These investigations will be reported in a future paper.
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Table 6-I Plasma parameters

major radius

minor radius

toroidal field

plasma temperature

plasma density

piasma current

safety factor

effeetive Z

eharge number
of impurity ion

number of toroidal
field coils

Rt

a

Bt

Te (r)

(TD (r)

Tp

??e <r)

(nD (r)

11p

j,(r)

J'
O

qa

Zeff

Zimp

Nt

5.3 rn

1.2 m

5.5 T
Ti (r) = T, (1 - (r/a )2

TT (r> = Ti (r)>

2.0 x 104 eV

7lo (1-(r/a )2)

nT (r> = ni (r>)

4.0 Å~ 1020 rn'3

je o (1-(r/a )2 )

3.3/q. "A/in2

2.5

1.5 (uniform)

8.0 (oxygen)

12
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,6 7. Ripple Diffusion of Bulk Plasma Ions and Burn Controi

7-1. rntroduction

     The discrete nature of toroidal field coils destroys the axisymmetry

of a tokamak. This unperfect axisymmetry resuits in additional neoclassi-

cal transport phenomena such as ripple-trapped diffusion, ripple-plateau

diffusion and banana-drift diffusion, which are investigated theoretically

by a number of authorsi)-3). Recently, calculations of the ripple associ-

ated ion thermal conductivity have been made by using orbit-foilowing

Monte-Cario code for tokamak4), stellarator5), and torsatron6) magnetic

field configurations. Some of these results show that the numerically

derived ion thermal conductivity is mueh smailer than the theoretical

prediction, especially in the low collisionality regime.

     Coneerning the calculation results of tokamak, there have been two

assignments for the reason of the small ion thermal eonductivity. P.N.

Yushmanov has supposed7) that this is accounted for the collisionless

ripple detrapping whieh is described in g3-3. Another reason has been

considered by K.C. Shaing and his co-worker8). The usuai 1/vi scaling of

ripple-trapped diffusion is valid only for v.ff greater than the toroidal

drift frequency od for the energy of E =4 -v 6Ti which is much greater than

that given in the previous worki).

     One of the most important problems in the design of a tokamak

reactor9) is how to control the thermal excursion which may occur after the

plasma is ignited. Recently, it has been shown theoretically that the
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control of the burning plasma temperature is feasible by using a variable

toroidal field ripple ( 6o from -v O.5"/e to -v 2r/e at most)10)•ll). This was

based on the assumption that the ripple induced ion thermal conductivity

has a temperature dependence of TY-/2' i). However, recent numerieai study4)

does not show that the ripple transport coefficient has such a strong Ti

dependence, espeeially in the low eollisionality (high temperature) regime,

 Therefore, it is doubtful whether this method is effective for burn

     In the present paper we investigate the ripple diffusion process in

detail to find out the conclusive reason for the small ripple ion thermal

conductivity. Finally, basing on the numerically derived data for ripple

diffusion coefficient, the necessary amount of field ripple to control the

burning plasma is estimated.

7-1. Calculation model and assumptions

     To evaluate the ion thermal conduetivity by using an orbit-following

MonteÅíarlo code, plasma density and temperatures are given to be uniform

in space. The magnetic field ripple in a tokamak can be given by eqs.(2-5-

1) rv (2-5--3). In this section, however, for the convenience to compare

the numerieal results with analytical ones, we employ an artifieial field

ripple in which the collisionless ripple trapping nor the collisionless

ripple detrapping hardly occurs. Such field ripple can be approximately

given by solving the following equation,

                     '       '
                          '    -Q).-fll6 .,- 1 1- .BE A-(a)c(.-... ), (7ml)
    c); NtRtql-A (cy)
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where z i's the eoordinate vertical to the mid-plane ( == rsine), A(ed the

funetion described by eq.(3-4>, (N the ripple-well paraJneter defined by

eq. (3-,1 ),

     . r ctBp   Bp =- ,           dr        Bp
     . cy cL4L(or)      (cv )= ,   A
          A(or) dor
and

              (z/Az )2 for I zl < I A2"L l ,

   C(z) ==

             1.0 for I zi l; 1 Az l .

