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Let V, , denote the Stiefel manifold of orthogonal g-frames in F* where
F=R,C,H. We regard this space as the homogeneous space G,/G,_, of right
cosets modulo 1,XG,_, where G, denotes the relevant group SO(k), SU(k) or
Sp(k). Then this space obtains a framing in a canonical way as mentioned
below [3]. We denote this framing ambiguously by & and we write [V, ,, F]
for an element in z§ defined by the pair (V, ,, &) via the Thom-Pontrjagin
construction. In this note we prove the following

Theorem. Let 1<q=<n—1,n—1 or n according as F=R, C or H. Then
Vap F]=0.

We denote by R the right invariant framing of G, and by R” the framing
obtained by twisting R by a representation o [5]. Also we write [G,, o] for
[G,, R*]. Let

p.: G,CGL(dn, R)

be the standard real representation of G, where d=dimgz F. Then by the the-
orem we have

Corollary ([1], [5]).
[SO(), (n—1)p,] = 0, [SU(n), (n—1)p,] =0 and [Sp(n), np,] =0.
REMARK. By taking G,=U(k) instead of SU(k) we get [U(n), np,]=0

analogously.
The proof of the theorem uses the arguments parallel to [4]. Actually we
construct a bounding manifold for V, ,=G,/G,_,.

Let V, denote the representation space of p,. There is then the real vector
bundle

& G, X6, Vi~ G,/G,

for k<n. If S(V,) denote the unit sphere of V/,, then we have a canonical G-
equivariant diffeomorphism.
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GGy =~ S(Vi) -
This and G,/G,_,=G,Xq,_,,, G,_411/G,-, imply that the homogeneous fibre
bundle
7
(1) Gn—q+1/Gn—q - Gn/Gn—q g Gn/Gn—q+l
is isomorphic to the sphere bundle of &,_,,;,. Hence we have
Gn/Gn-—q ~ S(Eﬂ—q‘f'l)

where S(,) denotes the total space of the sphere bundle of £,. Denote also by
D(&,) the total space of the disc bundle of £,. Evidently we then have

6D(§n-q+1) ~ Vn,q .

To prove the theorem it therefore suffices to show that the framing F of V, ,
extends over D(&,_,.))-

So we first recall the framing of [3]. Let G be a compact connected Lie
group and H a closed subgroup of G. Let 7(G/H) denote the tangent bundle
of G/H. Consider the principal H-bundle

H-GZGH.
Then we have a decomposition of the tangent bundle of G
7(G) = =*7(G/H) ® 74(G)

where 74(G) is the bundle of tangents along the fibres. This isomorphism is
compatible with the right action of H, so that we obtain an isomorphism of
vector bundles over G/H

7(G)/H = (G/H) D 7x(G)/H .

Let 7,(G) denote the tangent space at g&G and R,-1: 7,(G)—7,.(G)
denote the differential of right multiplication by g~! where e is the identity ele-
ment of G. Then the right invariant framing of G

R: 7(G) = Gx71,(G)
is given by R (v)=(g, R,-1(v)) where vE7,(G). This gives
7(G)/H = G[HX 1,(G) .

as vector bundles over G/H.

By ad, we denote the adjoint representation of H on 7,(H). We consider
the differential L,-:: 7,(gH)—7,(H) induced by the left multipliaction by a™’
where ac gH. Then similarly we have
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T4(G)[H = G X g 7,(H)

as vector bundles over G/H where H acts on 7,(H) via adg.
Combining these three bundle equations we have

(2) GIHX7(G) = 7(G/H) ® G X aa5 7(H)

as vector bundles over G/H. So we find that if ady is contained in the image
of the restriction map RO(G)—RO(H) of real representation rings, then formula
(2) gives rise to a framing of G/H.

Here we return to the framing of V,,. We consider the restrictions of
adg, and p, to G, for k<n. Now we write ad,=ad;, briefly. Then we have

Lemma l. (1) p.le,.,=ps1Dd-1,
(i) ad,|s,.,=~ad, ;D p,_, B (d—1)-1
where 1 denotes the trivial 1-dimensional real representation.

