

Title	Stiefel manifolds as framed boundaries			
Author(s)	Minami, Haruo			
Citation	Osaka Journal of Mathematics. 1990, 27(1), p. 185-189			
Version Type	VoR			
URL	https://doi.org/10.18910/11170			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

STIEFEL MANIFOLDS AS FRAMED BOUNDARIES

HARUO MINAMI

(Received February 8, 1989)

Let $V_{n,q}$ denote the Stiefel manifold of orthogonal q-frames in F^n where F=R,C,H. We regard this space as the homogeneous space G_n/G_{n-q} of right cosets modulo $1_q \times G_{n-q}$ where G_k denotes the relevant group SO(k), SU(k) or Sp(k). Then this space obtains a framing in a canonical way as mentioned below [3]. We denote this framing ambiguously by \mathcal{F} and we write $[V_{n,q},\mathcal{F}]$ for an element in π_*^s defined by the pair $(V_{n,q},\mathcal{F})$ via the Thom-Pontrjagin construction. In this note we prove the following

Theorem. Let $1 \le q \le n-1$, n-1 or n according as F = R, C or H. Then

$$[V_{n,a}, \mathcal{F}] = 0$$
.

We denote by \mathcal{R} the right invariant framing of G_n and by \mathcal{R}^{σ} the framing obtained by twisting \mathcal{R} by a representation α [5]. Also we write $[G_n, \alpha]$ for $[G_n, \mathcal{R}^{\sigma}]$. Let

$$\rho_n$$
: $G_n \subset GL(dn, \mathbf{R})$

be the standard real representation of G_n where $d=\dim_{\mathbb{R}} F$. Then by the theorem we have

Corollary ([1], [5]).

$$[SO(n), (n-1)\rho_n] = 0, [SU(n), (n-1)\rho_n] = 0$$
 and $[Sp(n), n\rho_n] = 0$.

REMARK. By taking $G_k = U(k)$ instead of SU(k) we get $[U(n), n\rho_n] = 0$ analogously.

The proof of the theorem uses the arguments parallel to [4]. Actually we construct a bounding manifold for $V_{n,q}=G_n/G_{n-q}$.

Let V_k denote the representation space of ρ_k . There is then the real vector bundle

$$\xi_k \colon G_n \times_{G_k} V_k \to G_n/G_k$$

for k < n. If $S(V_k)$ denote the unit sphere of V_k , then we have a canonical G_k -equivariant diffeomorphism.

$$G_k/G_{k-1} \approx S(V_k)$$
.

This and $G_n/G_{n-q} = G_n \times_{G_{n-q+1}} G_{n-q+1}/G_{n-q}$ imply that the homogeneous fibre bundle

$$(1) G_{n-q+1}/G_{n-q} \to G_n/G_{n-q} \xrightarrow{\pi} G_n/G_{n-q+1}$$

is isomorphic to the sphere bundle of ξ_{n-q+1} . Hence we have

$$G_n/G_{n-q} \approx S(\xi_{n-q+1})$$

where $S(\xi_k)$ denotes the total space of the sphere bundle of ξ_k . Denote also by $D(\xi_k)$ the total space of the disc bundle of ξ_k . Evidently we then have

$$\partial D(\xi_{n-q+1}) \approx V_{n,q}$$
.

To prove the theorem it therefore suffices to show that the framing \mathcal{F} of $V_{n,q}$ extends over $D(\xi_{n-k+1})$.

So we first recall the framing of [3]. Let G be a compact connected Lie group and H a closed subgroup of G. Let $\tau(G/H)$ denote the tangent bundle of G/H. Consider the principal H-bundle

$$H \to G \xrightarrow{\pi} G/H$$
.

Then we have a decomposition of the tangent bundle of G

$$\tau(G) \cong \pi^* \tau(G/H) \oplus \tau_{\pi}(G)$$

where $\tau_H(G)$ is the bundle of tangents along the fibres. This isomorphism is compatible with the right action of H, so that we obtain an isomorphism of vector bundles over G/H

$$\tau(G)/H \cong \tau(G/H) \oplus \tau_H(G)/H$$
.

Let $\tau_g(G)$ denote the tangent space at $g \in G$ and $R_{g^{-1}}$: $\tau_g(G) \to \tau_e(G)$ denote the differential of right multiplication by g^{-1} where e is the identity element of G. Then the right invariant framing of G

$$\mathcal{R}$$
: $\tau(G) \simeq G \times \tau_{\epsilon}(G)$

is given by $\mathcal{R}(v) = (g, R_{g^{-1}}(v))$ where $v \in \tau_{g}(G)$. This gives

$$au(G)/H \cong G/H imes au_e(G)$$
.

as vector bundles over G/H.