The solution of eq.(7-1) gives the effective ripple weil 6.ff

( i= 2.06<r,e)A(cM)) which is constant on the gradient-B drift trajectory in

the region lzl l IAzl . The ripple on the mid-plane is given in the form

               6e ( R- R6 )2 for R> Rb,
                   R, +1- Rb
    6(r,O) =

               O for R< Rb.
    With the field ripple derived by eq.<7-1), the toroidal, poloidal and

radial components of the magnetic field are given by

   B, = B,o !IL' ( l + 6 (r,e )cosNt Åë ) , (7-2)
           R

Be = tRL'

     R
Bp (r ), (7-3)
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    Br =- -il.EiR foroC'Dg,(r!BQ )dr', (7-4)
                                             '                         '

respectively.

     Note that the model ripple field deseribed by eqs.(7-1) -v (7-4) is

divergence-free, but still non-eurl-free. In order to test whether this
                                                                       '
model field carries validity or not, both ion thermal conductivities in the

field with and without g, component were investigated. For all the plasma
                                                       J
parameters in Table 7-I, however, we could not find out any significant

difference between those results. The magnitude of the poloidal eomponent

of the ripple which makes the field to be curl-free as well as divergenee-

free, is of the same order with E),. This indicates our model field is

enough to describe the ripple transport in a tokamak.

     Test particles with piteh angle and energy distribution corresponding

to an isotropic MaxweUian are initially set on a specific magnetic surface

and launched. The particles whieh mainly contribute to the ripple induced

ion heat conductivity is in the energy range 4Ti <E<6Ti and,in the piteh

angle region 1<i < <. . It must be noted that the fraction of ions in the

high energy tail of a Maxwell distribution E > 4Ti is about O.1 and

(.l. -x- O.2. This indicates that a large number of test particles are neces-

sary for the lvlonte-Carlo caleulation with good accuracy. In our orbit-

following Monte-Carlo eode, about 10000 test particles are used. Moreover,

for the improvement of calculation accuracy, we emp!oy a kind of importanee

sampling method, in which test particles are uniformly distributed in the

velocity space and weighted aceording to the loeal isotropic Maxwellian.

 With this method, the number of test partieles which are effective for the

ripple enhanced ion thermal eonductivity can be improved by a factor of 4.
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 Since magnetic surfaces are assumed to be concentric circles, the ion

thermai''conduetivity xi can be defined as a time differential coefficient

of the minor radius variance, that is,

        ld    zi =: --(]2] (r`j-<r> )2 wj/ Ztoj] , (7-s)
        2dt ,• i•
where

    <r> == ZrJwJ/ 2wj,

           j)'
zvj js the energy density weigh of the j'th test particle.

7-3. Numerical results of ripple transport coefficient

    The ion thermal eonductivity defined by eq.(7-5) deseribes the total

conductivity xT•. The ripple-associated ion thermal conductivity xl3 is

assumed to be separated from xT• by

              NC'    RT    xi = xi - xi ,

where x>•'C is the ordinary neoclassieal conductivity which is also calcu-

!ated with the same orbit-following Monte-Carlo code by "switching-Dff" the

ripple terms in the guiding center equations.

     It has been considered that there are three kinds of rippie induced

transport phenomena, diffusion due to collisional ripple trapping and

detrapping, ripple-enhanced banana-drift diffusion and ripple--plateau dif-

fusion, whose ion thermal conductivities are denoted as x6-'7', x?D, x6-P,
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respectively, in the presenL paper.

     Monte-Carlo simulations were performed for parameters of a large

tokamak whieh are summarized in Table 7-I. In Fig.7-1, the numerically

derived xB• at r/a =O.8 is plotted as a funetion of the ion-ion eollision

frequeney vi, in which electron and ion temperatures are fixed at 5 keV.

 It must be noted that in the ripple field deseribed in g7-2, the ripple

well region (Ia1S 1.0) is congruous preeisely to the region R ;ll Rb, and

neither the ripple well nor the eorrugation of B field occurs in the region

R < Rb. Therefore, the contribution of the particles whose banana tips are

out of the ripple-well region to the ripple plateau conduetivity x6-P can be

neglected.