Proof. (i) is obvious. By observing the maximal root of G, [2] we see that
c(ad,)=7?p,, A'p,) A*"1p,)—1 or (A'p,)*—A?p, where p, denotes the canonical
complex representation G,CGL(n, C), GL(n, C) or GL(2n, C) according as F=
R, C or H. Here c is the complexification and A p, is the i-th exterior power of
p.. For this fact, however, we refer to [6]. So we can readily obtain (ii) using

).
From Lemma 1 it follows that for k<n
3) ad,|¢, = ad, D (n—k) p, D (n—k) (dn—dk+d—2)[2)-1,
ouloy = P @ d(n—h)-1.
Hence we get
4) ad, g, ®s(n, )1 = ady & (1—H)p |,

for k<<n where s(n, k)=(n—Fk) (dn—dk—d+2)/2.
Denote by W, the representation space of ad,. Then using (2) when G=
G,, H=G,_, and (4) we obtain a framing of V,, ,

(5) F:r(V,) BV, X W,)Bs(n,n—q)-1 =V, X(7,(G,) DqV,)

where 1 denotes the trivial real line bundle.
We now give this framing & more directly. Let W} be a direct summand
of W,|s, such that W, |, =Wi@®W, for k<n. Then we have

Lemma 2 ([1]). 7(V,.-x)=G,X¢, Wi for k<n.
Proof. There is an obvious isomorphism of vector bundles over V, ,_,

G, XG,,( w, 'Gl,) = Vn,n-—kx Te(Gﬂ) .
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So consider the composite with the isomorphism of (2) when G=G,, H=G,
G Xe(Wals,) = 7(Vaut) Gy X6, Wy

Then we see that this map sends identically the direct summand G, X ¢, W, to
that on the right-hand side and isomorphically another direct summand G, X,
# 10 7(V,.4-#), and so the result follows.

Using Lemma 2 we can interpret & of (5) as follows. By (4) we have
(6) Wi-e®W.ls,.,)®s(n,n—q)-1 = (W,DqV.)ls,., -

This gives rise to an isomorphism of real vector bundles associated with the
principal G,_,-bundle G,—V, , with modules on both sides as fibres. It is
easily seen that this isomorphism induces & of (5) precisely.

Proof of Theorem. By the second formula of (3) it follows that
En—q+1 @d(q_l) le= Vn,q-—l X Vn .
Taking the sum of this and the framing & of V, ,_, we have

(7) T(Vn.q—l) > gn—q+1 > (Vn,q~1 X Wn) @ (5(”’ n"“Q)'_l) -1
=V, , 1 X(1.(G,)DqV,)

since s(n, n—q)=s(n,n—g+1)+d(q—1)+1. Now from the above arguments
about the fibre bundle of (1) it is clear that

T(Vn.q) D1 = ”*(T(Vn.q—l) @ En-—q+1)

where 7 is the projection map of (1). Therefore by pulling the isomorphism
of (7) back along = we obtain another framing of V, ,

G 7V OV XW,)Bs(n,n—q)-1 =V, X(r.(G,)DqV,).

Denote by # the canonical projection map D(&,_,.,)—=>V, ,-;,. Moreover
we then have

T(D(En—lﬁ-l)) & ﬁ*(T(V”’q_]) ®§n—q+1) ’

so that by pulling the isomorphism of (7) back along % again we obtain a framing
of D(§,_,+,). Identifying V', , with S(&,_,.,), this framing is obviously an ex-
tension of F' over D(§,_,.;) since %lymzn. Hence it follows [V, ,, F']=0

and so it suffices to show that & agrees up to sign with &F'.
By (3) we have

Wia®1l = (W;_1.® Vn-q+1)|(;,,_,, .

Using this and Lemma 2 we can verify that formula (6) also gives rise to either
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G’ or —’ in the same way as the case of &. Therefore this proves the the-
orem.

Proof of Corollary. Since V, , ,=SO(n), SU(n) and V, ,=Sp(n), we set

V, =G, in (5) and so in defining & we consider ad,_,=0. Hence by definition
it follows that & is just the framing twisting R of G, by ad,—g¢p,, so that by the
theorem it follows [G,, ad,—¢p,]=0. Therefore we have [G,, ¢p,]=0 by [5].
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