By ad_H we denote the adjoint representation of H on $\tau_e(H)$. We consider the differential $L_{a^{-1}}$: $\tau_a(gH) \rightarrow \tau_e(H)$ induced by the left multiplication by a^{-1} where $a \in gH$. Then similarly we have

$$\tau_H(G)/H \cong G \times_H \tau_e(H)$$

as vector bundles over G/H where H acts on $\tau_e(H)$ via ad_H . Combining these three bundle equations we have

(2)
$$G/H \times \tau_{\epsilon}(G) \cong \tau(G/H) \oplus G \times_{\operatorname{ad}_{\mathbf{H}}} \tau_{\epsilon}(H)$$

as vector bundles over G/H. So we find that if ad_H is contained in the image of the restriction map $RO(G) \rightarrow RO(H)$ of real representation rings, then formula (2) gives rise to a framing of G/H.

Here we return to the framing of $V_{n,q}$. We consider the restrictions of ad_{G_n} and ρ_n to G_k for k < n. Now we write $\mathrm{ad}_k = \mathrm{ad}_{G_k}$ briefly. Then we have

Lemma 1. (i)
$$\rho_n|_{G_{n-1}} \cong \rho_{n-1} \oplus d \cdot 1$$
,
(ii) $\operatorname{ad}_n|_{G_{n-1}} \cong \operatorname{ad}_{n-1} \oplus \rho_{n-1} \oplus (d-1) \cdot 1$

where 1 denotes the trivial 1-dimensional real representation.

Proof. (i) is obvious. By observing the maximal root of G_n [2] we see that $c(\operatorname{ad}_n) = \lambda^2 \tilde{\rho}_n$, $(\lambda^1 \tilde{\rho}_n) (\lambda^{n-1} \tilde{\rho}_n) - 1$ or $(\lambda^1 \tilde{\rho}_n)^2 - \lambda^2 \tilde{\rho}_n$ where $\tilde{\rho}_n$ denotes the canonical complex representation $G_n \subset GL(n, C)$, GL(n, C) or GL(2n, C) according as F = R, C or H. Here c is the complexification and $\lambda^i \tilde{\rho}_n$ is the i-th exterior power of $\tilde{\rho}_n$. For this fact, however, we refer to [6]. So we can readily obtain (ii) using (i).

From Lemma 1 it follows that for k < n

(3)
$$\operatorname{ad}_{n}|_{G_{k}} \cong \operatorname{ad}_{k} \oplus (n-k) \rho_{k} \oplus ((n-k)(dn-dk+d-2)/2) \cdot 1,$$
$$\rho_{n}|_{G_{k}} \cong \rho_{k} \oplus d(n-k) \cdot 1.$$

Hence we get

(4)
$$\operatorname{ad}_{n}|_{G_{k}} \oplus s(n,k) \cdot 1 \simeq \operatorname{ad}_{k} \oplus (n-k) \rho_{n}|_{G_{k}}$$

for k < n where s(n, k) = (n-k)(dn-dk-d+2)/2.

Denote by W_k the representation space of ad_k . Then using (2) when $G = G_n$, $H = G_{n-q}$ and (4) we obtain a framing of $V_{n,q}$

(5)
$$\mathcal{F} : \tau(V_{n,q}) \oplus (V_{n,q} \times W_n) \oplus s(n, n-q) \cdot 1 \cong V_{n,q} \times (\tau_e(G_n) \oplus qV_n)$$

where 1 denotes the trivial real line bundle.

We now give this framing \mathcal{F} more directly. Let W'_k be a direct summand of $W_n|_{G_k}$ such that $W_n|_{G_k} \cong W'_k \oplus W_k$ for k < n. Then we have

Lemma 2 ([1]).
$$\tau(V_{n,n-k}) \simeq G_n \times_{G_k} W'_k$$
 for $k < n$.

Proof. There is an obvious isomorphism of vector bundles over $V_{n,n-k}$

$$G_n \times_{G_k} (W_n |_{G_k}) \cong V_{n,n-k} \times \tau_e(G_n)$$
.

188 H. Minami

So consider the composite with the isomorphism of (2) when $G=G_n$, $H=G_k$

$$G_n \times_{G_k} (W_n|_{G_k}) \simeq \tau(V_{n,n-k}) \oplus G_n \times_{G_k} W_k$$
.

Then we see that this map sends identically the direct summand $G_n \times_{G_k} W_k$ to that on the right-hand side and isomorphically another direct summand $G_n \times_{G_k} W'_k$ to $\tau(V_{n,n-k})$, and so the result follows.