     The contribution of banana-drift diffusion to z?• was investigated

analytically. For the parameters in Table 7-I, the analytical x6• by Tsang

also takes the value in the order of 10-3 A-10-4 n}2/s . Therefore, the

numerical ion thermai conduetivity x6 shown in Fig.7-1 can be eonsidered as

the one due to coilisional ripple-trapping and detrapping, x?• -v x6•T.

     For eomparison, theoreticai x8•T derived by Connor and Hastie2) is also

shown in Fig.7-1 by the dash-dotted )ine. It is notieeable that the

Monte-Carlo results approximate to the analytical values in the }imit of

high collisionality and that the difference between the analytical and the

numerical results inereases as vi decreases. The reason of this phenomena

will be discussed in the next section in detail.

     From the view points of the confinement of high temperature plasma or

the control of burning plasma, the most interesting point in the ripple

transport is the dependence of x6 on plasma temperature. The numerieal xe•

against T, is shown in Fig.7-2. The theoretical x6T(oc TY•/2 ) is also

plotted in Fig.7-2. In the high temperature region (low collisionality>,
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the numerical x8• is much less than the theoretical x6•T and their difference

                                                               ,
increas6s with Ti, which is the same phenomenon as in Fig.7-1. In the low

collisionality regime, the ion thermal conductivity due to ripple-enhanced

bananaKlrift5) x?•D is negligibly small and x6P is also much smaller than

x5•T. For Ti <1 kev, however, x?•D turns to be grGater than x6•T and x6•P is

also in the same order with xB•T. We suppose that this makes the numerica!

xe• somewhat greater than the analytical xB•T in the low temperature region.

 Beeause of the large error bar, the contributions of z?•D and z6P to x6• in

this region are still unresolved.

     The resulting ripple associated ion thermal conduetivity xe• shows a

much weaker plasma temperature dependence of T?• at most.

                                   '

7-4. Reasoning for the small ripple transport coefficient

                 '

     There have been two assignments for the reason why the numerically

derived x6 is much smaller than the theoretical one in the low coliisiona-

lity regime. P.N. Yushmanov has supposed that this is accounted for the

collisionless ripple-detrapping process deseribed in g3. In the present

field ripple given in g7-2, however, the collisionless ripple detrapplng

is sufficiently suppressed. Therefore, the numerically derived small ion

thermal eonduetivity shown in the last section cannot be explained by this

reason only. Reeently, K. Shaing and J. Callen have pointed out that the

particles with energy of E= 4tx-6 Ti in the tail of the distribution func-

tion make dominant contribution to neoelassical ripple transport eoeffie-

ients. These particles trapped in a ripple well have very high gradient-B

drift velocity and can hit the wall without detrapping from the ripple
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well. Therefore, the usual.1/pi scaling is valid only for v,ff > wd(E) at

E=4-v6 Ti, where od is the toroidal drift frequency. '

     Here, we have performed some calculations to make it clear whether

above mentioned reason is a eonclusive one or not. Keeping the plasma

parameters and the ripple distribution unchanged, the numerical ion thermal

conductivities are calculated by changing the plasma minor radius, that is,

by prolonging the drift time Ar/vd ( = 1/cod ) where Ar is the minor radius

difference between the initial magnetic surface to the first wall. The

ratio of the numerically derived ion thermal conductivity to the theoreti-

cal one is shown in Fig.7-3 against the drift time for vi = 80.0 and 200.0.

 The ion thermal conductivity xB• increases with the drift time to some

extent though, it reaehes a limit. The limiting values are shown in

Fig.7-1 by the dashed curve. As is obvious from Fig.7-1, the limiting

values are still much smaller than the theoretical values especially in the

low eollisionality regime. This indicates that there is another reason for

the small ion heat eonductivity, which is more important than the former

two assignments. As discussed previously the numerical z6• ean be eonsid-

ered as x6•T, it is inferred from Fig,7-3 that there is another mechanism

which make the ripple trapping rate and/or the effective random walk step

size to be much smaller than those based on an analytical model given by

Stringeri). .
     In order to investigate the basic proeess of ripple diffusion, we have

measured-the correlation time. For the convenienee of calculations, the

distribution of ripple is given so that te effective ripple well depth is

spatially uniform in the plasma. The energy of the test particles is

monocromatic (E = 5Ti ) and their pitch angle distribution is given to be

isotropic. The correlation time is an important measure for the diffusion
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proeess, whieh is defined by the e-folding time of the correlation function

given by

           <g(o6 (t+T )> -                         , (7--6)    f. (T> =
              <g (t )2>

where < > indicates the tirne average. Since the correlation time of the

rippie diffusion due to ripple--trapping is the average captivity time in a

ripple well, we assume the funetion g(t) in eq.(76) as

              1.0 for the time while particles are
                    trapped in a ripple well,
    g(t) =

             O.O for the time while they are not.

Here, when the normaiized well depth d. becomes less than unity, we judge

that they are captured by ripple. The well depth d,, is defined by

        mt/2 v"2 + V, (Q) - zb (<pi )

                  Ath

where lb, AiP and Åët are the same as those in g 5-4.

     The eorrelation time T. is shown in Fig.7-4 as a function of the
 '
ripple bounce time ir,b (eq.(3-7)), where T,b and T. are normalized by the

effective collision time

          6eff

and by the average effective coilision time

   <T.ff> [>t Teff, (7-g)              2

respectively. Contrary to the theoretical prediction, the numerical T.
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shows a strong dependence on T,b and takes a vaiue much smaller than

<T.ff> in the low collisionality regime. In the high T,b/<"r.ff> region,

Tc approximates to <T,ff> , which is also confirmed by the data for sta-

tionary orbits in Fig.7-4. The ion thermal conductivity in a ripple field

dedueed from the Monte-Carlo code shown in Fig.7-1 and 7-2 can be well

explained qualitatively by the above mentioned nature of T. since

    x.6T -v D6T -v (VdTC )2 = vd2T. .

                Tc

     The theoretical ion thermal conductivity has been derived from a

bounce averaged Fokker-Planek equation with the assumption that the bounce

frequency of a ripple-trapped partiele o,b is much greater than the effec-

tive collision time v.ff (= 1/T.ff >. In a rippled toroidal field, however,

the Fokker-Planek equation cannot be bounce averaged for the particles with

well depth d. =1.0 (barely ripple--trapped partieles), because the residence

time of these particles in the vicinity of a ripple peak point Åë =ep2 (see

.6 5--4 ) diverges. In order to look into this effect, correlation time is

calculated for the case (case @ ) in which the criterion of normalized

well depth for ripple-trapping is artificially reduced, that is, the

particles are recognized to be trapped by ripple when their dtv $ Strp with

Strp =d:, <1.0 (case @). Results are shown in Fig.7-5 by the soiid line.

 The correlation time with an unartificial criterion for ripple-trapping

judgement St,, =1.0 and with the well depth Aiv' = d,',ARb' where AaP' is the

well depth for the case (l), is also plotted in Fig.7-5 by the dashed line.

 The correlation time with artificial criterion for ripple trapping (case

O>shows a very sharp change near clt,=1.0. While, T./<Teff> with an

unartifieial ripple-trapping criterion <case @ ) does not show any signif-
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icant change against the well depth. The particle with d,, = 1.0 stays

extremely long time near a ripple peak point where the potential difference

Vt - ly' (gc) 'x• ep2)<< AW with V,t and aZ,(Åë) given by eq.(5-5) and (5-6), respec-

tively. Consequently, the singular orbit with d. = 1.0 may work as a

barrier on a partiele to be deeply trapped in a ripple well. This is

inferred from the eomparison of those two lines shown in Fig.7-5. If

particles are prevented to be deeply trapped in a ripple-well, their walk

step or the transport coefficient is effectively reduced.