Using Lemma 2 we can interpret \mathcal{F} of (5) as follows. By (4) we have

$$(6) W'_{k-q} \oplus (W_n|_{G_{n-q}}) \oplus s(n, n-q) \cdot 1 \cong (W_n \oplus qV_n)|_{G_{n-q}}.$$

This gives rise to an isomorphism of real vector bundles associated with the principal G_{n-q} -bundle $G_n \rightarrow V_{n,q}$ with modules on both sides as fibres. It is easily seen that this isomorphism induces \mathcal{F} of (5) precisely.

Proof of Theorem. By the second formula of (3) it follows that

$$\xi_{n-q+1} \oplus d(q-1) \cdot 1 \cong V_{n,q-1} \times V_n$$
.

Taking the sum of this and the framing \mathcal{F} of $V_{n,q-1}$ we have

(7)
$$\tau(V_{n,q-1}) \oplus \xi_{n-q+1} \oplus (V_{n,q-1} \times W_n) \oplus (s(n,n-q)-1) \cdot 1$$
$$\simeq V_{n,q-1} \times (\tau_e(G_n) \oplus qV_n)$$

since s(n, n-q)=s(n, n-q+1)+d(q-1)+1. Now from the above arguments about the fibre bundle of (1) it is clear that

$$\tau(\boldsymbol{V}_{n,q}) \oplus 1 \cong \pi^*(\tau(\boldsymbol{V}_{n,q-1}) \oplus \boldsymbol{\xi}_{n-q+1})$$

where π is the projection map of (1). Therefore by pulling the isomorphism of (7) back along π we obtain another framing of $V_{n,q}$

$$\mathcal{F}' \colon \tau(V_{n,q}) \oplus (V_{n,q} \times W_n) \oplus s(n,n-q) \cdot 1 \cong V_{n,q} \times (\tau_{e}(G_n) \oplus qV_n) \ .$$

Denote by $\widetilde{\pi}$ the canonical projection map $D(\xi_{n-q+1}) \rightarrow V_{n,q-1}$. Moreover we then have

$$\tau(D(\xi_{n-q+1})) \cong \widetilde{\pi}^*(\tau(V_{n,q-1}) \oplus \xi_{n-q+1}),$$

so that by pulling the isomorphism of (7) back along π again we obtain a framing of $D(\xi_{n-q+1})$. Identifying $V_{n,q}$ with $S(\xi_{n-q+1})$, this framing is obviously an extension of \mathcal{F}' over $D(\xi_{n-q+1})$ since $\pi|_{V_{n,q}} = \pi$. Hence it follows $[V_{n,q}, \mathcal{F}'] = 0$ and so it suffices to show that \mathcal{F} agrees up to sign with \mathcal{F}' .

By (3) we have

$$W'_{n-q} \oplus 1 \simeq (W'_{n-q+1} \oplus V_{n-q+1})|_{G_{n-q}}.$$

Using this and Lemma 2 we can verify that formula (6) also gives rise to either

 \mathcal{F}' or $-\mathcal{F}'$ in the same way as the case of \mathcal{F} . Therefore this proves the theorem.

Proof of Corollary. Since $V_{n,n-1}=SO(n)$, SU(n) and $V_{n,n}=Sp(n)$, we set $V_{n,q}=G_n$ in (5) and so in defining \mathcal{F} we consider $\mathrm{ad}_{n-q}=0$. Hence by definition it follows that \mathcal{F} is just the framing twisting \mathcal{R} of G_n by $\mathrm{ad}_n-q\rho_n$, so that by the theorem it follows $[G_n,\mathrm{ad}_n-q\rho_n]=0$. Therefore we have $[G_n,q\rho_n]=0$ by [5].

References

- [1] L. Astey, M.A. Guest and G. Pastor: Lie groups as framed boundaries, Osaka J. Math. 25 (1988), 891-907.
- [2] N. Bourbaki: Groupes et algèbres de Lie, Hermann, Paris, 1968.
- [3] P. Löffler and L. Smith: Line bundles over framed manifolds, Math. Z. 138 (1974), 35-52.
- [4] H.V. Pittie and L. Smith: Generalized flag manifolds as framed boundaries, Math. Z. 142 (1975), 191-193.
- [5] B. Steer: Orbits and the homotopy class of a compactification of a classical map, Topology 15 (1976), 383-393.
- [6] I. Yokota: Groups and representations (in Japanese), Shôkabô, Tokyo, 1973.

Department of Mathematics Naruto University of Education Naruto, Tokushima 772 Japan