7-5. Burn temperature contro! using toroidal field ripp!e

     Recently, assuming the theoretical ripple enhanced ion thermal conduc-

tivity, feasibility of burn temperature control by using a variable

toroidal field ripple is demonstrated by several authorsiO)•ii). As discussed

in the previous subsections, however, the ripple indueed ion thermal

conductivity is much smaller than the theoretical prediction especially in

the low collisionality regime and has an ion temperature dependence of T?•

at most. These results are very favorable for the plasma heating to

ignition though, they are unfavorable for the applieation of ripple trans-

port to the burn eontrol,

     In the present section, basing on the numericaliy derived ion thermal

conductivity, the necessary amount of field ripple for the control of

burning temperature is estimated by solving a simple power balance with an

assumption of a zero-dimensional plasma model. The power balance in a

burning plasma can be written in the form
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    Pf-Pxe-PximPa-Pbr-Psy=O, (7-10)
where Pf, Pxe, Pxi, P., Pb, and Ps.q are the fusion power, the electron

conduction loss, the ion conduction loss, the alpha-particle loss due to

field ripple, the bremsstrahlung radiation lossi2), and the synchrotron

radiation lossi3),- respectively. Provided that both spatial distributions

of plasma density and temperature are paraboiic, the fusion power is given

by14)

    Pf = 1.8 mpnT <ov>DT ,

where to, nT and <ov>DT are the average deuteron density, the average

tritium density and the fusion reaction rate at the average ion temperature

<Ti = TD. The electron and ion conduction losses Px. and Pxi are esti-

mated at r = O.7a with electron and ion thermal conduetivities

    x.=5XgOi9 m2/s, '
          mp
and

    xi =3xl)tC+xe•7, .
respectively. The theoretical ion heat conductivity in an axisymmetric

systemi5) is employed for CY-C and the numerically derived ion heat conduc-

tivity for xe•T. The ripple induced alpha-particle loss during slowing-down

P. is also estimated numerically (see .ft6>.

    The relation between the burning plasma temperature TB and the maximum

field ripple 6o solved by eq.(7-10) is shown in Fig.7L6. The dashed line

in Fig.76 shows the burning temperature given by eq. (7-10> with theoreti-

cal ion thermal conductivity2), which fairly agrees with the result solved

by a detaiied one dimensional tokamak'simulation codeii). According to the

present numerical study, rather large values of 6o ( -x. 5%') are required in

                                                  '
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order to achieve the appropriate burning temperature TB < 'v 15SL"eV).

7-6. Concluding remarks

    Ripple transport has been investigated numerically by an orbit-

following Monte-Carlo code. Conelusions obtained in the present investiga-

tions are summarized as follows:

   (1> It is found that the collision frequency transition from the colli-

      sional ( xB•T oc 1/vi ) to the co}lisionless ( xB-T oc vi ) regime for the

      numerically derived ion thermal conductivity occurs at a frequency

      much greater than the theoretical prediction, Consequently, numeri-

      cal xRT becomes mueh smaller than the theoretical one, especially in

               '      the low collisionality regime.

   (2) The resulting ripple induced ion heat conductivity shows a much

      weaker temperature dependence of T?• at most.

   (3) For the reasons of this small ion heat eonductivity in the low

      eollisionality regime, there have been two assignments, the colli-

      sionless ripple detrapping and the high drift frequency tod for

      partieles with E=4 to 6Ti which mainly contribute to the ion heat

      transport. Besides these two reasons, it is found that the singular

      orbit of barely ripple-trapped particles with d. = 1.0 may prevent

      them from being deeply trapped in a ripple well and may reduce the

      ripple transport.

   (4) A simple study bhsing on the power balance of burning plasma with

      numerically derived ion heat conductivity shows that rather large

      values of 6o ( -v 5%) are required for the control of burning plasma
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temperature TB ( -v t5 k"eV).
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TabLe 7-I Plasma parameters

major radius

minor radius

toroidal field

plasma temperatUre

plasma density

plasma eurrent

safety faetor

plasma ion species

effective Z

number of toroidal
field coils

Rt=

Bt=
Te (r) =

Ti (r) =

Teo,Tio ==

n. (r) =

TleO =
3' ,(r) ==

3o --

qa =
ff

ZefÅí ==

Nt =

 3.03 m

 O. 95 m

 4.5 T
 Teo (uniform)

 Tio (uniform)

 1.o - 2o.o kev

 Tleo (uniform)
 1.o Å~ lo19 - s.o Å~

 jo (1-(r/a )2 )

4.73/q. rvfrS/m2

3.5

1.0

18

(uniform)

lo20 m-3
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Fig.7-1 Ion thermal coRductivity versus collisionality. The
solid line is the numerically derived xiS- in a plasma with finite
minor radius'and the dashed curve is the one in the limit of
large minor radius. The theoretieal xt;] is shown by the dash-
dotted line. Initial radial position of ions is r/a=O.8,
Ti=Te:r5k:eV and the muximum field ripple 6o=la/S. Other parameters
as in Table 7-I.
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bg 8. Concluding Remarks

     Studies on the confinement of fast ions produced by a quasi-

perpendicular neutral beam injection and suprathermal eharged fusion

products in a rippled toroidal field during slowing down have been exten-

sively performed by means of a newly developed orbit-following Monte--Carlo

simulation code. The ripple-associated neoclassical transport coeffieient

has been also investigated by the same code.

     It has been found that the collisionless behaviors of fast ions, the

eollisionless ripple trapping, eollisionless ripple detrapping and the

ripple-enhanced banana drift, have essential roles on the loss process of

fast ions in a toroidal field ripple. The collisionless ripple trapping

occurs in a toroidal field ripple which beeomes higher with the displace-

ment vertical to the mid-plane. The pitch-angle width of the collisionless

ripp}e-trapping region is proportional to the gradient-B drift velocity or

the banana size of fast ions. The ripple-enhanced banana drift of fast

ions is also proportional to their banana size and inversely proportional

to the square root of the local field ripple at their banana tip in the

region lal < 1.0. The collisionless rapple trapping and the ripple-

enhanced banana drift produce a large number of loss bands in the velocity

space (in the pitch angle region l<l < <.) and strongly disturb the banana

loss cone. It has been eonsidered that the ripple loss cone is the pitch-

angle region i<i < •vt5E;7. However, most of fast ions with pitch angle

l<:1 < g. are !ost in a time interval much shorter than the slowing-down

time. Consequently, a kind of loss eone is effectively formed in this

                                                    '
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pitch angle region.

     Ripple-associated loss dominates the loss of fast ions produced by a

quasi-perpendicular neutral beam injection in a reactor-grade tokamak. In

order to hold down the ripple loss of fast ions to be less than 1orle of the

total, l90 - ei.jl > 20" and 6o < O.59o for the typica! plasma parameters.

 Banana-drift loss is significantly enhanced by the toroidal field ripple

not only in the counter-injection but aiso in the co-injection. The

                                                      tripple-trapped loss does not show any pronounced difference between co- and

counter-injection. Hence, in the presence of ripple no remarkable •advan-

tage of co-injection can be expeeted in a quasi-perpendicular neutral beam

lnJectlon.

     One of the essential features of the ripple-trapped ioss is the

localization of the loss particles in a specific area on the first wal}.

 This causes a serious problem of heat loading on the first wall, espe-

cially in the long pulse NBr heating. tocalized heat load due to ripple-

trapped loss ions may reach a magnitude of IM-i/in2 for the next-generation

tokamak .

    Aithough the initial energy of charged fusion products is very high,

eollisional effects, the slowing down as well as the pitch angle scatter-

ing, dominate their ripple loss. Even in the presence of rippie, the

energy of alpha particles is well confined in a plasma. The ripple

enhanced power loss for 6o = 1% is about 10"/e of the total. The fraction of

the particle loss is about 1.5 tv 1.8 times as large as that of power loss

for O.4"/o <6o<1.5%. The ripple-enhanced banana drift dominates the loss

process of alpha particles and only a traee amount of ripple-trapped loss

particles is observed. The diffusion coefficient for confined banana

particles with piteh angle C >g. is approximately given by

                                 -H3-



    DCB = 7t (Nt /sinOb )3 (q/E )5si n2 2g (p6 )2' vi .

For the plasma parameters of a tokamak reaetor with 6o -v 19e, DCB of 3.5 -Iev

alpha particles is of the order of 10-i in2/s , which is much greater than

the axisymmetric neoclassical diffusion and much less than the ripple-

plateau diffusion. It is shown in the present investigation that there is

a possibility of realizing the design of tokamak reactors with a realistic

field ripple of 6o -vl%", permitting 1orS power loss of alpha particles.

     It is found that the collision frequency transition from the col!i-

sional ( x6•T oc 1/vi ) to the coilisionless ( x6•T cc vi ) regime for the

numerically derived ion thermal conductivity occurs at a frequeney much

greater than the theoretieal prediction. Consequently, numerieal zRT

beeomes much smaller than the theoretical one, especiaiiy in the low

coilisionality regime. The resulting ripple induced ion heat conductivity

shows a much weaker temperature dependence of T?• at most. Besides the two

reasons of this small ion heat conductivity in the low collisionality

regime, the collision!ess ripple detrapping and the high drift frequeney cod

for particles with E = 4 to 6Ti which mainly contribute to the ion heat

transport, it is found in the present investigation that the singular orbit

of barely ripple-trapped particles may prevent them from being deeply

trapped in a ripple well and may reduce the ripple transport. A simple

study basing on the power balance of burning plasma with numerically

derived ion heat conductivity shows that rather large values of 6o ( -v 5%)

are required for the control of burning plasma temperature TB ( -v 15 keV).
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Appendix: Fast Ion Behavior near Banana Tip in a Toroidal Field Ripple

    Provided that Be << B, and vii << vi , the guiding center eqs.(2-9-1 )-(2-

9-4) are represented by

   dV" .. - t'l!m B'l}t cbesine - 6(r,e )Nt si nNt Åë], (A-1)
    dt mt              rw

   dr pt. sine
   dt eR
                                                               '

   :iÅÄ9= ."z`M, -;5 (i-Rt/R >' i9+/U"' ("-3)

   clep 1
   dtR
By introducing a normalized time T= t/ct where ct =VIEI]i<l;R/vi and a

toroidal angle with the coil pitch periodicity Åë= NtQ, the guiding center

eqs.(A-1)-(A-4) can be reduced in the vicinity of a banana tip to

   d2Åë
       + Co + EoT + El (Åë - Åëo)- (Cl + E2T + E3 (Åë - Åëo )) sinÅë = O, (A-5)
   dT2

where

        co == besine,

        ci = Nt6(r,e),

        6o == illt/ (L ' 7-[ii?qrsin2e) vdct ,

                    '
            Rt ?"        q =:; .cose,
            R"' Nt q"
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        E2 = Nt (-ill-/"sine + -ill-ÅÄ9 eOrSe) vdct ,

             06        E3= , and
             qae

               E
        Vd= '            eZtRtBt

The solution of eq.(A-5) is approximately given by

    T (Åë ) = Sn fÅë,Åë dÅë/ 2 (U(rpo ) - U(Åë )] ,

where

                   '
    U(Åë) = coÅë + cicosrp +goAi (Åë,fpo)+ ei (Åë2/2 - rpotp)

             - e2A2 (Åë,tpo) - E3 (sinÅë - sinÅëo - (tP-Åëo)cosÅë] ,

   Ai (Åë,epo) - f,gT* (Åë) dÅë,

   A2 (Åë , tpo ) = fÅë,O T' (Åë )sinÅë ctcP

   T' (Åë) - f,gcttp/ 2cpt (Åëo) - pt (tp)] ,

   U' (Åë) = coÅë + cicosÅë + si (Åë2/2 - ÅëoÅë)- s3[sinep - siriÅëo - (O-Åëo)cosÅë]

Sn =1.0 for Åë>Åëo and -1.0 for Åë<Åëo, and Åëo is the toroidal angle at

banana tip.

    The pitch-angle band width Ag for collisionless ripple-trapping

approximately given by

                                --1l8-

(A-6 )

,

 the

is



          1.    A< >t :}(besineb-Nt6sinÅëb )AÅëcos<, (A-7)

where g is the pitch angle of fast ion and AÅë is the toroidal angle

difference between the banana tips with and without banana size as shown in

Fig.A-1. In case of small lor1 (1al << 1.0), AÅë can be described by

    AÅë >t (sotci-E2tc2)/(VE;;u(Åë)), (As)

where

    u(Åë ) = dU <Åë )/dip

    Ki = V5TAi (Åës,Åëb), and

    K2 =: VE-l-A2 (rp.,Åë6).

Here, aj. and Åëb are the toroidal angles satisfying the following condi-

tlons:

    U<Åë) = O, and U(Åë,) = U (Åëb ),

For a large vaiue of the safety factor q, the pararneter Åí1 and e3 become

sufficiently small and Ki and K2 are described as functions of or only.
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